# Volumetric Survey of LEON RESERVOIR 

 September 2015 SurveyTexas Water Development Board
Bech Bruun, Chairman | Kathleen Jackson, Member | Peter Lake, Member

Kevin Patteson, Executive Administrator

Prepared for:

## Eastland County Water Supply District

With Support Provided by:

## U.S. Army Corps of Engineers, Fort Worth District

Authorization for use or reproduction of any original material contained in this publication, i.e not obtained from other sources, is freely granted. The Board would appreciate acknowledgement.

This report was prepared by staff of the Surface Water Resources Division:
Jason J. Kemp, Manager
Holly Holmquist
Khan Iqbal
Bianca Whitaker
Nathan Leber

Published and distributed by the

## Executive summary

In September 2015, the Texas Water Development Board entered into agreement with the U.S. Army Corps of Engineers, Fort Worth District, to perform a volumetric survey of Leon Reservoir. The Eastland County Water Supply District provided 50\% of the funding for this survey, while the U.S. Army Corps of Engineers, Fort Worth District, provided the remaining $50 \%$ of the funding through their Planning Assistance to States Program. Surveying was performed using a multi-frequency ( $208 \mathrm{kHz}, 50 \mathrm{kHz}$, and 24 kHz ), sub-bottom profiling depth sounder, although only the 208 kHz frequency was analyzed for this report.

Leon Dam and Leon Reservoir are located on the Leon River in Eastland County, seven miles south of Ranger, Texas. The conservation pool elevation of Leon Reservoir is 1,375.0 feet above mean sea level (NGVD29). TWDB collected bathymetric data for Leon Reservoir between September 17, 2015, and September 24, 2015. The daily average water surface elevation during the survey ranged between $1,373.25$ and $1,373.40$ feet above mean sea level.

The 2015 TWDB volumetric survey indicates that Leon Reservoir has a total reservoir capacity of $\mathbf{2 8 , 0 4 2}$ acre-feet and encompasses 1,756 acres at conservation pool elevation (1,375.0 feet above mean sea level, NGVD29). Previous capacity estimates include the original design capacity of 27,290 acre-feet encompassing 1,590 acres.

TWDB recommends that a similar methodology be used to resurvey Leon Reservoir in 10 years or after a major flood event. To further improve estimates of capacity loss, TWDB recommends a volumetric and sedimentation survey. Sedimentation surveys include additional analysis of the multi-frequency data for post-impoundment sediment by correlation with sediment core samples and a map identifying the spatial distribution of sediment throughout the reservoir.

## Table of Contents

Introduction ..... 1
Leon Reservoir general information ..... 1
Volumetric survey of Leon Reservoir ..... 3
Datum ..... 3
TWDB bathymetric data collection ..... 4
Data processing ..... 5
Model boundaries ..... 5
Triangulated Irregular Network model ..... 5
Spatial interpolation of reservoir bathymetry ..... 6
Area, volume, and contour calculation ..... 9
Survey results ..... 12
Volumetric survey ..... 12
Recommendations. ..... 12
TWDB contact information ..... 12
References ..... 13

## List of Tables

Table 1: $\quad$ Pertinent data for Leon Dam and Leon Reservoir

## List of Figures

Figure 1: Location of Leon Reservoir
Figure 2: Data collected during 2015 TWDB Leon Reservoir survey
Figure 3: Anisotropic spatial interpolation of Leon Reservoir
Figure 4: Elevation relief map
Figure 5: Depth ranges map
Figure 6: 5-foot contour map

## Appendices

Appendix A: Leon Reservoir 2015 capacity table Appendix B: Leon Reservoir 2015 area table Appendix C: Leon Reservoir 2015 capacity curve Appendix D: Leon Reservoir 2015 area curve

Note: References to brand names throughout this report do not imply endorsement by the Texas Water Development Board

## Introduction

The Hydrographic Survey Program of the Texas Water Development Board (TWDB) was authorized by the 72nd Texas State Legislature in 1991. Section 15.804 of the Texas Water Code authorizes TWDB to perform surveys to determine reservoir storage capacity, sedimentation levels, rates of sedimentation, and projected water supply availability.

In September 2015, the Texas Water Development Board entered into agreement with the U.S. Army Corps of Engineers, Fort Worth District, to perform a volumetric survey of Leon Reservoir. The Eastland County Water Supply District provided 50\% of the funding for this survey, while the U.S. Army Corps of Engineers, Fort Worth District, provided the remaining 50\% of the funding through their Planning Assistance to States Program (TWDB, 2015). This report describes the methods used to conduct the volumetric survey, including data collection and processing techniques. This report serves as the final contract deliverable from TWDB to Eastland County Water Supply District, and contains as deliverables: (1) a shaded relief plot of the reservoir bottom [Figure 4], (2) a bottom contour map [Figure 6], and (3) an elevation-area-capacity table of the reservoir acceptable to the Texas Commission on Environmental Quality [Appendix A, B].

## Leon Reservoir general information

Leon Dam and Leon Reservoir are located on the Leon River in Eastland County in the Brazos River Basin, seven miles south of Ranger, and five miles southeast of Eastland, Texas (Figure 1). Construction of Leon Dam began on January 13, 1953, and deliberate impoundment of water began in April 1954 (TWDB, 1973). The dam was completed in June 1954. Leon Reservoir is owned and operated by Eastland County Water Supply District (TWDB, 1973). Leon Reservoir is primarily a water supply reservoir for the cities of Ranger, Olden, and Eastland, Texas (TWDB, 1973). Additional pertinent data about Leon Reservoir Dam and Leon Reservoir can be found in Table 1.

Water rights for Leon Reservoir have been appropriated to Eastland County Water Supply District, through Certificate of Adjudication No. 12-3470 and Amendments to Certificate of Adjudication Nos. 12-3470A and 12-3470B. The complete certificates are on file in the Information Resources Division of the Texas Commission on Environmental Quality.


Figure 1. Location of Leon Reservoir

| Table 1. Pertinent data for Leon Dam and Leon Reservoir |  |  |
| :---: | :---: | :---: |
| Owner |  |  |
| Eastland County Water Supply District |  |  |
| Engineer (Design) |  |  |
| Freese, Nichols and Endress |  |  |
| Location of dam |  |  |
| On the Leon River in Eastland County, 7 miles south of Ranger |  |  |
| Drainage area |  |  |
| 252 square miles |  |  |
| Dam |  |  |
|  | Type | Earthfill |
|  | Length | 3,700 feet |
|  | Maximum height | 90 feet |
|  | Top width | 20 feet |
|  | Top elevation | 1,398.0 feet above mean sea level |
| Spillway (emergency) |  |  |
|  | Location | Left of dam |
|  | Type | Natural ground |
|  | Crest elevation | 1,382.0 feet above mean sea level |
|  | Crest length | 1,200 feet |
| Spillway (service) |  |  |
|  | Location | Near center of dam |
|  | Type | Drop inlet, 34.5 feet diameter |
|  | Discharge conduit | 11 feet diameter |
|  | Crest elevation | 1,375.0 feet above mean sea level |
| Outlet works |  |  |
|  | Type | Gated control tower |
|  | Discharge | 24-inch diameter concrete pipe |
|  | Pump station location | Below dam |
|  | Treating plant location | 4 miles north of dam |

Reservoir data (Based on 2015 TWDB survey)

| Feature | Elevation <br> (feet NGVD29a | Capacity <br> (acre-feet) | Area <br> (acres) |
| :--- | :--- | :--- | :--- |
| Top of dam | $1,398.0$ | N/A | N/A |
| Crest of emergency spillway | $1,382.0$ | N/A | N/A |
| Crest of service spillway/ |  |  |  |
| $\quad$Conservation pool elevation | $1,375.0$ | 28,042 | 1,756 |
| Invert low flow outlet | $1,335.0$ | 280 | 67 |
| Usable conservation storage space ${ }^{\text {b }}$ | - | 27,762 | - |

Source: (TWDB, 1973)
${ }^{\text {a }}$ NGVD29 $=$ National Geodetic Vertical Datum 1929
${ }^{\mathrm{b}}$ Usable conservation storage space equals total capacity at conservation pool elevation minus dead pool capacity. Dead pool refers to water that cannot be drained by gravity through a dam's outlet works.

## Volumetric survey of Leon Reservoir

## Datum

The vertical datum used during this survey is the National Geodetic Vertical Datum 1929 (NGVD29). This datum is also utilized by the United States Geological Survey (USGS) for the reservoir elevation gage USGS 08099000 Leon Res nr Ranger, TX (USGS, 2015). Elevations herein are reported in feet relative to the NGVD29 datum. Volume and area calculations in this report are referenced to water levels provided by the USGS gage.

The horizontal datum used for this report is North American Datum 1983 (NAD83), and the horizontal coordinate system is State Plane Texas North Central Zone (feet).

## TWDB bathymetric data collection

TWDB collected bathymetric data for Leon Reservoir between September 17, 2015, and September 24, 2015. The daily average water surface elevations during the survey ranged between 1,373.25 and 1,373.40 feet above mean sea level (NGVD29). For data collection, TWDB used a Specialty Devices, Inc. (SDI), single-beam, multi-frequency ( $208 \mathrm{kHz}, 50 \mathrm{kHz}$, and 24 kHz ) sub-bottom profiling depth sounder integrated with differential global positioning system (DGPS) equipment. Data was collected along pre-planned survey lines oriented perpendicular to the assumed location of the original river channels and spaced between approximately 250 and 500 feet apart. The depth sounder was calibrated daily using a velocity profiler to measure the speed of sound in the water column and a weighted tape or stadia rod for depth reading verification. Figure 2 shows where data collection occurred during the 2015 TWDB survey.


Figure 2. Data collected during 2015 TWDB Leon Reservoir survey

## Data processing

## Model boundaries

The reservoir boundary was digitized using Environmental Systems Research Institute's ArcGIS software (ArcGIS) from aerial photographs, also known as digital orthophoto quarter-quadrangle images (DOQQs), obtained from the Texas Natural Resources Information System (TNRIS, 2015). The quarter-quadrangles that cover Leon Reservoir are Kokomo (NW, NE), Carbon (NE), Eastland (SE), and Ranger (SW). The DOQQs were photographed on August 31, 2008, and September 27, 2008, while the daily average water surface elevation measured 1,373.34 feet and 1,372.74 feet, respectively (NGVD29). According to metadata associated with the 2008 DOQQs, the photographs have a resolution or ground sample distance of 0.5 -meters and a horizontal accuracy within 3-5 meters to true ground. For this analysis, the boundary was digitized at the land-water interface in the 2008 photographs and assigned an elevation of $1,372.7$ feet as the majority of the reservoir was photographed on September 27, 2008. The section titled "Area, volume, and contour calculation" describes how areas and capacities were generated up to the conservation pool elevation.

## Triangulated Irregular Network model

Following completion of data collection, the raw data files were edited to remove data anomalies. DepthPic®, software developed by SDI, Inc., was used to display, interpret, and edit the multi-frequency data by manually removing data anomalies in the current bottom surface. For processing outside of DepthPic©, an in-house software package, HydroTools, was used to identify the current reservoir-bottom surface, and to output the data into a single file. The water surface elevation at the time of each sounding was used to convert each sounding depth to a corresponding reservoir-bottom elevation. This survey point dataset was then preconditioned by inserting a uniform grid of artificial survey points between the actual survey lines. Bathymetric elevations at these artificial points are determined using an anisotropic spatial interpolation algorithm described in the next section. This technique creates a high resolution, uniform grid of interpolated bathymetric elevation points throughout a majority of the reservoir (McEwen et al., 2011a). Finally, the point file resulting from spatial interpolation was used in conjunction with sounding and boundary data to create volumetric Triangulated Irregular Network (TIN) models utilizing the 3D Analyst Extension of ArcGIS. The 3D Analyst algorithm uses Delaunay's criteria
for triangulation to create a grid composed of triangles from non-uniformly spaced points, including the boundary vertices (ESRI, 1995).

## Spatial interpolation of reservoir bathymetry

Isotropic spatial interpolation techniques such as the Delaunay triangulation used by the 3D Analyst extension of ArcGIS are, in many instances, unable to suitably interpolate bathymetries between survey lines common to reservoir surveys. Reservoirs and stream channels are anisotropic morphological features where bathymetry at any particular location is more similar to upstream and downstream locations than to transverse locations. Interpolation schemes that do not consider this anisotropy lead to the creation of several types of artifacts in the final representation of the reservoir bottom surface and hence to errors in volume. These include: artificially-curved contour lines extending into the reservoir where the reservoir walls are steep or the reservoir is relatively narrow; intermittent representation of submerged stream channel connectivity; and oscillations of contour lines in between survey lines. These artifacts reduce the accuracy of the resulting volumetric TIN models in areas between actual survey data.

To improve the accuracy of bathymetric representation between survey lines, TWDB developed various anisotropic spatial interpolation techniques. Generally, the directionality of interpolation at different locations of a reservoir can be determined from external data sources. A basic assumption is that the reservoir profile in the vicinity of a particular location has upstream and downstream similarity. In addition, the sinuosity and directionality of submerged stream channels can be determined by directly examining survey data or more robustly by examining scanned USGS 7.5 minute quadrangle maps (known as digital raster graphics or DRGs) and hypsography files (the vector format of USGS 7.5 minute quadrangle map contours), when available. Using the survey data, polygons are created to partition the reservoir into segments with centerlines defining directionality of interpolation within each segment. For surveys with similar spatial coverage, these interpolation definition files are in principle independent of the survey data and could be applied to past and future survey data of the same reservoir. In practice, however, minor revisions of the interpolation definition files may be needed to account for differences in spatial coverage and boundary conditions between surveys. Using the interpolation definition files and survey data, the current reservoir-bottom elevation, when applicable, is calculated for each point in the high resolution uniform grid of artificial
survey points. The reservoir boundary, artificial survey points grid, and survey data points are used to create the volumetric TIN model representing the reservoir bathymetry. Specific details of this interpolation technique can be found in the HydroTools manual (McEwen et al., 2011a) and in McEwen et al., 2011b.

In areas inaccessible to survey data collection such as small coves and shallow upstream areas of the reservoir, linear interpolation is used for volumetric estimations. The linear interpolation follows a linear definition file linking the survey points file to the lake boundary file (McEwen et al., 2011a). Without interpolated data, the TIN model builds flat triangles. A flat triangle is defined as a triangle where all three vertices are equal in elevation, generally the elevation of the reservoir boundary. Reducing flat triangles by applying linear interpolation improves the elevation-capacity and elevation-area calculations. It is not always possible to remove all flat triangles, and linear interpolation is only applied where adding bathymetry is deemed reasonable. For example, linear interpolation was applied throughout Leon Reservoir following features indicated by aerial photographs taken on July 8 and July 27, 2014, while the water surface elevation measured 1,369.88 and 1,369.41 feet, respectively. Photographs taken on December 21, 1947, December 29, 1947, and January 14, 1948, before the dam was constructed, were also referenced for modeling the reservoir.

Figure 3 illustrates typical results from application of the anisotropic interpolation and linear interpolation techniques to Leon Reservoir. In Figure 3A, deeper channels indicated by surveyed cross sections are not continuously represented in areas between survey cross sections. This is an artifact of the TIN generation routine rather than an accurate representation of the physical bathymetric surface. Inclusion of interpolation points, represented in Figure 3B, in creation of the volumetric TIN model directs Delaunay triangulation to better represent the lake bathymetry between survey cross-sections. The bathymetry shown in Figure 3C was used in computing reservoir capacity and area tables (Appendix A, B).


Figure 3. Anisotropic spatial interpolation and linear interpolation of Leon Reservoir sounding data A) bathymetric contours without interpolated points, B) sounding points (black) and interpolated points (red), C) bathymetric contours with the interpolated points

## Area, volume, and contour calculation

Using ArcInfo software and the volumetric TIN model, volumes and areas were calculated for the entire reservoir at 0.1 feet intervals, from $1,323.1$ to $1,372.7$ feet. While linear interpolation was used to estimate the topography in areas that were inaccessible by boat or too shallow for the instruments to work properly, development of anomalous "flat triangles", that is triangles whose three vertices all have the same elevation, in the TIN model are unavoidable. The flat triangles in turn lead to anomalous calculations of surface area and volume at the boundary elevation $1,372.7$ feet. To eliminate the effects of the flat triangles on area and volume calculations, areas between elevations 1,371.0 feet and 1,372.7 feet were linearly interpolated between the computed values, and volumes above elevation 1,371.0 feet were calculated based on the corrected areas. Areas above elevation 1,372.7 feet were linearly extrapolated and capacities were calculated from the extrapolated areas. The elevation-capacity table and elevation-area table, updated for 2015, are presented in Appendices A and B, respectively. The capacity curve is presented in Appendix C, and the area curve is presented in Appendix D.

The volumetric TIN model was converted to a raster representation using a cell size of 1 foot by 1 foot. The raster data was then used to produce: an elevation relief map (Figure 4), representing the topography of the reservoir bottom; a depth range map (Figure 5), showing shaded depth ranges for Leon Reservoir; and a 5-foot contour map (Figure 6 attached).

Figure 4


Texas Water
Development Board
September 2015 Surve
$1,900,000$
~10-ft contours
3 Leon Reservoir at elevation 1,372.7 feet

Conservation pool elevation: 1,375 feet above mean sea level

Projection: NAD83
State Plane
Texas North Central Zone (feet)

Figure 5


Depth ranges map

Texas Water
Development Board
September 2015 Survey

## Survey results

## Volumetric survey

The results of the 2015 TWDB volumetric survey indicate Leon Reservoir has a total reservoir capacity of $\mathbf{2 8 , 0 4 2}$ acre-feet and encompasses $\mathbf{1 , 7 5 6}$ acres at conservation pool elevation (1,375.0 feet above mean sea level, NGVD29). The original design estimate for Leon Reservoir indicates a total reservoir capacity of 27,290 acre-feet encompassing 1,590 acres (TWDB, 1973). Because of differences in past and present survey methodologies, direct comparison of volumetric surveys to estimate loss of capacity is difficult and can be unreliable.

## Recommendations

To improve estimates of sediment accumulation rates, TWDB recommends resurveying Leon Reservoir in approximately 10 years or after a major flood event. To further improve estimates of capacity loss, TWDB recommends a volumetric and sedimentation survey. Sedimentation surveys include additional analysis of the multifrequency data for post-impoundment sediment by correlation with sediment core samples and a map identifying the spatial distribution of sediment throughout the reservoir.

## TWDB contact information

More information about the Hydrographic Survey Program can be found at:
http://www.twdb.texas.gov/surfacewater/surveys/index.asp
Any questions regarding the TWDB Hydrographic Survey Program may be addressed to:
Jason J. Kemp
Manager, Hydrographic Survey Program
Phone: (512) 463-2456
Email: Jason.Kemp@twdb.texas.gov

## References

ESRI (Environmental Systems Research Institute), 1995, ARC/INFO Surface Modeling and Display, TIN Users Guide, ESRI, 380 New York Street, Redlands, CA 92373.

McEwen, T., Brock, N., Kemp, J., Pothina, D. \& Weyant, H., 2011a, HydroTools User's Manual, Texas Water Development Board.

McEwen, T., Pothina, D. \& Negusse, S., 2011b, Improving efficiency and repeatability of lake volume estimates using Python, submitted, Proceedings of the 10th Python for Scientific Computing Conference (SciPy 2011).

TNRIS (Texas Natural Resources Information System), 2015, http://www.tnris.org/, accessed September 2015.

TWDB (Texas Water Development Board), 1973, Leon Dam and Leon Reservoir, Report 126, Engineering Data on Dams and Reservoirs in Texas, Part II.

TWDB (Texas Water Development Board), 2015, Contract No. 1548011892 with U.S. Army Corps of Engineers, Fort Worth District.

USGS (United States Geological Survey), 2015, U.S. Geological Survey National Water Information System: Web Interface, USGS Real-Time Water Data for USGS 08099000 Leon Res nr Ranger, TX, http://waterdata.usgs.gov/tx/nwis/uv/?site_no=08099000\&PARAmeter_cd=00062,7 2020,00054, accessed October 2015.

Leon Reservoir RESERVOIR CAPACITY TABLE

|  | TEXAS WATER DEVELOPMENT BOARD CAPACITY IN ACRE-FEET <br> ELEVATION INCREMENT IS ONE TENTH FOOT |  |  |  | September 2015 SurveyConservation Pool Elevation $1,375.0$ feet NGVD29 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ELEVATION in Feet | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
| 1,323 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1,324 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 |
| 1,325 | 2 | 3 | 3 | 3 | 4 | 4 | 5 | 5 | 6 | 7 |
| 1,326 | 7 | 8 | 8 | 9 | 10 | 11 | 11 | 12 | 13 | 14 |
| 1,327 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 25 |
| 1,328 | 26 | 27 | 29 | 30 | 32 | 34 | 35 | 37 | 39 | 41 |
| 1,329 | 43 | 44 | 46 | 48 | 50 | 53 | 55 | 57 | 59 | 61 |
| 1,330 | 64 | 66 | 69 | 71 | 74 | 76 | 79 | 82 | 85 | 88 |
| 1,331 | 91 | 94 | 97 | 100 | 104 | 107 | 111 | 114 | 118 | 122 |
| 1,332 | 125 | 129 | 133 | 137 | 141 | 145 | 149 | 154 | 158 | 162 |
| 1,333 | 167 | 171 | 176 | 181 | 186 | 191 | 196 | 201 | 207 | 212 |
| 1,334 | 218 | 223 | 229 | 235 | 241 | 248 | 254 | 260 | 267 | 273 |
| 1,335 | 280 | 287 | 294 | 301 | 308 | 315 | 322 | 329 | 337 | 344 |
| 1,336 | 352 | 359 | 367 | 375 | 382 | 390 | 398 | 406 | 415 | 423 |
| 1,337 | 431 | 440 | 448 | 457 | 466 | 475 | 483 | 492 | 501 | 511 |
| 1,338 | 520 | 529 | 539 | 548 | 558 | 567 | 577 | 587 | 597 | 607 |
| 1,339 | 618 | 628 | 639 | 649 | 660 | 671 | 682 | 694 | 705 | 717 |
| 1,340 | 728 | 740 | 752 | 764 | 776 | 789 | 801 | 814 | 827 | 840 |
| 1,341 | 853 | 866 | 879 | 893 | 906 | 920 | 934 | 948 | 962 | 976 |
| 1,342 | 991 | 1,005 | 1,020 | 1,035 | 1,050 | 1,065 | 1,081 | 1,096 | 1,112 | 1,128 |
| 1,343 | 1,144 | 1,161 | 1,177 | 1,194 | 1,211 | 1,228 | 1,245 | 1,263 | 1,281 | 1,299 |
| 1,344 | 1,317 | 1,335 | 1,354 | 1,374 | 1,393 | 1,413 | 1,434 | 1,456 | 1,478 | 1,501 |
| 1,345 | 1,524 | 1,548 | 1,572 | 1,597 | 1,621 | 1,646 | 1,672 | 1,697 | 1,723 | 1,750 |
| 1,346 | 1,776 | 1,803 | 1,830 | 1,857 | 1,885 | 1,913 | 1,941 | 1,970 | 1,998 | 2,028 |
| 1,347 | 2,057 | 2,087 | 2,117 | 2,148 | 2,179 | 2,211 | 2,243 | 2,275 | 2,307 | 2,340 |
| 1,348 | 2,373 | 2,406 | 2,440 | 2,474 | 2,508 | 2,543 | 2,578 | 2,614 | 2,649 | 2,685 |
| 1,349 | 2,722 | 2,758 | 2,795 | 2,833 | 2,870 | 2,908 | 2,946 | 2,985 | 3,024 | 3,063 |
| 1,350 | 3,103 | 3,143 | 3,184 | 3,225 | 3,267 | 3,308 | 3,350 | 3,393 | 3,436 | 3,479 |
| 1,351 | 3,522 | 3,565 | 3,609 | 3,654 | 3,699 | 3,744 | 3,789 | 3,835 | 3,882 | 3,928 |
| 1,352 | 3,976 | 4,023 | 4,072 | 4,120 | 4,169 | 4,219 | 4,268 | 4,319 | 4,369 | 4,420 |
| 1,353 | 4,472 | 4,524 | 4,576 | 4,629 | 4,683 | 4,736 | 4,791 | 4,845 | 4,900 | 4,956 |
| 1,354 | 5,012 | 5,068 | 5,125 | 5,183 | 5,240 | 5,299 | 5,357 | 5,417 | 5,477 | 5,537 |
| 1,355 | 5,598 | 5,659 | 5,721 | 5,783 | 5,846 | 5,909 | 5,973 | 6,038 | 6,103 | 6,168 |
| 1,356 | 6,234 | 6,300 | 6,367 | 6,434 | 6,502 | 6,570 | 6,638 | 6,707 | 6,777 | 6,846 |
| 1,357 | 6,917 | 6,987 | 7,058 | 7,130 | 7,202 | 7,275 | 7,348 | 7,421 | 7,495 | 7,569 |
| 1,358 | 7,644 | 7,718 | 7,794 | 7,869 | 7,945 | 8,021 | 8,098 | 8,175 | 8,253 | 8,331 |
| 1,359 | 8,409 | 8,487 | 8,566 | 8,646 | 8,726 | 8,806 | 8,887 | 8,969 | 9,051 | 9,133 |
| 1,360 | 9,216 | 9,300 | 9,384 | 9,468 | 9,553 | 9,639 | 9,725 | 9,811 | 9,898 | 9,985 |
| 1,361 | 10,073 | 10,161 | 10,249 | 10,338 | 10,428 | 10,517 | 10,608 | 10,698 | 10,790 | 10,881 |
| 1,362 | 10,973 | 11,066 | 11,160 | 11,254 | 11,348 | 11,444 | 11,539 | 11,636 | 11,733 | 11,830 |
| 1,363 | 11,929 | 12,028 | 12,127 | 12,227 | 12,328 | 12,430 | 12,532 | 12,635 | 12,739 | 12,843 |
| 1,364 | 12,948 | 13,053 | 13,159 | 13,265 | 13,372 | 13,480 | 13,588 | 13,697 | 13,806 | 13,916 |
| 1,365 | 14,026 | 14,137 | 14,249 | 14,361 | 14,473 | 14,587 | 14,700 | 14,815 | 14,930 | 15,045 |
| 1,366 | 15,161 | 15,278 | 15,395 | 15,513 | 15,631 | 15,750 | 15,869 | 15,989 | 16,109 | 16,230 |
| 1,367 | 16,352 | 16,473 | 16,596 | 16,719 | 16,842 | 16,966 | 17,091 | 17,216 | 17,342 | 17,468 |
| 1,368 | 17,595 | 17,722 | 17,850 | 17,979 | 18,108 | 18,238 | 18,368 | 18,499 | 18,630 | 18,762 |
| 1,369 | 18,894 | 19,027 | 19,160 | 19,294 | 19,429 | 19,563 | 19,699 | 19,835 | 19,972 | 20,109 |
| 1,370 | 20,247 | 20,386 | 20,525 | 20,664 | 20,805 | 20,946 | 21,087 | 21,229 | 21,372 | 21,516 |
| 1,371 | 21,659 | 21,799 | 21,944 | 22,090 | 22,236 | 22,383 | 22,531 | 22,679 | 22,828 | 22,978 |
| 1,372 | 23,128 | 23,281 | 23,434 | 23,588 | 23,743 | 23,898 | 24,054 | 24,212 | 24,370 | 24,528 |
| 1,373 | 24,688 | 24,848 | 25,009 | 25,171 | 25,334 | 25,497 | 25,661 | 25,826 | 25,992 | 26,158 |
| 1,374 | 26,326 | 26,494 | 26,663 | 26,832 | 27,003 | 27,174 | 27,346 | 27,519 | 27,693 | 27,867 |
| 1,375 | 28,042 |  |  |  |  |  |  |  |  |  |

Note: Capacities above elevation 1,371.0 feet calculated from interpoalted and extrapolated areas

## Leon Reservoir

## RESERVOIR AREA TABLE

| TEXAS WATER DEVELOPMENT BOARDAREA IN ACRES |  |  |  |  | September 2015 Survey <br> Conservation Pool Elevation $1,375.0$ feet NGVD29 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
| ELEVATION INCREMENT IS ONE TENTH FOOT |  |  |  |  |  |  |  |  |  |  |
| in Feet | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
| 1,323 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1,324 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 |
| 1,325 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 6 | 6 |
| 1,326 | 6 | 7 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 9 |
| 1,327 | 9 | 9 | 10 | 10 | 10 | 11 | 12 | 12 | 13 | 13 |
| 1,328 | 14 | 15 | 15 | 16 | 16 | 17 | 17 | 18 | 18 | 18 |
| 1,329 | 19 | 19 | 20 | 20 | 21 | 21 | 21 | 22 | 22 | 23 |
| 1,330 | 24 | 25 | 25 | 26 | 26 | 27 | 28 | 28 | 29 | 30 |
| 1,331 | 31 | 32 | 32 | 33 | 34 | 34 | 35 | 36 | 37 | 37 |
| 1,332 | 38 | 39 | 39 | 40 | 41 | 41 | 42 | 43 | 44 | 45 |
| 1,333 | 45 | 47 | 48 | 49 | 49 | 51 | 52 | 53 | 54 | 55 |
| 1,334 | 57 | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 |
| 1,335 | 67 | 68 | 69 | 70 | 71 | 72 | 72 | 73 | 74 | 74 |
| 1,336 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 82 | 83 |
| 1,337 | 84 | 85 | 86 | 87 | 88 | 89 | 89 | 90 | 91 | 92 |
| 1,338 | 93 | 94 | 94 | 95 | 96 | 98 | 99 | 100 | 101 | 103 |
| 1,339 | 104 | 105 | 107 | 108 | 109 | 110 | 112 | 113 | 114 | 116 |
| 1,340 | 118 | 119 | 120 | 122 | 123 | 124 | 126 | 127 | 128 | 130 |
| 1,341 | 131 | 132 | 134 | 135 | 136 | 138 | 139 | 141 | 142 | 144 |
| 1,342 | 145 | 147 | 148 | 150 | 152 | 154 | 155 | 157 | 159 | 161 |
| 1,343 | 163 | 165 | 166 | 168 | 170 | 172 | 174 | 176 | 179 | 181 |
| 1,344 | 184 | 187 | 191 | 195 | 199 | 205 | 212 | 219 | 225 | 231 |
| 1,345 | 236 | 240 | 243 | 246 | 250 | 252 | 255 | 258 | 261 | 263 |
| 1,346 | 266 | 269 | 272 | 275 | 278 | 281 | 284 | 287 | 290 | 293 |
| 1,347 | 296 | 301 | 306 | 310 | 314 | 317 | 320 | 323 | 325 | 328 |
| 1,348 | 332 | 336 | 339 | 343 | 346 | 349 | 353 | 356 | 359 | 362 |
| 1,349 | 365 | 368 | 371 | 374 | 378 | 381 | 384 | 388 | 392 | 395 |
| 1,350 | 400 | 404 | 409 | 413 | 416 | 419 | 422 | 425 | 428 | 432 |
| 1,351 | 435 | 438 | 441 | 445 | 449 | 454 | 458 | 462 | 466 | 470 |
| 1,352 | 474 | 480 | 484 | 488 | 492 | 496 | 500 | 505 | 509 | 514 |
| 1,353 | 518 | 522 | 527 | 531 | 535 | 540 | 544 | 548 | 553 | 557 |
| 1,354 | 562 | 567 | 572 | 576 | 581 | 585 | 591 | 596 | 601 | 606 |
| 1,355 | 610 | 615 | 620 | 626 | 631 | 636 | 641 | 646 | 651 | 656 |
| 1,356 | 661 | 666 | 670 | 675 | 679 | 683 | 687 | 691 | 695 | 699 |
| 1,357 | 704 | 709 | 715 | 719 | 723 | 727 | 731 | 735 | 739 | 743 |
| 1,358 | 747 | 750 | 754 | 758 | 761 | 765 | 769 | 772 | 776 | 780 |
| 1,359 | 784 | 788 | 793 | 798 | 802 | 807 | 812 | 817 | 823 | 828 |
| 1,360 | 833 | 838 | 843 | 848 | 853 | 857 | 862 | 866 | 870 | 874 |
| 1,361 | 878 | 883 | 887 | 891 | 895 | 900 | 904 | 909 | 915 | 920 |
| 1,362 | 925 | 931 | 937 | 943 | 949 | 955 | 961 | 967 | 973 | 979 |
| 1,363 | 986 | 993 | 999 | 1,006 | 1,013 | 1,020 | 1,026 | 1,032 | 1,038 | 1,044 |
| 1,364 | 1,050 | 1,056 | 1,062 | 1,068 | 1,074 | 1,080 | 1,085 | 1,090 | 1,095 | 1,100 |
| 1,365 | 1,106 | 1,111 | 1,118 | 1,124 | 1,129 | 1,135 | 1,140 | 1,146 | 1,152 | 1,158 |
| 1,366 | 1,164 | 1,170 | 1,175 | 1,180 | 1,186 | 1,191 | 1,196 | 1,201 | 1,206 | 1,211 |
| 1,367 | 1,216 | 1,222 | 1,227 | 1,232 | 1,238 | 1,243 | 1,249 | 1,254 | 1,260 | 1,266 |
| 1,368 | 1,271 | 1,277 | 1,283 | 1,289 | 1,295 | 1,300 | 1,305 | 1,310 | 1,315 | 1,320 |
| 1,369 | 1,325 | 1,331 | 1,336 | 1,341 | 1,347 | 1,352 | 1,358 | 1,364 | 1,370 | 1,376 |
| 1,370 | 1,382 | 1,388 | 1,394 | 1,400 | 1,406 | 1,413 | 1,419 | 1,425 | 1,430 | 1,436 |
| 1,371 | 1,442 | 1,450 | 1,458 | 1,466 | 1,473 | 1,481 | 1,489 | 1,497 | 1,505 | 1,513 |
| 1,372 | 1,520 | 1,528 | 1,536 | 1,544 | 1,552 | 1,560 | 1,567 | 1,575 | 1,583 | 1,591 |
| 1,373 | 1,599 | 1,607 | 1,615 | 1,622 | 1,630 | 1,638 | 1,646 | 1,654 | 1,662 | 1,669 |
| 1,374 | 1,677 | 1,685 | 1,693 | 1,701 | 1,709 | 1,716 | 1,724 | 1,732 | 1,740 | 1,748 |
| 1,375 | 1,756 |  |  |  |  |  |  |  |  |  |

Note: Areas between elevations 1,371.0 and 1,372.7 feet linearly interpolated, areas above elevation 1,372.7 feet linearly extrapolated



| Leon Reservoir |
| :---: |
| September 2015 Survey |
| Prepared by: TWDB |

Appendix D: Area curve


