## Volumetric and Sedimentation Survey of <br> ALAN HENRY RESERVOIR August 2017 Survey

# Texas Water <br> Development Board 

September 2018

# Texas Water Development Board 

Peter Lake, Chairman | Kathleen Jackson, Member | Brooke Paup, Member<br>Jeff Walker, Executive Administrator

Prepared for:

## City of Lubbock


#### Abstract

Authorization for use or reproduction of any original material contained in this publication, i.e. not obtained from other sources, is freely granted. The Texas Water Development Board would appreciate acknowledgement.


This report was prepared by staff of the Surface Water Division:
Nathan Leber, Manager
Holly Holmquist
Khan Iqbal
Josh Duty

Published and distributed by the
P.O. Box 13231, 1700 N. Congress Ave.

Austin, TX 78711-3231, www.twdb.texas.gov
Phone (512) 463-7847, Fax (512) 475-2053

## Executive summary

In June 2017, the Texas Water Development Board (TWDB) entered into an agreement with the City of Lubbock to perform a volumetric survey of Alan Henry Reservoir (Garza and Kent counties, Texas). In February 2018, the agreement was amended to include a sedimentation survey of Alan Henry Reservoir. Surveying was performed using a multifrequency ( $208 \mathrm{kHz}, 50 \mathrm{kHz}$, and 24 kHz ), sub-bottom profiling depth sounder. Sediment core samples were collected in select locations and correlated with sub-bottom acoustic profiles to estimate sediment accumulation thicknesses and sedimentation rates.

John T. Montford Dam and Alan Henry Reservoir are located on the South Fork of the Double Mountain Fork of the Brazos River, approximately 65 miles southeast of the City of Lubbock, in Garza and Kent counties, Texas. The conservation pool elevation of Alan Henry Reservoir is 2,220.0 feet above mean sea level (NGVD29). The TWDB collected bathymetric data for Alan Henry Reservoir on June 20-22, 2017, while daily average water surface elevations measured between 2,216.49 and 2,216.55 feet above mean sea level (NGVD29), and August 29-31, 2017, while daily average water surface elevations measured between $2,215.82$ and $2,215.88$ feet above mean sea level (NGVD29). Additional data was collected on May 16, 2018, while the daily average water surface elevation measured 2,212.22 feet above mean sea level (NGVD29).

The 2017 TWDB volumetric survey indicates Alan Henry Reservoir has a total reservoir capacity of 96,207 acre-feet and encompasses 2,800 acres at conservation pool elevation ( $\mathbf{2 , 2 2 0 . 0}$ feet above mean sea level, NGVD29). Previous capacity estimates include the original design of 115,937 acre-feet and a TWDB survey in 2005. The 2005 TWDB survey was re-evaluated using current processing procedures resulting in an updated capacity estimate of 98,974 acre-feet. Comparison of the 2005 and 2017 volumetric survey results indicate Alan Henry Reservoir is losing an average of 231 acre-feet of capacity per year.

The 2017 TWDB sedimentation survey indicates Alan Henry Reservoir has lost capacity at an average of 507 acre-feet per year since impoundment due to sedimentation below conservation pool elevation ( $\mathbf{2 , 2 2 0 . 0}$ feet NGVD29). The sedimentation survey indicates sediment accumulation is primarily occurring throughout the main channels of the reservoir. The TWDB recommends that a similar methodology be used to resurvey Alan Henry Reservoir in 10 years or after a major flood event.

## Table of Contents

Introduction ..... 1
Alan Henry Reservoir general information. ..... 1
Volumetric and sedimentation survey of Alan Henry Reservoir ..... 3
Datum ..... 3
TWDB bathymetric and sedimentation data collection ..... 3
Data processing ..... 5
Model boundary ..... 5
Triangulated Irregular Network model ..... 6
Spatial interpolation of reservoir bathymetry. ..... 6
Area, volume, and contour calculation ..... 9
Analysis of sediment data from Alan Henry Reservoir ..... 13
Survey results ..... 22
Volumetric survey ..... 22
Sedimentation survey ..... 22
Sediment range lines ..... 24
Recommendations ..... 24
TWDB contact information ..... 24
References ..... 25
List of TablesTable 1: $\quad$ Pertinent data for John T. Montford Dam and Alan Henry ReservoirTable 2: $\quad$ Sediment core analysis data for Alan Henry ReservoirTable 3: $\quad$ Current and previous survey capacity and surface area estimatesTable 4: Average annual capacity loss comparisons for Alan Henry Reservoir
List of Figures
Figure 1: Location map of Alan Henry Reservoir
Figure 2: 2017 TWDB Alan Henry Reservoir survey data
Figure 3: Anisotropic spatial interpolation of Alan Henry Reservoir
Figure 4: Elevation relief map
Figure 5: Depth range map
Figure 6: 5 -foot contour mapFigure 7: $\quad$ Sediment core sample AH-8 from Alan Henry Reservoir
Figure 8: Comparison of sediment core AH-8 with acoustic signal returns
Figure 9: Cross-section of data collected during 2017 survey
Figure 10: Sediment thicknesses map
Appendices
Appendix A: Alan Henry Reservoir 2005 elevation-capacity table
Appendix B: Alan Henry Reservoir 2005 elevation-area table
Appendix C: Alan Henry Reservoir 2005 capacity curve
Appendix D: Alan Henry Reservoir 2005 area curve
Appendix E: Alan Henry Reservoir 2017 elevation-capacity table
Appendix F: Alan Henry Reservoir 2017 elevation-area table
Appendix G: Alan Henry Reservoir 2017 capacity curve
Appendix H: Alan Henry Reservoir 2017 area curve
Appendix I: Sediment range lines

## Introduction

The Hydrographic Survey Program of the Texas Water Development Board (TWDB) was authorized by the 72nd Texas State Legislature in 1991. Texas Water Code Section 15.804 authorizes the TWDB to perform surveys to determine reservoir storage capacity, sedimentation levels, rates of sedimentation, and projected water supply availability.

In June 2017, the TWDB entered into an agreement with the City of Lubbock, to perform a volumetric survey of Alan Henry Reservoir (Texas Water Development Board, 2017a). In February 2018, the agreement was amended to include a sedimentation survey of Alan Henry Reservoir (Texas Water Development Board, 2017b). This report provides an overview of the survey methods, analysis techniques, and associated results. Also included are the following contract deliverables: (1) a shaded relief plot of the reservoir bottom (Figure 4), (2) a bottom contour map (Figure 6), (3) an estimate of sediment accumulation and location (Figure 10), and (4) an elevation-area-capacity table of the reservoir acceptable to the Texas Commission on Environmental Quality (Appendices E and F).

## Alan Henry Reservoir general information

John T. Montford Dam and Alan Henry Reservoir are located on the South Fork of the Double Mountain Fork of the Brazos River, approximately 65 miles southeast of the City of Lubbock, in Garza and Kent counties, Texas (Figure 1). Construction of the dam began in 1991 and the dam was completed in October 1993 (City of Lubbock, 2018, Texas Water Development Board, 2006). Alan Henry Reservoir is owned and operated by the City of Lubbock. Alan Henry Reservoir is primarily a water supply reservoir for the City of Lubbock and currently accounts for 19 percent of the city's drinking water (City of Lubbock, 2018). Additional pertinent data about John T. Montford Dam and Alan Henry Reservoir can be found in Table 1.

Water rights for Alan Henry Reservoir have been appropriated to the City of Lubbock through Permit to Appropriate State Water No. 4146 and amendments to the water use permit Nos. 4146A and 4146B. The complete permits are on file in the Information Resources Division of the Texas Commission on Environmental Quality.


Figure 1. Location map of Alan Henry Reservoir.

## Table 1. Pertinent data for John T. Montford Dam and Alan Henry Reservoir.

## Owner

City of Lubbock

## Location of dam

On the South Fork of the Double Mountain Fork of the Brazos River

## Drainage area

394 square miles

## Dam

Composition 6.5 million cubic yards of soil, clay, and soil-cement
Length
3,600 feet
Height
138 feet
Width

## Spillway

Service
Emergency
Concrete, designed to pass 15.6 million gallons per minute
Earthen, designed to pass 211 million gallons per minute
Reservoir data (Based on 2017 TWDB survey)

## Feature

Top of dam
Maximum design elevation
Emergency spillway crest

| Elevation <br> (feet NGVD29a | Capacity <br> (acre-feet) | Area <br> (acres) |
| :---: | :--- | :--- |
| $2,263.0$ | N/A | N/A |
| $2,245.0$ | N/A | N/A |
| $2,240.0$ | N/A | N/A |
| $2,220.0$ | 96,207 | 2,800 |

[^0]
## Volumetric and sedimentation survey of Alan Henry Reservoir

## Datum

The vertical datum used during this survey is the National Geodetic Vertical Datum 1929 (NGVD29). This datum also is utilized by the United States Geological Survey (USGS) for the reservoir elevation gage USGS 08079700 Lk Alan Henry Res $n r$ Justiceburg, TX (U.S. Geological Survey, 2018). Elevations herein are reported in feet relative to the NGVD29 datum. Volume and area calculations in this report are referenced to water levels provided by the USGS gage. The horizontal datum used for this report is North American Datum 1983 (NAD83), and the horizontal coordinate system is State Plane Texas North Central Zone (feet).

## TWDB bathymetric and sedimentation data collection

The TWDB collected bathymetric data for Alan Henry Reservoir on June 20-22, 2017, while daily average water surface elevations measured between $2,216.49$ and 2,216.55 feet above mean sea level (NGVD29), and August 29-31, 2017, while daily average water surface elevations measured between $2,215.82$ and $2,215.88$ feet above mean sea level (NGVD29). Additional data was collected on May 16, 2018, while the daily average water surface elevation measured 2,212.22 feet above mean sea level (NGVD29). For data collection, the TWDB used a Specialty Devices, Inc. (SDI), single-beam, multifrequency ( $208 \mathrm{kHz}, 50 \mathrm{kHz}$, and 24 kHz ) sub-bottom profiling depth sounder integrated with differential global positioning system (DGPS) equipment. Data was collected along pre-planned survey lines oriented perpendicular to the assumed location of the original river channels and spaced approximately 500 feet apart. Many of the same survey lines also were used by the TWDB during the 2005 survey. The depth sounder was calibrated daily using a velocity profiler to measure the speed of sound in the water column and a weighted tape or stadia rod for depth reading verification. Figure 2 shows the data collection locations for the 2017 TWDB survey.

All sounding data was collected and reviewed before sediment core sampling sites were selected. Sediment core samples are collected throughout the reservoir to assist with interpretation of the sub-bottom acoustic profiles. After analyzing the sounding data, the TWDB selected eight locations to collect sediment core samples (Figure 2). Sediment cores were collected on May 16, 2018, with a custom-coring boat and an SDI VibeCore system. Sediment core AH-4 could not be collected due to its location.

Sediment cores are collected in 3-inch diameter aluminum tubes. Analysis of the acoustic data collected during the bathymetric survey assists in determining the depth of penetration the tube must be driven during sediment sampling. A sediment core extends from the current reservoir-bottom surface, through the accumulated sediment, and into the pre-impoundment surface. After the sample is retrieved, the core tube is cut to the level of the sediment core. The tube is capped and transported to TWDB headquarters for further analysis.


Figure 2. 2017 TWDB Alan Henry Reservoir survey data (blue dots), sediment coring locations (yellow circles), 2,202.4-foot contour from 2014 DOQQ (pink line), 2,211.1-foot contour from 2014 Google Imagery (black line), and 2,216.43-foot contour from 2017 Google Imagery (green line).

## Data processing

## Model boundary

Alan Henry Reservoir's model boundary was digitized from aerial photographs, also known as digital orthophoto quarter-quadrangle images (DOQQs), obtained from the Texas Natural Resources Information System (Texas Natural Resources Information System, 2017) using Environmental Systems Research Institute's ArcGIS software. The quarterquadrangles that cover Alan Henry Reservoir are Justiceburg (SW, SE) and Justiceburg SE (NW, NE, SW, SE). The DOQQs were photographed on August 11, 2010, and August 14, 2010, while the daily average water surface elevation measured $2,220.14$ and $2,220.06$ feet, respectively. The DOQQs have a resolution or ground sample distance of 1.0 meters and a horizontal accuracy within $\pm 6$ meters to true ground, according to the associated metadata (U.S. Department of Agriculture, 2016). The model boundary was digitized at the landwater interface in the 2010 photographs, with some interpretation in the upper reaches to account for channel migration evident in more recent photographs, and assigned an elevation of 2,220.0 feet.

Additional elevation contours were digitized from aerial photographs taken in 2014 and 2017 to better model the bathymetric surfaces. For modeling the current bathymetric surface, a complete contour at elevation 2,202.4 feet was digitized from DOQQs photographed on August 7, 2014. In areas where the pre-impoundment surface model and the contour did not agree, the contour was removed from the pre-impoundment surface model. The 2014 DOQQs have a resolution or ground sample distance of 1.0-meters and a horizontal accuracy within $\pm 6$ meters to true ground, according to the associated metadata (Texas Natural Resources Information System, 2015, U.S. Department of Agriculture, 2016). In areas where data alone did not accurately represent the reservoir bathymetry, partial contours were digitized from DOQQs obtained through the Texas Imagery Service. The Texas Natural Resources Information System manages the Texas Imagery Service allowing public organizations in the State of Texas to access Google Imagery as a service using Environmental Systems Research Institute's ArcGIS software (Texas Natural Resources Information System, 2018). Partial contours were digitized from DOQQs photographed on October 2, 2014, while the daily average water surface elevation measured 2,211.1 feet and October 9, 2017, while the daily average water surface elevation measured 2,216.43 feet. The DOQQs have a resolution of 6 inches (Texas Natural Resources Information System, 2018).

## Triangulated Irregular Network model

Following completion of data collection, the raw data files collected by the TWDB were edited to remove data anomalies. The reservoir's current bottom surface is automatically determined by the data acquisition software. DepthPic© software, developed by SDI, Inc., was used to display, interpret, and edit the multi-frequency data by manually removing data anomalies in the current bottom surface and manually digitizing the reservoir-bottom surface at the time of initial impoundment (i.e. pre-impoundment surface). For further analysis, HydroTools, software developed by TWDB staff, was used to merge all the data into a single file including the current reservoir-bottom surface, preimpoundment surface, and sediment thickness at each sounding location. The water surface elevation at the time of each sounding was used to convert each sounding depth to a corresponding reservoir-bottom elevation. This survey point dataset was then preconditioned by inserting a uniform grid of artificial survey points between the actual survey lines. Bathymetric elevations at these artificial points were determined using an anisotropic spatial interpolation algorithm described in the next section. This technique creates a high resolution, uniform grid of interpolated bathymetric elevation points throughout a majority of the reservoir (McEwen and others, 2011a). Finally, the point file resulting from spatial interpolation is used in conjunction with sounding and boundary data to create volumetric and sediment Triangulated Irregular Network (TIN) models utilizing the 3D Analyst Extension of ArcGIS. The 3D Analyst algorithm uses Delaunay's criteria for triangulation to create a grid composed of triangles from non-uniformly spaced points, including the boundary vertices (Environmental Systems Research Institute, 1995).

## Spatial interpolation of reservoir bathymetry

Isotropic spatial interpolation techniques such as the Delaunay triangulation used by the 3D Analyst extension of ArcGIS are, in many instances, unable to suitably interpolate bathymetry between survey lines common to reservoir surveys. Reservoirs and stream channels are anisotropic morphological features where bathymetry at any particular location is more similar to upstream and downstream locations than to transverse locations. Interpolation schemes that do not consider this anisotropy lead to the creation of several types of artifacts in the final representation of the reservoir bottom surface and hence to errors in volume. These include artificially-curved contour lines extending into the reservoir where the reservoir walls are steep or the reservoir is relatively narrow, intermittent
representation of submerged stream channel connectivity, and oscillations of contour lines in between survey lines. These artifacts reduce the accuracy of the resulting volumetric and sediment TIN models in areas between actual survey data.

To improve the accuracy of bathymetric representation between survey lines, the TWDB developed various anisotropic spatial interpolation techniques. Generally, the directionality of interpolation at different locations of a reservoir can be determined from external data sources. A basic assumption is that the reservoir profile in the vicinity of a particular location has upstream and downstream similarity. In addition, the sinuosity and directionality of submerged stream channels can be determined by directly examining the survey data, or more robustly by examining scanned USGS 7.5 minute quadrangle maps (known as digital raster graphics), hypsography files (the vector format of USGS 7.5 minute quadrangle map contours), and historical aerial photographs, when available. Using the survey data, polygons are created to partition the reservoir into segments with centerlines defining directionality of interpolation within each segment. For surveys with similar spatial coverage, these interpolation definition files are, in principle, independent of the survey data and could be applied to past and future survey data of the same reservoir. In practice, minor revisions of the interpolation definition files may be needed to account for differences in spatial coverage and boundary conditions between surveys. Using the interpolation definition files and survey data, the current reservoir-bottom elevation, preimpoundment elevation, and sediment thickness are calculated for each point in the high resolution uniform grid of artificial survey points. The reservoir boundary, artificial survey points grid, and survey data points are used to create volumetric and sediment TIN models representing reservoir bathymetry and sediment accumulation throughout the reservoir. Specific details of this interpolation technique can be found in the HydroTools manual (McEwen and others, 2011a) and in McEwen and others (2011b).

In areas inaccessible to survey data collection, such as small coves and shallow upstream areas of the reservoir, linear interpolation is used for volumetric and sediment accumulation estimations. Linear interpolation follows a line linking the survey points file to the lake boundary file (McEwen and others, 2011a). Without linearly interpolated data, the TIN model builds flat triangles. A flat triangle is defined as a triangle where all three vertices are equal in elevation, generally the elevations of the reservoir boundary and contours. Reducing flat triangles by applying linear interpolation improves the elevation-
capacity and elevation-area calculations, although it is not always possible to remove all flat triangles.

Figure 3 illustrates typical results from application of the anisotropic interpolation and linear interpolation techniques to Alan Henry Reservoir. In Figure 3A, deeper channels and steep slopes indicated by surveyed cross-sections are not continuously represented in areas between survey cross-sections. This is an artifact of the TIN generation routine rather than an accurate representation of the physical bathymetric surface. Inclusion of interpolation points in creation of the volumetric TIN model, represented in Figure 3B, directs Delaunay triangulation to better represent the reservoir bathymetry between survey cross-sections. The bathymetry shown in Figure 3C was used in computing reservoir elevation-capacity (Appendix E) and elevation-area (Appendix F) tables.


Figure 3. Anisotropic spatial interpolation and linear interpolation of Alan Henry Reservoir sounding data; A) bathymetric contours without interpolated points, B) sounding points (black) and interpolated points (red), C) bathymetric contours with interpolated points.

In 2007, the TWDB updated the spatial interpolation of the 2005 survey using the Self-Similar Interpolation method. The Self-Similar Interpolation method applies linear interpolation to add interpolated points in-between survey data transects. In 2010, the

Anisotropic Elliptical Inverse Distance Weighted Interpolation method replaced the SelfSimilar Interpolation method (Texas Water Development Board, 2016). The 2005 survey boundary was digitized from aerial photographs taken on October 18, 2004, while the daily average water surface elevation of the reservoir measured $2,220.2$ feet above mean sea level. The boundary was assigned an elevation of $2,220.0$ feet for modeling purposes. According to the associated metadata, the 2004 DOQQs have a resolution or ground sample distance of 1-meter, with a horizontal positional accuracy within $\pm 5$ meters of reference DOQQs from the National Digital Ortho Program (U.S. Department of Agriculture, 2016). While linear interpolation was used to estimate the topography in areas without data, flat triangles led to anomalous area and volume calculations at the boundary elevation of 2,220.0 feet. In 2016, areas between elevations 2,217.0 feet and 2,220.0 feet were linearly interpolated between the computed values, and volumes above 2,217.0 feet were calculated based on the corrected areas for the 2005 survey (Texas Water Development Board, 2016). The re-calculated 2005 elevation-capacity table and elevation-area table are presented in Appendices A and B, respectively. The re-calculated capacity curve is presented in Appendix C, and the area curve is presented in Appendix D.

## Area, volume, and contour calculation

Using ArcInfo software and the volumetric TIN model, volumes and areas were computed for the entire reservoir at 0.1 -foot intervals, from 2,144.9 to 2,220.0 feet. While linear interpolation was used to estimate topography in areas that were inaccessible by boat or too shallow for survey instruments to work properly, development of some flat triangles (triangles whose vertices all have the same elevation) in the TIN model are unavoidable. The flat triangles in turn lead to anomalous calculations of surface area and volume at the boundary elevations $2,202.4,2,211.1,2,216.43$, and $2,220.0$ feet. To eliminate the effects of the flat triangles on area and volume calculations, areas between elevations 2,202.0 and 2,203.0 feet, 2,210.6 and 2,211.5 feet, and 2,214.5 and 2,220.0 feet were linearly interpolated between the computed values, and volumes above elevation 2,202.0 feet were calculated from the interpolated and computed areas. The elevation-capacity table and elevation-area table, based on the 2017 survey and analysis, are presented in Appendices E and F, respectively. The capacity curve is presented in Appendix G, and the area curve is presented in Appendix H.

The volumetric TIN model was converted to a raster representation using a cell size of 1 foot by 1 foot. The raster data then was used to produce three figures: (1) an elevation relief map representing the topography of the reservoir bottom (Figure 4); (2) a depth range map showing shaded depth ranges for Alan Henry Reservoir (Figure 5); and, (3) a 5-foot contour map (Figure 6).



## Analysis of sediment data from Alan Henry Reservoir

Sedimentation in Alan Henry Reservoir was determined by analyzing the acoustic signal returns of all three depth sounder frequencies in the DepthPic© software. While the 208 kHz signal is used to determine the current bathymetric surface, the $208 \mathrm{kHz}, 50 \mathrm{kHz}$, and 24 kHz , are analyzed to determine the reservoir bathymetric surface at the time of initial impoundment, i.e., pre-impoundment surface. Sediment core samples collected in the reservoir are correlated with the acoustic signals in each frequency to assist in identifying the pre-impoundment surface. The difference between the current surface bathymetry and the pre-impoundment surface bathymetry yields a sediment thickness value at each sounding location.

Sediment cores were analyzed at TWDB headquarters in Austin. Each core was split longitudinally and analyzed to identify the location of the pre-impoundment surface. The pre-impoundment surface was identified within the sediment core using the following methods: (1) a visual examination of the sediment core for terrestrial materials, such as leaf litter, tree bark, twigs, intact roots, etc., concentrations of which tend to occur on or just below the pre-impoundment surface; (2) recording changes in texture from well sorted, relatively fine-grained sediment to poorly sorted mixtures of coarse and fine-grained materials; and, (3) identifying variations in the physical properties of the sediment, particularly sediment water content and penetration resistance with depth (Van Metre and others, 2004). Total sediment core length, post impoundment sediment thickness, and preimpoundment thickness were recorded. Physical characteristics of the sediment core, such as Munsell soil color, texture, relative water content, and presence of organic materials were recorded (Table 2).

Table 2. Sediment core sample analysis data for Alan Henry Reservoir.

| Sediment core sample | Easting ${ }^{\text {a }}$ (feet) | Northing ${ }^{\text {a }}$ (feet) | Total core sample/ post-impoundment sediment |  | Sediment core description | Munsell soil color |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AH-1 | 1160792.93 | 7067758.14 | 120.0 "/N/A | post-impoundment | $0.0-27.0$ " silt, pudding-like consistency, some darker layering with similar consistency | 5YR 4/4 reddish brown with 5YR 4/2 dark reddish gray |
|  |  |  |  |  | 27.0-30.0" sand, fine grained with some 1/16" grains | 10YR 5/3 brown |
|  |  |  |  |  | 30.0-51.0" silt, with some darker layers of same puddinglike consistency, similar to layer 1 but slightly lower water content | 5YR 4/4 reddish brown with 5YR 4/2 dark reddish gray |
|  |  |  |  |  | 51.0-52.0" more sandy than layers 1 and 3, but less than layer 2 , sandy loam | 10YR 3/1 very dark gray |
|  |  |  |  |  | 52.0-118.0" similar to layers 1 and 3 inconsistency with slightly lower water content, pudding-like, silt | 5YR 4/4 reddish brown with occasional darker layers 5YR 4/2 dark reddish gray |
|  |  |  |  |  | 118.0-120.0" sandier than above, similar texture to layer 4 but lighter in color, sandy loam | N/A |
| AH-2 | 1169466.38 | 7067336.93 | 120.0 "/N/A | post-impoundment | $0.0-84.0$ " high water content, clay or silt, silt, pudding-like, darker layers with similar consistency, silt | 5YR 4/4 reddish brown (85\%) with 10YR 4/2 dark grayish brown (15\%) |
|  |  |  |  |  | 84.0-87.0" color shift, grittier than above, sandy loam, consistent color throughout | 7.5YR 4/3 brown |
|  |  |  |  |  | 87.0-99.0" same as layer 1, pudding-like, silt or clay with a high water content | 5YR 4/4 with streaks of 10YR 4/3 |
|  |  |  |  |  | 99.0-106.0" identical to layer 2, consistent color throughout with more sand than above and below, sandy loam | 7.5YR 4/3 brown |
|  |  |  |  |  | 106.0-120.0" similar to layers 1 and 3 with slightly less water content/higher density | N/A |

${ }^{\text {a }}$ Coordinates are based on NAD83 State Plane Texas North Central System (feet)

Table 2. Sediment core sample analysis data for Alan Henry Reservoir (continued).

| Sediment core sample | Easting ${ }^{\mathrm{a}}$ (feet) | Northing ${ }^{\text {a }}$ (feet) | Total core sample/ post-impoundment sediment |  | Sediment core description | Munsell soil color |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AH-3 | 1169918.90 | 7071399.91 | 84.0 "/N/A | post-impoundment | $0-15.0$ " silt, pudding-like, high water content, color variations | 5YR 4/4 reddish brown, 5YR 4/2 dark reddish gray, 5YR 2.5/1 black |
|  |  |  |  |  | 15.0-84.0" homogenous color and texture throughout, but shift in both from above layer, sandy loam, lower water content | 7.5YR 4/3 brown |
| AH-5 | 1182893.22 | 7067652.55 | 64.0"/3.0" | post-impoundment | $0.0-0.5$ " water and fluff | N/A |
|  |  |  |  |  | 0.5-3.0" soupy mix of water and below material, loam/sandy loam with poorly sorted particles up to $1 / 16^{\prime \prime}$ | 7.5YR 4/1 dark gray |
|  |  |  |  | pre-impoundment | 3.0-35.0" lower water content, not pudding-like, sandy loam, some large (up to 1.0 ") pebbles, fine but long roots throughout | 10YR $3 / 2$ very dark grayish brown |
|  |  |  |  |  | 35.0-64.0" slight color shift from above, same texture, sandy loam with roots (very fine throughout layer), no pebbles | 5YR 3/2 dark reddish brown |
| AH-6 | 1192313.57 | 7068547.39 | 30.0 "/3.5" | post-impoundment | 0.0-1.5" water and fluff, very high water content, silt | N/A |
|  |  |  |  |  | 1.5-3.5" very soupy, silt, slightly less water than above | 5YR 4/3 reddish brown |
|  |  |  |  | pre-impoundment | 3.5-30.0" clear textural change from above, organics throughout, large stick at top of layer ( 0.5 "diameter by 1.0"), leaf litter at top, fine roots throughout, clay | 7.5Y 4/3 brown |
| AH-7 | 1183800.90 | 7073468.36 | 120.0 "/N/A | post-impoundment | $0.0-120.0$ " no significant changes, silt, with water content decreasing and penetration resistance gradually increasing with depth, intermittent darker layers with no changes to texture or penetration resistance | 5YR 4/4 reddish brown with 5YR 1/1 black |

${ }^{\text {a }}$ Coordinates are based on NAD83 State Plane Texas North Central System (feet)

Table 2. Sediment core sample analysis data for Alan Henry Reservoir (continued).

| Sediment <br> core <br> sample | Easting ${ }^{\text {(feet) }}$ | Northing <br> (feet) | Total core sample/ <br> post-impoundment <br> sediment |  | Sediment core description |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Munsell soil color |  |  |

[^1]A photograph of sediment core AH-8 (for location, refer to Figure 2) is shown in Figure 7 and is representative of sediment cores sampled from Alan Henry Reservoir. The base of the sample is denoted by the blue line. The pre-impoundment boundary (right most yellow line) was evident within this sediment core sample at 104.5 inches and identified by the change in color, texture, moisture, porosity, and structure. Identification of the preimpoundment surface for each sediment core followed a similar procedure.


Figure 7. Sediment core AH-8 from Alan Henry Reservoir. Post-impoundment sediment layers occur in the top 104.5 inches of this sediment core (identified by the yellow box). Preimpoundment sediment layers were identified and are defined by the blue box.

Figures 8 and 9 illustrate how measurements from sediment core samples are used with sonar data to help identify the post- and pre-impoundment layers in the acoustic signal. Figure 8 compares sediment core sample AH-8 with the acoustic signals for each frequency combined ( $8 \mathrm{~A}, 8 \mathrm{~A}^{\prime}$ ), and the individual frequencies: $208 \mathrm{kHz}\left(8 \mathrm{~B}, 8 \mathrm{~B}^{\prime}\right), 50 \mathrm{kHz}\left(8 \mathrm{C}, 8 \mathrm{C}^{\prime}\right)$, and $24 \mathrm{kHz}\left(8 \mathrm{D}, 8 \mathrm{D}^{\prime}\right)$. Within DepthPic©, the current bathymetric surface is automatically determined based on signal returns from the 208 kHz transducer as represented by the top black line in Figure $8 \mathrm{~A}^{\prime}$ and red line in Figures $8 \mathrm{~B}^{\prime}$, $8 \mathrm{C}^{\prime}$, and $8 \mathrm{D}^{\prime}$. The pre-impoundment surface is identified by comparing boundaries observed in the $208 \mathrm{kHz}, 50 \mathrm{kHz}$, and 24 kHz signals to the location of the pre-impoundment surface as determined by the sediment core sample analysis. Many layers of sediment may be identified during core analysis based on changes in observed characteristics, such as water content, organic matter content, and sediment particle size, and each layer is classified as either post-impoundment or preimpoundment. Each layer of sediment identified in the sediment core sample during analysis (Table 2) is represented in Figures 8 and 9 by a yellow or blue box. A yellow box represents post-impoundment sediments. A blue box indicates pre-impoundment sediments.


Figure 8. Comparison of sediment core $\mathbf{A H - 8}$ with acoustic signal returns $\mathbf{A}, \mathrm{A}^{\prime}$ ) combined acoustic signal returns, B, $B^{\prime}$ ) 208 kHz frequency, $\left.C, C^{\prime}\right) 50 \mathrm{kHz}$ frequency, and $\left.D, D^{\prime}\right) 24 \mathrm{kHz}$ frequency.

In this case, the pre-impoundment boundary as identified from the preimpoundment interface of the sediment core sample was most visible in the 50 kHz acoustic signal returns; therefore, the 50 kHz signal returns were used to locate the preimpoundment surface (yellow line in Figure 8). Figure 9 shows sediment core sample AH-8 correlated with the 50 kHz acoustic signal returns of the nearest surveyed cross-section. The pre-impoundment surface was first identified along cross-sections for which sediment core samples have been collected. This information was then used as a guide for identifying the pre-impoundment surface along cross-sections where sediment core samples were not collected.


Figure 9. Cross-section of data collected during the 2017 survey, displayed in DepthPic© ( 50 kHz acoustic signal returns), correlated with sediment core sample AH-8 and showing the current surface as the top red line, and pre-impoundment surface as the bottom yellow line.

After the pre-impoundment surface for all cross-sections was identified, a preimpoundment TIN model and a sediment thickness TIN model were created following standard GIS techniques (Furnans and Austin, 2007). Pre-impoundment elevations and sediment thicknesses were interpolated between surveyed cross-sections using HydroTools with the same interpolation definition file used for bathymetric interpolation with minor edits to account for pre-impoundment features and the changes made to the digitized elevation contours. For the purposes of TIN model creation, the TWDB assumed the sediment thickness at the reservoir boundary and elevation contours was 0 feet (defined as the 2,220.0-foot, 2,202.4-foot, 2,211.1-foot, and 2,216.43-foot elevation contours). Additionally, any data points between a contour and the boundary were edited to also have a sediment value of 0 feet and a pre-impoundment value equal to the current surface elevation. The sediment thickness TIN model was converted to a raster representation using a cell size of 2 feet by 2 feet and was used to produce a sediment thickness map of Alan Henry Reservoir (Figure 10). Using ArcInfo software, the pre-impoundment TIN model was used to compute elevation-capacity and elevation-area tables for the purpose of calculating the total volume of accumulated sediment.

Although linear interpolation was used to estimate topography in areas inaccessible by boat or too shallow for the instruments to work properly, development of some flat triangles (triangles whose vertices all have the same elevation) in the pre-impoundment TIN model are unavoidable. The flat triangles lead to anomalous calculations of surface area and volume at the boundary elevation $2,220.0$ feet. To eliminate the effects of the flat triangles
on area and volume calculations, areas between elevations 2,211.0 and 2,220.0 feet were linearly interpolated between the computed values, and volumes above elevation 2,211.0 feet were calculated based on the corrected areas.

The TWDB sedimentation survey results may not account for all sediment accumulation in areas exposed during low water levels, as occurred between December 2012 and May 2015, due to desiccation of the sediment. Upon inundation and re-saturation, exposed sediment will not return to its original high level of water content (Dunbar and Allen, 2003). Drying of sediment in exposed areas create hard surfaces that cannot be penetrated with gravity coring techniques, and compressive stresses on the sediments may also increase sediment density, inhibiting the measurement of the original, preimpoundment surface. Density stratification in the sediment layers can also scatter and attenuate acoustic return signals of the multi-frequency depth sounder (U.S. Army Corps of Engineers, 2013).


## Survey results

## Volumetric survey

The 2017 TWDB volumetric survey indicates that Alan Henry Reservoir has a total reservoir capacity of $\mathbf{9 6 , 2 0 7}$ acre-feet and encompasses $\mathbf{2 , 8 0 0}$ acres at conservation pool elevation ( $\mathbf{2 , 2 2 0 . 0}$ feet above mean sea level, NGVD29). The original design capacity of Alan Henry Reservoir was estimated at 115,937 acre-feet. Re-evaluation of the 2005 survey resulted in an updated capacity estimate of 98,974 acre-feet, or a 4.4 percent increase in total capacity, respectively (Table 3). Comparison of the 2005 and 2017 volumetric survey results indicate Alan Henry Reservoir is losing an average of 231 acrefeet of capacity per year. This may suggest the rate of sedimentation has decreased since initial impoundment. Differences in surface area are most likely attributable to differences in reservoir boundary delineation methods. Comparing volumetric survey results to estimate loss of area and capacity may introduce error due to differences in past and present survey methodologies.

Table 3. Current and previous survey capacity and surface area estimates for Alan Henry Reservoir.

| Top of conservation pool elevation (2,220.0 feet, NGVD29) |  |  |  |
| :---: | :---: | :---: | :---: |
| Survey | Surface area <br> (acres) | Total capacity <br> (acre-feet) | Source |
| Original design | 2,884 | 115,937 | Freese and Nichols, 1978 |
| TWDB 2005 | 2,741 | 94,808 | Texas Water Development |
| TWoard, 2006 |  |  |  |
| TWDB 2005 (re-calculated) | 2,741 | 98,974 | Texas Water Development |
| TWDB 2017 | 2,800 | 96,207 | Board, 2016 |

## Sedimentation survey

The 2017 TWDB sedimentation survey indicates Alan Henry Reservoir has lost capacity at an average of 507 acre-feet per year since impoundment due to sedimentation below conservation pool elevation (2,220.0 feet NGVD29). The sedimentation survey indicates sediment accumulation is primarily occurring throughout the main channels of the reservoir. Comparison of capacity estimates of Alan Henry Reservoir derived using differing methodologies are provided in Table 4 for sedimentation rate calculation.

Table 4. Average annual capacity loss comparisons for Alan Henry Reservoir.

| Previous surveys |  | TWDB 2017 | Comparison of surveys |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Survey | Conservation pool capacity (acre-feet) | Conservation pool capacity (acre-feet) | Volume difference (acre-feet) | Years between surveys | Capacity loss rate (acre-feet/year) | Capacity loss rate (acre-feet/square-mile of drainage area/year) |
| Original design ${ }^{\text {a }}$ | 115,937 | 96,207 | 19,730 | 24 | 822 | 2.09 |
| TWDB 2005 (re-calculated) | 98,974 | 96,207 | 2,767 | 12 | 231 | 0.59 |
| TWDB preimpoundment estimate based on 2017 survey | 108,376 | 96,207 | 12,169 | 24 | 507 | 1.29 |

${ }^{\text {a }}$ Source: (Freese and Nichols, 1978), note: John T. Montford Dam was completed in October 1993.

## Sediment range lines

In 2006, the TWDB established twenty-two sediment range lines throughout Alan Henry Reservoir to measure sediment accumulation over time. A cross-sectional comparison of the twenty-two sediment range lines comparing the current bottom surface from the 2017 TWDB survey and the 2005 TWDB re-calculated survey is presented in Appendix I. Also presented in Appendix I are a map, depicting the TWDB locations of the sediment range lines and Table I1, a list of the endpoint coordinates for each line. Some differences in the cross-sections may be a result of spatial interpolation and the interpolation routine of the TIN Model.

## Recommendations

The TWDB recommends a detailed analysis of sediment deposits in the areas where exposure of the lake bottom may have led to identification of a false pre-impoundment using augured-coring techniques, as well as a volumetric and sedimentation survey in 10 years or after a major flood event to further improve estimates of sediment accumulation rates.

## TWDB contact information

More information about the Hydrographic Survey Program can be found at:
http://www.twdb.texas.gov/surfacewater/surveys/index.asp
Any questions regarding the TWDB Hydrographic Survey Program may be addressed to: Hydrosurvey@twdb.texas.gov

## References

City of Lubbock, 2018, City of Lubbock - Departments | Lake Alan Henry, accessed August 21, 2018, at https://ci.lubbock.tx.us/departments/lake-alan-henry/about-us.

Dunbar, J.A. and Allen, P.M., 2003, Sediment Thickness from Coring and Acoustics within Lakes Aquilla, Granger, Limestone, and Proctor: Brazos River Watershed, TX: Baylor University, Department of Geology.

Environmental Systems Research Institute, 1995, ARC/INFO Surface Modeling and Display, TIN Users Guide: ESRI, California.

Freese and Nichols, 1978, Feasibility Report on Justiceburg Reservoir.
Furnans, J. and Austin, B., 2007, Hydrographic survey methods for determining reservoir volume, Environmental Modeling \& Software, v. 23, no. 2: Amsterdam, The Netherlands, Elsevier Science Publishers B.V., p. 139-146. doi: 10.1016/j.envsoft.2007.05.011.

McEwen, T., Brock, N., Kemp, J., Pothina, D. and Weyant, H., 2011a, HydroTools User's Manual: Texas Water Development Board.

McEwen, T., Pothina, D. and Negusse, S., 2011b, Improving efficiency and repeatability of lake volume estimates using Python: Proceedings of the 10th Python for Scientific Computing Conference.

Texas Natural Resources Information System, 2015, Latest NAIP Statewide Aerial Imagery - Now Available, accessed August 14, 2018, http://tnris.org/news/2015-01-09/naip-2014-statewide-aerial-available/.

Texas Natural Resources Information System, 2017, Maps \& Data, accessed May 10, 2017, at http://www.tnris.org/maps-and-data/.

Texas Natural Resources Information System, 2018, Texas Imagery Service | TNRIS Texas Natural Resources Information System, accessed July 2, 2018, at https://www.tnris.org/texas-imagery-service/.

Texas Water Development Board, 2006, Volumetric Survey of Alan Henry Reservoir, accessed May 14, 2018, at http://www.twdb.texas.gov/hydro_survey/AlanHenry/200507/AlanHenry2005_FinalReport.pdf.

Texas Water Development Board, 2017a, Contract No. R1748012105 with the City of Lubbock, Texas.

Texas Water Development Board, 2017b, Amendment to Contract No. R1748012105 with the City of Lubbock, Texas.

Texas Water Development Board, 2016, Application of new procedures to re-assess reservoir capacity, accessed November 15, 2017, at http://www.twdb.texas.gov/hydro_survey/Re-assessment/.
U.S. Army Corps of Engineers, 2013, Engineering and Design, Hydrographic Surveying Engineer Manual, EM 1100-2-1003 (30 Nov 13): U.S. Army Corps of Engineers, Appendix P.
U.S. Bureau of the Budget, 1947, United States National Map Accuracy Standards, accessed September 21, 2017, at http://nationalmap.gov/standards/pdf/NMAS647.PDF.
U.S. Department of Agriculture, 2016, National Agricultural Imagery Program (NAIP) Information Sheet, accessed September 21, 2017, at http://www.fsa.usda.gov/Assets/USDA-FSA-Public/usdafiles/APFO/supportdocuments/pdfs/naip_infosheet_2016.pdf.
U.S. Geological Survey, 2017, U.S. Geological Survey National Water Information System: Web Interface, USGS 08079700 Lk Alan Henry Res nr Justiceburg, TX, accessed February 27, 2018, at https://waterdata.usgs.gov/tx/nwis/uv/?site_no=08079700\&PARAmeter_cd=00054, 62614,62615,62619.

Van Metre, P.C., Wilson, J.T., Fuller, C.C., Callender, E., and Mahler, B.J., 2004, Collection, analysis, and age-dating of sediment cores from 56 U.S. lakes and reservoirs sampled by the U.S. Geological Survey, 1992-2001: U.S. Geological Survey Scientific Investigations Report 2004-5184, 180 p.

Alan Henry Reservoir RESERVOIR VOLUME TABLE
TEXAS WATER DEVELOPMENT BOARD
July 2005 Survey re-calculated November 2016
VOLUME IN ACRE-FEET Conservation Pool Elevation 2,220.0 feet NGVD29
ELEVATION INCREMENT IS ONE TENTH FOOT
ELEVATION

| in Feet | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2,140 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2,141 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2,142 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2,143 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 3 |
| 2,144 | 3 | 4 | 5 | 6 | 7 | 8 | 10 | 12 | 14 | 16 |
| 2,145 | 19 | 22 | 25 | 29 | 33 | 39 | 46 | 53 | 62 | 72 |
| 2,146 | 82 | 94 | 107 | 121 | 135 | 151 | 167 | 184 | 202 | 220 |
| 2,147 | 240 | 260 | 280 | 302 | 324 | 346 | 370 | 394 | 418 | 443 |
| 2,148 | 469 | 495 | 522 | 549 | 576 | 604 | 632 | 661 | 689 | 719 |
| 2,149 | 748 | 778 | 809 | 840 | 871 | 903 | 936 | 968 | 1,001 | 1,035 |
| 2,150 | 1,068 | 1,103 | 1,137 | 1,171 | 1,206 | 1,241 | 1,277 | 1,312 | 1,349 | 1,385 |
| 2,151 | 1,421 | 1,458 | 1,495 | 1,533 | 1,571 | 1,609 | 1,648 | 1,687 | 1,727 | 1,766 |
| 2,152 | 1,807 | 1,848 | 1,889 | 1,930 | 1,972 | 2,014 | 2,056 | 2,099 | 2,142 | 2,185 |
| 2,153 | 2,229 | 2,273 | 2,317 | 2,362 | 2,407 | 2,453 | 2,499 | 2,545 | 2,591 | 2,638 |
| 2,154 | 2,685 | 2,732 | 2,779 | 2,827 | 2,876 | 2,924 | 2,973 | 3,022 | 3,072 | 3,121 |
| 2,155 | 3,171 | 3,222 | 3,272 | 3,323 | 3,374 | 3,426 | 3,478 | 3,530 | 3,583 | 3,636 |
| 2,156 | 3,689 | 3,742 | 3,796 | 3,850 | 3,904 | 3,959 | 4,014 | 4,069 | 4,124 | 4,180 |
| 2,157 | 4,236 | 4,292 | 4,348 | 4,405 | 4,462 | 4,519 | 4,577 | 4,634 | 4,692 | 4,751 |
| 2,158 | 4,809 | 4,868 | 4,927 | 4,987 | 5,047 | 5,107 | 5,168 | 5,229 | 5,290 | 5,352 |
| 2,159 | 5,414 | 5,476 | 5,538 | 5,601 | 5,664 | 5,727 | 5,791 | 5,854 | 5,918 | 5,983 |
| 2,160 | 6,047 | 6,112 | 6,177 | 6,243 | 6,309 | 6,375 | 6,442 | 6,508 | 6,576 | 6,643 |
| 2,161 | 6,711 | 6,780 | 6,848 | 6,917 | 6,986 | 7,056 | 7,126 | 7,196 | 7,266 | 7,337 |
| 2,162 | 7,408 | 7,480 | 7,552 | 7,624 | 7,696 | 7,769 | 7,842 | 7,916 | 7,990 | 8,064 |
| 2,163 | 8,138 | 8,213 | 8,288 | 8,363 | 8,439 | 8,515 | 8,592 | 8,668 | 8,745 | 8,822 |
| 2,164 | 8,900 | 8,978 | 9,056 | 9,134 | 9,213 | 9,292 | 9,371 | 9,450 | 9,530 | 9,609 |
| 2,165 | 9,689 | 9,770 | 9,850 | 9,932 | 10,013 | 10,094 | 10,176 | 10,258 | 10,341 | 10,423 |
| 2,166 | 10,506 | 10,590 | 10,673 | 10,757 | 10,841 | 10,925 | 11,009 | 11,094 | 11,179 | 11,264 |
| 2,167 | 11,350 | 11,435 | 11,521 | 11,607 | 11,694 | 11,780 | 11,867 | 11,954 | 12,041 | 12,129 |
| 2,168 | 12,216 | 12,304 | 12,393 | 12,481 | 12,570 | 12,659 | 12,748 | 12,838 | 12,928 | 13,018 |
| 2,169 | 13,108 | 13,199 | 13,290 | 13,381 | 13,472 | 13,564 | 13,656 | 13,748 | 13,841 | 13,934 |
| 2,170 | 14,027 | 14,120 | 14,213 | 14,307 | 14,401 | 14,495 | 14,590 | 14,684 | 14,779 | 14,874 |
| 2,171 | 14,969 | 15,065 | 15,161 | 15,257 | 15,353 | 15,449 | 15,546 | 15,643 | 15,741 | 15,838 |
| 2,172 | 15,936 | 16,034 | 16,133 | 16,231 | 16,330 | 16,429 | 16,529 | 16,628 | 16,729 | 16,829 |
| 2,173 | 16,929 | 17,030 | 17,131 | 17,232 | 17,334 | 17,436 | 17,538 | 17,640 | 17,743 | 17,845 |
| 2,174 | 17,948 | 18,052 | 18,155 | 18,259 | 18,363 | 18,467 | 18,572 | 18,676 | 18,781 | 18,886 |
| 2,175 | 18,992 | 19,098 | 19,204 | 19,310 | 19,416 | 19,523 | 19,630 | 19,737 | 19,845 | 19,953 |
| 2,176 | 20,061 | 20,169 | 20,278 | 20,386 | 20,495 | 20,605 | 20,714 | 20,824 | 20,934 | 21,044 |
| 2,177 | 21,155 | 21,265 | 21,376 | 21,487 | 21,599 | 21,710 | 21,822 | 21,934 | 22,047 | 22,159 |
| 2,178 | 22,272 | 22,385 | 22,498 | 22,612 | 22,726 | 22,840 | 22,954 | 23,069 | 23,184 | 23,299 |
| 2,179 | 23,415 | 23,531 | 23,647 | 23,763 | 23,879 | 23,996 | 24,114 | 24,231 | 24,349 | 24,467 |
| 2,180 | 24,585 | 24,704 | 24,822 | 24,941 | 25,061 | 25,180 | 25,300 | 25,420 | 25,541 | 25,661 |
| 2,181 | 25,783 | 25,904 | 26,025 | 26,147 | 26,269 | 26,392 | 26,515 | 26,638 | 26,761 | 26,885 |
| 2,182 | 27,009 | 27,133 | 27,258 | 27,383 | 27,508 | 27,634 | 27,760 | 27,886 | 28,013 | 28,139 |
| 2,183 | 28,267 | 28,394 | 28,522 | 28,650 | 28,779 | 28,907 | 29,037 | 29,166 | 29,296 | 29,425 |
| 2,184 | 29,556 | 29,686 | 29,817 | 29,948 | 30,080 | 30,212 | 30,344 | 30,476 | 30,608 | 30,741 |
| 2,185 | 30,874 | 31,008 | 31,141 | 31,275 | 31,409 | 31,543 | 31,678 | 31,813 | 31,948 | 32,083 |
| 2,186 | 32,219 | 32,355 | 32,491 | 32,628 | 32,765 | 32,902 | 33,039 | 33,176 | 33,314 | 33,452 |
| 2,187 | 33,591 | 33,730 | 33,868 | 34,008 | 34,147 | 34,287 | 34,427 | 34,567 | 34,708 | 34,848 |
| 2,188 | 34,989 | 35,131 | 35,272 | 35,414 | 35,556 | 35,699 | 35,842 | 35,985 | 36,128 | 36,271 |
| 2,189 | 36,415 | 36,560 | 36,704 | 36,849 | 36,994 | 37,139 | 37,285 | 37,431 | 37,578 | 37,724 |
| 2,190 | 37,871 | 38,019 | 38,166 | 38,314 | 38,462 | 38,611 | 38,760 | 38,909 | 39,058 | 39,208 |
| 2,191 | 39,358 | 39,509 | 39,659 | 39,810 | 39,961 | 40,113 | 40,265 | 40,417 | 40,569 | 40,722 |
| 2,192 | 40,875 | 41,028 | 41,181 | 41,335 | 41,489 | 41,644 | 41,799 | 41,954 | 42,109 | 42,265 |
| 2,193 | 42,421 | 42,577 | 42,734 | 42,891 | 43,048 | 43,206 | 43,364 | 43,522 | 43,681 | 43,840 |
| 2,194 | 44,000 | 44,159 | 44,319 | 44,480 | 44,640 | 44,802 | 44,963 | 45,125 | 45,287 | 45,450 |
| 2,195 | 45,613 | 45,776 | 45,939 | 46,103 | 46,267 | 46,432 | 46,597 | 46,762 | 46,928 | 47,094 |
| 2,196 | 47,261 | 47,428 | 47,595 | 47,763 | 47,931 | 48,099 | 48,269 | 48,438 | 48,608 | 48,777 |
| 2,197 | 48,948 | 49,119 | 49,290 | 49,462 | 49,633 | 49,806 | 49,978 | 50,151 | 50,324 | 50,498 |
| 2,198 | 50,672 | 50,846 | 51,021 | 51,196 | 51,371 | 51,547 | 51,723 | 51,899 | 52,076 | 52,253 |
| 2,199 | 52,430 | 52,608 | 52,786 | 52,965 | 53,144 | 53,323 | 53,503 | 53,682 | 53,863 | 54,043 |


|  |  |  |  | Appen Alan ESERVO | (conti <br> y Res <br> OLUME |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TEXAS | TER DEV | PMENT B |  |  | July 200 | ey re-ca | d Nove |  |  |
|  |  | LUME IN | E-FEET |  |  | onservat | ool Eleva | ,220.0 fee | VD29 |  |
|  | ELEVATION | CREMEN | ONE TEN | OOT |  |  |  |  |  |  |
| ELEVATION in Feet | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
| 2,200 | 54,224 | 54,405 | 54,587 | 54,769 | 54,950 | 55,133 | 55,316 | 55,499 | 55,683 | 55,866 |
| 2,201 | 56,050 | 56,235 | 56,419 | 56,605 | 56,790 | 56,976 | 57,162 | 57,348 | 57,535 | 57,721 |
| 2,202 | 57,909 | 58,097 | 58,285 | 58,473 | 58,662 | 58,851 | 59,041 | 59,230 | 59,421 | 59,611 |
| 2,203 | 59,802 | 59,993 | 60,185 | 60,377 | 60,569 | 60,762 | 60,956 | 61,149 | 61,344 | 61,538 |
| 2,204 | 61,733 | 61,929 | 62,124 | 62,321 | 62,517 | 62,714 | 62,912 | 63,109 | 63,308 | 63,506 |
| 2,205 | 63,706 | 63,906 | 64,105 | 64,306 | 64,507 | 64,709 | 64,911 | 65,113 | 65,316 | 65,519 |
| 2,206 | 65,723 | 65,927 | 66,131 | 66,336 | 66,541 | 66,747 | 66,953 | 67,160 | 67,367 | 67,574 |
| 2,207 | 67,782 | 67,990 | 68,199 | 68,408 | 68,618 | 68,828 | 69,039 | 69,251 | 69,463 | 69,675 |
| 2,208 | 69,888 | 70,101 | 70,315 | 70,529 | 70,744 | 70,960 | 71,176 | 71,392 | 71,609 | 71,826 |
| 2,209 | 72,044 | 72,263 | 72,481 | 72,701 | 72,921 | 73,141 | 73,362 | 73,584 | 73,806 | 74,028 |
| 2,210 | 74,251 | 74,475 | 74,698 | 74,923 | 75,148 | 75,373 | 75,600 | 75,826 | 76,053 | 76,280 |
| 2,211 | 76,508 | 76,737 | 76,966 | 77,195 | 77,425 | 77,655 | 77,886 | 78,117 | 78,349 | 78,581 |
| 2,212 | 78,814 | 79,047 | 79,280 | 79,515 | 79,749 | 79,984 | 80,220 | 80,455 | 80,692 | 80,928 |
| 2,213 | 81,166 | 81,404 | 81,642 | 81,881 | 82,120 | 82,360 | 82,600 | 82,840 | 83,081 | 83,322 |
| 2,214 | 83,565 | 83,807 | 84,050 | 84,294 | 84,537 | 84,781 | 85,026 | 85,271 | 85,517 | 85,762 |
| 2,215 | 86,009 | 86,256 | 86,503 | 86,751 | 86,999 | 87,248 | 87,497 | 87,746 | 87,996 | 88,246 |
| 2,216 | 88,497 | 88,748 | 89,000 | 89,252 | 89,504 | 89,758 | 90,011 | 90,265 | 90,520 | 90,774 |
| 2,217 | 91,030 | 91,285 | 91,542 | 91,799 | 92,057 | 92,315 | 92,574 | 92,833 | 93,093 | 93,354 |
| 2,218 | 93,616 | 93,878 | 94,140 | 94,404 | 94,667 | 94,932 | 95,197 | 95,463 | 95,729 | 95,996 |
| 2,219 | $96,264$ | 96,532 | 96,801 | 97,070 | 97,340 | 97,611 | 97,883 | 98,154 | 98,427 | 98,700 |
| 2,220 | 98,974 |  |  |  |  |  |  |  |  |  |

[^2]
## Appendix B

## Alan Henry Reservoir <br> RESERVOIR AREA TABLE

|  | TEXAS WATER DEVELOPMENT BOARD AREA IN ACRES |  |  |  | July 2005 Survey re-calculated November 2016 Conservation Pool Elevation 2,220.0 feet NGVD29 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { ELEVATION } \\ \text { in Feet } \\ \hline \end{gathered}$ | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
| 2,140 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2,141 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2,142 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| 2,143 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 5 |
| 2,144 | 6 | 8 | 10 | 12 | 14 | 16 | 17 | 20 | 22 | 24 |
| 2,145 | 27 | 30 | 35 | 42 | 50 | 61 | 71 | 81 | 91 | 103 |
| 2,146 | 113 | 123 | 132 | 142 | 150 | 159 | 167 | 175 | 182 | 189 |
| 2,147 | 196 | 203 | 210 | 217 | 224 | 230 | 236 | 242 | 249 | 255 |
| 2,148 | 260 | 264 | 268 | 272 | 275 | 279 | 282 | 286 | 290 | 294 |
| 2,149 | 298 | 303 | 307 | 312 | 318 | 322 | 326 | 329 | 332 | 335 |
| 2,150 | 339 | 342 | 345 | 347 | 350 | 353 | 356 | 359 | 362 | 364 |
| 2,151 | 367 | 370 | 374 | 378 | 382 | 385 | 388 | 393 | 397 | 402 |
| 2,152 | 406 | 409 | 413 | 416 | 419 | 422 | 425 | 428 | 431 | 435 |
| 2,153 | 438 | 442 | 445 | 449 | 453 | 456 | 459 | 462 | 465 | 468 |
| 2,154 | 471 | 474 | 477 | 481 | 484 | 487 | 490 | 493 | 496 | 498 |
| 2,155 | 502 | 504 | 508 | 511 | 514 | 517 | 521 | 524 | 528 | 531 |
| 2,156 | 534 | 537 | 539 | 542 | 544 | 547 | 550 | 553 | 555 | 558 |
| 2,157 | 560 | 562 | 565 | 567 | 570 | 573 | 576 | 579 | 582 | 585 |
| 2,158 | 587 | 590 | 595 | 599 | 602 | 605 | 608 | 611 | 614 | 617 |
| 2,159 | 620 | 623 | 626 | 628 | 631 | 633 | 636 | 639 | 641 | 644 |
| 2,160 | 647 | 650 | 654 | 657 | 660 | 664 | 668 | 671 | 675 | 678 |
| 2,161 | 681 | 684 | 687 | 690 | 694 | 697 | 700 | 704 | 707 | 710 |
| 2,162 | 713 | 716 | 720 | 723 | 727 | 730 | 733 | 736 | 740 | 743 |
| 2,163 | 746 | 749 | 753 | 756 | 759 | 762 | 765 | 768 | 771 | 774 |
| 2,164 | 777 | 779 | 782 | 784 | 787 | 789 | 792 | 794 | 797 | 800 |
| 2,165 | 802 | 805 | 808 | 811 | 814 | 817 | 820 | 823 | 825 | 828 |
| 2,166 | 831 | 833 | 836 | 838 | 841 | 844 | 846 | 849 | 851 | 853 |
| 2,167 | 855 | 858 | 860 | 862 | 864 | 867 | 869 | 871 | 873 | 876 |
| 2,168 | 878 | 881 | 884 | 887 | 889 | 892 | 895 | 897 | 900 | 902 |
| 2,169 | 905 | 908 | 911 | 913 | 916 | 918 | 921 | 923 | 926 | 928 |
| 2,170 | 931 | 933 | 936 | 938 | 940 | 943 | 945 | 947 | 950 | 952 |
| 2,171 | 954 | 957 | 959 | 962 | 964 | 967 | 969 | 972 | 974 | 977 |
| 2,172 | 980 | 983 | 985 | 988 | 991 | 993 | 996 | 999 | 1,001 | 1,004 |
| 2,173 | 1,007 | 1,009 | 1,011 | 1,014 | 1,017 | 1,019 | 1,021 | 1,024 | 1,026 | 1,029 |
| 2,174 | 1,032 | 1,034 | 1,036 | 1,039 | 1,041 | 1,044 | 1,046 | 1,048 | 1,051 | 1,054 |
| 2,175 | 1,056 | 1,059 | 1,061 | 1,063 | 1,066 | 1,069 | 1,071 | 1,074 | 1,077 | 1,079 |
| 2,176 | 1,082 | 1,084 | 1,087 | 1,089 | 1,092 | 1,094 | 1,096 | 1,099 | 1,101 | 1,103 |
| 2,177 | 1,106 | 1,108 | 1,110 | 1,113 | 1,115 | 1,117 | 1,119 | 1,122 | 1,124 | 1,127 |
| 2,178 | 1,129 | 1,132 | 1,135 | 1,137 | 1,140 | 1,143 | 1,146 | 1,148 | 1,151 | 1,154 |
| 2,179 | 1,157 | 1,159 | 1,162 | 1,165 | 1,168 | 1,170 | 1,173 | 1,176 | 1,178 | 1,181 |
| 2,180 | 1,184 | 1,187 | 1,189 | 1,192 | 1,195 | 1,198 | 1,200 | 1,203 | 1,206 | 1,209 |
| 2,181 | 1,211 | 1,214 | 1,217 | 1,220 | 1,223 | 1,226 | 1,229 | 1,232 | 1,235 | 1,238 |
| 2,182 | 1,241 | 1,245 | 1,248 | 1,252 | 1,255 | 1,258 | 1,261 | 1,264 | 1,267 | 1,271 |
| 2,183 | 1,274 | 1,277 | 1,280 | 1,283 | 1,286 | 1,289 | 1,292 | 1,295 | 1,298 | 1,301 |
| 2,184 | 1,304 | 1,307 | 1,310 | 1,313 | 1,316 | 1,319 | 1,321 | 1,324 | 1,327 | 1,329 |
| 2,185 | 1,332 | 1,335 | 1,337 | 1,340 | 1,342 | 1,345 | 1,348 | 1,350 | 1,353 | 1,356 |
| 2,186 | 1,358 | 1,361 | 1,363 | 1,366 | 1,369 | 1,371 | 1,374 | 1,377 | 1,380 | 1,382 |
| 2,187 | 1,385 | 1,388 | 1,391 | 1,393 | 1,396 | 1,399 | 1,401 | 1,404 | 1,407 | 1,409 |
| 2,188 | 1,412 | 1,415 | 1,417 | 1,420 | 1,423 | 1,426 | 1,429 | 1,432 | 1,435 | 1,438 |
| 2,189 | 1,441 | 1,443 | 1,446 | 1,449 | 1,452 | 1,456 | 1,459 | 1,462 | 1,465 | 1,468 |
| 2,190 | 1,471 | 1,474 | 1,478 | 1,481 | 1,484 | 1,487 | 1,490 | 1,493 | 1,496 | 1,499 |
| 2,191 | 1,502 | 1,505 | 1,508 | 1,511 | 1,514 | 1,516 | 1,519 | 1,522 | 1,525 | 1,528 |
| 2,192 | 1,531 | 1,534 | 1,537 | 1,540 | 1,543 | 1,546 | 1,549 | 1,552 | 1,556 | 1,559 |
| 2,193 | 1,562 | 1,565 | 1,568 | 1,572 | 1,576 | 1,579 | 1,582 | 1,585 | 1,589 | 1,592 |
| 2,194 | 1,595 | 1,599 | 1,602 | 1,606 | 1,610 | 1,613 | 1,616 | 1,620 | 1,623 | 1,626 |
| 2,195 | 1,630 | 1,634 | 1,637 | 1,640 | 1,644 | 1,648 | 1,652 | 1,656 | 1,660 | 1,664 |
| 2,196 | 1,667 | 1,671 | 1,675 | 1,679 | 1,684 | 1,688 | 1,692 | 1,696 | 1,700 | 1,703 |
| 2,197 | 1,707 | 1,710 | 1,714 | 1,717 | 1,720 | 1,724 | 1,727 | 1,730 | 1,734 | 1,738 |
| 2,198 | 1,741 | 1,745 | 1,748 | 1,752 | 1,755 | 1,758 | 1,762 | 1,765 | 1,768 | 1,772 |
| 2,199 | 1,776 | 1,780 | 1,784 | 1,787 | 1,791 | 1,794 | 1,797 | 1,801 | 1,804 | 1,807 |

Appendix B (continued)

## Alan Henry Reservoir <br> RESERVOIR AREA TABLE

TEXAS WATER DEVELOPMENT BOARD AREA IN ACRES
ELEVATION INCREMENT IS ONE TENTH FOOT

| ELEVATION in Feet | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2,200 | 1,810 | 1,813 | 1,817 | 1,820 | 1,823 | 1,826 | 1,829 | 1,833 | 1,836 | 1,839 |
| 2,201 | 1,842 | 1,846 | 1,849 | 1,852 | 1,855 | 1,859 | 1,862 | 1,865 | 1,869 | 1,872 |
| 2,202 | 1,875 | 1,879 | 1,882 | 1,886 | 1,889 | 1,893 | 1,896 | 1,900 | 1,904 | 1,907 |
| 2,203 | 1,911 | 1,915 | 1,919 | 1,923 | 1,927 | 1,931 | 1,935 | 1,939 | 1,943 | 1,947 |
| 2,204 | 1,952 | 1,956 | 1,960 | 1,964 | 1,968 | 1,972 | 1,977 | 1,981 | 1,986 | 1,990 |
| 2,205 | 1,994 | 1,999 | 2,003 | 2,008 | 2,013 | 2,017 | 2,021 | 2,026 | 2,030 | 2,034 |
| 2,206 | 2,039 | 2,043 | 2,047 | 2,051 | 2,055 | 2,059 | 2,063 | 2,068 | 2,072 | 2,076 |
| 2,207 | 2,081 | 2,085 | 2,090 | 2,095 | 2,101 | 2,106 | 2,111 | 2,116 | 2,121 | 2,126 |
| 2,208 | 2,131 | 2,136 | 2,141 | 2,146 | 2,151 | 2,156 | 2,161 | 2,166 | 2,171 | 2,177 |
| 2,209 | 2,182 | 2,187 | 2,192 | 2,197 | 2,202 | 2,207 | 2,212 | 2,217 | 2,222 | 2,227 |
| 2,210 | 2,232 | 2,237 | 2,242 | 2,247 | 2,252 | 2,257 | 2,262 | 2,267 | 2,273 | 2,277 |
| 2,211 | 2,282 | 2,287 | 2,292 | 2,296 | 2,301 | 2,306 | 2,310 | 2,315 | 2,319 | 2,324 |
| 2,212 | 2,328 | 2,333 | 2,338 | 2,343 | 2,348 | 2,353 | 2,357 | 2,362 | 2,366 | 2,371 |
| 2,213 | 2,375 | 2,380 | 2,385 | 2,389 | 2,394 | 2,398 | 2,403 | 2,408 | 2,413 | 2,418 |
| 2,214 | 2,422 | 2,427 | 2,431 | 2,436 | 2,440 | 2,444 | 2,449 | 2,453 | 2,457 | 2,462 |
| 2,215 | 2,466 | 2,470 | 2,475 | 2,479 | 2,483 | 2,488 | 2,492 | 2,497 | 2,501 | 2,506 |
| 2,216 | 2,510 | 2,515 | 2,519 | 2,524 | 2,528 | 2,533 | 2,537 | 2,541 | 2,546 | 2,550 |
| 2,217 | 2,555 | 2,561 | 2,567 | 2,574 | 2,580 | 2,586 | 2,592 | 2,599 | 2,605 | 2,611 |
| 2,218 | 2,617 | 2,623 | 2,630 | 2,636 | 2,642 | 2,648 | 2,654 | 2,661 | 2,667 | 2,673 |
| 2,219 | 2,679 | 2,685 | 2,692 | 2,698 | 2,704 | 2,710 | 2,716 | 2,723 | 2,729 | 2,735 |
| 2,220 | 2,741 |  |  |  |  |  |  |  |  |  |



Alan Henry Reservoir
July 2005 Survey
re-calculated November 2016
Prepared by: TWDB
Appendix C: Capacity curve


## Alan Henry Reservoir

July 2005 Survey
re-calculated November 2016
Prepared by: TWDB
Appendix D: Area curve

Alan Henry Reservoir RESERVOIR VOLUME TABLE
TEXAS WATER DEVELOPMENT BOARD VOLUME IN ACRE-FEET

August 2017 Survey
Conservation Pool Elevation 2,220.0 feet NGVD29
ELEVATION INCREMENT IS ONE TENTH FOOT
ELEVATION



[^3]
## Appendix F

## Alan Henry Reservoir <br> RESERVOIR AREA TABLE

|  | TEXAS WATER DEVELOPMENT BOARD AREA IN ACRES |  |  |  | August 2017 Survey <br> Conservation Pool Elevation 2,220.0 feet NGVD29 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { ELEVATION } \\ & \text { in Feet } \end{aligned}$ | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
| 2,144 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2,145 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2,146 | 0 | 1 | 1 | 2 | 2 | 3 | 4 | 5 | 6 | 7 |
| 2,147 | 10 | 13 | 18 | 21 | 25 | 32 | 41 | 57 | 73 | 86 |
| 2,148 | 99 | 115 | 128 | 142 | 153 | 166 | 178 | 187 | 195 | 204 |
| 2,149 | 212 | 223 | 232 | 241 | 249 | 257 | 264 | 269 | 275 | 280 |
| 2,150 | 287 | 292 | 296 | 302 | 305 | 308 | 313 | 316 | 319 | 323 |
| 2,151 | 327 | 331 | 336 | 340 | 343 | 345 | 350 | 354 | 358 | 361 |
| 2,152 | 364 | 366 | 368 | 371 | 374 | 376 | 379 | 382 | 385 | 388 |
| 2,153 | 391 | 394 | 398 | 402 | 405 | 408 | 411 | 414 | 418 | 421 |
| 2,154 | 426 | 430 | 436 | 440 | 445 | 450 | 454 | 458 | 462 | 465 |
| 2,155 | 469 | 472 | 475 | 477 | 481 | 484 | 488 | 491 | 494 | 498 |
| 2,156 | 503 | 506 | 509 | 512 | 514 | 517 | 519 | 522 | 524 | 527 |
| 2,157 | 529 | 532 | 534 | 536 | 538 | 540 | 542 | 544 | 546 | 549 |
| 2,158 | 551 | 553 | 556 | 559 | 562 | 564 | 566 | 569 | 571 | 574 |
| 2,159 | 577 | 580 | 583 | 586 | 589 | 592 | 595 | 598 | 601 | 603 |
| 2,160 | 606 | 608 | 611 | 613 | 616 | 619 | 621 | 624 | 627 | 629 |
| 2,161 | 632 | 635 | 638 | 641 | 644 | 647 | 650 | 653 | 656 | 660 |
| 2,162 | 665 | 669 | 672 | 676 | 678 | 681 | 684 | 687 | 690 | 693 |
| 2,163 | 696 | 699 | 702 | 704 | 707 | 709 | 712 | 714 | 718 | 720 |
| 2,164 | 723 | 725 | 727 | 729 | 731 | 734 | 737 | 740 | 743 | 746 |
| 2,165 | 748 | 752 | 754 | 757 | 759 | 762 | 764 | 768 | 771 | 773 |
| 2,166 | 776 | 779 | 781 | 784 | 786 | 788 | 791 | 793 | 796 | 799 |
| 2,167 | 802 | 805 | 808 | 811 | 815 | 818 | 821 | 824 | 827 | 830 |
| 2,168 | 833 | 836 | 838 | 841 | 844 | 846 | 849 | 852 | 855 | 858 |
| 2,169 | 860 | 863 | 866 | 869 | 871 | 873 | 876 | 878 | 881 | 883 |
| 2,170 | 886 | 888 | 891 | 894 | 896 | 899 | 902 | 904 | 907 | 909 |
| 2,171 | 912 | 915 | 917 | 920 | 923 | 926 | 929 | 932 | 935 | 937 |
| 2,172 | 939 | 941 | 944 | 947 | 950 | 953 | 955 | 958 | 961 | 963 |
| 2,173 | 966 | 969 | 971 | 974 | 976 | 979 | 981 | 984 | 986 | 989 |
| 2,174 | 991 | 994 | 997 | 999 | 1,001 | 1,004 | 1,006 | 1,009 | 1,011 | 1,014 |
| 2,175 | 1,016 | 1,018 | 1,021 | 1,023 | 1,025 | 1,028 | 1,030 | 1,032 | 1,035 | 1,037 |
| 2,176 | 1,040 | 1,043 | 1,045 | 1,048 | 1,050 | 1,053 | 1,055 | 1,058 | 1,061 | 1,063 |
| 2,177 | 1,066 | 1,068 | 1,071 | 1,073 | 1,076 | 1,078 | 1,081 | 1,084 | 1,086 | 1,089 |
| 2,178 | 1,092 | 1,094 | 1,097 | 1,100 | 1,102 | 1,105 | 1,108 | 1,111 | 1,114 | 1,116 |
| 2,179 | 1,119 | 1,122 | 1,124 | 1,127 | 1,130 | 1,133 | 1,136 | 1,139 | 1,142 | 1,145 |
| 2,180 | 1,149 | 1,151 | 1,154 | 1,157 | 1,160 | 1,162 | 1,165 | 1,168 | 1,171 | 1,174 |
| 2,181 | 1,177 | 1,180 | 1,183 | 1,186 | 1,189 | 1,192 | 1,195 | 1,198 | 1,202 | 1,205 |
| 2,182 | 1,209 | 1,212 | 1,215 | 1,218 | 1,221 | 1,224 | 1,227 | 1,230 | 1,233 | 1,236 |
| 2,183 | 1,238 | 1,242 | 1,245 | 1,248 | 1,251 | 1,255 | 1,258 | 1,261 | 1,264 | 1,267 |
| 2,184 | 1,270 | 1,273 | 1,276 | 1,279 | 1,282 | 1,285 | 1,288 | 1,291 | 1,294 | 1,297 |
| 2,185 | 1,300 | 1,303 | 1,306 | 1,308 | 1,311 | 1,314 | 1,317 | 1,319 | 1,322 | 1,325 |
| 2,186 | 1,328 | 1,331 | 1,334 | 1,337 | 1,340 | 1,343 | 1,346 | 1,349 | 1,352 | 1,355 |
| 2,187 | 1,358 | 1,361 | 1,364 | 1,367 | 1,370 | 1,374 | 1,377 | 1,380 | 1,383 | 1,386 |
| 2,188 | 1,389 | 1,392 | 1,395 | 1,398 | 1,401 | 1,404 | 1,407 | 1,410 | 1,413 | 1,416 |
| 2,189 | 1,419 | 1,421 | 1,424 | 1,427 | 1,430 | 1,433 | 1,436 | 1,439 | 1,442 | 1,445 |
| 2,190 | 1,447 | 1,450 | 1,453 | 1,456 | 1,459 | 1,462 | 1,465 | 1,468 | 1,471 | 1,474 |
| 2,191 | 1,477 | 1,480 | 1,483 | 1,486 | 1,489 | 1,492 | 1,495 | 1,499 | 1,502 | 1,505 |
| 2,192 | 1,508 | 1,512 | 1,515 | 1,518 | 1,521 | 1,524 | 1,527 | 1,530 | 1,533 | 1,536 |
| 2,193 | 1,539 | 1,542 | 1,545 | 1,548 | 1,551 | 1,554 | 1,558 | 1,561 | 1,564 | 1,567 |
| 2,194 | 1,570 | 1,573 | 1,576 | 1,580 | 1,583 | 1,586 | 1,589 | 1,592 | 1,596 | 1,599 |
| 2,195 | 1,602 | 1,605 | 1,608 | 1,611 | 1,614 | 1,617 | 1,620 | 1,623 | 1,626 | 1,629 |
| 2,196 | 1,632 | 1,635 | 1,638 | 1,641 | 1,645 | 1,648 | 1,651 | 1,654 | 1,657 | 1,660 |
| 2,197 | 1,663 | 1,666 | 1,669 | 1,672 | 1,676 | 1,679 | 1,683 | 1,687 | 1,691 | 1,695 |
| 2,198 | 1,699 | 1,703 | 1,706 | 1,710 | 1,714 | 1,718 | 1,722 | 1,726 | 1,732 | 1,736 |
| 2,199 | 1,741 | 1,746 | 1,751 | 1,756 | 1,761 | 1,768 | 1,773 | 1,777 | 1,781 | 1,785 |

Appendix F (continued)

## Alan Henry Reservoir <br> RESERVOIR AREA TABLE

|  | TEXAS WATER DEVELOPMENT BOARD AREA IN ACRES ELEVATION INCREMENT IS ONE TENTH FOOT |  |  |  | August 2017 Survey <br> Conservation Pool Elevation 2,220.0 feet NGVD29 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ELEVATION in Feet | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
| 2,200 | 1,789 | 1,793 | 1,796 | 1,800 | 1,804 | 1,807 | 1,810 | 1,814 | 1,817 | 1,821 |
| 2,201 | 1,824 | 1,828 | 1,832 | 1,835 | 1,839 | 1,843 | 1,847 | 1,850 | 1,854 | 1,858 |
| 2,202 | 1,863 | 1,867 | 1,872 | 1,876 | 1,881 | 1,885 | 1,890 | 1,895 | 1,899 | 1,904 |
| 2,203 | 1,908 | 1,911 | 1,915 | 1,918 | 1,921 | 1,925 | 1,928 | 1,932 | 1,936 | 1,939 |
| 2,204 | 1,943 | 1,947 | 1,950 | 1,955 | 1,959 | 1,963 | 1,966 | 1,970 | 1,974 | 1,977 |
| 2,205 | 1,981 | 1,984 | 1,988 | 1,991 | 1,995 | 1,998 | 2,001 | 2,005 | 2,008 | 2,011 |
| 2,206 | 2,015 | 2,018 | 2,021 | 2,025 | 2,029 | 2,033 | 2,037 | 2,041 | 2,045 | 2,048 |
| 2,207 | 2,052 | 2,056 | 2,060 | 2,064 | 2,067 | 2,071 | 2,074 | 2,078 | 2,084 | 2,089 |
| 2,208 | 2,095 | 2,100 | 2,105 | 2,110 | 2,114 | 2,120 | 2,125 | 2,130 | 2,135 | 2,139 |
| 2,209 | 2,144 | 2,148 | 2,153 | 2,157 | 2,161 | 2,166 | 2,170 | 2,174 | 2,179 | 2,183 |
| 2,210 | 2,188 | 2,192 | 2,197 | 2,201 | 2,206 | 2,211 | 2,215 | 2,221 | 2,226 | 2,231 |
| 2,211 | 2,236 | 2,242 | 2,247 | 2,252 | 2,258 | 2,263 | 2,267 | 2,272 | 2,277 | 2,282 |
| 2,212 | 2,286 | 2,291 | 2,296 | 2,302 | 2,308 | 2,313 | 2,318 | 2,324 | 2,329 | 2,334 |
| 2,213 | 2,338 | 2,343 | 2,347 | 2,352 | 2,357 | 2,362 | 2,367 | 2,371 | 2,376 | 2,381 |
| 2,214 | 2,386 | 2,391 | 2,396 | 2,401 | 2,406 | 2,411 | 2,418 | 2,425 | 2,432 | 2,439 |
| 2,215 | 2,447 | 2,454 | 2,461 | 2,468 | 2,475 | 2,482 | 2,489 | 2,496 | 2,503 | 2,510 |
| 2,216 | 2,517 | 2,524 | 2,531 | 2,539 | 2,546 | 2,553 | 2,560 | 2,567 | 2,574 | 2,581 |
| 2,217 | 2,588 | 2,595 | 2,602 | 2,609 | 2,616 | 2,623 | 2,631 | 2,638 | 2,645 | 2,652 |
| 2,218 | 2,659 | 2,666 | 2,673 | 2,680 | 2,687 | 2,694 | 2,701 | 2,708 | 2,716 | 2,723 |
| 2,219 | 2,730 | 2,737 | 2,744 | 2,751 | 2,758 | 2,765 | 2,772 | 2,779 | 2,786 | 2,793 |
| 2,220 | 2,800 |  |  |  |  |  |  |  |  |  |



Alan Henry Reservoir
August 2017 Survey
Prepared by: TWDB
Appendix G: Capacity curve


## Alan Henry Reservoir

August 2017 Survey
Prepared by: TWDB
Appendix H: Area curve

## Appendix I

## Alan Henry Reservoir

| Range | $\begin{aligned} & \mathrm{L}=\text { Left } \\ & \mathrm{R}=\text { Right } \end{aligned}$ | X | Y | Range | $\begin{aligned} & \text { L=Left } \\ & R=\text { Right } \end{aligned}$ | X | Y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SR-01 | $\begin{aligned} & \mathrm{L} \\ & \mathrm{R} \end{aligned}$ | $\begin{aligned} & 1,186,496.61 \\ & 1,192,103.32 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 7,078,530.17 \\ & 7,075,896.94 \\ & \hline \end{aligned}$ | SR-12 | $\begin{aligned} & \mathrm{L} \\ & \mathrm{R} \end{aligned}$ | $\begin{aligned} & 1,156,408.50 \\ & 1,156,390.35 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 7,066,080.11 \\ & 7,065,227.15 \\ & \hline \end{aligned}$ |
| SR-02 | $\begin{aligned} & \mathrm{L} \\ & \mathrm{R} \end{aligned}$ | $\begin{aligned} & 1,185,621.48 \\ & 1,186,696.32 \end{aligned}$ | $\begin{aligned} & \hline 7,078,657.31 \\ & 7,076,935.26 \end{aligned}$ | SR-13 | $\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & 1,155,164.27 \\ & 1,154,671.46 \end{aligned}$ | $\begin{aligned} & 7,066,335.75 \\ & 7,065,797.52 \end{aligned}$ |
| SR-03 | $\begin{aligned} & \mathrm{L} \\ & \mathrm{R} \end{aligned}$ | $\begin{aligned} & \hline 1,183,518.04 \\ & 1,185,124.52 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 7,074,970.51 \\ & 7,074,993.62 \end{aligned}$ | SR-14 | $\begin{aligned} & \mathrm{L} \\ & \mathrm{R} \end{aligned}$ | $\begin{aligned} & \hline 1,154,539.34 \\ & 1,154,428.86 \end{aligned}$ | $\begin{aligned} & \hline 7,065,676.75 \\ & 7,065,015.73 \\ & \hline \end{aligned}$ |
| SR-04 | $\begin{aligned} & \mathrm{L} \\ & \mathrm{R} \end{aligned}$ | $\begin{aligned} & 1,178,444.36 \\ & 1,179,519.20 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 7,076,646.32 \\ & 7,075,617.72 \end{aligned}$ | SR-15 | $\begin{aligned} & \mathrm{L} \\ & \mathrm{R} \end{aligned}$ | $\begin{aligned} & 1,159,281.89 \\ & 1,159,714.83 \end{aligned}$ | $\begin{aligned} & \hline 7,064,288.26 \\ & 7,064,580.07 \end{aligned}$ |
| SR-05 | $\begin{aligned} & \mathrm{L} \\ & \mathrm{R} \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 1,175,362.45 \\ & 1,174,489.72 \end{aligned}$ | $\begin{aligned} & \hline 7,074,088.81 \\ & 7,073,461.61 \end{aligned}$ | SR-16 | $\begin{aligned} & \mathrm{L} \\ & \mathrm{R} \\ & \hline \end{aligned}$ | $\begin{aligned} & 1,158,528.54 \\ & 1,158,919.52 \end{aligned}$ | $\begin{aligned} & \hline 7,064,797.49 \\ & 7,064,328.31 \end{aligned}$ |
| SR-06 | $\begin{aligned} & \mathrm{L} \\ & \mathrm{R} \end{aligned}$ | $\begin{aligned} & 1,170,073.16 \\ & 1,171,057.10 \end{aligned}$ | $\begin{aligned} & \hline 7,072,694.25 \\ & 7,071,611.92 \\ & \hline \end{aligned}$ | SR-17 | $\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{R} \\ & \hline \end{aligned}$ | $\begin{aligned} & 1,168,491.38 \\ & 1,169,249.75 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 7,066,407.58 \\ & 7,066,566.04 \\ & \hline \end{aligned}$ |
| SR-07 | $\begin{aligned} & \mathrm{L} \\ & \mathrm{R} \end{aligned}$ | $\begin{aligned} & 1,169,145.71 \\ & 1,169,903.47 \end{aligned}$ | $\begin{aligned} & 7,068,555.06 \\ & 7,068,093.87 \end{aligned}$ | SR-18 | $\begin{aligned} & \mathrm{L} \\ & \mathrm{R} \end{aligned}$ | $\begin{aligned} & 1,168,864.35 \\ & 1,168,277.21 \end{aligned}$ | $\begin{aligned} & 7,071,773.37 \\ & 7,070,341.25 \end{aligned}$ |
| SR-08 | $\begin{aligned} & \mathrm{L} \\ & \mathrm{R} \end{aligned}$ | $\begin{aligned} & \hline 1,168,990.44 \\ & 1,168,204.54 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 7,068,070.76 \\ & 7,067,296.42 \\ & \hline \end{aligned}$ | SR-19 | $\begin{aligned} & \mathrm{L} \\ & \mathrm{R} \end{aligned}$ | $\begin{aligned} & 1,178,201.82 \\ & 1,177,689.70 \end{aligned}$ | $\begin{aligned} & \hline 7,076,913.64 \\ & 7,076,139.77 \\ & \hline \end{aligned}$ |
| SR-09 | $\begin{aligned} & \mathrm{L} \\ & \mathrm{R} \end{aligned}$ | $\begin{aligned} & \hline 1,165,500.11 \\ & 1,165,846.83 \end{aligned}$ | $\begin{aligned} & \hline 7,070,231.99 \\ & 7,069,191.82 \\ & \hline \end{aligned}$ | SR-20 | $\begin{aligned} & \mathrm{L} \\ & \mathrm{R} \end{aligned}$ | $\begin{aligned} & 1,182,689.56 \\ & 1,184,048.14 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 7,072,393.14 \\ & 7,071,988.37 \end{aligned}$ |
| SR-10 | $\begin{aligned} & \mathrm{L} \\ & \mathrm{R} \\ & \hline \end{aligned}$ | $\begin{aligned} & 1,165,349.02 \\ & 1,165,922.46 \end{aligned}$ | $\begin{aligned} & \hline 7,068,477.08 \\ & 7,067,548.46 \\ & \hline \end{aligned}$ | SR-21 | $\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{R} \\ & \hline \end{aligned}$ | $\begin{aligned} & 1,189,574.40 \\ & 1,191,788.29 \end{aligned}$ | $\begin{aligned} & \hline 7,073,446.48 \\ & 7,074,753.48 \end{aligned}$ |
| SR-11 | $\begin{aligned} & \mathrm{L} \\ & \mathrm{R} \end{aligned}$ | $\begin{aligned} & \hline 1,159,664.19 \\ & 1,160,375.44 \end{aligned}$ | $\begin{aligned} & \hline 7,066,359.72 \\ & 7,066,040.02 \\ & \hline \end{aligned}$ | SR-22 | $\begin{aligned} & \mathrm{L} \\ & \mathrm{R} \end{aligned}$ | $\begin{aligned} & \hline 1,192,107.49 \\ & 1,193,541.66 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 7,068,904.11 \\ & 7,068,353.95 \\ & \hline \end{aligned}$ |

XY Coordinates in NAD83 (feet) State Plane Texas North Central Zone

Texas Water
-亭 Development Board






















Range Line SR22




[^0]:    Source: (City of Lubbock, 2018, Freese and Nichols, 1978)
    ${ }^{\text {a }}$ NGVD29 $=$ National Geodetic Vertical Datum 1929

[^1]:    ${ }^{\text {a }}$ Coordinates are based on NAD83 State Plane Texas North Central System (feet)

[^2]:    Note: Capacities above elevation 2,217.0 feet calculated from interpolated areas

[^3]:    Note: Capacities above elevation 2,202.0 feet calculated from interpolated and computed areas

