Texas Instream Flow Program Lower San Antonio River Study Design Workgroup

Indicators

		Biology
Category	Indicator	Explanation
Instream Biological Communities	Relative Abundance Fish Flow sensitive species Sport fish Prey species Imperiled species Intolerant species	Richness, or the number of species or taxa, is a measure of community health, can be applied at a variety of scales (reach to basin to statewide), and can be related to modifications in flow. May also use proportions such as the proportion of native to non-native species The number of organisms of a particular species as a percentage of the total community Fish are useful indicators because: • they occupy a range of habitats and have a variety of life histories that are generally known; • their position at various levels of the aquatic food chain provides an integrative view of the watershed; • they are useful for examining both direct toxicity and stressful conditions by looking at indicators such as missing species or depressed growth and reproduction; • they are valued by the public. There are many species of fish in the river and all of them
	Other Aquatic Organisms • Mussels • River plants, if any	cannot be studied individually. Those that may warrant study include: flow sensitive species, sport fishes, prey species, imperiled species, and intolerant species. Mussels and river plants, if any, may be appropriate as indicators.
Instream Habitat	Habitat Quality and Quantity for Key Species	Involves relating suitable habitat (microhabitat) and flow for key species. Habitat attributes may include current velocity, depth, substrate and cover; other attributes may be important for some species.
	Mesohabitat Area and Diversity	This indicator stems from the knowledge that diverse habitats support diverse communities. Mesohabitat analysis provides a quantifiable relationship between larger scale habitat (e.g. riffles, runs, pools) area and flow; habitat diversity can be derived from same data. Uses biological data for all species in a community (e.g., fish species) to define the attributes of each mesohabitat.

		Biology (continued)
Category	Indicator	Explanation
Riparian Habitat	Vegetation • Age class distribution of riparian plant species • Riparian species richness and diversity • Density • % Canopy cover	These are key components in assessing the diversity, health, and functionality of riparian habitat and ensuring that adequate riparian species are present for recruitment and maintenance of the ecosystem. Riparian plants typically must maintain contact with the water table, so their presence and diversity is an important indicator of soil moisture (water table) characteristics. The listed vegetation parameters can be correlated with important riparian functions, such as stream bank stabilization, temperature dynamics, and nutrient cycling.
	Soils Riparian soil types Hydrology Gradient of inundation Base flow levels	In the absence of riparian vegetative indicators, soil characteristics identified by the soil survey database can be used to determine past or present hydrologic influence and hence historical riparian area extent. Periodic occurrence of flood (overbanking) flows, associated channel dynamics and the preservation of base flows capable of sustaining high floodplain water tables are essential to maintaining the health of riparian ecosystems. Ground water depths can be sampled at each study reach and coupled with surface water data to produce a probability of inundation curve. Overbanking flow requirements can be modeled.
		Hydrology / Hydraulics
Category	Indicator	Explanation
Flow regime components	Overbank flows (frequency, timing, duration, rate of change, and magnitude)	Infrequent, high magnitude flow events that enter the floodplain. Maintenance of riparian areas. Transport of sediment and nutrients. Allow fish and other biota to utilize floodplain habitat during and after floods. Riparian and floodplain connectivity to the river channel. Short duration, high magnitude within channel flow events.
	(frequency, timing, duration, rate of change, and magnitude)	 Maintain physical habitat features along the river channel. Provide longitudinal connectivity along the river corridor for many species (e.g., migratory fish). Provide lateral connectivity (e.g., connections to oxbow lakes).
	Base habitat flows (frequency, timing, duration, rate of change and magnitude)	 Range of average or "normal" flow conditions. Provide instream habitat quantity and quality needed to maintain the diversity of biological communities. Maintain water quality conditions. Recharge groundwater. Provides for recreational or other uses.
	Subsistence flows (frequency, timing, duration, rate of change, and magnitude)	Low flows maintained during times of very dry conditions. • Maintain water quality standards. • Prevent loss of aquatic organisms.

Hydrology / Hydraulics (continued)			
Category	Indicator	Explanation	
Natural	Natural	Determination of the natural variability of the above	
variability		indicators, based on the older portions of gage records,	
		presumably less impacted by human activity. The exact	
		time period may vary by site.	
	Current	Variability of the above indicators based on the last 20-25	
		years of gage records.	
Losses/gains	Gain or loss in	Difference in the amount of water entering and leaving a	
	section of river	specific section of the river channel. Sources of gains	
		include inflow from tributaries, alluvial and deeper aquifers,	
		and discharges to the river. Sources of losses include	
		evaporation, evapo-transpiration from riparian areas,	
		diversions, and recharge of alluvial and deeper aquifers.	
		Indicator may be influenced by shallow groundwater surface	
		elevation and hydraulic head of deeper aquifers.	
		Water Quality	
Category	Indicator	Explanation	
Nutrients	Nitrogen	The nutrients nitrogen and phosphorus are essential for	
	 Organic, 	plant growth. High concentrations indicate potential for	
	 Nitrate + nitrite, 	excessive weed and algal growth.	
	 Ammonia, 		
	 Total 	Total nutrients are made up of a dissolved component (e.g.	
		nitrate plus nitrite, ammonia and filterable reactive	
	Phosphorus	phosphorus) and an organic component, which is bound to	
	 Filterable 	carbon (e.g. organic nitrogen). Nutrients in the dissolved	
	reactive,	state can be readily used by plants.	
	 Total 		
Oxygen	Dissolved oxygen	Oxygen is essential for both plants and animals. There is	
		often a relationship between discharge and dissolved	
		oxygen concentrations. Decreased dissolved oxygen can	
		be harmful to fish and other aquatic organisms. Nonpoint-	
		source pollution as well as the decomposition of leaf litter,	
		grass clippings, sewage, and runoff from feedlots can	
		decrease the amount of dissolved oxygen in water.	
		Dissolved oxygen is measured in milligrams per liter (mg/L).	
		Expected levels: 4.0 to 12.0 mg/L.	
Temperature	Temperature	Aquatic organisms are dependent on certain temperature	
		ranges for optimal health. Temperature affects many water	
		parameters, including the amount of dissolved oxygen	
		available, the types of plants and animals present, and the	
		susceptibility of organisms to parasites, pollution, and	
		disease. Causes of water temperature changes include	
		weather conditions, shade, and discharges into the water	
		from urban sources or groundwater inflows. Temperature is	
		measured in degrees Celsius (°C). Seasonal trends: May to	
		October: 22 to 35°C, November to April: 2 to 27°C. Low	
		flow conditions can also have an influence on temperature.	

Water Quality (continued)

Category	Indicator	Explanation
Recreational health	Bacteria	E. coli and Enterococci bacteria are measured to determine the relative risk of swimming (contact recreation), depending on whether the water body is fresh or marine. These
		bacteria originate from the wastes of warm-blooded animals.
		The presence of these bacteria indicates that associated
		pathogens from these wastes may be reaching a body of
		water. Sources may include inadequately treated sewage,
		improperly managed animal waste from livestock, pets in
		urban areas, aquatic birds and mammals, or failing septic
		systems.
	T	Geomorphology
Category	Indicator	Explanation
Channel	Rate of lateral	Rate of lateral movement of channel across valley. Some
migration	channel migration	migration of the channel is crucial to support diverse riparian habitats and a healthy ecosystem.
	Rate of channel	Rate of creation of channel cut-offs. Cut-offs, in the form of
	avulsion	oxbow lakes, back water areas, and abandoned channels, provide distinct and important habitats.
	Rate of bank	The rate at which flows erode the sides of channels. This
	erosion	will vary by bank material and condition of the banks
		(vegetated, saturated, etc.).
Overbank	Total area	The amount of out of channel area inundated by an
flows	inundated	overbank flow of a particular magnitude.
	Habitat area	The amount of habitat area of a particular type that is
	inundated	inundated by a particular magnitude of overbank flow.
	Stage (at USGS	The National Weather Service provides flood impact
	gage locations)	summaries for most USGS streamflow gage sites, based on water surface elevation or "stage." These summaries
		provide an estimate of negative impacts of overbank flows.
Woody-debris	Volume	The volume of woody debris in a section of river. A certain
Woody-debits	Volume	amount of woody debris in a section of river. A certain
		shelter for various organisms.
	Transport rate	The rate at which woody debris moves past a specific point
		along the river.
	Recruitment rate	The rate that woody debris enters a section of river. Wood
		may be supplied by upstream sections of the river,
		tributaries, tree fall from the banks, or washed into the river
		during flood events.
Channel	In-channel bars	Sediment bars are an important in-channel bed form. Flow
shape	(area,	across these features provides a diversity of hydraulic
character-	configuration,	conditions. Bar formation, in combination with opposite-
istics	sediment size)	bank erosion, is the driving process behind channel
		migration. As bars age, they gradually create new areas of
	N.4	floodplain and riparian habitat.
	Meander pools	Meander pools are another important in-channel bed form.
	(depth)	Deep pools provide diverse hydraulic conditions and cover for some species. They also provide refuge habitat for many
		species during low flow periods.
		species duffing fow flow petitods.

			tγ	

Category	Indicator	Explanation
Groundwater/ surface water interaction	Gain or loss in section of river	Difference in the amount of water entering and leaving a specific section of the river channel. Sources of gains include inflow from tributaries, alluvial and deeper aquifers, and discharges to the river. Sources of losses include evaporation, evapo-transpiration from riparian areas, diversions, and recharge of alluvial and deeper aquifers. Indicator may be influenced by shallow groundwater surface elevation and hydraulic head of deeper aquifers.
Habitat features	Connection to river (frequency, duration, and timing)	Periodic connectivity between riparian areas and the river is important to maintain the health of these areas and the organisms that depend on them.
Freshwater inflows to estuary	Volume of flow (monthly and yearly totals) at USGS gage # 08188500 at Goliad	Freshwater inflow requirements for the Guadalupe Estuary (San Antonio Bay) have been studied by other state programs. Recommendations have been made in the form of yearly and monthly volumes of freshwater inflow. The San Antonio River is an important source of inflow for the Guadalupe Estuary. Determining the total volume of flow (yearly and monthly) provided at this gage will allow evaluation of the impact of instream flow recommendations on estuary freshwater inflows.