

In the event of severe drought conditions, the state faces an immediate need for additional water supplies of 3.6 million acre-feet per year.

If Texas does not implement new water supply projects or management strategies, then homes, businesses, and agricultural enterprises throughout the state are projected to need 8.3 million acre-feet of additional water supply by 2060.

Planning groups were unable to find economically feasible strategies to meet over 2 million acre-feet
of annual needs, with the vast majority of the unmet needs in irrigation.

Annual economic losses from not meeting water supply needs could result in a reduction in income of approximately $\$ 11.9$ billion annually if current drought conditions approach the drought of record, and as much as $\$ 115.7$ billion annually by 2060, with over a million lost jobs.

Water Supply Needs

Needs are projected water demands in excess of existing supplies that would be legally and physically available during a drought of record.

Growing at a rate of approximately 1,100 people per day over the last decade, Texas is one of the fastest growing states in the nation. By 2060, the population of the state is projected to increase to over 46 million people. Rapid growth, combined with Texas' robust economy and susceptibility to drought, makes water supply a crucial issue. If water infrastructure and water management strategies are not implemented, Texas could face serious social, economic, and environmental consequences in both the large metropolitan areas as well as the vast rural areas of the state.

Unreliable water supplies could have overwhelming negative implications for Texas. For example, water shortages brought on by drought conditions would more than likely curtail economic activity in industries heavily reliant on water, which could result in not only job loss but a monetary loss to local economies as well as the state economy. Also, a lack of reliable water supply may bias corporate decision-makers against expanding or locating their businesses in Texas.

TABLE 6.1. WATER NEEDS BY REGION (ACRE-FEET PER YEAR)

Region	2010	2020	2030	2040	2050	2060
A	454,876	454,118	487,316	501,830	462,230	418,414
B	23,559	28,347	34,074	35,802	37,485	40,397
C	69,087	399,917	686,836	953,949	1,244,618	1,588,236
D	10,252	14,724	18,696	31,954	60,005	96,142
E	209,591	213,091	215,624	210,794	216,113	226,569
F	191,057	200,868	204,186	211,018	214,792	219,995
G	131,489	196,761	228,978	272,584	334,773	390,732
H	290,890	524,137	698,776	833,518	1,004,872	1,236,335
1	28,856	83,032	83,153	106,900	141,866	182,145
J	1,494	1,878	2,044	2,057	2,275	2,389
K	255,709	303,240	294,534	309,813	340,898	367,671
L	174,235	265,567	308,444	350,063	390,297	436,751
M	435,922	401,858	362,249	434,329	519,622	609,906
N	3,404	14,084	27,102	41,949	57,994	75,744
0	1,275,057	1,750,409	2,107,876	2,364,996	2,405,010	2,366,036
P	67,739	67,739	67,739	67,739	67,739	67,739
Total	3,623,217	4,919,770	5,827,627	6,729,295	7,500,589	8,325,201

For all these reasons as well as others, it is important to identify potential future water supply needs to analyze and understand how the needs for water could affect communities throughout the state during a severe drought and to plan for meeting those needs. When developing regional water plans, regional water planning groups compare existing water supplies with current and projected water demands to identify when and where additional water supplies are needed for each identified water user group and wholesale water provider. TWDB provides assistance in conducting this task by performing a socioeconomic impact analysis for each region at their request.

6.1 IDENTIFICATION OF NEEDS

When existing water supplies available to a specific water user group are less than projected demands, there is a need for water. In other words, once there is an identified water demand projection for a given water user group, this estimate is then deducted from identified existing supplies for that water user group, resulting in either a water supply surplus or a need.

Planning groups have identified a statewide water supply need of 3.6 million acre-feet in 2010 and 8.3 million acre-feet by 2060, which is a slight reduction from the 2007 State Water Plan in which planning groups identified estimated needs of 3.7 million acrefeet in 2010 and 8.9 million acre-feet in 2060. Table 6.1 shows the total water supply needs identified for each region by the regional water planning groups for the current planning cycle.

Although in some regions it appears that there are sufficient existing water supplies region-wide to meet demands under drought conditions in the early planning decades, local existing water supplies are not always available to all users throughout the region. Therefore, water needs were identified as a result of this geographic "mismatch" of existing supplies and anticipated shortages (Figure 6.1).

The regional water planning groups were tasked with identifying needs for water user groups-municipal, county-other, manufacturing, steam-electric, livestock,

FIGURE 6.1. EXISTING WATER SUPPLIES, PROJECTED DEMANDS, AND NEEDS BY REGION IN 2060 (ACRE-FEET PER YEAR).

irrigation, and mining-and wholesale water providers. Water uses for the following categories were estimated at the county level: county-other, manufacturing, mining, steam-electric, livestock, and irrigation.

The planning groups identified 982 total nonmunicipal water user groups; 174 (18 percent) of these would currently have inadequate water supply in drought of record conditions, with that number increasing to 260 (26 percent) by 2060. The planning groups also identified 1,587 total municipal water user groups and 173 total wholesale water providers. Of the municipal water user groups, 470 (30 percent) would currently have water supply needs if the state were facing drought conditions, increasing to 825 (52 percent of the total) in 2060. Of the wholesale water providers, the planning groups identified 83 (48 percent) that would currently face shortages; those with needs are projected to increase to 109 (63 percent)
by 2060 (Table 6.2). If no action is taken to implement water management strategies, over 50 percent of the state's population in 2060 would face a water need of at least 45 percent of their projected demand during a repeat of drought conditions.

6.1.1 MUNICIPAL NEEDS

Municipal water use accounts for about 9 percent of total identified needs or roughly 315,000 acre-feet in 2010, increasing to 41 percent or 3.4 million acre-feet by 2060. These estimates are down from projections in the 2007 State Water Plan, where municipal water supply needs were projected to be about 610,000 and 3.8 million acre-feet in 2010 and 2060, respectively. This reduction is a result of implementing projects from the past plan.

If the state were to experience drought conditions like those in the 1950s, Region L would currently experience the largest identified municipal needs at

TABLE 6.2. NUMBER OF WATER USER GROUPS WITH NEEDS BY REGION

Region	2010	2020	2030	2040	2050	2060
A	8	14	20	22	22	23
B	7	8	8	8	7	7
C	172	246	262	267	269	270
E	17	20	28	32	36	39
F	2	10	10	11	12	12
G	53	54	50	52	54	54
H	66	72	84	89	96	97
J	132	229	234	237	237	241
K	31	41	45	51	56	60
L	2	2	2	2	2	2
M	36	46	53	59	63	67
N	47	58	65	69	72	77
O	35	44	50	54	63	64
P	8	12	14	15	16	16
Total water user groups with needs	26	37	45	48	53	54
Total water user groups	$\mathbf{6 4 4}$	$\mathbf{8 9 5}$	$\mathbf{9 7 2}$	$\mathbf{1 , 0 1 8}$	$\mathbf{1 , 0 6 0}$	$\mathbf{1 , 0 8 5}$
Percent of water user groups with needs	$\mathbf{2 , 5 6 9}$					

about 96,000 acre-feet. However, by 2060, Regions C, H, and M account for the majority of these needs, with the Dallas-Fort Worth area responsible for a large portion of those needs. In fact, with the exception of Region P, every region in the state would be affected by future municipal water shortages.

6.1.2 WHOLESALE WATER PROVIDERS

Wholesale water providers-entities such as some river authorities, municipal utility districts, and water supply corporations-deliver and sell large amounts of raw (untreated) or treated water for municipal and manufacturing use on a wholesale or retail basis. In many instances, the burden of their water needs is shared by both the water user group facing the projected shortage and the entity that provides water to them, since the needs for wholesale water providers are not additional to those of water user groups but made up of needs from several of those entities.

Wholesale water providers are projected to have total water supply needs under drought conditions of about

835,000 acre-feet in 2010 and 4.4 million acre-feet in 2060. Tarrant Regional Water District, the City of Dallas, North Texas Municipal Water District, and the City of Fort Worth are the wholesale water providers with the largest projected needs by 2060.

6.1.3 NON-MUNICIPAL NEEDS

Irrigation: Irrigation accounts for the largest share of the state's total current water demand, roughly 60 percent. It is projected to remain the state's largest water use category through 2050, although by 2060, TWDB projects its share of the total demand will decline to approximately 38 percent of total water demand. As expected, irrigation also accounts for the largest percentage of projected water supply needs under drought conditions at 3.1 million acre-feet, or 86 percent of the total in 2010; irrigation needs are projected to increase to 3.8 million acre-feet by 2060 . However, this will only account for about 45 percent of the state's total water needs in 2060, due to the large increase in volume of municipal needs from 2010 to

FIGURE 6.2. PROJECTED WATER NEEDS BY USE CATEGORY (ACRE-FEET PER YEAR).

2060 (Figure 6.2). The vast majority of irrigation needs occur in the most heavily irrigated parts of the state.

Irrigation needs represent an increase from those projected in the 2007 State Water Plan, which were 2.8 million acre-feet in 2010 and 3.7 million acre-feet by 2060 . This increase is largely due to the transfer of water rights from irrigation to municipal and groundwater depletion in the more heavily irrigated parts of the state.

Livestock: Although livestock water use is quite small in comparison to other water uses, the inability to meet demands could prove costly for some parts of the state. Under drought conditions, Region I would account for almost all of the projected livestock needs for 2010, which are slightly over 1,000 acre-feet. By 2060, the state total is projected to increase to approximately 30,000 acre-feet, with Region O accounting for the majority of the total needs followed by Region I. This represents a decline from the projected livestock needs of about 11,000 acre-feet in 2010 and 39,000 acre-feet in

2060, identified in the 2007 State Water Plan. Region A accounted for a large percentage of livestock needs during the last round of planning; however, based on reduced livestock water use demands that resulted from a detailed study performed for this round of planning, no projected needs for livestock have been identified in Region A in the 2012 State Water Plan.

Mining: Planning groups identified 47,000 acre-feet of water needs for the mining industry statewide under drought conditions for 2010, with that total increasing to almost 85,000 acre-feet by 2060. This is an increase from needs identified in the 2007 State Water Plan, which were approximately 38,000 and 79,000 acrefeet in 2010 and 2060, respectively. In 2010, Regions I and K will have the largest percentage of mining needs, whereas by 2060 Regions C and H have the largest portion of identified mining needs. However, these projections were developed before the boom in natural gas extraction extended to some eastern and southern areas of the state late in the last decade.

TABLE 6.3. PROJECTED WATER NEEDS BY USE CATEGORY BY REGION (ACRE-FEET PER YEAR)

Region	Category	2010	2020	2030	2040	2050	2060
A	Irrigation	454,628	452,144	477,338	482,226	433,155	381,180
	Manufacturing	173	800	1,317	2,845	4,212	5,866
	Municipal	0	1,075	8,544	16,631	24,727	31,214
	Steam-electric	75	99	117	128	136	154
B	Irrigation	22,945	23,926	24,909	25,893	26,876	29,058
	Mining	177	153	145	149	162	162
	Municipal	437	468	491	502	460	462
	Steam-electric	0	3,800	8,529	9,258	9,987	10,715
C	Irrigation	510	2,588	3,412	4,007	4,492	4,913
	Manufacturing	557	11,946	21,151	30,369	39,640	48,894
	Mining	414	4,909	10,036	14,782	19,445	23,779
	Municipal	67,606	367,257	622,541	869,956	1,140,044	1,459,327
	Steam-electric	0	13,217	29,696	34,835	40,997	51,323
D	Irrigation	56	0	14	115	238	388
	Municipal	1,557	2,358	3,245	4,443	8,938	18,285
	Steam-electric	8,639	12,366	15,437	27,396	50,829	77,469
E	Irrigation	209,591	201,491	195,833	183,734	176,377	169,156
	Manufacturing	0	813	1,511	2,186	2,760	3,674
	Municipal	0	6,981	13,300	18,464	28,823	43,460
	Steam-electric	0	3,806	4,980	6,410	8,153	10,279
F	Irrigation	157,884	154,955	152,930	149,472	146,995	144,276
	Manufacturing	3,537	4,138	3,747	4,403	4,707	5,152
	Mining	503	660	29	143	232	375
	Municipal	22,038	31,275	36,100	43,706	46,511	49,619
	Steam-electric	7,095	9,840	11,380	13,294	16,347	20,573
G	Irrigation	59,571	56,961	54,422	51,942	49,527	47,181
	Manufacturing	2,762	3,441	4,108	4,783	5,393	6,054
	Mining	9,670	10,544	10,963	11,301	11,704	12,158
	Municipal	20,944	54,332	76,594	110,959	150,533	192,467
	Steam-electric	38,542	71,483	82,891	93,599	117,616	132,872
H	Irrigation	151,366	141,232	137,995	137,113	140,733	144,802
	Manufacturing	75,164	131,531	168,597	202,219	231,118	255,604
	Mining	5,992	10,595	13,850	16,278	18,736	20,984
	Municipal	55,151	228,106	360,236	453,142	579,269	758,934
	Steam-electric	3,203	12,609	18,058	24,726	34,976	55,972
	Livestock	14	64	40	40	40	39
1	Irrigation	1,675	1,805	2,156	2,536	2,955	3,416
	Manufacturing	3,392	16,014	24,580	33,256	40,999	49,588
	Mining	14,812	29,744	9,395	10,075	10,748	11,276
	Municipal	4,412	7,351	9,314	11,633	15,366	20,509
	Steam-electric	3,588	25,922	33,615	43,053	62,778	85,212
	Livestock	977	2,196	4,093	6,347	9,020	12,144
J	Municipal	1,494	1,878	2,044	2,057	2,275	2,389
K	Irrigation	234,738	217,011	198,717	181,070	164,084	135,822
	Manufacturing	146	298	452	605	741	934
	Mining	13,550	13,146	12,366	6,972	5,574	5,794
	Municipal	6,894	19,592	29,636	44,548	88,381	135,891
	Steam-electric	193	53,005	53,175	76,430	81,930	89,042
	Livestock	188	188	188	188	188	188
L	Irrigation	68,465	62,376	56,519	50,894	45,502	41,782
	Manufacturing	6,539	13,888	20,946	27,911	34,068	43,072
	Mining	521	726	1,771	1,992	2,293	2,493
	Municipal	96,653	137,614	178,217	218,245	256,777	297,386
	Steam-electric	2,054	50,962	50,991	51,021	51,657	52,018
	Livestock	3	1	0	0	0	0
M	Irrigation	407,522	333,246	239,408	245,896	252,386	258,375
	Manufacturing	1,921	2,355	2,748	3,137	3,729	4,524
	Municipal	26,479	64,277	115,719	178,005	252,293	330,625
	Steam-electric	0	1,980	4,374	7,291	11,214	16,382
N	Irrigation	627	569	1,264	2,316	3,784	5,677
	Manufacturing	409	7,980	15,859	25,181	34,686	46,905
	Mining	1,802	2,996	4,471	6,166	6,897	7,584
	Municipal	566	557	753	827	2,440	2,395
	Steam-electric	0	1,982	4,755	7,459	10,187	13,183
0	Irrigation	1,264,707	1,735,399	2,084,569	2,331,719	2,361,813	2,318,004
	Municipal	10,349	14,247	20,116	23,771	28,489	30,458
	Livestock	1	763	3,191	9,506	14,708	17,574
P	Irrigation	67,739	67,739	67,739	67,739	67,739	67,739

TABLE 6.4. UNMET NEEDS 2010-2060 (ACRE-FEET PER YEAR)

Region	Category	2010	2020	2030	2040	2050	2060
A	Irrigation	454,628	254,900	127,413	97,003	60,375	30,307
B	Irrigation	9,911	0	0	0	0	0
C	Irrigation	87	0	0	0	0	0
D	Irrigation	56	0	14	115	238	388
E	Irrigation	209,591	168,904	163,246	158,209	159,914	161,775
F	Irrigation	153,159	125,967	100,485	9,453	96,177	94,108
F	Steam-electric	1,219	3,969	5,512	7,441	10,608	14,935
G	Irrigation	49,973	45,234	40,664	38,358	36,113	33,932
G	Mining	1,800	2,001	2,116	2,281	2,446	2,567
G	Municipal	2,196	0	0	0	0	0
G	Steam-electric	36,086	0	0	0	0	0
I	Mining	7,772	8,620	9,191	9,760	10,333	10,772
I	Steam-electric	2,588	0	0	0	0	0
L	Irrigation	48,378	44,815	42,090	39,473	36,959	34,544
M	Irrigation	394,896	285,316	149,547	107,676	59,571	4,739
N	Mining	1,591	2,448	3,023	3,374	3,660	3,876
O	Irrigation	862,586	$1,348,515$	$1,728,725$	$2,000,555$	$2,057,677$	$2,043,247$
O	Livestock	1	763	3,191	9,506	14,708	17,574
Total		$\mathbf{2 , 2 3 6 , 5 1 8}$	$\mathbf{2 , 2 9 1 , 4 5 2}$	$\mathbf{2 , 3 7 5 , 2 1 7}$	$\mathbf{2 , 5 7 1 , 2 0 4}$	$\mathbf{2 , 5 4 8 , 7 7 9}$	$\mathbf{2 , 4 5 2 , 7 6 4}$

Steam-electric: Planning groups identified 63,000 acrefeet of potential water shortages for the steam-electric category in 2010, increasing dramatically to over 615,000 acre-feet by 2060. Region G accounts for the largest share of these needs for both 2010 and 2060.

Regions K, I, and D, however, are also projected to have significant water supply needs by 2060 under drought conditions. This is a reduction from the steam-electric needs identified in the 2007 State Water Plan, which were approximately 76,000 acre-feet in 2010 and 675,000 acre-feet in 2060, statewide.

Manufacturing: Planning groups identified a potential shortage of 95,000 acre-feet for the manufacturing water use category in 2010, increasing to about 470,000 acre-feet by 2060. This represents a decline from those needs identified in the last round of planning, where planning groups estimated projected needs of 132,000 and 500,000 acre-feet in 2010 and 2060, respectively. The decline is due to a reduction in Region H's water supply needs in 2010 and reductions for Regions A,

C, and K in 2060, which was a result of an increase in allocated supplies in these regions. The majority of potential manufacturing needs in the 2012 State Water Plan occur in Region H, most notably in Brazoria and Harris counties, in both 2010 and 2060.

6.2 UNMET NEEDS

During the current round of planning, planning groups identified some water needs that could not be met because no feasible water management strategy could be implemented in the identified decades of needs. The majority of unmet needs fall under the irrigation water use category, especially in Regions A, E, F, M, and O. For irrigation water needs, it is likely that under drought conditions, the return on the investment is not sufficient to support implementation of costly water management strategies.

The remainder of unmet needs are relatively small, with many of them occurring only in the 2010 decade when timing issues precluded strategy implementation. In the remaining decades, there are unmet steam-electric
needs in Region F, unmet mining needs in Regions G, I, and N, and unmet livestock needs in Region O. Identified unmet needs can be seen in Table 6.4.

6.3 SOCIOECONOMIC IMPACT OF NOT MEETING WATER NEEDS

As part of the regional planning process, planning groups are tasked with evaluating the social and economic impacts of not meeting identified water supply needs. TWDB provided assistance in conducting this task by performing a socioeconomic impact analysis for each region at their request. The impact analysis is based on the assumption of a physical shortage of raw surface or groundwater due to drought conditions. Under this scenario, impacts are estimates for a single year (2010, 2020, 2030, 2040, 2050, and 2060), and shortages are assumed to be temporary events resulting from drought conditions.

There are two major components to TWDB's socioeconomic analysis: (1) an economic impact component and (2) a social impact component. The economic component analyzes the impacts of water shortages on residential water consumers and losses to regional economies from reduced economic output in agriculture, industry, and commerce. The social component focuses on demographic effects, including changes in population and school enrollment, by incorporating results from the economic impact element and assessing how changes in a region's economy due to water shortages could affect patterns of migration.

Variables impacted by projected water shortages identified in this analysis include the following:

- Regional income: Total payroll costs, including wages and salaries plus benefits paid by industries; corporate income; rental income; and
interest payments to corporations and individuals in a given region.
- State and local business taxes: Sales, excise, fees, licenses, and other taxes paid during normal operation of an industry.
- Number of full- and part-time jobs: Number of full and part-time jobs including self-employment.
- Population losses: Unrecognized gains in population due to water shortages.
- Declines in school enrollment: Potential losses to future enrollment due to population losses.

There are a variety of tools available for use in estimating economic impacts; however, the most widely used methods are input-output models combined with social accounting matrices. Impacts in this study were estimated using proprietary software known as IMPLAN $\mathrm{PRO}^{\text {TM }}$. IMPLAN is a modeling system originally developed by the U.S. Forest Service in the late 1970s. Today, MIG Inc. (formerly Minnesota IMPLAN Group Inc.) owns the copyright and distributes data and software. IMPLAN is also utilized by the U.S. Army Corps of Engineers as well as many other federal and state agencies.

Once potential output reductions due to water shortages were estimated, direct impacts to total sales, employment, regional income, and business taxes were derived using regional level economic multipliers. Secondary impacts were derived using a similar methodology; however, indirect multiplier coefficients are used.

As with any attempt to measure human social activities, assumptions are necessary. Assumptions are needed to maintain a level of generality and simplicity so that models can be applied on several geographic levels and across different economic sectors. Some
of the assumptions made in this analysis include the following:

- Water supply needs as reported by regional planning groups are the starting point for socioeconomic analysis.
- Since plans are developed for drought conditions on a decadal basis, estimated socioeconomic impacts are point estimates for years in which water needs are reported (2010, 2020, 2030, 2040, 2050, and 2060). Given that the resulting impacts are not cumulative in nature, it is inappropriate to sum these impacts over the planning horizon; doing so would imply that the drought conditions will occur every 10 years in the future.
- Indirect impacts measure only linkages to supporting industries (those who sell inputs to an affected sector), not the impacts on businesses that purchase the sector's final product. Thus, the measured impacts of a given water shortage likely represent an underestimate of the losses to a region's economy.
- The analysis assumes the general structure of the economy remains the same over the planning horizon.
- Monetary figures are reported in constant year 2006 U.S. dollars.

6.3.1 SOCIOECONOMIC ANALYSIS RESULTS

Assuming drought conditions were experienced statewide and water management strategies identified in the 2012 State Water Plan were not implemented, planning areas could suffer significant economic losses (Table 6.5). Models show that Texas businesses
and workers could lose approximately $\$ 11.9$ billion in income in 2010, with that total increasing to an estimated $\$ 115.7$ billion by 2060. Losses to state and local business taxes associated with commerce could reach $\$ 1.1$ billion in 2010 and escalate to roughly $\$ 9.8$ billion in 2060. If water management strategies identified in the 2012 State Water Plan are not implemented to meet these needs, Texans could face an estimated 115,000 lost jobs in 2010 and 1.1 million in 2060. The state could also fail to meet its true growth potential, losing an estimated 1.4 million in potential population growth and 403,000 fewer students by 2060. The 1950s drought of record was estimated to cost the Texas economy about $\$ 3.5$ billion (adjusted to 2008 dollars) annually (TBWE, 1959).

In short, TWDB estimates of socioeconomic impacts show if the state were to experience drought conditions in any year in the planning horizon and strategies were not put in place, there would be severe social and economic consequences. Furthermore, if drought conditions were to recur, the duration would likely exceed a single year and possibly cause actual impacts to the state that would exceed the estimates included in the 2012 State Water Plan.

REFERENCES

TBWE (Texas Board of Water Engineers), 1959, A Study of Droughts in Texas: Texas Board of Water Engineers Bulletin 5914, 76 p.

TABLE 6.5. ANNUAL ECONOMIC LOSSES FROM NOT MEETING WATER SUPPLY NEEDS FOR 2010-2060 (MILLIONS OF 2006 DOLLARS)

Region	Category	2010	2020	2030	2040	2050	2060
A	Regional income (\$)	183	309	472	509	538	906
	State and local business taxes (\$)	11	30	53	57	62	116
	Number of full- and part-time jobs	2,970	3,417	4,067	4,459	4,806	4,879
	Population losses	3,693	4,234	4,670	5,548	6,338	6,864
	Declines in school enrollment	1,042	1,201	1,237	1,025	1,171	1,270
B	Regional income (\$)	5	5	5	5	5	6
	State and local business taxes (\$)	0.3	0.3	0.3	0.3	0.3	0.4
	Number of full- and part-time jobs	85	88	92	96	100	108
	Population losses	13	522	1,156	1,254	1,354	1,451
	Declines in school enrollment	4	148	328	356	384	412
C	Regional income (\$)	2,336	5,176	12,883	19,246	24,741	49,721
	State and local business taxes (\$)	130	341	848	1,288	1,672	3,060
	Number of full- and part-time jobs	23,808	52,165	131,257	206,836	270,935	546,676
	Population losses	33,019	74,375	190,664	301,075	394,560	796,606
	Declines in school enrollment	10,348	24,340	64,415	102,345	134,283	271,468
D	Regional income (\$)	357	515	620	871	1,341	1,960
	State and local business taxes (\$)	51	73	88	123	189	267
	Number of full- and part-time jobs	1,224	1,780	2,150	2,998	4,639	6,784
	Population losses	1,472	2,144	2,590	3,611	5,588	8,171
	Declines in school enrollment	415	608	735	1,024	1,585	2,318
E	Regional income (\$)	41	749	1,212	1,690	2,144	2,810
	State and local business taxes (\$)	2	51	78	107	137	179
	Number of full- and part-time jobs	340	2,447	3,944	5,669	7,380	9,843
	Population losses	409	2,947	4,745	6,787	8,814	11,750
	Declines in school enrollment	115	836	1,257	1,254	1,628	2,173
F	Regional income (\$)	1,444	1,715	2,195	2,729	3,061	3,470
	State and local business taxes (\$)	145	176	236	288	330	380
	Number of full- and part-time jobs	19,225	21,784	26,293	34,853	37,661	40,877
	Population losses	25,050	26,239	31,670	41,980	45,362	49,236
	Declines in school enrollment	7,065	7,444	8,389	7,759	8,378	9,106
G	Regional income (\$)	1,890	4,375	5,621	6,297	7,183	8,204
	State and local business taxes (\$)	214	530	693	778	893	1,027
	Number of full- and part-time jobs	14,699	33,660	39,733	48,896	58,432	73,117
	Population losses	15,801	35,645	41,465	51,910	61,309	71,604
	Declines in school enrollment	4,457	10,112	11,764	14,727	17,393	20,314
H	Regional income (\$)	3,195	5,189	10,012	12,910	15,759	18,637
	State and local business taxes (\$)	326	536	1,024	1,375	1,689	2,036
	Number of full- and part-time jobs	20,176	37,849	82,478	100,622	126,412	149,380
	Population losses	24,433	45,514	99,071	122,686	152,028	175,839
	Declines in school enrollment	6,891	12,913	26,242	22,674	28,078	32,522
I	Regional income (\$)	1,264	3,279	2,087	3,609	5,027	5,957
	State and local business taxes (\$)	116	334	213	358	528	627
	Number of full- and part-time jobs	8,739	20,661	11,018	16,886	24,091	28,872
	Population losses	10,511	24,754	13,269	20,337	29,015	34,773
	Declines in school enrollment	2,965	7,023	3,764	5,770	8,232	9,865

TABLE 6.5. ANNUAL ECONOMIC LOSSES FROM NOT MEETING WATER SUPPLY NEEDS FOR 2010-2060 (MILLIONS OF 2006 DOLLARS) - CONTINUED

Region	Category	2010	2020	2030	2040	2050	2060
J	Regional income (\$)	2	2	2	2	2	2
	State and local business taxes (\$)	0.3	0.3	0.2	0.2	0.2	0.2
	Number of full- and part-time jobs	63	63	61	59	60	61
	Population losses	80	80	80	80	80	80
	Declines in school enrollment	20	20	20	20	20	20
K	Regional income (\$)	138	1,326	1,396	2,246	2,407	2,933
	State and local business taxes (\$)	15	179	186	305	326	393
	Number of full- and part-time jobs	1,989	8,447	9,860	14,651	16,273	21,576
	Population losses	2,393	10,174	11,876	17,647	19,601	25,988
	Declines in school enrollment	675	2,886	3,146	3,261	3,620	4,807
L	Regional income (\$)	299	5,279	5,943	7,034	8,192	8,944
	State and local business taxes (\$)	39	564	668	775	885	965
	Number of full- and part-time jobs	10,128	19,948	39,716	53,848	67,085	78,736
	Population losses	12,886	43,823	58,402	74,857	86,896	54,411
	Declines in school enrollment	3,635	12,433	15,470	13,835	16,049	10,064
M	Regional income (\$)	324	325	382	909	1,568	2,935
	State and local business taxes (\$)	27	34	43	104	179	337
	Number of full- and part-time jobs	5,081	5,609	6,664	17,658	32,124	62,574
	Population losses	6,112	6,756	8,027	21,269	38,597	75,252
	Declines in school enrollment	1,724	1,917	2,277	6,034	10,950	21,349
N	Regional income (\$)	56	427	1,612	2,484	5,999	7,796
	State and local business taxes (\$)	3	22	74	123	274	352
	Number of full- and part-time jobs	430	3,125	11,275	16,375	42,420	55,025
	Population losses	520	3,770	13,590	19,730	51,100	66,280
	Declines in school enrollment	130	890	2,990	3,030	7,840	10,180
0	Regional income (\$)	356	714	949	1,214	1,415	1,437
	State and local business taxes (\$)	18	38	53	71	83	86
	Number of full- and part-time jobs	5,546	10,843	14,760	19,532	23,761	23,966
	Population losses	7,160	13,910	18,670	24,590	29,830	30,030
	Declines in school enrollment	1,680	3,270	4,380	5,770	7,000	7,040
P	Regional income (\$)	16	16	16	16	16	16
	State and local business taxes (\$)	2	2	2	2	2	2
	Number of full- and part-time jobs	215	215	215	215	215	215
	Population losses	258	259	259	259	259	259
	Declines in school enrollment	73	73	73	73	73	73
Total	Regional income losses (\$)	11,905	29,400	45,409	61,771	79,398	115,734
	State and local business taxes losses (\$)	1,100	2,909	4,261	5,755	7,249	9,828
	Number of full- and part-time jobs losses	114,718	222,101	383,583	543,653	716,394	1,102,689
	Population losses	143,810	295,146	500,204	713,620	930,731	1,408,594
	Declines in school enrollment	41,239	86,114	146,487	188,957	246,684	402,981

