TEXAS WATER DEVELOPMENT BOARD

ù,

E.

REPORT 88

RECONNAISSANCE OF THE CHEMICAL QUALITY OF SURFACE WATERS OF THE GUADALUPE RIVER BASIN, TEXAS

By

Jack Rawson United States Geological Survey

Prepared by the U.S. Geological Survey in cooperation with the Texas Water Development Board

December 1968

TABLE OF CONTENTS

Page

ABSTRACT	1
INTRODUCTION	2
THE GUADALUPE RIVER BASIN AND ITS ENVIRONMENT	2
Physical Features	2
Cultural Features and Economic Development	3
SURFACE-WATER DISTRIBUTION	4
Precipitation	4
Runoff and Streamflow	4
Streamflow Records	4
Variations of Runoff and Streamflow	4
Surface-Water Resources Development	6
CHEMICAL QUALITY OF THE WATER	6
Chemical-Quality Records	6
Factors Affecting Chemical Quality of Water	6
Geology	7
Stream flow	9
Activities of Man	9
Daily Variations of Water Quality	12
Geographic Variations of Water Quality	14
Dissolved Solids	14
Hardness	14
Chloride	14
Other Constituents	14
Water Quality in Reservoirs	15
Water Quality at Potential Reservoir Sites	15

TABLE OF CONTENTS (Cont'd.)

	Page
Ingram	15
Cloptin Crossing	15
Lockhart	15
Cuero 1	15
Cuero 2	15
Confluence	15
Relation of Water Quality to Use	15
Municipal Supply	16
Industrial Use	16
Irrigation	19
REFERENCES	21

TABLES

1.	Summary of Water Discharge at Selected Sites in the Guadalupe River Basin, Water Years 1940-63	6
2.	Concentrations of Selected Constituents and Hardness (In Parts Per Million) That Were Equaled or Exceeded for Indicated Percentage of Days of Flow, Guadalupe River at Victoria	14
3.	Source and Significance of Dissolved-Mineral Constituents and Properties of Water	17
4.	Water-Quality Tolerances for Industrial Applications	18
5.	Suitability of Waters for Irrigation	20
6.	Index of Surface-Water Records in the Guadalupe River Basin	24
7.	Summary of Chemical Analyses at Daily Stations on Streams in the Guadalupe River Basin	26
8.	Chemical Analyses of Streams and Reservoirs in the Guadalupe River Basin for Locations other than Daily Stations	29
9.	Reservoirs with Capacities of 5,000 Acre-Feet or More in the Guadalupe River Basin	36

FIGURES

1.	Index Map Showing River Basins in the State and Physiographic Sections of the Guadalupe River Basin	3
2.	Map and Graphs Showing Precipitation and Runoff	5
3.	Geologic Map and Chemical Composition of Base Flow of Streams	8
4.	Graph Showing Relation of Concentration of Dissolved Solids to Water Discharge, Guadalupe River at Victoria, Water Years 1949-63	9

TABLE OF CONTENTS (Cont'd.)

		Page
5.	Generalized Map of Oil and Gas Fields	10
6.	Graphs Comparing the Range of Annual Duration Curves of Dissolved-Solids Concentration, Guadalupe River at Victoria, Water Years 1949-54 and 1955-63	11
7.	Duration Curve of Dissolved Solids, Guadalupe River at Victoria, Water Years 1949-54	12
8.	Curves Showing the Relation of Dissolved Solids to Chloride, Sulfate, and Hardness, Guadalupe River at Victoria	13
9.	Diagram for the Classification of Irrigation Waters	19
10.	Map Showing Location of Streamflow and Chemical-Quality Data-Collection Sites, Major Reservoirs, and Potential Damsites	37
11.	Maps Showing Chemical Quality of Surface Water	38

v

RECONNAISSANCE OF THE CHEMICAL QUALITY OF SURFACE WATERS OF THE GUADALUPE RIVER BASIN, TEXAS

ABSTRACT

The kinds and quantities of minerals dissolved in surface waters of the Guadalupe River basin are related principally to the geology of the area and to rainfall and streamflow characteristics; but industrial influences, particularly the disposal of oil-field brines, affect the quality in some areas.

Rocks exposed in the basin range in age from Cretaceous to Quaternary. The upper half of the basin is underlain mostly by the Edwards and associated limestones and the Glen Rose Limestone. Streams that traverse these outcrops usually contain less than 250 ppm (parts per million) dissolved solids but are very hard. The principal chemical constituents are calcium and bicarbonate.

The chemical quality of water in streams that drain younger formations in the lower half of the basin is variable. The dissolved-solids content of water in the lower reach of Plum Creek averages more than 500 ppm, apparently because of oil-field brine pollution. The inflow of water from Plum Creek degrades the quality of water in the San Marcos and Guadalupe Rivers. However, the extent of degradation has decreased in the past several years, apparently because of the underground injection of oil-field brine. Nevertheless, the dissolved-solids concentrations of water in the San Marcos River and the Guadalupe River below its junction with the San Marcos River average more than 250 ppm. Water in each stream is very hard. Waters in other streams in the lower half of the basin generally contain less than 250 ppm dissolved solids and are soft or moderately hard.

The chloride concentration in surface waters of the basin generally averages less than 20 ppm, except where streams are polluted by brine from oil fields.

The concentrations of chemical constituents in surface waters throughout much of the basin are within limits recommended by the U.S. Public Health Service for domestic use. The waters are suitable for most irrigation uses. However, the waters in many streams in the upper half of the basin and some streams in the lower half are hard or very hard and will require softening for some industrial uses.

RECONNAISSANCE OF THE CHEMICAL QUALITY OF SURFACE WATERS OF THE GUADALUPE RIVER BASIN, TEXAS

INTRODUCTION

The investigation of the chemical quality of surface waters of the Guadalupe River basin, Texas, is a part of a statewide reconnaissance. The chemical quality of surface waters in each of the major river basins is being studied, and a series of reports summarizing the results of the studies is being prepared by the U.S. Geological Survey in cooperation with the Texas Water Development Board. (See list of references.)

The purpose of this report is to present available chemical-quality data and interpretations that will aid in the proper development, management, and use of the surface-water resources of the Guadalupe River basin. In the study, the following factors were considered: the nature and concentrations of mineral constituents in solution; the geologic, hydrologic, and cultural influences that determine the water quality; and the suitability of the water for domestic supply, industrial use, and irrigation.

A network of daily chemical-quality stations on principal streams in Texas is operated by the U.S. Geological Survey in cooperation with the Texas Water Development Board and with federal and local agencies. However, this network has not been adequate to inventory completely the chemical quality of surface waters in the State. To supplement the information being obtained by the network, a cooperative statewide reconnaissance by the U.S. Geological Survey and Texas Water Development Board was begun in September 1961. During this investigation, samples for chemical analysis have been collected periodically at numerous sites throughout Texas so that some quality-of-water information would be available for locations where water-development projects are likely to be built. These data aid in the delineation of areas having water-quality problems and in the identification of probable sources of pollution, thus indicating areas in which more detailed investigations are needed.

During the reconnaissance, water-quality data were collected for the principal streams, the major reservoir, a

number of potential reservoir sites, and many tributaries in the Guadalupe River basin.

Agencies that have cooperated in the collection of chemical-quality and streamflow data include the U.S. Army Corps of Engineers, Guadalupe-Blanco River Authority, Edwards Underground Water District, Bexar Metropolitan Water District, city of San Antonio, and Texas State Department of Health.

THE GUADALUPE RIVER BASIN AND ITS ENVIRONMENT

Physical Features

The Guadalupe River basin (excluding the drainage area of the San Antonio River, which will be discussed in a separate report) is an area of more than 6,000 square miles in south-central Texas and includes parts of two physiographic sections-the Edwards Plateau of the Great Plains Province and the West Gulf Coastal Plain of the Coastal Plain Province (Figure 1). These physiographic sections within the basin are separated by the Balcones Escarpment, a southeastward-facing remnant of the Balcones Fault scarp. Although the Edwards Plateau is partly protected from erosion by a cap of very resistant limestone, broad valleys have been cut into its surface. Between these valleys, remnants of the resistant limestone form steep cliffs. The resulting terrain is rough and rugged, and the soil mantle is very thin except along the major stream valleys.

The West Gulf Coastal Plain within the Guadalupe basin extends from the Balcones Escarpment to the Gulf of Mexico. In this section, the rolling to moderately hilly country of the interior merges with the level, nearly featureless prairie of the Gulf Coast.

The Guadalupe River is formed by the confluence of the North and South Forks Guadalupe River near Hunt in Kerr County. From the confluence of its North and South Forks, the Guadalupe River flows southeastward for more than 250 river miles to San Antonio Bay.

Figure 1.--River Basins in the State and Physiographic Sections of the Guadalupe River Basin

The principal tributaries, in downstream order, are Johnson Creek, Comal and San Marcos Rivers, and Peach, Sandies, and Coleto Creeks.

Cultural Features and Economic Development

In 1960 the population of the Guadalupe River basin was about 170,000, more than 60 percent of which was urban. Eight cities had more than 5,000 inhabitants in 1960; the largest of these is Victoria, which is on the divide between the Guadalupe River basin and the Lavaca-Guadalupe coastal basin. In 1960 Victoria had a population of 33,047, of which 31,395 was in the Guadalupe River basin. Agriculture contributes substantially to the economy of the basin. Principal agricultural and livestock products include wool and mohair from the Edwards Plateau section, and poultry, beef cattle, dairy products, cotton, grain, grain sorghum, and vegetables from the Coastal Plain section.

Manufacturing, which is also important to the economy of the basin, is concentrated in or near the larger cities and generally is related to the production of gravel, brick, tile, and cement. Quarries for the production of crushed limestone and material for cement are situated along the Balcones Escarpment, and large gravel and sand plants are operated at Victoria. Other industries scattered throughout the basin include flour mills, cotton mills, and textile plants. The production of oil and natural gas is another important industry in the Guadalupe River basin. Production of oil in the basin began in 1922 with discovery of the great Luling field in Caldwell and Guadalupe Counties. Since then, oil fields have been developed in many other parts of the basin (Figure 5).

SURFACE-WATER DISTRIBUTION

Precipitation

Precipitation within the Guadalupe River basin is unevenly distributed, both areally and seasonally. Average annual precipitation ranges from about 26 inches in the western part of the basin to more than 36 inches in the eastern part. Mean annual precipitation in the basin for the 1931-60 period, average monthly precipitation at two U.S. Weather Bureau stations, and annual precipitation at one station for the 1931-65 period are shown on Figure 2. These data show that precipitation in the western part of the basin usually is minimum in winter and maximum in late spring and early fall. In the eastern part of the basin, precipitation, though usually minimum in the winter, is more uniformly distributed throughout the year.

Precipitation throughout the basin fluctuates much more than is indicated by the monthly averages. During the 1931-65 period, for example, precipitation at Kerrville ranged from less than 0.05 inch in several months to 19.94 inches in September 1936. Precipitation so unevenly distributed in time does not sustain streamflow.

Runoff and Streamflow

Streamflow Records

Streamflow records in the Guadalupe River basin date from 1902, when the U.S. Geological Survey established the stream-gaging station Guadalupe River near Cuero. The longest period of record is for the station Guadalupe River near Spring Branch, which has been operated continuously since 1922. More than 20 years of discharge records are available for several other stations.

As of October 1, 1966, the U.S. Geological Survey operated 19 streamflow, 1 reservoir-content, 1 stage, 4 low-flow partial-record, and 6 crest-stage partial-record stations in the basin. During the reconnaissance period, streamflow was measured at many miscellaneous sites where water samples were collected for chemical analysis. The periods of record for all streamflow stations in the Guadalupe River basin are given in Table 6; the locations of the stations are shown on Figure 10. Records of discharge and stage of streams from 1903 to 1906 and from 1915 to 1960 have been published in the annual series of U.S. Geological Survey Water-Supply Papers. (See table in the list of references.) Beginning with the 1961 water year, streamflow records have been released by the Geological Survey on a state-boundary basis (U.S. Geological Survey, 1961, 1962, 1963, 1964b, 1965a, 1966). Summaries of discharge records giving monthly and annual totals have been published by the U.S. Geological Survey (1960, 1964a) and the Texas Board of Water Engineers (1958).

Variations of Runoff and Streamflow

Runoff is that part of precipitation that appears in surface streams; it is the same as streamflow unaffected by artificial diversion, storage, or other works of man in or on stream channels (Langbein and Iseri, 1960, p. 17).

Before June 1964, when impoundment began in Canyon Reservoir, flow of streams in the drainage area of the Guadalupe River was affected only slightly by diversion or storage. Consequently, in the following summary of runoff, historical streamflow records for the period of the 1940-63 water years were used to show the general pattern of areal runoff within the basin.

Average runoff, as measured at six streamflow stations, is shown in Figure 2. In some areas near the eastern edge of the Edwards Plateau, large springs add considerable quantities of water to the flow of streams. Comal Springs, which discharge to the Comal River, and San Marcos Springs, which discharge to the San Marcos River, are the largest. The relation between precipitation and surface runoff for these areas is obscured; consequently, runoff data for the drainage areas of the Comal and San Marcos Rivers are omitted from Figure 2. Average runoff from other subbasins ranged from 2.3 to 4.3 inches. Lowest annual runoff is from the drainage area upstream from Comfort, where precipitation averages less than 30 inches annually; highest annual runoff is from the drainage area of the Blanco River, where precipitation averages more than 34 inches annually.

Data on Figure 2 do not indicate the variability of flow in a particular stream. Average water discharge and minimum and maximum daily discharges for the 1940-63 period of concurrent record for eight streamflow stations are given in Table 1. These data indicate that streamflow is variable throughout the basin. For example, discharge of the Guadalupe River at Comfort averaged 141 cfs (cubic feet per second), but the daily discharge ranged from 0 to 25,300 cfs. Farther downstream at Victoria, the discharge of the Guadalupe River averaged 1,539 cfs, but the daily discharge ranged from 14 to 54,000 cfs.

Because streamflow and runoff within the Guadalupe River basin are unevenly distributed in area and time, storage projects are required to provide dependable quantities of surface water for municipal and industrial use.

Table 1.--Summary of Water Discharge at Selected Sites in the Guadalupe River Basin, Water Years 1940-63

STATION (FIG. 10)	STREAM AND LOCATION	AVERAGE	WATER DISCHARGE (CUBIC FEET PER SECOND) MINIMUM DAILY	MAXIMUM DAILY
11	Guadalupe River at Comfort	141	0	25,300
12	Guadalupe River near Spring Branch	255	0	44,600
17	Guadalupe River above Comal River at New Braunfels	351	0	46,500
22	Comal River at New Braunfels	273	5.5	13,900
27	Blanco River at Wimberley	116	.7	36,900
29	San Marcos River at Luling	331	43	25,000
32	Plum Creek near Luling	89.8	0	15,000
38	Guadalupe River at Victoria	1,539	14	54,000

Surface-Water Resources Development

Four reservoirs in the Guadalupe River basin have storage capacities of 5,000 acre-feet or more. The capacity, owner, and location and use of these reservoirs are listed in Table 9; the locations are shown on Figure 10.

Canyon Reservoir, constructed on the Guadalupe River by the U.S. Army Corps of Engineers in cooperation with the Guadalupe-Blanco River Authority, is the largest reservoir in the basin. The reservoir, which is used for both flood control and conservation storage, has a capacity of 740,900 acre-feet, of which 354,700 acrefeet is for flood control. The other major reservoirs in the basin are used for the generation of hydroelectric power.

CHEMICAL QUALITY OF THE WATER

Chemical-Quality Records

The systematic collection of chemical-quality data on surface waters of the Guadalupe River basin by the U.S. Geological Survey was begun in 1942 when a sampling station was established on the Guadalupe River near Spring Branch. Data obtained from this station, until it was discontinued in 1945, consisted of chemical analyses of filtrates from samples collected by the U.S. Soil Conservation Service for the determination of suspended sediment. Usually only specific conductance and chloride determinations were made on these filtered samples.

In 1945, a daily sampling station was established on the Guadalupe River at Victoria; records for this station are continuous to date. Currently, this station is the only daily sampling station in the basin, but chemical analyses are available for many miscellaneous sites.

The periods of record for selected data-collection sites are given in Table 6; the locations are shown on Figure 10. Chemical-quality data for the daily stations are summarized in Table 7, and the complete records are published in an annual series of U.S. Geological Survey Water-Supply Papers and in reports of the Texas Water Development Board and its predecessor agencies. (See table in the list of references.) Analytical results for samples collected from selected miscellaneous sites are given in Table 8.

Since 1957, the Texas State Department of Health has maintained a statewide stream-sampling program that includes the periodic determination of pH, total solids, chloride, and sulfate at 14 sites in the Guadalupe River basin. Data from this program were made available to the U.S. Geological Survey and were studied during the preparation of this report.

Factors Affecting Chemical Quality of Water

All waters from natural sources contain dissolved minerals, but the chemical character and concentrations of dissolved constituents in surface waters may fluctuate widely in response to differences in environment. Some of the environmental factors that affect the chemical quality of surface waters are variation in geology; patterns and characteristics of streamflow; and activities of man, such as impoundment and diversion, disposition of municipal and industrial wastes, and irrigation.

Waters are classified in various ways to demonstrate similarities and differences in composition. In the following discussion, which relates chemical quality of water to environmental factors, water is classified on the basis of chemical type (principal chemical constituents) and hardness. The chemical type of water is classified according to the predominant cations and anions in equivalents per million. For example, a water is a calcium bicarbonate type if the calcium ions constitute 50 percent or more of the cations and the bicarbonate ions constitute 50 percent or more of the anions. Waters in which one cation and one anion are not clearly predominant are recognized as mixed types and are identified by the names of all the important ions.

On the basis of hardness, waters are classified as soft, moderately hard, hard, and very hard. (See tabulation on page 16.)

Geology

The amounts and kinds of minerals dissolved in water that drains from areas where municipal and industrial influences are small depend principally on the chemical composition and physical structure of rocks and soils traversed by the water and on the length of time the water is in contact with the rocks and soils. The amount of minerals in rocks and soils available for solution is decreased by leaching; therefore, in areas of high rainfall, the rocks and soils usually are well leached and generally yield water of low mineralization. In many arid or semiarid regions, the rocks and soils are incompletely leached and often yield large quantities of minerals to circulating waters. In the Guadalupe River basin, where precipitation averages about 32 inches annually, the surface rocks and soils are fairly well leached. Thus, the dissolved-minerals content of surface runoff from much of the basin averages less than 250 ppm (parts per million). Although runoff derived from ground water generally is more highly mineralized than runoff from the surface, the base flow of most streams in the basin seldom exceeds 500 ppm.

Most streams in the Guadalupe River basin traverse more than one geologic formation; consequently, water in some streams usually is a composite of several different geochemical types. Similarly, the mineral composition of a particular formation, and thus the mineralization and chemical character of its effluent ground water, may differ from area to area. In some areas the chemical composition of surface water is altered by municipal or industrial pollutants. For these reasons, the following discussion relating chemical composition of surface waters to geology is very general.

The geology of the Guadalupe River basin has been described by Alexander, Myers, and Dale (1964, p. 29-50). Rocks exposed in the basin consist of sediments that range in age from Cretaceous to Quaternary; the outcrop areas of the various geologic units are shown in Figure 3. Chemical analyses of surface water collected during periods of low flow are represented diagrammatically (Stiff, 1951) in Figure 3 to relate chemical composition to geology. The shape of each diagram indicates the relative concentration of the principal chemical constituents; the size of the diagram indicates roughly the degree of mineralization.

Headwater streams of the Guadalupe River rise on the Edwards and associated limestones, which include the Georgetown Limestone of the Washita Group and the Kiamichi Formation, Edwards Limestone, Comanche Peak Limestone, and Walnut Clay of the Fredericksburg Group. These rocks, which underlie a large part of the Edwards Plateau section of the basin, consist of limestone, dolomitic limestone, marl, and shale. Low flows of the North and South Forks Guadalupe River and Johnson Creek (Figure 3, sites 1, 3, and 6), which drain from these rocks, generally contain less than 300 ppm dissolved solids, are very hard, and are a calcium bicarbonate type. Similarly, effluent ground water contributed by Comal and San Marcos Springs near the eastern limit of the Edwards outcrop is very hard and the calcium bicarbonate type (Figure 3, sites 21 and 24).

In the wide valleys of the Edwards Plateau section of the Guadalupe River basin, where much of the Edwards and associated limestones have been removed by erosion, the Glen Rose Limestone of Cretaceous age is exposed. The Glen Rose consists principally of limestone and marl interbedded with dolomite and anhydrite. Most streams that traverse the Glen Rose rise in the Edwards and associated limestones; consequently, water in the lower reaches of these streams is a composite. However, much of the drainage area of Turtle, Verde, and Cypress Creeks and the Blanco River is underlain by the Glen Rose Limestone. Low flows of these streams generally are very hard and the calcium bicarbonate type (Figure 3, sites 7, 8, 10, and 27) and are very similar in chemical character to low flows of streams that drain the Edwards and associated limestones.

In the Coastal Plain section of the Guadalupe River basin, the geologic formations, most of which are Tertiary or Quaternary in age, crop out in narrow belts roughly parallel to the coast of the Gulf of Mexico. Rocks from the Grayson Shale of Late Cretaceous age to the Midway Group of Paleocene age were considered as a unit by Alexander, Myers, and Dale (1964, p. 41) and are mapped together on Figure 3. These rocks, which crop out in a belt from 10 to 15 miles wide in the upper part of the Coastal Plain section of the basin, consist largely of clay, shale, marl, limestone, and sandstone. Most streams in this section rise in the Edwards and associated limestones, from which they derive most of their base flow. Upstream from Lockhart in Caldwell County, much of the drainage area of Plum Creek is underlain by rocks between the Midway Group and

Grayson Shale. During low-flow periods, water in Plum Creek at Lockhart usually contains less than 500 ppm dissolved solids and is hard or very hard. Although the principal chemical constituents usually are calcium and bicarbonate (Figure 3, site 30), some of the low flows are the mixed calcium sodium bicarbonate sulfate type.

Other rocks that crop out in the Coastal Plain section of the basin, in downstream order, include the Wilcox Group, Claiborne Group, Jackson Group, Catahoula Tuff, Catahoula Sandstone, Fleming Formation, and Goliad Sand of Tertiary age and the Lissie Formation and Beaumont Clay of Quaternary age. Although these rocks consist largely of sand, sandstone, silt, clay, and gravel, the chemical character of water from shallow wells varies from formation to formation and from site to site within the same formation (Alexander, Myers, and Dale, 1964, p. 77-80). Similarly, low flows of streams that traverse these rocks are somewhat variable in chemical character. Principal tributaries that drain these rocks include Peach, Sandies, and Coleto Creeks. During low-flow periods, the dissolvedsolids content of Peach Creek below Dilworth has ranged from less than 150 ppm to more than 1,100 ppm, but generally is less than 500 ppm. The more highly mineralized low flows generally are the sodium sulfate type; whereas waters with a low dissolved-solids content generally are the mixed calcium sodium bicarbonate sulfate type (Figure 3, site 35).

The dissolved-solids concentration of low flows in Sandies Creek near Westhoff has ranged from about 300 ppm to more than 1,200 ppm. The water generally is moderately hard or hard and the sodium bicarbonate type (Figure 3, site 36).

Low flows of Coleto Creek near Schroeder (Figure 3, site 39) generally contain less than 500 ppm dissolved solids and are very hard and the mixed calcium sodium bicarbonate chloride type.

Streamflow

In many streams where the flow is not regulated by upstream reservoirs, the concentration of dissolved minerals varies inversely with the water discharge. The concentration usually is minimum during periods of high flow when most of the water is surface runoff that has been in contact with soluble minerals of the exposed rocks and soils for a short time. Conversely, the concentration usually is maximum during periods of low flow when the water is predominantly effluent ground water that has been in contact with the rocks and soils for a sufficient time to dissolve more of the soluble minerals. Figure 4 shows this general relationship to be true for the Guadalupe River at Victoria during the period of the 1949-63 water years, before completion of Canyon Reservoir. However, the scatter of points in Figure 4 shows that the inverse relation between streamflow and concentration of dissolved solids is not precise. Obviously, the salt content of the Guadalupe River at Victoria has varied considerably at all rates of water discharge. Although much of this variation is related to the diversified geology and to the pattern of runoff from subbasins, the intermittent inflow of brine from oil fields is responsible for part of the variation.

Figure 4.--Relation of Concentration of Dissolved Solids to Water Discharge, Guadalupe River at Victoria, Water Years 1949-63

Activities of Man

The activities of man often debase the chemical quality of surface water. Depletion of flow by diversion and consumptive use, loss of water because of increased evaporation, and return flow of irrigation usually increase the dissolved-solids concentration of water in streams or reservoirs. Similarly, the disposition of industrial and municipal wastes into a stream degrades the chemical quality.

Because most cities and industries in the Guadalupe River basin obtain their water supply from wells, the chemical quality of surface water has been affected only slightly by diversion or storage. The basin has no large cities; only Victoria had more than 20,000 inhabitants in 1960. Consequently, the disposition of municipal and industrial wastes has caused only local changes in the quality of surface water, and natural streamflow generally is adequate to dilute the municipal and industrial wastes that are introduced into streams.

According to an inventory by the Texas Water Commission (Gillett and Janca, 1965, p. 39), 11,537 acre-feet of water was used to irrigate 10,826 acres in the Guadalupe River basin in 1964. Because of the small amount of water used, return flow of irrigation has not seriously degraded the quality of surface water.

Oil is produced in many areas in the Guadalupe River basin (Figure 5). Brine is produced in nearly all oil fields and if improperly handled eventually enters surface streams. According to an inventory by the Texas Railroad Commission in 1961, more than 94 percent of the salt water produced in oil fields of the Guadalupe River basin was injected underground to prevent and abate pollution (Texas Water Commission and Texas Water Pollution Control Board, 1963, p. 6). The rest of the salt water was disposed of in unlined surface pits or directly into surface watercourses. From the unlined pits, much of the brine has percolated into the ground and has seeped, or eventually will seep, into streams. Some of the brine has been washed by the surface runoff directly into streams. Although use of unlined pits for the disposition of brine has been curtailed greatly in the past several years, seepage of brine from saltimpregnated areas near the abandoned pits may continue for long periods. In addition, injected brine may move upward along fault zones or improperly cased wells and eventually reach surface streams.

Although the composition of oil-field brine varies, the principal chemical constituents, in order of magnitude of their concentrations (in ppm), usually are chloride, sodium, calcium, and sulfate. Generally, an erratic variation of the sodium chloride content of water in streams that drain areas where oil fields are located is presumptive evidence that oil-field brine is entering the streams.

In February 1944, a reconnaissance by the U.S. Geological Survey showed that about 15 cfs of brine from oil fields in Caldwell and Guadalupe Counties in the vicinity of Luling was being discharged into Plum Creek and San Marcos River (Hastings and Broadhurst, 1944, p. 2). Although most of the brine produced in oil fields near Luling is now being injected underground, chemical analyses of water recently collected from Plum Creek near Luling indicate that some brine still is reaching the stream (Table 8, site 32).

Daily chemical-quality records for the Guadalupe River at Victoria indicate that the disposition of oil-field brine has resulted in some deterioration of water quality in the lower reach of the mainstem. (See Table 7 and Figure 11.) However, dissolved-solids duration data (Figure 6) indicate generally that the quantity of brine reaching surface streams has decreased in the past several years. Much of this decrease apparently has resulted from the disposition of brine by injection. According to records of the Railroad Commission of Texas, the number of injection wells in the Guadalupe River basin increased from 8 in 1950 to 63 in 1966.

Figure 6.--Comparison of Range of Annual Duration Curves of Dissolved-Solids Concentration, Guadalupe River at Victoria, Water Years 1949-54 and 1955-63

Daily Variations of Water Quality

Some of the previous sections have shown that the quality of surface water in the Guadalupe River basin varies not only from location to location on the same stream but also from time to time at any specified location. The daily variations in concentration of dissolved solids at a particular location can be shown by a duration curve. Such a curve shows the percent of days of flow during which specified concentrations of dissolved solids were equaled or exceeded, without regard to sequence of occurrence. Figure 7 is a duration curve for the Guadalupe River at Victoria during the 1949-54 period, before construction of Canyon Reservoir. Figure 7 shows that the dissolved-solids concentration equaled or exceeded 440 ppm on 10 percent of the days, 390 ppm on 25 percent, 350 ppm on 50 percent, 310 ppm on 75 percent, and 255 ppm on 90 percent. These data also are given in Table 2, as is the equivalent data for sulfate, chloride, and hardness. Table 2 also gives the concentrations of dissolved solids, chloride, sulfate, and hardness that were equaled or exceeded at the Victoria station during 10, 25, 50, 75, and 90 percent of the days of flow during the 1955-63 water years.

Figure 7.--Duration Curve of Dissolved Solids, Guadalupe River at Victoria, Water Years 1949-54

Although daily samples were collected from the Guadalupe River at Victoria during the two periods for which duration data are shown in Table 2, a complete chemical analysis of each daily sample was not feasible. Therefore, two or more daily samples usually were composited for chemical analysis on the basis of specific conductance, supplemented by data on river stage. For this frequency study, the dissolved-solids content of each daily sample was estimated from the relation of specific conductance to dissolved solids. These data were used to prepare dissolved-solids duration curves, such as Figure 7, from which the dissolved-solids values in Table 2 were compiled. Next, curves showing the relation of dissolved solids to concentrations of sulfate, chloride, and hardness were plotted (Figure 8). Then, for each value of dissolved solids in the table, corresponding concentrations of sulfate, chloride, and hardness were tabulated. The resulting Table 2 shows that the total dissolved-solids and chloride concentrations were somewhat less variable during the 1955-63 water years than during the 1949-54 water years. Part of this decrease in daily variations of dissolved solids and chloride probably has resulted from the underground injection of brine from oil fields.

Chemical-quality frequency data collected from a stream before the construction of a large reservoir is not directly comparable to data collected from the stream after reservoir regulation begins. Regulation of flood flows in Canyon Reservoir may smooth out chemicalquality variations at downstream sites during some periods. However, impoundment in the reservoir may decrease flow during other periods and cause an increase in the salinity of water at downstream sites.

- 13 -

Table 2.--Concentrations of Selected Constituents and Hardness (in Parts Per Million) That Were Equaled or Exceeded for Indicated Percentage of Days of Flow, Guadalupe River at Victoria

		PERCE	NTO	DAY	S
CONSTITUENT	10	25	50	75	90
1955-63 water years					
Sulfate (SO ₄)	34	32	30	27	22
Chloride (Cl)	82	72	58	45	26
Dissolved solids	395	370	335	300	240
Hardness as CaCO ₃	225	215	205	190	165
1949-54 water years					
Sulfate (SO ₄)	36	33	31	28	24
Chloride (Cl)	102	81	64	49	30
Dissolved solids	440	390	350	310	255
Hardness as CaCO3	240	225	210	195	170

Geographic Variations of Water Quality

Variations of dissolved solids, hardness, and chloride with geographic locations are shown on the maps on Figure 11. These maps are based on the dischargeweighted average concentrations, as calculated from chemical-quality data. The discharge-weighted average represents approximately the chemical character of the water if all the water passing a point in the stream during a period were impounded in a reservoir and mixed, with no adjustment for evaporation, rainfall, or chemical change that might occur during storage. For many of the streams, chemical-quality data (especially for flood flows) are limited; therefore the boundaries of the areas on the maps are general. All the streams will at times have concentrations greater than those shown for their respective areas, but the averages shown on the maps are indicative of the type of water that would be stored in reservoirs.

Dissolved Solids

The concentration of dissolved solids in surface water of the upper half of the Guadalupe River basin generally is less than 250 ppm. In the lower half of the basin the dissolved-solids concentrations of several streams average more than 250 ppm. Throughout much of its length, the San Marcos River contains more than 250 ppm dissolved solids. Much of the flow in the upper reach of the San Marcos River is effluent ground water contributed by San Marcos Springs. The dissolved-solids content of water contributed by San Marcos Springs averages about 330 ppm. In its lower reach, the principal tributary of the San Marcos River is Plum Creek. As noted previously, the disposition of oil-field brine has caused some deterioration of the quality of water in the lower reach of Plum Creek. Available chemical-quality data indicate that the dissolved-solids concentration of Plum Creek near Luling averages more than 500 ppm. Although the inflow of water from Plum Creek degrades the quality of water in the lower reaches of both the San Marcos and Guadalupe Rivers, the average dissolvedsolids content does not exceed 500 ppm in either stream. During the 1949-65 water years, the dischargeweighted concentration of dissolved solids in the Guadalupe River at Victoria averaged 288 ppm.

Chemical analyses of samples collected during medium and high flows indicate that the dissolved-solids content of Peach Creek averages less than 100 ppm. The dissolved-solids concentrations of other streams in the lower half of the basin generally average between 101 and 250 ppm.

Hardness

The upper half of the Guadalupe River basin is underlain largely by the Edwards and associated limestones and the Glen Rose Limestone. Water draining from these rocks generally is very hard (Figure 11). Water draining from the younger formations in the lower half of the basin generally is soft or moderately hard—except in the drainage area of Plum Creek, where the water is hard. Throughout the length of the mainstem Guadalupe River, the water generally is very hard.

Chloride

The chloride concentration in surface waters of the Guadalupe River basin generally averages less than 50 ppm, and many streams contain less than 20 ppm. However, in the lower reach of Plum Creek, the inflow of oil-field brine has increased the average chloride concentration to more than 100 ppm.

Other Constituents

Other constituents of importance in the evaluation of the quality of a water include silica, sodium, bicarbonate, sulfate, fluoride, and nitrate.

The silica content of surface water throughout the basin generally is low. During the 1949-65 water years the discharge-weighted average concentration of silica in the Guadalupe River at Victoria was 15 ppm.

The sodium content of most surface waters in the basin also is low. During the 1949-65 water years, the discharge-weighted concentration of sodium and potassium (Na + K calculated as Na) that passed the station

Guadalupe River at Victoria averaged 29 ppm. Streams that drain the Edwards and associated limestones and the Glen Rose Limestone in the Edwards Plateau section of the basin generally contain less than 15 ppm sodium. During high-flow periods, most streams that drain younger formations in the Coastal Plain section contain less than 20 ppm sodium; however, during low-flow periods, when the proportion of effluent ground water increases, the sodium concentration in most of these streams often exceeds 100 ppm.

Bicarbonate is the principal anion in streams that traverse the outcrop areas of the Edwards and associated limestones and the Glen Rose Limestone. The bicarbonate content of water in these streams usually ranges from 200 to 300 ppm. The bicarbonate content of streams that drain younger formations is more variable but generally averages less than 200 ppm. The dischargeweighted average concentration of bicarbonate in the Guadalupe River at Victoria during the 1949-65 water years was 190 ppm.

Sulfate concentrations in streams that drain the Edwards and associated limestones and the Glen Rose Limestone generally are less than 30 ppm. Medium and high flows of most streams that drain younger formations also contain less than 30 ppm sulfate. The discharge-weighted average concentration of sulfate in the Guadalupe River at Victoria during the 1949-65 water years was 27 ppm.

Concentrations of nitrate and fluoride generally are low in surface waters of the Guadalupe River basin. During the 1949-65 water years, the discharge-weighted concentrations of nitrate in water that passed the station Guadalupe River at Victoria averaged 3.7 ppm. The fluoride concentration in water that passed the station during the 1950-56 water years averaged 0.3 ppm and never exceeded 0.6 ppm.

Water Quality in Reservoirs

Canyon Reservoir, the only large water-supply reservoir in the Guadalupe River basin, stores water that is low in dissolved solids (usually less than 250 ppm), hard or very hard, and the calcium bicarbonate type. Maximum concentrations of chloride and sulfate in samples collected from the reservoir were 15 and 16 ppm, respectively.

Water Quality at Potential Reservoir Sites

One of the principal objectives of this reconnaissance was to appraise the quality of water available for storage at potential reservoir sites. The locations of six potential reservoir sites are shown on Figure 10. In the following discussion, evaluations of the water quality at these sites, are based on present conditions. Continued municipal and industrial growth in some areas will increase the waste-disposal burdens of the streams and may cause significant changes in water quality before some of the reservoirs can be built.

Ingram.-The quality of water that would be stored in Ingram Reservoir can be inferred from the analyses of samples collected from Johnson Creek near Ingram. Although all of the samples were collected during low flow, the maximum dissolved-solids, chloride, and sulfate contents of the samples were 271 ppm, 25 ppm, and 13 ppm, respectively; and the maximum hardness was 225 ppm. If the reservoir fills during a period of average rainfall and runoff, the stored water probably will contain less than 250 ppm dissolved solids, 15 ppm chloride, and 15 ppm sulfate but will be hard or very hard.

Cloptin Crossing.—Chemical-quality data for the Blanco River at Wimberley indicate that if Cloptin Crossing Reservoir fills during a period of average rainfall and runoff, the stored water will contain less than 250 ppm dissolved solids, 20 ppm chloride, and 20 ppm sulfate but will be very hard.

Lockhart.-Chemical analyses of samples collected from Plum Creek at Lockhart indicate that water stored in Lockhart Reservoir will contian less than 250 ppm dissolved solids, 20 ppm chloride, and 50 ppm sulfate but will be hard.

Cuero 1.—Available chemical-quality data indicate that water stored in Cuero 1 Reservoir will be more mineralized than water in the upstream Canyon Reservoir because of the inflow of water from the San Marcos River. However, the stored water probably will contain less than 325 ppm dissolved solids, 50 ppm chloride, and 50 ppm sulfate and will be very hard.

Cuero 2.-Chemical analyses of samples collected from Sandies Creek near Westhoff indicate that water stored in Cuero 2 Reservoir will contain less than 150 ppm dissolved solids, 20 ppm chloride, and 25 ppm sulfate and will be soft.

Confluence.—Confluence Reservoir will store water from the Guadalupe River and the San Antonio River. Daily chemical-quality records for the Guadalupe River at Victoria and San Antonio River at Goliad indicate that the stored water will contain less than 350 ppm dissolved solids, 50 ppm chloride, and 50 ppm sulfate and will be very hard.

Relation of Water Quality to Use

Although other water-quality criteria are important, the suitability of a water for most uses often depends on its chemical quality. All natural waters contain dissolved minerals, most of which are dissociated into charged particles, or ions. The principal cations (positively-charged ions) in natural water are calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), and iron (Fe). The principal anions (negatively-charged ions) are carbonate (CO₃), bicarbonate (HCO₃), sulfate (SO₄), chloride (Cl), fluoride (F), and nitrate (NO₃). A résumé of the sources and significance of these and other constituents and properties commonly determined by the U.S. Geological Survey to define the chemical quality of water is included in Table 3.

Because the use and planned use of surface water in the Guadalupe River basin is primarily for municipal supply, industrial use, and irrigation, only these uses will be considered in the following discussion.

Municipal Supply

Because of differences in individuals, amounts of water used, and other factors, the safe limits for mineral constituents in water to be used for domestic purposes are difficult to define. The usually accepted criteria for drinking water in the United States are those recommended by the United States Public Health Service. Originally established in 1914 to control the quality of water used on interstate carriers for drinking and culinary purposes, these standards have been revised several times. The latest revision was in 1962 (U.S. Public Health Service, 1962). The limits recommended by these standards for various constituents are included in the following table.

CONSTITUENT	MAXIMUM CONCENTRATION (PPM)
Sulfate	250
Chloride	250
Nitrate	45
Fluoride	^a 0.8
Iron	0.3
Dissolved solids	500
-	

^a Based on temperature records for Victoria.

The concentrations of sulfate, chloride, nitrate, fluoride, and dissolved solids in surface waters throughout much of the Guadalupe River basin generally are lower than the limits recommended by the U.S. Public Health Service. Available chemical-quality data indicate that the discharge-weighted concentration of dissolved solids in Plum Creek near Luling averages about 600 ppm, which is greater than the 500 ppm limit recommended by the U.S. Public Health Service. However, water containing more than 500 ppm dissolved solids have been used for domestic purposes without adverse effects. Although iron determinations were not included in chemical analyses of surface water from most miscellaneous sites in the Guadalupe River basin, chemicalquality records for the daily station Guadalupe River at Victoria and analyses of water from wells throughout the basin indicate generally that iron concentrations in surface waters of the basin are within the U.S. Public Health Service recommended limit of 0.3 ppm.

Hardness is another property usually considered in evaluating a water for domestic use. A comparison of hardness-duration data for the Guadalupe River at Victoria (Table 2) and chemical analyses of water from miscellaneous sites (Table 8) with the classification of hardness in the following table shows that most surface waters in the Guadalupe River basin are hard or very hard and will require softening in some areas.

HARDNESS (PPM)	RATING	USABILITY
0 to 60	Soft	Suitable for many uses without further softening.
61 to 120	Moderately hard	Usable except in some industrial applications.
121 to 180	Hard	Softening required by laundries and some other industries.
181+	Very hard	Softening desirable for

Industrial Use

The water-quality requirements vary greatly for almost every industrial application. (See Table 4.) Corrosion is the most widespread and probably the most costly water-caused difficulty with which industry must cope. Therefore, the suitability of a water for many industrial uses is determined partly by its corrosiveness. High concentrations of dissolved solids in a water promote corrosion, especially if chloride is present in appreciable quantities. In contrast, calcium hardness forms protective coatings on metal surfaces and thus tends to reduce corrosion. The chloride and dissolvedsolids concentrations in surface waters of the Guadalupe River basin are low, and in many streams calcium and bicarbonate are the principal chemical constituents. Therefore, the corrosion potential of surface waters throughout the basin probably is low.

Although some calcium hardness may be desirable for the prevention of corrosion of pipes and other equipment, excessive hardness is objectionable because it contributes to the formation of scale in steam boilers, pipes, water heaters, radiators, and various other equipment where water is heated, evaporated, or treated with alkaline substances. The accumulation of scale lowers

Table 3.--Source and Significance of Dissolved-Mineral Constituents and Properties of Water

CONSTITUENT OR PROPERTY	SOURCE OR CAUSE	SIGNIFICANCE
Silica (SiO ₂)	Dissolved from practically all rocks and soils, commonly less than 30 ppm, High concentra- tions, as much as 100 ppm, gener- ally occur in highly alkaline waters.	Forms hard scale in pipes and boilers. Carried over in steam of high pressure boilers to form deposits on blades of turbines. Inhibits deterioration of zeolite-type water softeners.
Iron (Fe)	Dissolved from practically all rocks and soils. May also be derived from iron pipes, pumps, and other equipment. More than 1 or 2 ppm of iron in surface waters generally indicate acid wastes from mine drainage or other sources.	On exposure to air, iron in ground water oxidizes to reddish- brown precipitate. More than about 0.3 ppm stain laundry and utensils reddish-brown. Objectionable for food processing, tex- tile processing, beverages, ice manufacture, brewing, and other processes. U.S. Public Health Service (1962) drinking-water standards state that iron should not exceed 0.3 ppm. Larger quantities cause unpleasant taste and favor growth of iron bacteria.
Calcium (Ca) and magnesium (Mg)	Dissolved from practically all soils and rocks, but especially from limestone, dolomite, and gypsum, Calcium and magnesium are found in large quantities in some brines. Magnesium is present in large quantities in sea water.	Cause most of the hardness and scale-forming properties of water; soap consuming (see hardness). Waters low in calcium and magnesium desired in electroplating, tanning, dyeing, and in textile manufacturing.
Sodium (Na) and potassium (K)	Dissolved from practically all rocks and soils. Found also in ancient brines, sea water, indus- trial brines, and sewage.	Large amounts, in combination with chloride, give a salty taste. Moderate quantities have little effect on the usefulness of water for most purposes. Sodium salts may cause foaming in steam boilers and a high content may limit the use of water for irrigation.
Bicarbonate (HCO ₃) and carbonate (CO ₃)	Action of carbon dioxide in water on carbonate rocks such as lime stone and dolomite.	Bicarbonate and carbonate produce alkalinity. Bicarbonates of calcium and magnesium decompose in steam boilers and hot water facilities to form scale and release corrosive carbon dioxide gas. In combination with calcium and magnesium, cause carbon- ate hardness.
Sulfate (SO ₄)	Dissolved from rocks and soils containing gypsum, iron sulfides, and other sulfur compounds. Commonly present in mine waters and in some industrial wastes.	Sulfate in water containing calcium forms hard scale in steam boilers. In large amounts, sulfate in combination with other ions gives bitter taste to water. Some calcium sulfate is considered beneficial in the brewing process. U.S. Public Health Service (1962) drinking-water standards recommend that the sulfate content should not exceed 250 ppm.
Chloride (Cl)	Dissolved from rocks and soils. Present in sewage and found in large amounts in ancient brines, sea water, and industrial brines.	In large amounts in combination with sodium, gives salty taste to drinking water. In large quantities, increases the corrosiveness of water. U.S. Public Health Service (1962) drinking-water stan- dards recommend that the chloride content should not exceed 250 ppm.
Fluoride (F)	Dissolved in small to minute quantities from most rocks and soils. Added to many waters by fluoridation of municipal sup- plies.	Fluoride in drinking water reduces the incidence of tooth decay when the water is consumed during the period of enamel calcification. However, it may cause mottling of the teeth, depending on the concentration of fluoride, the age of the child, amount of drinking water consumed, and susceptibility of the individual. (Maier, 1950)
Nitrate (NO3)	Decaying organic matter, sewage, fertilizers, and nitrates in soil.	Concentration much greater than the local average may suggest pollution. U.S. Public Health Service (1962) drinking-water standards suggest a limit of 45 ppm. Waters of high nitrate content have been reported to be the cause of methemoglo- binemia (an often fatal disease in infants) and therefore should not be used in infant feeding. Nitrate has been shown to be helpful in reducing inter-crystalline cracking of boiler steel. It encourages growth of algae and other organisms which produce undesirable tastes and odors.
Dissolved solids	Chiefly mineral constituents dis- solved from rocks and soils. Includes some water of crystalli- zation.	U.S. Public Health Service (1962) drinking-water standards recommend that waters containing more than 500 ppm dissolved solids not be used if other less mineralized supplies are available. Waters containing more than 1,000 ppm dissolved solids are unsuitable for many purposes.
Hardness as CaCO ₃	In most waters nearly all the hardness is due to calcium and magnesium. All the metallic cations other than the alkali metals also cause hardness.	Consumes soap before a lather will form. Deposits soap curd on bathtubs. Hard water forms scale in boilers, water heaters, and pipes. Hardness equivalent to the bicarbonate and carbonate is called carbonate hardness. Any hardness in excess of this is called non-carbonate hardness. Waters of hardness as much as 60 ppm are considered soft; 61-120 ppm, moderately hard; 121-180 ppm hard; more than 180 ppm, very hard.
Specific conductance (micromhos at 25°C)	Mineral content of the water.	Indicates degree of mineralization. Specific conductance is a measure of the capacity of the water to conduct an electric current. Varies with concentration and degree of ionization of the constituents.
Hydrogen ion concentration (pH)	Acids, acid-generating salts, and free carbon dioxide lower the pH. Carbonates, bicarbonates, hydrox- ides, and phosphates, silicates, and borates raise the pH.	A pH of 7.0 indicates neutrality of a solution. Values higher than 7.0 denote increasing alkalinity; values lower than 7.0 indicate increasing acidity, pH is a measure of the activity of the hydrogen ions. Corrosiveness of water generally increases with decreasing pH. However, excessively alkaline waters may also attack metals.

Table 4.--Water-Quality Tolerances for Industrial Applications $\mathcal V$

[Allowable Limits in Parts per Million Except as Indicated]

GEN- ERAL ² /	A, B C	111	c, D C, D	00	с А, в с	0	;	< ; ;	83			
Na2S04 to Na2S03 RATIO	: :	1 to 1 2 to 1 3 to 1	::	11	1111	11	;	:::	ł			
CaSO4	::	111	100-200 200-500	11		: :	;		1	:::		
HO	11	50 40	11	: :	::::	;;	:	111	;	111	111 1	
F00H	: :	30	: :	11	::::	::	1	111	:	111	111 1	
Eoo	11	200 100	1.1	11	1111	: :	ł	1.1.1	1	111	111 1	
ta _*	11	111		۱.,	7 1 1 1) (;	111	;	1.1.1	1 1 1 1	
C	;;	111	13	1.1	1111	1.1	;	111	;	911	111 1	
S102	11	40 20 5	11	11	1 1 1 1	10	1	111	;	- 1 - 25	111 1	
A1203	: :	5 .5	: :	::		: :	1	:::	;	<8.0	111 1	-mdd
Fe + Mn	.2	1:1	77	.2	<u>.</u>	.2	.02	.1	۲.	.05		, 275
Mn	.2		77	2.2	9999		.02	.1.05	• 05	.03	.25	-NaCl
Fe	0.5	:::	1.1.	.2	222	.2	. 02	1.0 .2 .1	.1	.05	.25	ary; D-
Ca	::	111	100-200	11	::::	: :	;	:::	;	111	111-1	is necess
TOTAL SOLIDS	11	3,000-1,000 2,500-500 1,500-100	500 1,000	11	850 100	300	200	 300 200	2.00	100	111 1	øater standard ioning,
Hq	11	8.0+ 8.5+ 9.0+	6.5-7.0 7.0	::	1131	: :	I	:::	;	7.8-8.3	::: :	drinking a
ALKA- LINITY (AS CaCO3)	: :	:::	75 150	::	9	30-50	ł	:::	1	50	:::::	federal le for
IIARD- NESS	(*)	75 40 8	::	25-75	250	1 05	;	180 100 100	50	8 55 50-135	20 20 20	ance to insuitab
ODOR	::	:::	Low	Low	10v	::	;	:::	ł	:::	::: :: ::	nform
DIS- SOLVED OXYGEN (m1/l)	::	2 •2	11	11	1111	::	;	:::	:	:::		n; CCo ors are
COLOR + 02 CON- SUMED	::	100 50 10	: :	: :	9111	1.1	;	111	1	: : :		1950. formatic lfide od
COLOR	10	80 5 5	: :	11	1110	~ I	2	20 15 10	in.	5	20 5-20 70	ciation, lo slime rogen su
TUR- BID- ITY	10	20 10 5	10	10	2 50 10	1-5	2	50 25 15	2	5 .3 20	551 5	rks Asso ss; BN and hyd trable.
INDUSTRY	Air conditioning M. Baking	Builer feed: 0+150 ps1 150-250 psi 250 psi and up	Brewing: 50 Light Dark	Canning: Legumes General	Carbonated bev- erages 9 Confectignary Cooling 2 Food, general	Ice (raw water) 2 Laundering	Plastics, clear, undercolored	Paper and pulp:19 Groundwood Kraft pulp Soda and sulfite	HL-Grade	Rayon (viscose) pulp: Production Manufacture Tanning 11	Textiles: General Dyeing 12 Hool scouring 13 Cotton band- age 13	 Mmerican Water Wo. ANo corrosivener Waters with algae Some hardness desi

7 And comparison for the original granter, as low value avore inversion or accress, reausing stroky product.
9 Control of correstreess is necessary as also control of control of

the quality of many wet-processed products, and increases costs for fuel, labor, repairs, and replacements. Most surface waters of the Guadalupe River basin are hard or very hard and will require softening for some industrial applications. Otherwise, the water is suitable for many industrial uses—or can be made suitable with a minimum of treatment.

Irrigation

The suitability of a water for irrigation depends primarily on its chemical composition. However, the extent to which chemical quality limits the suitability of a water for irrigation depends on many factors, such as: the nature, composition, and drainage of the soil and subsoil; the amounts of water used and the methods of application; the kind of crops grown; and the climate of the region, including the amounts and distribution of rainfall. Because these factors are highly variable, every method of classifying waters for irrigation is somewhat arbitrary.

According to the U.S. Salinity Laboratory Staff (1954, p. 69), the most important characteristics in determining the quality of irrigation water are: (1) the total concentration of soluble salts, (2) the relative proportion of sodium to other cations, (3) the concentration of boron or other elements that may be toxic, and (4) the excess of equivalents of bicarbonate over equivalents of calcium plus magnesium.

High concentrations of dissolved salts in irrigation water may cause a buildup of salts in the soil. The increased soil salinity may reduce crop yields drastically by decreasing the ability of the plants to take up water and essential plant nutrients from the soil solution. This tendency of irrigation water to cause a high buildup of salts in the soil is called the salinity hazard of the water. The specific conductance of the water is used as an index of the salinity hazard.

High concentrations of sodium relative to the concentrations of calcium and magnesium in irrigation water can adversely affect soil structure. Cations in the soil solution become fixed on the surface of the soil particles; calcium and magnesium tend to flocculate the particles, whereas sodium tends to deflocculate them. Deflocculation of the soil particles by sodium decreases the permeability of the soil. This tendency to deflocculate soil particles by high sodium concentrations in an irrigation water is called the sodium hazard of the water. An index used for predicting the sodium hazard is the sodium-adsorption ratio (SAR), which is defined by the equation:

where the concentrations of the ions are expressed in equivalents per million.

The U.S. Salinity Laboratory Staff has prepared a classification for irrigation waters in terms of salinity and sodium hazards. Empirical equations were used in developing a diagram, reproduced in modified form as Figure 9, which uses SAR and specific conductance in classifying irrigation waters. This classification, although embodying both research and field observations, should be used only for general guidance because many additional factors (such as availability of water for leaching, ratio of applied water to precipitation, and crops grown) affect the suitability of water for irrigation. With respect to salinity and sodium hazards, waters are divided into four classes-low, medium, high, and very high. The classification encompasses those waters that can be used for irrigation of most crops on most soils as well as those waters that are usually unsuitable for irrigation. Selection of class demarcation is discussed in detail in the publication by the U.S. Salinity Laboratory Staff (1954)

Figure 9,--Classification of Irrigation Waters

The salinity and sodium hazards of water at selected sites in the Guadalupe River basin are given in Table 5 and Figure 9. Because the total dissolved solids and other constituents vary somewhat with change in water discharge, Table 5 shows the sodium and salinity hazards for several discharge ranges. Figure 9 shows that

the sodium hazard of water throughout much of the mainstem Guadalupe River is low, whereas the salinity hazard usually is medium. The sodium hazard of water in tributaries generally is low, but the salinity hazard varies. The salinity hazard of tributaries in the upper half of the basin usually is medium. In the lower half of the basin, the salinity hazard of water in Plum Creek, Peach Creek, and Sandies Creek varies from low to high. During periods of low flow, the salinity hazard of water in these streams usually is high but decreases with an increase in flow. The salinity hazard of water in Coleto

Creek varies inversely with water discharge (usually from low to medium).

Surface water for irrigation in the Guadalupe River basin is being used principally for supplemental irrigation of pastures and of fields producing hay, feed, and forage in Comal, DeWitt, Gonzales, Guadalupe, and Fayette Counties. On the basis of sodium and salinity hazards, surface water of the basin generally is satisfactory for supplemental irrigation of these crops.

Table 5.--Suitability of Waters for Irrigation

STATION (FIG. 10)	STREAM AND LOCATION		DATE	WATER DISCHARGE (CFS)	SALINITY HAZARD	SODIUM HAZARD
6	Johnson Creek near Ingram	June	3, 1966	8.31	Medium	Low
11	Guadalupe River at Comfort	June July	23, 1965 19, 1965	2,030 62.5	do do	Do. • Do.
14	Canyon Reservoir near New Braunfels	June	1, 1966		do	Do.
27	Blanco River at Wimberley	Feb. Apr.	11, 1964 6, 1965	17.4 1,420	do do	Do. Do.
29	San Marcos River at Luling	Feb. June	13, 1964 6, 1965	104 7,210	do do	Do. Do.
30	Plum Creek at Lockhart	Jan. Dec.	3, 1963 3, 1965	4.37 2,710	do do	Do. Do.
32	Plum Creek near Luling	Sept. June	18, 1964 22, 1965	1,040 3.85	Low High	Do. Do.
35	Peach Creek below Dilworth	Apr. Feb.	7, 1964 18, 1965	3.42 4,320	do Low	Do. Do.
36	Sandies Creek near Westhoff	Jan. Jan.	24, 1965 28, 1966	2,310 15.0	do High	Do. Do.
39	Coleto Creek near Schroeder	May May	5, 1964 6, 1966	2.17 1,100	Medium Low	Do. Do.

Explanation:

Low-salinity water-can be used for irrigation of most crops on most soils.

Medium-salinity water-can be used if a moderate amount of leaching occurs.

High-salinity water-cannot be used on soils with restricted drainage.

Low-sodium water-can be used on almost all soils.

Water of the mainstem Guadalupe River also is used for the irrigation of rice in Calhoun County in the Lavaca-Guadalupe coastal basin. Although the concentration of chemical constituents tolerated by rice varies with stage of growth, investigators generally agree that water containing less than 600 ppm of sodium chloride (350 ppm of chloride) is not harmful to rice at any stage of growth (Irelan, 1956, p. 330). Surface water of the Guadalupe River basin generally meets all quality requirements for rice irrigation.

Other criteria for evaluating the suitability of water for irrigation include the boron content and the excess of equivalents of bicarbonate over equivalents of calcium plus magnesium (residual sodium carbonate). The boron concentration in composites of daily samples collected from the Guadalupe River at Victoria during the 1951-56 water years ranged from 0.03 ppm to 0.75 ppm but usually was less than 0.25 ppm. The dischargeweighted concentration of boron in water passing the Victoria station during this period averaged 0.20 ppm. These data indicate generally that the boron concentration in surface waters of the Guadalupe River basin is low. With regard to residual sodium carbonate, surface waters of the basin usually contain an excess of equivalents of calcium plus magnesium over equivalents of bacarbonate. Thus, the residual sodium carbonate usually is zero.

- Alexander, W. H., Myers, B. N., and Dale, O. C., 1964, Reconnaissance investigation of the ground-water resources of the Guadalupe, San Antonio, and Nueces River basins, Texas: Texas Water Comm. Bull. 6409, 106 p., 14 pls., 19 figs.
- American Water Works Association, 1950, Water quality and treatment: Am. Water Works Assoc. Manual, 2d ed., tables 3-4, p. 66-67.
- Gillett, P. T., and Janca, I. G., 1965, Inventory of Texas irrigation, 1958 and 1964: Texas Water Comm. Bull. 6515, 317 p., 6 pls.
- Hastings, W. W., and Broadhurst, W. L., 1944, Contamination of surface streams from oil-field waste in the vicinity of Luling, Texas: U.S. Geol. Survey open-file rept., 5 p., 1 fig.
- Hughes, L. S., and Leifeste, D. K., 1965, Reconnaissance of the chemical quality of surface waters of the Sabine River basin, Texas and Louisiana: U.S. Geol. Survey Water-Supply Paper 1809-H, 71 p., 1 pl., 14 figs.
- _____1967, Reconnaissance of the chemical quality of surface waters of the Neches River basin, Texas: U.S. Geol. Survey Water-Supply Paper 1839-A, 63 p., 4 pls., 9 figs.
- Hughes, L. S., and Rawson, Jack, 1966, Reconnaissance of the chemical quality of surface waters of the San Jacinto River baisn, Texas: Texas Water Devel. Board Rept. 13, 45 p., 2 pls., 11 figs.
- Irelan, Burdge, 1956, Quality of Water, in Jones, P. H., Hendricks, E. L., Irelan, Burdge, and others, Water resources of southwestern Louisiana: U.S. Geol. Survey Water-Supply Paper 1364, p. 323-442.
- Kunze, H. L., and Lee, J. N., 1968, Reconnaissance of the chemical quality of surface waters of the Canadian River basin, Texas: Texas Water Devel. Board Rept. 86, 33 p., 9 figs.
- Langbein, W. B., and Iseri, K. T., 1960, General introduction and hydrologic definitions: U.S. Geol. Survey Water-Supply Paper 1541-A, p. 1-29.
- Leifeste, D. K., 1968, Reconnaissance of the chemical quality of surface waters of the Sulphur River and Cypress Creek basins, Texas: Texas Water Devel. Board Rept. 87, 34 p., 13 figs.
- Leifeste, D. K., and Hughes, L. S., 1967, Reconnaissance of the chemical quality of surface waters of the Trinity River basin, Texas: Texas Water Devel. Board Rept. 67, 65 p., 12 figs.

- Leifeste, D. K., and Lansford, M. W., 1968, Reconnaissance of the chemical quality of surface waters of the Colorado River basin, Texas: Texas Water Devel. Board Rept. 71, 82 p., 13 figs.
- Maier, F. J., 1950, Fluoridation of public water supplies: Jour. Am. Water Works Assoc., v. 42, part 1, p. 1120-1132.
- Rawson, Jack, 1967, Study and interpretation of chemical quality of surface waters in the Brazos River basin, Texas: Texas Water Devel. Board Rept. 55, 113 p., 10 figs.
- Stiff, H. A., Jr., 1951, The interpretation of chemical water analysis by means of patterns: Jour. of Petro. Tech., Oct., p. 15.
- Texas Board of Water Engineers, 1958, Compilation of surface water records in Texas through September 1957: Texas Board Water Engineers Bull. 5807-A, 503 p., 4 pls.
- Texas Water Commission and Texas Water Pollution Control Board, 1963, A statistical analysis of data on oil-field brine production and disposal in Texas for the year 1961 from an inventory conducted by the Texas Railroad Commission: Summary volume, 81 p.
- U.S. Geological Survey, 1960, Compilation of records of surface waters of the United States through September 1950; Part 8, Western Gulf of Mexico basins: U.S. Geol. Survey Water-Supply Paper 1312, 633 p., 1 pl., 2 figs.
- _____1961, Surface water records of Texas, 1961: U.S. Geol. Survey open-file rept.
- _____1962, Surface water records of Texas, 1962: U.S. Geol. Survey open-file rept.

____1963, Surface water records of Texas, 1963: U.S. Geol. Survey open-file rept.

- _____1964a, Compilation of records of surface waters of the United States, October 1950 to September 1960; Part 8, Western Gulf of Mexico basins: U.S. Geol. Survey Water-Supply Paper 1732, 574 p., 1 pl., 2 figs.
- ____1964b, Surface water records of Texas, 1964: U.S. Geol. Survey open-file rept.
- _____1964c, Water quality records in Texas, 1964: U.S. Geol. Survey open-file rept.
- ____1965a, Water resources data for Texas, 1965; Part 1, Surface water records: U.S. Geol. Survey open-file rept.

_____1965b, Water resources data for Texas, 1965; Part 2, Water quality records: U.S. Geol. Survey open-file rept.

____1966, Water resources data for Texas, 1966; Part 1, Surface water records: U.S. Geol. Survey open-file rept.

- U.S. Public Health Service, 1962, Public Health Service drinking water standards: U.S. Public Health Service Pub. 956, 61 p., 1 fig.
- U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. Agriculture Handb. 60, 160 p.

The following U.S. Geological Survey Water-Supply Papers contain results of stream measurements in the Guadalupe River basin, 1903-60:

WATER-SUPPLY YEAR WATER-SUPPLY

1959

1960

763

788

1934

1935

1632

1712

YEAR

Quality-of-water records for the Guadalupe River basin are published in the following U.S. Geological Survey Water-Supply Papers and Texas Water Development Board reports (including reports formerly published by the Texas Water Commission and Texas Board of Water Engineers):

	PAPER NO.		PAPER NO.			
1903 1904	99 132	1936 1937	808 828	WATER YEAR	U.S.G.S. WATER-SUPPLY	T.W.D.B. REPORT NO.
1905	174	1938	858	1940-45	-	*1938-45
1906	210	1939	878	1946	1050	*1946
1915	408	1940	898	1947	1102	* 1947
1916	438	1941	928	1948	1133	1948
1917	458	1942	958	1949	1163	* 1949
1918	478	1943	978	1950	1188	•1950
1919	508	1944	1008	1951	1199	1951
1920	508	1945	1038	1952	1252	•1952
1921	528	1946	1058	1953	1292	*1953
1922	548	1947	1088	1954	1352	• 1954
1923	568	1948	1118	1955	1402	1955
1924	588	1949	1148	1956	1452	Bull. 5905
1925	608	1950	1178	1957	1522	Bull. 5915
1926	628	1951	1212	1958	1573	Bull. 6104
1927	648	1952	1242	1959	1644	Bull, 6205
1928	668	1953	1282	1960	1744	Bull. 6215
1929	688	1954	1342	1961	1884	Bull. 6304
1930	703	1955	1392	1962	1944	Bull. 6501
1931	718	1956	1442	1963	1950	Rept, 7
1932	733	1957	1512	* "Chemica	I Composition of Texas S	urface Waters'' was
1933	748	1958	1562	design	ated only by water year	from 1938 through

- 23 -

Table 6.--Index of Surface-Water Records in the Guadalupe River Basin

*

Refer-		Drainage													Cal	end	lar	Ye	ors													_	
ence no.	Stream and Location	Area (sq. miles)	15	-106	-10		1	911-	-20	í		19	921-	30				193	1-40)		194	1-50	2	_		195!	-60		1	961-	70	 _
1	North Fork Guadalupe River at Farm Road 1340																														281	N OT	
2	North Fork Guadalupe River 0.3 mile above confluence with South Fork Guadalupe River																														381	1.02	
3	South Fork Guadalupe River at State Highway 39																														5 2 3	L D N	
4	South Fork Guadalupe River 0.3 mile above confluence with North Fork Guadalupe River																														203		
5	Guadalupe River at Hunt	276																			 			-	-								
6	Johnson Creek near Ingram	115																			 			-					 				
7	Turtle Creek at Farm Road 689																														586		
8	Verde Creek at mouth																														181	0 8 1	
9	Guadalupe River near Comfort	762									 				Η																		
10	Cypress Creek at State Highway 27, at Comfort																														88.2		
11	Guadalupe River at Comfort	836																		••									 			~~	
12	Guadalupe River near Spring Branch	1,282														•					 -								 P2				
13	Rebecca Creek near Spring Branch	11.0																													4		
14	Canyon Reservoir near New Braunfels	1,425																													~###		
15	Guadalupe River at Sattler	1,422																												~~~			
16	Hueco Springs near New Braunfels	40 M																				000		-				~~~~	 			~	
17	Guadalupe River above Comal River at New Braunfels	1,516																			 					~~~~			 				
18	Bleiders Creek at New Braunfels																												\$ \$			8.5	
19	Panther Canyon at New Braunfels																												88	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~	
20	Dry Comal Creek at New Braunfels																												2 5			~	

Discharge Gage heights only **example**

Gage heights and discharge measurements ======== Reservoir contents ------

Periodic discharge measurements anasococococococo

Daily chemical quality ------ Periodic chemical quality versions Water temperature

24 -

.

Table 6.--Index of Surface-Water Records in the Guadalupe River Basin--Continued

Refer-		Drainage	L															С	ale	end	ar	Ye	ars			-															-
ence no.	Stream and Location	(sq. miles))	1	901-	-10				191	1-2	0			1	921	-30	С				193	-4	0			19	41-	-50				195	1-6	50			196	1-	70	
21	Comal Springs at New Braunfels																					87		8.		3		~	1		1 1				7.8 .		 ~				
22	Comal River at New Braunfels	a117											~~~~			~~~~	04.		ï	1	1				1		İİ										 			~	
23	Guadalupe River at New Braunfels	1,624	200	×							11							1																							
24	San Marcos Springs at San Marcos																												7 4				K J	N R		1-3-					
25	San Marcos River spring flow at San Marcos	a93.0												×00			~~~		~	~	~~~~								~~~~	~	×						 ~				
26	San Marcos River at San Marcos	a93.0								l																								: 5							
27	Blanco River at Wimberley	364															•••													~								~~			
28	Blanco River near Kyle	424																																~			 			-	
29	San Marcos River at Luling	833																														••••		-			 			~	
30	Plum Creek at Lockhart	113																																			 			~	
31	Plum Creek near Lockhart	184																																							
32	Plum Creek near Luling	356																	2																		 			~	
33	San Marcos River at Ottine	1,249																									•••										SA.		000		
34	Peach Creek near Dilworth	445																	•																						
35	Peach Creek below Dilworth	462																																			 		~	-	
36	Sandies Creek near Westhoff	560																			•••																 			~	
37	Guadalupe River at Cuero (b)	4,877																																				:		~	
38	Guadalupe River at Victoria	5,161																												-		-					 				
39	Coleto Creek near Schroeder	365																																		~~~	 ~				
40	Coleto Creek near Victoria	514																											11	1											
Disch	arge ••••••••••••••••• Gage heights only	Ga	age	heig	hts	and	dis	char	rge	me	asu	rem	ent	s								Res	erv	oir	con	tent	s			•••		••									

100

Periodic discharge measurements accorrection

Daily chemical quality _____ Periodic chemical quality reserves. Water temperature

a Normal flow of river comes from springs; drainage area not applicable.

b Published as "near Cuero" 1902-06, and as "below Cuero" 1916-35.

Table 7.-Summary of Chemical Analyses at Daily Stations on Streams in the Guadalupe River Basin

								Bi-								alculat	solids	Hard as C	ness aCO ₃	So-	Specific	
Date of collection	Discharge (cfs)	Silica (SiQ _g)	Iron (Fe)	Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	Po- tas- sium (K)	car- bon- ate (HCO ₃) (a)	Car- bon- ate (CO ₃)	Sulfate (SO ₄)	Chloride (Cl)	Fluo- ride (F)	Ni- trate (NO ₃)	Bo- ron (B)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	pH
							12.	GUADAL	UPE R	IVER NEA	AR SPRING	BRANC	н									
Water year 1942 Jan. 1-10, 1942 Jan. 21-31 July 24-31 Sept. 11-20 Sept. 21, 23-30	$ \begin{array}{r} 161 \\ 144 \\ 96 \\ 233 \\ 162 \end{array} $			64 62 53 69 68	23 22 22 15 18	1 1 1 1 1	2 6 3 1 5	273 272 240 5268 273		22 21 19 12 24	22 21 23 16 17		4.5 4.5 2.8 3.0 3.5		b296 b290 b280 b295 b326	0 - 40 - 39 - 38 - 40 - 44	129 113 72.6 186 143	254 245 223 234 244	30 22 26 14 20	0.3 .4 .4 .3 .4	520 505 461 476 489	
Water year 1943 Oct. 22-31, 1942 Nov. 1-10. Nov. 11-20. Nov. 21-30. Dec. 1-10. Dec. 11-20. Dec. 21-31. Dec. 21-31. Dec. 10. Dec. 10.	381 263 250 316 223 212 261			72 67 68 69 70 72 70	18 21 22 18 19 22 21		7 · 1 4 1 8 1 0	271 279 282 270 280 290 283		18 22 22 19 25 23 20	18 19 18 17 24 20 19		4.0 6.4 3.5 4.0 4.0 4.0 4.0 4.0		b332 b313 b309 b300 b345 b313 b310	45 43 42 41 47 43 42	342 239 209 256 208 179 218	254 254 260 246 252 270 261	32 25 28 24 23 32 28	243353	510 499 515 484 560 535 510	
Water year 1914 Jan. 1-10, 1944 Jan. 1-20 Jan. 21-31 Feb. 1-10	224 212 188 178			60 67 57 63	18 18 19 19	1	2 6 2 4	252 278 239 257		16 17 19 23	17 20 20 20		2 - 8 3 - 0 3 - 2 2 - 5		250 b290 b265 b279	- 34 - 39 - 36 - 38	$ \begin{array}{r} 151 \\ 166 \\ 135 \\ 134 \end{array} $	224 241 220 235	17 13 24 24	.3 .4 .4 .4	460 501 461 473	
							3	18. GU	ADALU	PE RIVER	R AT VICTO	RIA										
Water year 1946 Maximum, Jan: 11-17,1946. Minimum F.b. 21-22, 27 Weighted average.	1,426 4,116 1,827			112 44 69	36 9.1 18	23	81 81 83	249 131 191		79 34 39	455 49 160		4.0 3.5 2.6		1,040 b261 532	1 41	4,000 2,900 2,620	428 147 246	224 40 90	4.9 1.1 2.3	1,950 431 881	
Water year 1947 Maximum. Jan. 13-14.1947. Minimum.	3,260					-	-				455										1,900	
Water year 1948 Maximum, May 19, 1948 Minimum, Aug. 31	855 776					-					695 19										2,590 266	
Water year 1919 Maximum, Apr. 21, 24,1949 Minimum, Apr. 22, 27-30.	5,035 13,780	11 12		73 35	21	-	30	170		20	250 47		6.6 2.8		b674	. 92	9,160 9,750	268 113	129 25		1,180 373	
Water year 1950 Maximum, Apr. 20-25, 1950 Minimum,May30-31 Weighted average	1,200 1,706 1,610 1,061	16 14 15		80 42 60	24 11 17	12	20 22 56	190 172 154 199		52 20 32	256 34 104	0.3	2.5 3.0 2.2		5744 5230 425	1.01 .31 .58	3,430 1,000 1,220	204 298 150 220	48 157 24 56	3.0 .8 1.6	632 1,210 389 711	7.67.8

(Analyses listed as maximum and minimum were classified on the basis of the values of dissolved solids only: values of other constituents may not be extremes. Results in parts per million except as indicated.)

See footnotes at end of table.

15

Table 7	Summary	of Chemical	Analyses at	Daily	Stations on S	Streams in th	e Guadalup	e River	Basin-	Continued	
---------	---------	-------------	-------------	-------	---------------	---------------	------------	---------	--------	-----------	--

.....

					Man		De	Bi-	0						Dis (c.	alculat	solids	Hard as C	ness aCO ₃	So-	Specific	
Date of collection	Discharge (cfs)	Silica (SiQ _e)	Iron (Fe)	Cal- cium (Ca)	ne- sium (Mg)	Sodium (Na)	tas- sium (K)	car- bon- ate (HCO ₃) (a)	bon- ate (CO ₃)	Sulfate (SO ₄)	Chloride (C1)	Fluo- ride (F)	Ni- trate (NO ₃)	Bo- ron (B)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	pH
						38	. GU	ADALUP	E RIVI	ER AT VI	CTORIAC	ontin	ued									
Water year 1951 Maximum. June 23-24,1951. Minimum.	531	30	0.02	88	24	202	+ =	172		58	399	0.6	3.0		ы1,020	1.39	1,460	318	177	4.9	1,670	8.3
Weighted average	542	16	. 08	53	17	52	1.0	195		30	89	.3	2.5	0.23	371	- 24	2,420 543	202	42	1.6	303 648	7.7
Water year 1952 Maximum, Apr. 25-26,1952. Minimum,	1,054	18		85	29	170		191		50	351	. 2	2.0		ъ830	1.13	2,360	331	174	4.1	1,500	8.1
Weighted average	819	13	.05	45	12	36	2.4	166		24	18	.3	2.8	. 08	b179 291	.24	197 643	103	10 26	1.3	291 497	7.4
Water year 1953 Maximum,July 14- 17, 28-30, 1953. Minimum,Aug. 31,	269	20		56	23	119	5.7	159		54	225	. 4	1.8	. 32	b606	. 82	440	234	104	3.4	1,080	7.5
Sept. 1-10 Weighted average	3,740	16 17		35 51	6.4	18 37	4.1	128 179		18 29	22 61	.4	2.8	.14	b187 319	.25	1,890	114	9 38	.7	313 538	7.8
Water year 1954 Maximum, Sept. 13-20,1954 Minimum,Oct.26-31, Nov. 1-2, 1953. Weighted average.	101 4,847 548	24 14 19		58 31 46	24 6.3 14	133 13 37	4.8 4.0 3.4	207 110 179		44 13 27	225 19 58	.3	- 8 3 - 5 3 - 2	. 19	b650 b168 304	. 88	177 2.200 450	243 104 172	74 14 26	3.7	1,130 267 516	8.2
Water year 1955 Maximum, Oct. 21-31, 1954	148	17		50	19	68	3.5	226		34	97	. 4	1.5	.18	b410	. 56	164	203	18	2.1	727	8.2
June 11-20, 1955 Weighted average	722 374	18 18		41 46	6.5 12	24 38	4.6	136 184		23 27	35 51	.3	3.0	.13	223 293	.30	435 296	130 164	18 14	.9	378 507	8.2
Water year 1956 Maximum, June 11-20, 1956 Minimum, May 11-20 Weighted average	57.4 329 132	19 22 16		57 47 56	16 11 16	76 43 55	4.8 4.3 3.9	203 174 235		31 23 30	122 64 72	. 6 . 4 . 4	1.0 2.0 1.1	.16	427 b304 368	- 58 - 41 - 50	66.2 270 131	208 162 206	42 20 13	2.3 1.5 1.7	758 524 639	8.4
Water year 1957 Maximum, July 1-10, 1957.	887	21		65	18	40	3.0	229		41	63		8.1		b404	. 55	968	236	48	1.1	636	8.0
Oct: 23-31, 1956 Weighted average	109 1,973	12 13		29 45	3.0 7.3	13 18	4.9	110 153		9.2 21	$14 \\ 26$.2 4.0		b142 227	.19	41.8 1,210	86 142	0 17	· 6 .7	233 370	8.0
Water year 1958 Maximum, Oct. 4-15, 1957. Minimum,Oct. 17-21 Weighted average	1,513 24,460 3,541	19 9.1	6 .40	74 31 53	$ \begin{array}{c} 14 \\ 3.7 \\ 11 \end{array} $	36 7.4 20	3.9 4.4 3.3	248 110 183		39 11 27	60 10 31		4.5 2.0 6.1		b398 134 264	. 54 . 18 . 36	1,630 8,850 2,520	242 92 177	39 2 27	1.0	642 227 441	8.0

					Mag		De	Bi-	Con						Dis (ca	solved a	ed)	Hard as C:	ness aCO ₃	So-	Specific con-	
Date of collection	Discharge (cfs)	Silica (SiQ _e)	Iron (Fe)	Cal- cium (Ca)	ne- sium (Mg)	Sodium (Na)	tas- sium (K)	car- bon- ate (HCO ₃) (a)	bon- ate (CO ₃)	Sulfate (SO ₄)	Chloride (Cl)	Fluo- ride (F)	Ni- trate (NO ₃)	Bo- ron (B)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	pН
						38.	GUA	DALUPE	RIVE	R AT VIC	TORIACo	ntinu	ed									
Water year 1959 Maximum, Mar. 1-10, 1959. Minimum,May 23-26. Weighted average.	1,523 2,758 1,580	15 9.6 15		72 46 60	16 9.1 14	33 19 25	2.8 3.0 2.8	257 164 219		39 19 28	48 27 35		6.1 2.5 5.0		b376 216 303	0.51 .29 .41	1,550 1,610 1,290	246 152 207	35 18 28	0.9	617 393 511	8.1 7.6
Water year 1960 Maximum, July 5-20, 1960. Minimum, Minimum, 20, 20	1,531	21		76	16	4	16	274		37	64	.3	2.2		b404	. 55	1,670	256	31	1.3	660	7.5
Weighted average	1,764	16		58	13	2	25	215		27	33		3.9		288	. 39	1,370	198	22	.8	481	
Water year 1961 Maximum, Dec. 1-12. 1960. Minimum, Oct.30-31 Weighted average	2,895 18,150 3,865	21 15		83 24 53	17 2.2 11	4	10 8.3 22	292 82 188		38 6.6 24	56 9.0 29	.3	4.9 .5 3.3		b416 b100 258	. 57 . 14 . 35	3,250 4,900 2,690	277 69 177	38 2 23	1.0 .4 .7	694 160 428	7.6 7.4
Water year 1962 Maximum, Dec. 16-31,1961. Minimum,Nov.15-22. Weighted average.	972 4,839 914	•14 15 17		78 38 55	19 7.2 16	4	41 18 35	280 132 210		42 21 34	60 22 47	. 3 . 4	4.9 2.8 3.5		b432 189 321	- 59 - 26 - 43	1,130 2,470 793	272 124 202	43 16 30	1.1 .7 1.1	695 331 537	7.5 7.0 7.4
Water year 1963 Maximum, Sept. 10-15,1963 Minimum, June 18 Weighted average	165 500 565	18 15		58 61	18 15		53 27 31	228 157 230		34 19 31	78 34 42		1.0 1.8 3.4) 3	372 225 316	. 51	166 	218 140 216	32 12 27	1.6 1.0 .9	663 375 538	7.4 7.5 7.5
Water year 1964 Maximum, Apr. 1-30, 1964. Minimum	678	14		52	15	28	3.2	206		30	39	. 5	3.1	5	364	- 50	666	191	0	3.4	500	8.0
Sept. 18-19 Weighted average	997 568	14 13		27 51	5.5 14		12 29	111 203		7.4 26	12 37		2.6	8	134 281	.18	361 431	90 184	0 17	.5 1.2	217 479	$ 8.4 \\ 7.5 $
Water year 1965 Maximum, June 15-30,1965	1,789	13		72	15	;	31	254		33	45		3.5	2	337	. 46	1,630	241	33	. 9	599	7.4
Feb. 16-23 Weighted average.	9,369 1,812	9. 11	4	36 51	4.1 10		12 20	120 183		$\begin{smallmatrix}16\\24\end{smallmatrix}$	11 26	.3	1.8	5	149 236	. 20 . 36	3,770 1,160	107 169	8 19	. 5 . 6	264 418	$7.4 \\ 7.3$

Table 7.-Summary of Chemical Analyses at Daily Stations on Streams in the Guadalupe River Basin-Continued

a Includes the equivalent of any carbonate (CO_3) present.

b Residue at 180°C.

- 28 -

Table 8.--Chemical Analyses of Streams and Reservoirs in the Guadalupe River Basin for Locations Other Than Daily Stations

(Results in parts per million except as indicated)

								Bi-							Di (c	alcula	solids ted)	Hard as Ca	ness aCO ₃	So-	Specific con-	
Date of collection	Discharge (cfs)	Silica (SiQ _s)	Iron (Fe)	Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	Po- tas- sium (K)	car- bon- ate (HCO ₃)	Car- bon- ate (CO ₃)	Sulfate (SO ₄)	Chloride (Cl)	Fluo- ride (F)	N1- trate (NO ₃)	Bo- ron (B)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	pН
						1.	NORTH	FORK	GUADA	LUPE RIV	ER AT FAR	M ROA	AD 134	0								
Mar. 15, 1965	14.2	12		68	14	4.6	0.9	268		4.6	7.9	0.2	4.2		248	0.34		227	8	0.1	437	7.2
			2.	NORTH	FORK G	UADALUPE	RIVE	R 0.3	MILE	ABOVE CO	NFLUENCE	WITH	SOUTH	FORK	GUADALU	PE RIV	ER					
Mar. 16, 1965	24.8			T				256			9.8							228	18		428	7.4
						3. S	OUTH	FORK G	UADAL	UPE RIVE	R AT STAT	E HIG	HWAY	39								
Mar. 15, 1965	10.1	11		72	20	4.7	0.8	314		4.6	8.4	0.2	3.2		279	0.38		262	4	0.1	450	7.5
			4.	SOUTH	FORK O	UADALUPE	RIVE	R 0.3	MILE	ABOVE CO	NFLUENCE	WITH	NORTH	FORK	GUADALU	PE RIV	ER					
Mar. 24. 1965	27.9	5.9		49	22	5.5	0.7	250		7.2	9.9	0.2	0.8		224	0.30		213	8	0.2	403	7.8
								5. G	UADAL	UPE RIVE	R AT HUNT											
July 19, 1965 Nov. 4 Apr. 25, 1966	33.7 38 579	12 11 9.8		50 48 43	19 20 12	6.3 6.2 4.0	$ \begin{array}{c} 1 \cdot 2 \\ 1 \cdot 0 \\ 2 \cdot 1 \end{array} $	244 240 180		6.8 5.6 7.4	10 10 7.4	0.1 .2 .3	0.2 .2 2.0		226 220 177	0.31 .30 .24		203 204 157	3 7 9	0.2 .2 .1	399 405 327	7.8 7.4 7.3
	1	1			1	I		6. JO	HNSON	CREEK N	EAR INGRA	M					1					
Nov. 17, 1964 Apr. 8, 1965 May 9. June 15 July 19	$ \begin{array}{r} 11.3\\12.4\\12.4\\16.6\\9.81\end{array} $	12 10 12 13 16		57 26 56 54 54	20 22 19 22 20		6 1 9 0 9	262 162 264 250 262		11 13 12 12 10	22 22 21 20 22	0.3 .3 .1 .3 .3	1.2 1.2 .2 1.0 .5		268 186 269 255 271	0.36 .25 .37 .35 .37		224 155 218 225 217	10 23 1 20 2	0.5 .4 .6 .3 .6	474 351 481 461 470	7.5 7.6 7.2 7.1 7.7
Sept. 27 Nov. 4 Feb. 17, 1966 June 3	8.24 11.2 9.87 8.31	15 12 8.4 13		41 52 50 54	27 21 20 19	13 13	5 5 1.2 1.4	242 250 241 248		11 9.4 11 8.4	25 23 23 20	.3 .2 .1	.0 .0 .2 .2		253 256 246 251	. 34 . 35 . 33 . 34		214 216 207 213	16 11 10 10	.4 .4 .4	465 470 459 456	7.3 7.6 7.6 7.6
							7.	TURT	LE CR	EEK AT F	ARM ROAD	689										
Mar. 25, 1965	18.7	6.7		62	22	6 - 8	1.1	270		19	14	0.2	2.0		267	0.36		245	24	0.2	441	7.7
								8.	VERD	E CREEK	AT MOUTH											
Mar. 25, 1965	12.9	6.7		74	18	7.0	1.0	276		21	14	0.3	1.8		280	0.38		258	32	0.2	500	7.7
						10.	CYPRE	SS CRE	EK AT	STATE H	IGHWAY 27	, AT	COMFO	RT								
Mar. 25, 1965	4.03	6.4		82	29	1	5	345		33	26	0.4	1.8		364	0.50		324	42	0.4	600	7.5

					Mag		De	Bi-	Can							ssolved	solids ted)	Hard as Ca	ness aCO ₃	So-	Specific con-	
Date of collection	Discharge (cfs)	Silica (SiQ _e)	Iron (Fe)	Cal- cium (Ca)	ne- sium (Mg)	Sodium (Na)	tas- sium (K)	car- bon- ate (HCO ₃)	bon- ate (CO ₃)	Sulfate (SO ₄)	Chloride (Cl)	Fluo- ride (F)	N1- trate (NO ₃)	Bo- ron (B)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	рĦ
							1	1. GU	ADALU	PE RIVER	AT COMFC	RT										
Oct. 12, 1964 Nov. 17 Apr. 8, 1965 May 10 June 15	138 93.3 106 107 127	13 11 5.5 8.6 11		66 61 52 56 54	20 22 23 23 25		13 12 13 14	277 274 251 266 254		18 16 18 18 22	17 19 19 18 20	0.3 .3 .3 .3 .3	5.5 .0 1.2 1.2 1.8		289 276 255 249 270	0.39 .38 .35 .34 .37		247 242 224 234 238	20 18 18 16 30	0.4 .3 .4 .4 .3	498 491 463 497 498	7.7 7.4 7.5 7.5 6.9
June 23 July 19 Nov. 4 Dec 3 June 3, 1966	3.030 62.5 65.2 213 86.3	8.8 13 12 9.6 12		46 58 56 48 62	8.3 22 22 18 24	3.8 9.6 11	$\begin{vmatrix} 3 \cdot 2 \\ 17 \\ 12 \\ 2 \cdot 0 \\ 2 \cdot 0 \end{vmatrix}$	171 262 256 218 282		11 22 18 14 20	5.8 21 20 16 17	.2 .3 .3 .1	3.8 3.8 1.8 1.0 .2		175 286 268 226 287	24 39 36 31 39		149 235 232 194 253	9 20 22 15 22	.1.5.3.3.3.3	306 506 491 405 506	7.0 7.4 7.4 7.3 7.7
							12.	GUADAL	UPE R	IVER NEA	R SPRING	BRANC	н									
Feb. 22, 1961 Mar. 30, 1964	a1,380 144	12 9.6		76 67	21 19		13 11	302 265		21 23	18 17	0.1	10 3.0		b330 280	0.45 .38		276 245	28 28	. 3 . 3	557 496	7.7 7.3
							13.	REBEC	CA CR	EEK NEAF	SPRING E	BRANCH	I									
Mar. 30, 1964	3.31	6.2		51	11	7.1	1.6	190		15	13	0.2	1.2		199	0.27		172	17	0.2	367	7.6
							14.	CANYON	RESE	RVOIR NI	AR NEW BE	AUNFE	ELS									
Oct. 1. 1964 Nov. 2 Mar. 3. 1965 June 2		9.4 10 6.9 7.7 7.6		49 50 64 72 50	12 11 17 15	4.4	10 3.2 12 11	199 194 264 276 208		13 12 15 16	11 8.8 15 15	0.3 .3 .3 .3	0.8 2.2 .5 .2		204 197 261 273 212	0.28 .27 .35 .37		172 170 230 241	8 11 13 15 8	0.3 .1 .3 .3 .4	355 338 456 485 378	7.4 8.0 8.0 7.9 7.4
Feb. 1, 1966 June 1 Sept. 1		9.97.1		63 49 	15 13 	7.8 8.3	2.1 2.2	244 198 241		14 14 12	14 14 13	.1 .3 	1.2 .8 		247 206	· 34 · 28		219 176 214	19 13 16	.2	444 377 425	7.6 7.4 7.8
								15. GL	JADALU	PE RIVE	AT SATTI	ER	_									
Sept. 4, 1962 Dec. 2, 1963	$\begin{array}{c} 17.6\\71.0\end{array}$	13 11		52 61	20 18		11 11	236 242		19 18	16 22	0.3 .3	0.0 1.8		b256 262	0.35 .36		212 226	19 28	0.3	441 468	7.1 7.4
						17. GU	ADALU	PE RIVE	ER ABO	VE COMA	L RIVER AT	NEW	BRAUN	FELS								
Oct. 1, 1964 Mar. 2, 1965 May 3 Nov. 1. Jan. 3, 1966	446 340 297 231 292	10 8.6 7.7 11 9.9		48 80 41 77 78	9.8 14 14 11 14	3 3 3 6 3 7 6 6 0 8 1	2.9 1.1 1.4 1.7 1.6	174 283 169 269 286		11 16 18 12 16	6.4 13 14 10 13	0.0 .2 .2 .2 .3	$\begin{array}{c} 4 \cdot 2 \\ 7 \cdot 2 \\ 2 \cdot 8 \\ 4 \cdot 6 \\ 4 \cdot 5 \end{array}$		182 285 190 266 286	0.25 .39 .26 .36 .39		160 257 160 236 252	17 25 21 16 18	0.1 .2 .3 .2 .2	316 500 343 469 500	7.5 7.3 7.5 7.4 7.4

Table 8.--Chemical Analyses of Streams and Reservoirs in the Guadalupe River Basin for Locations Other Than Daily Stations--Continued

3

								Bi-							Dia (c	ssolved	solids ted)	Hard as Ca	ness aCO3	So-	Specific con-	
Date of collection	Discharge (cfs)	Silica (SiQ _e)	Iron (Fe)	Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	Po- tas- sium (K)	car- bon- ate (HCO ₃)	Car- bon- ate (CO ₃)	Sulfate (SO ₄)	Chloride (Cl)	Fluo- ride (F)	Ni- trate (NO ₃)	Bo- ron (B)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	рĦ
							21.	COMAL	SPRIM	GS AT N	EW BRAUNF	ELS										
May 25, 1934 Apr 10, 1938 June 24, 1941 Sept. 16 Apr. 2, 1942 Jan. 10, 1944 Mar. 23 Oct. 9, 1945 Feb. 1, 1947 Aug. 7, 1951 June 24, 1957 Aug. 8 Oct. 4 Jan. 14, 1958 Apr 9 July 16 Jan. 16, 1959 June 18 Nov. 23 Sept. 29, 1960 Mar 2, 1961		 12 11 11 13 14 12 11 13 14 12 11 13 14 12 11 9 4 	0.02	75 63 73 70 78 74 76 80 74 75 75 75 75 75 75 75 75 75 75	17 17 17 17 17 16 	3 18 4 11 5 6 · 2 2 7 · 2 8 · 1 7 · 6 7 · 6 7 · 6 7 · 7 7 · 7 7 · 7 7 · 5	1 .3 .5 .1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	268 266 272 264 270 270 270 270 270 270 270 270 270 270		30 23 23 24 22 23 24 22 23 24 20 28 22 24 22 22 22 22 22 22 22 22 22 22 22	$\begin{array}{c} 12\\ 13\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14$	$ \begin{array}{c} 0 & 0 \\ - & - \\ - & - \\ $	$\begin{array}{c} \\ 5 \cdot 0 \\ 3 \cdot 7 \\ \\ 4 \cdot 4 \\ 4 \cdot 0 \\ 5 \cdot 5 \\ 5 \cdot 5 \\ 5 \cdot 5 \\ \\ 5 \cdot 6 \\ 4 \cdot 0 \\ 4 \cdot 8 \\ 4 \cdot 8 \\ 4 \cdot 8 \\ 4 \cdot 8 \\ 4 \cdot 8 \\ 4 \cdot 8 \\ 5 \cdot 1 \\ 5 \cdot 3 \\ 6 \cdot 8 \\ 6 \cdot 1 \\ \\ \end{array}$	0.11	267 279 282 280 284 271 289 b292 294 287 b302 b298 b302 b298 b302 b296 286 	0 .36 .37 .38 .38 .38 .39 .37 .39 .40 .40 .40 .40 .41 .41 .41 .41 .39 .40 .39		264 257 227 252 244 264 250 264 282 254 254 254 254 254 254 254 254 254 25		0.1 .5 .1 .1 .1 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	 507 497 502 498 493 501 505 508 502 517 518	$\begin{array}{c} \\ \\ \\ \\ 7.5 \\ \\ 7.4 \\ 7.5 \\ 7.8 \\ 7.4 \\ 7.6 \\ 8.0 \\ 7.4 \\ 7.6 \\ 8.0 \\ 7.5 \\ \\ 7.5 \\ 7.4 \\ 6.9 \\ 6.8 \\ \\ 7.5 \\ 7.1 \\ 7.5 \\ $
Aug. 9 Mar. 7, 1962 Feb. 25, 1965 Aug. 26 Feb. 18, 1966								280 276 286 284 284		22 22 24 23 22	14 14 13 11 12		1111					234 248 256 260	22 28		508 502 508 518 520	7.4 7.3 6.7 7.2
							24.	SAN M	ARCOS	SPRINGS	AT SAN M	ARCOS										
Oct. 4, 1937 May 16, 1947 Mar. 23, 1955 July 12 June 18, 1959	· · · · · · · · · · · · · · · · · · ·	11 13 9.2	0.05	90 90 82 84	15 20 21 	7.1 5.2 10	7 5. 1.	268 4 334 5 309 307 3 307		22 19 17 25	51 22 16 16 20	0.8 1.0 .2	3.0 4.6 8.5	0.15	b335 b349 b334 	0 46 47 45 		284 306 291 278 284	40 38 32	0.4 .2 .1 .3	602 556 563 567	7.2 7.4 7.6 7.1
Nov. 25, 1959 Sept. 30, 1960 Mar. 2, 1961 Aug. 3 Mar. 12, 1962	e 4 4						86 80 20 20	307 298 310 250 304		24 20 23 22 22	20 18 22 22 21		11111					282 268 280 234 276	30 24 26 29 27		579 545 585 503 570	7.3 7.6 7.8 7.3 7.0
Feb. 28, 1963 Sept. 13 Mar. 6, 1964 Aug. 17 May 18, 1965	a 							308 300 316 312 314		22 26 22 23 24	20 20 16 16 20							288 284 290 284 284	36 38 31 28 26		571 571 574 558 569	7.4 7.0 7.6 7.6 7.3
Aug. 26 Feb. 18, 1966 Aug. 24								$308 \\ 304 \\ 310$		24 24 22	17 20 19							290 288 286	38 39 32		578 585 575	6.9 7.3 7.2

Table 8.--Chemical Analyses of Streams and Reservoirs in the Guadalupe River Basin for Locations Other Than Daily Stations--Continued

					Mag		De	Bi-							Dia (c:	alculat	solids ed)	Hard as C	iness aCO ₃	So-	Specific con-	-
Date of collection	Discharge (cfs)	Silica (SiQ _g)	Iron (Fe)	Cal- cium (Ca)	ne- sium (Mg)	Sodiun (Na)	n tas- sium (K)	car- bon- ate (HCO ₃)	bon- ate (CO ₃)	Sulfate (SO ₄)	Chloride (Cl)	Fluo- ride (F)	Ni- trate (NO ₃)	Bo- ron (B)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	рĦ
						25.	SAN 1	ARCOS	RIVER	SPRING	FLOW AT S	SAN MA	RCOS									
July 26, 1965	193	11		38	17		13	166		26	18	0.2	5.0		210	0.29		165	29	0.4	368	7.9
							2	27. BI	LANCO	RIVER AT	WIMBERLE	EY										
Apr. 4, 1962 Aug. 22 Sept. 26 Nov. 28 Jan. 3, 1963	$\begin{array}{r} 42.0\\22.0\\227\\32.7\\46.0\end{array}$	$7.1 \\ 11 \\ 6.4 \\ 12 \\ 8.5$		56 52 46 40 76	17 17 7.0 18 17	7.5 3.3 7.1 7.1	12 0.9 1.5 1.5 .8	218 214 158 171 272		28 17 7.6 26 23	$ \begin{array}{r} 17 \\ 15 \\ 5.8 \\ 14 \\ 14 \\ 14 \end{array} $	0.3 .2 .3 .3	3.5 2.0 1.2 3.8 3.8 3.8		b248 228 157 b210 284	0.34 .31 .21 .29 .39		210 200 144 174 260	31 24 14 34 36	0.4 .2 .1 .2 .2	428 407 273 366 501	7.3 7.3 6.8 7.5 6.9
Apr. 19 June 12 July 18 Aug. 21 Sept. 24	57.8 20.0 13.7 13.6 11.4	12 11 11 11 12		70 52 50 50 52	14 15 19 18 19	7.2 6.5 7.8 7.5 7.8	1.0 1.9 1.6 1.5 1.6	250 200 206 202 208		18 20 26 25 33	14 13 16 14 14	.3 .3 .3 .3	3.2 1.5 .8 .5 1.2		b270 219 234 227 243	.37 .30 .32 .31 .33		232 191 203 199 208	27 28 34 33 37	.22.22	455 372 390 404 421	7.2 7.5 7.2 6.9 7.0
Feb. 11, 1964 June 30 Sept. 9 Nov. 19 Apr. 6, 1965	$ \begin{array}{r} 17.4 \\ 12.4 \\ 10.6 \\ 43.0 \\ 1,420 \end{array} $	7.3 11 13 12 9.7		66 48 45 71 69	18 19 20 15 9.4	6.9 7.9 4.1	1.2 11 11 1.5 1.9	248 204 191 273 240		27 31 40 16 11	14 14 14 11 7.1	.3 .6 .3 .3 .1	4.0 .0 3.2 3.2		267 235 237 271 234	.36 .32 .32 .37 .32		238 198 195 238 211	36 31 38 15 14	.2 .3 .2 .1	469 410 415 463 411	8.0 7.1 7.0 7.7 6.8
Apr. 7 Apr. 9 July 26 Nov. 22 Dec. 27	396 231 81.8 89.2 254	9.6 9.1 10 9.8 7.8		77 78 57 71 61	11 11 15 15 16	5.4 5.8 7.1 7.3	1.4 1.3 11 1.4 1.1	271 270 220 256 232		13 13 22 20 18	9.0 12 14 15 13	.3 .2 .2 .2 .2	2.8 5.3 4.2 3.2 5.8		262 269 241 269 244	. 36 . 37 . 33 . 37 . 33		237 240 204 238 216	15 18 24 28 26	.2 .2 .3 .2 .2	473 467 430 473 423	7.3 7.3 7.4 7.1 7.3
Apr. 13, 1966 July 26	109 59.3	11		54	16	7.7	1.4	210 203		25	14 14	.4	3.2 2.2		232	. 32		200 201	28 34	.2	413 412	7.5 7.6
							29	9. SAI	N MARC	COS RIVEI	R AT LULIN	₹G				1		1		L]		
Feb. 23, 1944 Feb. 25, 1959 Sept. 12, 1961 Mar. 13, 1963 July 17	a323 340 a335 160 97.2	 11 9.9 8.9 12		139 80 100 76 61	40 17 30 20 18		215 52 149 28 18	c271 357 231 266 231		114 24 88 33 26	452 45 292 55 32	0.2 .3 .3 .3	0.0 3.5 3.0 3.2		1,090 405 b846 355 284	1.48 .55 1.15 .48 .39		512 270 373 272 226	289 0 184 54 36	4.1 1.4 3.4 .7 .5	2,100 706 1,410 637 478	7.4 7.2 6.9 7.0
Sept. 23 Dec. 5 Feb. 13, 1964 Mar. 18 July 1	90.9 96.4 104 105 109	$12 \\ 12 \\ 9.2 \\ 9.2 \\ 8.8$		62 78 82 80 60	17 21 19 21 19		19 14 26 24 17	232 272 296 292 237		26 29 31 31 27	31 38 42 46 28	.3 .3 .2 .2	4.5 4.5 3.5 1.8 2.8		286 331 359 357 280	. 39 . 45 . 49 . 49 . 38		224 281 282 286 228	34 58 40 46 34	.6 .4 .7 .6 .5	502 615 624 646 496	$6.9 \\ 6.6 \\ 8.1 \\ 7.3 \\ 7.3$
Sept. 9 Nov. 19 Jan. 23, 1965 Jan. 29 Apr. 7	77.8 147 841 250 1,920	13 11 12 11 12		59 83 61 82 50	19 19 3.4 19 12	6.5	18 20 13 29 1.9	232 300 159 276 188		27 28 48 35 17	31 36 5.7 56 12	.3 .3 .5 .3	1.8 2.2 6.5 3.8 4.8		283 348 228 372 208	. 38 . 47 . 31 . 51 . 28		225 285 166 282 174	35 39 36 56 20	.5 .5 .4 .8 .2	506 608 377 655 368	7.0 7.2 7.2 7.0 7.8
Apr. 13 May 13 June 6 July 22 Apr. 12, 1966	496 527 7,210 269 288	11 10 12 11 		79 68 56 64 	16 16 4.9 19 		17 21 11 21 	279 240 172 252 278		26 32 27 27	29 33 8.2 31 41	.1 .3 .5 .2	3.5 3.8 1.8 5.0		319 302 206 302	. 43 . 41 . 28 . 41 		263 236 160 238 270	34 39 19 31 42	.5 .6 .4 .6	580 539 348 532 609	7.1 7.2 6.9 7.4 7.4

Table 8.-Chemical Analyses of Streams and Reservoirs in the Guadalupe River Basin for Locations Other Than Daily Stations--Continued

÷ –

								Bi-							Dia	alcula	solids ted)	Hard as Ca	ness aCO ₃	So-	Specific	
Date of collection	Discharge (cfs)	Silica (SiQ ₂)	Iron (Fe)	Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	Po- tas- sium (K)	car- bon- ate (HCO ₃)	Car- bon- ate (CO ₃)	Sulfate (SO ₄)	Chloride (Cl)	Fluo- ride (F)	Ni- trate (NO ₃)	Bo- ron (B)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	рĦ
								30. 1	PLUM C	REEK AT	LOCKHART											
Feb. 25, 1959 Apr. 4, 1962 June 4 Oct. 24 Jan. 3, 1963	0.50 65 .90 4.37	$ \begin{array}{c} 18 \\ 1.7 \\ 11 \\ 13 \\ 7.1 \end{array} $		94 82 70 66 88	5.4 12 5.6 4.9 7.6	7 9 6 3 5	6 1 5 5 2	283 199 172 161 202		71 165 103 94 121	67 82 63 21 50	1.1 .7 .4 .7 .6	23 .0 .8 .2 .8		494 b559 b439 b332 b443	0.67 .76 .60 .45 .60		256 254 198 184 251	24 91 56 52 86	2.1 2.5 2.0 1.1 1.4	826 870 691 503 695	7.4 7.0 6.9 6.6 7.1
Apr. 18 May 28, 1964 July 1 Sept. 17 Sept. 18	$ \begin{array}{r} 1.63 \\ 1.17 \\ 1.81 \\ 72.1 \\ 2.71 \end{array} $			99 59 50 64 36	$ \begin{array}{r} 10 \\ 4.6 \\ 3.5 \\ 3.5 \\ 2.0 \\ \end{array} $	6 2 1 1 1	1 8 9 3 4	176 188 173 202 106		202 45 23 28 33	45 17 9.4 3.4 4.5	.7 .6 .5 .8 .7	.2 .5 .0 1.5 .2		b518 258 199 224 152	.70 .35 .27 .30 .21		288 166 139 174 98	$ \begin{array}{r} 144 \\ 12 \\ 0 \\ 9 \\ 11 \end{array} $	1.6 .9 .7 .4 .6	786 443 345 378 254	7.0 7.2 6.8 6.9 7.2
Jan. 22, 1965 Jan. 28 Apr. 6 Apr. 7 Apr. 12	506 35.3 960 61.9 39	11 9.5 11 10 7.0		60 54 49 64 58	8.3 4.0 2.6 4.7 4.2	2 2 1 2 2	4 5 9 2 2	170 153 128 169 180		34 58 42 58 40	37 12 14 17 13	.4 .5 .4 .4	9.0 1.0 4.8 3.5 .2		268 239 206 263 234	. 36 . 33 . 28 . 36 . 32		184 151 133 179 162	45 26 28 41 14	.8 .9 .7 .7	462 399 349 454 413	7.4 6.7 7.3 6.9 6.9
Dec. 3 Dec. 29 June 22, 1966	2,710 12.8 2.43	$ \begin{array}{c} 11 \\ 7.0 \\ 5.9 \end{array} $		56 81 57	2.5 7.3 6.5	12 35 37	$3.8 \\ 4.5 \\ 5.1$	171 224 158		30 82 83	5.8 31 28	. 5 . 6 . 5	4.0 2.2 .2		210 361 301	- 29 - 49 - 41		150 232 168	10 48 39	$\begin{array}{c} \cdot 4 \\ 1 \cdot 0 \\ 1 \cdot 2 \end{array}$	354 598 514	$ \begin{array}{c} 6.9 \\ 7.4 \\ 7.4 \end{array} $
								32.	PLUM	CREEK NE	AR LULING											
Apr. 4, 1961 Sept. 12 Mar. 13, 1963 June 10 July 17	a18.0 a390 9.14 .53 .51	13 9.6 5.5 9.1 11		172 115 164 116 106	24 16 22 13 13	24 23 26 26 22	19 11 14 162 15	366 198 284 400 328		190 94 141 98 94	395 418 490 340 310	0.7 .5 .6 .8 .7	14 3.8 2.5 .8 .0		1,240 b1,080 1,230 1,040 921	$1.69 \\ 1.47 \\ 1.67 \\ 1.41 \\ 1.25$		528 353 500 343 318	228 190 267 15 49	4.7 5.3 5.1 6.2 5.5	2,120 1,780 2,140 1,760 1,560	7.3 7.0 7.5 7.2 7.6
Sept. 23 Dec. 5 Feb. 13, 1964 Apr. 27 July 1	1.26 2.46 3.44 98.2 2.97	13 15 7.0 16 13		60 129 116 107 85	6.4 15 12 11 8.5	11 17 14 11	4 73 18 2 99	244 334 266 277 256		40 81 90 75 61	128 282 245 176 148	- 6 - 6 - 5 - 5 - 6	1.0 3.2 2.8 2.0		483 863 752 636 551	.66 1.17 1.02 .86 .75		176 384 339 312 247	0 110 121 85 37	3.7 3.8 3.5 2.8 3.0	858 1,530 1,330 1,100 971	$\begin{array}{c} 7.3 \\ 7.3 \\ 8.0 \\ 7.1 \\ 7.2 \end{array}$
Sept. 18 Sept. 20 Jan. 29, 1965 Apr. 7 Apr. 13	1,040 50.5 102 5.26 43	9.5 8.8 10 11 10		35 39 58 74 84	2.4 3.6 5.2 5.2 8.9	1 2 4 2 6	12 26 10 29 56	114 114 140 203 214		13 23 43 53 65	10 36 64 32 102	.3 .5 .4	1.2 .2 3.4 3.0 .5		139 193 293 308 442	. 19 . 26 . 40 . 42 . 60		97 112 166 206 246	4 19 52 40 70	.5 1.1 1.3 .9 1.8	238 347 516 541 801	7.0 7.0 7.5 6.8 6.8
May 13 June 18. June 22 Nov. 24 Jan. 31, 1966 June 21.	$110 \\ 34.9 \\ 3.85 \\ 10.7 \\ 22.9 \\ 21.4$	12 13 12 15 6.7 13		67 98 142 90 154 130	$ \begin{array}{r} 6.6 \\ 16 \\ 17 \\ 9.1 \\ 19 \\ 13 \\ \end{array} $	5 14 21 8 164 160	55 12 19 33 4 · 3 5 · 1	170 176 374 236 312 252		54 122 125 58 154 203	80 245 328 132 280 214	- 5 - 4 - 6 - 3 - 5 - 2	3.0 3.2 .8 1.5 4.2 .8		$362 \\ 727 \\ 1,030 \\ 505 \\ 940 \\ 863$.49 .99 1.40 .69 1.28 1.17		194 310 424 262 464 378	54 166 118 68 208 172	1.7 3.5 4.6 2.2 3.3 3.6	$645 \\ 1,270 \\ 1,820 \\ 914 \\ 1,580 \\ 1,450 \end{cases}$	7.1 7.4 7.1 6.9 7.4 6.9

Table 8.--Chemical Analyses of Streams and Reservoirs in the Guadalupe River Basin for Locations Other Than Daily Stations--Continued

Date of collection	Discharge (cfs)				N.		ium tas- ia) sium (K)	Bi-	Car- bon- ate (CO ₃)	Sulfate (SO ₄)		Fluo- ride (F)	Ni- trate (NO ₃)		Dissolved solids (calculated)			Hardness as CaCO ₃		So-	Specific	c
		Silica (SiQ ₂)	Iron (Fe)	Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)		car- bon- ate (HCO ₃)			Chloride (Cl)			Bo- ron (B)	Parts per million	acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	pH t
							3	13. SA	N MAR	COS RIVE	R AT OTTI	NE										
Mar. 13, 1963 July 17 Dec. 5. Mar. 18, 1964 July 1.	d170 d100 99.8 111 125	9.1 11 12 10 10		84 62 84 84 69	19 18 20 21 18		41 29 35 41 28	288 236 294 294 261		40 28 34 39 30	70 47 63 72 42	0.4 .3 .3 .3 .3	$ \begin{array}{c} 0.0 \\ 2.8 \\ 3.0 \\ 2.0 \\ 1.5 \end{array} $		406 314 396 414 327	0.55 .43 .54 .56 .44		288 228 292 296 246	52 35 51 55 32	1.0 .8 .9 1.0 .8	728 531 716 752 583	$ \begin{array}{c} 6.5 \\ 7.3 \\ 7.1 \\ 7.2 \\ 7.2 \\ 7.2 \end{array} $
Sept. 9. Jan. 29, 1965 Apr. 7. Apr. 13. May 13. July 22	79.8 367 2,000 530 628 274	12 9.8 14 11 10 12		60 71 73 81 63 72	19 14 13 16 12 19		28 42 16 25 27 34	228 230 252 272 206 274		30 39 30 32 36 31	48 66 19 44 39 50	.3 .4 .3 .3 .3 .2	1.8 4.2 4.8 3.8 3.2 4.0		311 359 294 347 292 357	. 42 . 49 . 40 . 47 . 40 . 49		228 234 236 268 206 258	40 46 29 45 38 33	.8 1.2 .5 .7 .8 .9	562 609 518 631 526 628	6.9 8.1 7.0 7.0 7.0 7.0
	ц	<u>.</u>					3	15. PE	ACH C	REEK BEL	OW DILWOR	TH				1						
Apr. 2, 1962 May 7. June 4. Sept. 24 Oct. 29	5.13 7.84 140 d.03 205	3 15 1 20 12 5 20 10		172 69 37 53 25	42 15 6.4 8.6 1.8	6.7	55 62 34 34 4.9	174 115 76 118 81		476 148 64 94 13	212 84 44 33 5.8	0.4 .3 .3 .3 .4	0.8 .2 1.0 .2 1.8		1,160 456 236 b331 109	1.58 .62 .32 .45 .15		602 234 119 168 70	459 140 56 71 3	2.7 1.8 1.4 1.1 .3	1,730 763 421 468 184	7.1 6.7 6.4 6.5 6.9
Jan. 7, 1963 Mar. 19 Nov. 12 Dec. 16 Mar. 4, 1964	1.18 .60 30.5 42.9 1,470	3 13) 19 8.6 13 9.2		25 78 26 21 12	$3.1 \\ 12 \\ 3.9 \\ 4.3 \\ 1.5$	4.5	21 60 23 37 4.8	76 150 38 121 37		33 142 76 27 12	16 72 12 14 3.8	.3 .3 .5 .4	.2 .0 3.2 1.5 1.0		149 b478 172 178 67	.20 .65 .23 .24 .09		75 244 81 70 36	13 121 50 0 6	1.1 1.7 1.1 1.9 .3	245 740 240 303 106	$ \begin{array}{r} 6.5 \\ 7.2 \\ 6.1 \\ 6.7 \\ 6.3 \\ \end{array} $
Apr. 7. May 4. Sept. 22. Jan. 23, 1965 Jan. 24.	3.42 1.49 13.5 373 78.6	2 17 9 14 12 9.4 12		$ \begin{array}{r} 118 \\ 64 \\ 18 \\ 19 \\ 14 \end{array} $	28 12 2.0 .6 2.9		73 42 14 16 18	143 154 57 58 57		288 101 23 23 20	106 49 7.4 8.6 9.4	.3 .3 .3 .4	.5 .2 1.5 1.0 4.0		701 358 106 107 109	.95 .49 .14 .15 .15		410 209 53 50 47	292 83 6 2 0	$1.6 \\ 1.3 \\ .8 \\ 1.0 \\ 1.1$	1,080 611 170 175 174	$7.1 \\ 6.7 \\ 6.6 \\ 7.3 \\ 6.7$
Jan. 25 Feb. 18. Apr. 19. Oct. 20 Nov. 12	25.6 4,320 3.33 1,430 109	12 8.1 2 11 10 15		16 7.8 118 9.0 18	2.9 1.6 32 1.3 3.2	2.8 4.6	16 4.5 91 5.1 10	55 30 136 31 62		25 9.2 308 12 18	$ \begin{array}{r} 10 \\ 2.2 \\ 135 \\ 3.4 \\ 6.3 \\ \end{array} $.3 .2 .3 .1 .3	2.2 .5 .2 1.2 .8		111 52 762 62 102	.15 .07 1.04 .08 .14		52 26 426 28 58	7 1 314 2 7	1.0 .2 1.9 .4 .6	$189 \\ 78 \\ 1,200 \\ 95 \\ 161$	$ \begin{array}{r} 6.4 \\ 6.7 \\ 6.9 \\ 6.4 \\ 6.6 \\ \end{array} $
							3	86. SA	NDIES	CREEK N	EAR WESTH	OFF										
Apr. 5, 1962 May 10 June 4 Sept. 27 Nov. 1	28.9 5.80 200 2.1 30.8	10 3 18 11 7 26 11		52 47 20 26 14	$ \begin{array}{r} 13 \\ 12 \\ 4.3 \\ 5.2 \\ 3.8 \\ 3.8 \\ \end{array} $	1	59 04 61 94 12	246 200 107 212 206		95 77 35 29 18	175 105 53 61 75	0.4 .4 .3 .5 .5	1.0 .1 1.8 .5 .2		b654 b491 b260 346 b362	0.89 .67 .35 .47 .49		183 167 68 86 50	0 3 0 0	5.4 3.5 3.2 4.4 6.9	1,110 816 429 564 596	7.1 6.6 6.9 6.5 6.3
Jan. 11, 1963 Mar. 22 Apr. 26 May 27 July 5	6.2 4.4 1.8 .2 5.8	9 17 5 15 2 17 2 39 2 15		25 51 53 42 27	4.2 11 12 5.6 6.0	1 2 2 4	83 37 90 63 69	145 233 512 510 536		46 82 50 42 20	64 137 238 168 458	.4 .4 1.2 .6 1.1	1.8 .0 1.8 .2 2.5		312 548 b923 811 1,260	.42 .75 1.26 1.10 1.71		80 172 182 128 92	0 0 0 1 0 2	4.0 4.5 9.3 10 21	532 933 1,520 1,290 2,160	6.6 6.7 7.7 7.2 7.0
Aug. 1 Sept. 6 Oct. 10 Nov. 15 Dec. 19	1 	2 46 3 46 5 30 0 11 12		35 33 27 18 21	3.0 3.0 5.0 3.6 4.3	2 2 2 2 1	57 51 74 03 18	508 492 560 312 148		41 40 36 28 41	140 138 130 150 114	.6 .5 1.0 .9 .4	$ \begin{array}{r} .2 \\ .0 \\ 1.2 \\ 2.5 \\ .8 \\ \end{array} $		773 754 779 570 384	1.05 1.03 1.06 .78 .52		100 95 88 60 70	0 1 0 1 0 1 0 1 0 1	1 1 3 1 6.1	1,230 1,230 1,290 1,000 693	7.4 7.1 7.2 7.0 6.7

Table 8.--Chemical Analyses of Streams and Reservoirs in the Guadalupe River Basin for Locations Other Than Daily Stations--Continued

Date of collection	Discharge (cfs)	1						Bi-		Sulfate (SO ₄)	Chloride (Cl)	Fluo- ride (F)	Ni- trate (NO3)		Dia	ssolved solids		Hardness as CaCO,		So-	Specific con-	
		Silica (SiQ _g)	Iron (Fe)	Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	Sodium tas- (Na) sium (K)	car- bon- ate (HCO ₃)	bon- ate (CO ₃)					Bo- ron (B)	Parts per million	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	ad- sorp- tion ratio 25°(duct- ance (micro- mhos at 25°C)	- pH o- at
36. SANDIES CREEK NEAR WESTHOFFContinued																						
Feb. 27, 1964 Mar. 4. Sept. 23. Jan. 5, 1965 Jan. 24.	78.2 514 26.7 3.10 2,310	13 11 13 15 9.3		$ \begin{array}{r} 16 \\ 12 \\ 11 \\ 32 \\ 8.5 \end{array} $	4.6 2.9 5.5 6.8 2.6	111 33 122 29 1	2 11 19 3	204 72 96 520 39		19 18 11 28 13	80 22 156 212 7.8	0.7 .1 .5 .7 .4	$ \begin{array}{c} 1 & 5 \\ 1 & 0 \\ 1 & 5 \\ 1 & 2 \\ 4 & 2 \end{array} $		347 133 366 851 78	0.47 .18 .50 1.16 .11		59 42 50 108 32	00000	$ \begin{array}{r} 6.3 \\ 2.1 \\ 7.4 \\ 12 \\ 1.0 \\ \end{array} $	616 237 676 1,420 131	6.9 6.5 6.9 7.9 6.5
Jan. 25 Jan. 26 Feb. 7 Mar. 17 Apr. 21	410 86.9 1,220 9.69 6.13	$ \begin{array}{c} 11 \\ 12 \\ 9.2 \\ 14 \\ 17 \end{array} $		12 14 9.0 78 65	2.2 2.7 2.3 25 16	1 2 1 15 24	9 16 14 13	48 58 38 240 404		18 23 14 150 95	14 20 10 205 230	· 3 · 2 · 3 · 4 · 6	2.8 2.2 1.2 .8 1.5		103 129 79 750 867	.14 .18 .11 1.02 1.18		39 46 32 298 228	0 0 1 101 0	$ \begin{array}{c} 1 \cdot 3 \\ 1 \cdot 7 \\ 1 \cdot 1 \\ 4 \cdot 0 \\ 7 \cdot 0 \end{array} $	176 222 137 1,270 1,460	$ \begin{array}{r} 6.4 \\ 6.6 \\ 6.5 \\ 7.4 \\ 7.0 \\ \end{array} $
May 19 Nov. 17 Dec. 16 Jan. 28, 1966 May 11	1,330 10.8 438 15.0 122	13 19 15 14 14		$ \begin{array}{r} 10 \\ 44 \\ 11 \\ 69 \\ 25 \\ \end{array} $	2.2 9.7 2.7 14 5.0	1 11 23 197 28	5 7 6.2 7.4 8.1	44 182 48 338 94		13 70 13 121 33	11 129 30 190 32	- 2 - 3 - 3 - 4 - 2	. 5 . 2 . 8 . 2 . 2		87 478 e126 f780 192	.12 .65 .17 1.06 .26		34 150 39 230 83	0 1 0 6	$ \begin{array}{c} 1 & 1 \\ 4 & 2 \\ 1 & 6 \\ 5 & 7 \\ 1 & 3 \end{array} $	141 855 201 1.320 327	6.3 6.7 6.5 7.5 7.0
	39. COLETO CREEK NEAR SCHROEDER																					
Apr. 4. 1962 May 10. June 4. July 17. Sept. 27.	5-23 5.79 247 2.07 7.94	21 22 12 30 24		71 71 52 60 76	$ \begin{array}{r} 11 \\ 9.5 \\ 3.4 \\ 7.9 \\ 8.0 \\ \end{array} $	8 6 2 6 5	12 14 17 19	215 212 140 186 226		33 26 5.8 23 26	134 109 58 109 93	0.4 .4 .2 .4 .5	0.0 .0 .1 .0 .0		b476 406 228 b412 b428	0.65 .55 .31 .56 .58		222 216 144 182 222	46 42 29 30 38	2.4 1.9 1.0 2.2 1.6	805 741 427 683 676	7.3 7.2 6.6 7.4 7.3
Nov. 1 Dec. 3 Mar. 20, 1963 May 28 July 3	2.09 156 3.69 d.09 88.8	28 21 20 31 11		61 69 71 72 37	9.7 8.7 12 9.1 1.9	7 8 8 7 1	4 10 14 0 6	177 202 205 225 114		30 35 33 24 7.0	124 125 146 113 22	.5 .5 .4 .2	.0 3.0 .0 .0 2.0		b436 b457 b496 430 153	. 59 . 62 . 67 . 58 . 21		192 208 226 217 100	47 42 58 32 7	2.3 2.4 2.4 2.1 .7	731 785 826 734 263	7.5 6.7 7.4 7.2 6.7
Sept. 4 Nov. 13 Dec. 17 Feb. 25, 1964 May 5	d.18 .22 16.6 6.99 2.17	31 29 11 15 15		70 86 35 70 56	9.4 8.1 3.8 8.9 10	6 6 2 5 7	2 5 6 8 3	232 280 104 208 170		19 20 12 27 25	97 98 43 98 123	.4 .4 .2 .4 .3	.0 .0 .5 .0 .0		403 444 182 379 386	. 55 . 60 . 25 . 52 . 52		213 248 103 211 180	23 18 18 40 41	$ \begin{array}{c} 1.8 \\ 1.1 \\ 1.7 \\ 2.4 \end{array} $	698 773 338 682 713	7.1 7.0 6.6 7.3 7.0
July 16 Aug. 8 Aug. 9 Aug. 9 Sept. 18	22 3,000 228 143 239	32 6.5 10 8.6		63 46 52 20	9.5 2.2 3.0 1.7	4.4 1 5.8	8 3.0 7 3.2	216 154 172 136 73		20 3.6 6.6 	102 5.0 21 17 6.4	-6 -2 -3 	.0 .0 .0 .0 1.2		401 147 195 86	.55 .20 .27 .12		196 124 142 113 57	19 0 1 2 0	2.1 .2 .6 	694 266 349 287 147	7.0 6.7 7.0 7.0 6.9
Sept. 25 Jan. 7, 1965 Feb. 9. Mar. 17. Apr. 21	$3.98 \\ 1.48 \\ 34.8 \\ 11.0 \\ 4.91$	20 19 13 13 24		48 56 47 76 69	5.4 8.4 4.1 9.4 12	3 6 2 6 7	13 50 16 55 76	158 178 158 232 200		12 20 11 30 35	50 96 34 104 132	. 3 . 3 . 3 . 4 . 4	.0 .0 .8 .0 .2		$247 \\ 348 \\ 214 \\ 412 \\ 447$. 34 . 47 . 29 . 56 . 61		142 174 134 228 222	12 28 5 38 58	1.2 2.0 1.0 1.9 2.2	433 600 376 741 812	7.2 8.0 7.5 7.8 7.0
May 21 May 25 Nov. 17 Dec. 17 May 6, 1966	$154 \\ 54.5 \\ 4.91 \\ 82.8 \\ 1,100$	$ \begin{array}{r} 14 \\ 22 \\ 25 \\ 15 \\ 9.4 \end{array} $		38 66 70 35 24	$3.2 \\ 6.7 \\ 10 \\ 3.9 \\ 2.0$	21 10	4 18 14.5 4.5	132 206 216 116 86		7.0 17 25 10 3.6	16 62 87 34 16	· 1 · 4 · 3 · 2 · 2	·2 ·2 ·2 ·5 ·2		158 313 374 181 112	21 43 51 25 15		108 192 216 103 68	0 23 39 8 0	.6 1.2 1.5 .9 .5	276 564 671 317 200	7.4 7.1 7.2 6.8 7.1
June 16 Sept. 27	21.3 2.39	27		80	12	103 -	5.0	224 215		41 23	180 100	.3	.0		558	.76		249 204	66 28	2.8	986 693	7.5 7.7

Table 8,--Chemical analyses of streams and reservoirs in the Guadalupe River basin for locations other than daily stations--Continued

a Mean daily discharge. b Residue at 180° C C Includes the equivalent of 14 parts per million carbonate (CO₃). d Field estimate.

e Includes 0.12 parts per million strontium (Sr). f Includes 0.63 parts per million strontium (Sr) and 0.1 parts per million lithium (Li).

35

Table 9.--Reservoirs With Capacities of 5,000 Acre-Feet or More in the Guadalupe River Basin

(The purposes for which the impounded water is used are indicated by the following symbols: M, municipal; P, hydroelectric power; FC, Flood control; R, recreation.)

NAME OF RESERVOIR	YEAR OPERATION BEGAN	STREAM	^a TOTAL STORAGE CAPACITY (ACRE-FEET)	OWNER OR OPERATOR	COUNTY	USE
Canyon Reservoir	1964	Guadalupe River	740,900	Guadalupe Blanco River Authority, U.S. Army Corps of Engineers	Comal	M,FC, R
Lake Dunlap	1928	do	5,900	Guadalupe Blanco River Authority	Guadalupe	Ρ
Lake McQueeney	1928	do	5,000	do	do	Р
H-4 Reservoir	1931	do	6,700	do	Gonzales	P

^a Total storage capacity is that capacity below the lowest outlet or spillway and is based on the most recent reservoir survey available.