TEXAS WATER DEVELOPMENT BOARD

REPORT 87

RECONNAISSANCE OF THE CHEMICAL QUALITY OF SURFACE WATERS OF THE SULPHUR RIVER AND CYPRESS CREEK BASINS, TEXAS

By

Donald K. Leifeste United States Geological Survey

Prepared by the U.S. Geological Survey in cooperation with the Texas Water Development Board

December 1968

T.

TABLE OF CONTENTS

	Page
ABSTRACT	1
INTRODUCTION	2
SULPHUR RIVER AND CYPRESS CREEK DRAINAGE BASINS	2
General Description	2
Population and Municipalities	5
Economic Development	5
Development of Surface-Water Resources	5
CHEMICAL QUALITY OF THE WATER	6
Chemical-Quality Records	6
Streamflow Records	8
Environmental Factors and Their Effects on the Chemical Quality of the Water	8
Geology	8
Stream flow	10
Activities of Man	11
Relation of Quality of Water to Use	11
Domestic Purposes	13
Industrial Use	13
Irrigation	13
Geographic Variations in Water Quality	16
Dissolved Solids	16
Chloride	17
Hardness	17
Other Constituents	17
Water Quality in Reservoirs	17
Texarkana Reservoir	17

TABLE OF CONTENTS (Cont'd.)

	Page
Ellison Creek and Johnson Creek Reservoirs	17
Lake O' the Pines	17
Water Quality at Potential Reservoir Sites	17
Cooper	17
Sulphur Bluff 1	18
Sulphur Bluff 2	18
Naples 1	18
Naples 2	18
Texarkana Enlargement	18
Franklin County and Titus County	18
Marshall	18
Black Cypress	18
Problems Needing Additional Investigation	18
REFERENCES	19

TABLES

1.	Reservoirs with Capacities of 5,000 Acre-Feet or More in the Sulphur River and Cypress Creek Basins, December 31, 1967	6
2.	Source and Significance of Dissolved Mineral Constituents and Properties of Water	14
3.	Water-Quality Tolerances for Industrial Applications	15
4.	Index of Surface-Water Records in the Sulphur River and Cypress Creek Basins	22
5.	Summary of Chemical Analyses at Daily Stations on Streams in the Sulphur River and Cypress Creek Basins	23
6	Chemical Analyses of Streams and Reservoirs for Locations Other Than Daily Stations	24

FIGURES

1.	Index Map Showing River Basins and Coastal Areas	3
2.	Map Showing Precipitation and Runoff	4
3.	Graph Showing Average Annual Runoff, Drainage Area, and 1960 Populations of Major River Basins as Percentages of State Totals	5
4.	Map Showing Major Reservoirs and Potential Damsites	7

TABLE OF CONTENTS (Cont'd.)

5.	Map Showing Geology and Chemical Composition Of Surface Water	9
6.	Graph Showing Relation of Dissolved Solids to Water Discharge for South Sulphur River Near Cooper	10
7.	Duration Curves for Dissolved Solids and Water Discharge for South Sulphur River Near Cooper, Water Years 1959-66	11
8.	Photographs Showing Effects of Oil-Field Pollution in the Little Cypress Creek Watershed	12
9.	Diagram for Classification of Irrigation Waters	16
10.	Map Showing Oil Fields and Location of Streamflow and Chemical-Quality Data-Collection Sites	29
11.	Map Showing Dissolved-Solids Concentration of Surface Water	30
12.	Map Showing Chloride Concentration of Surface Water	31
13.	Map Showing Hardness of Surface Water	32

v

Page

RECONNAISSANCE OF THE CHEMICAL QUALITY OF SURFACE WATERS OF THE SULPHUR RIVER AND CYPRESS CREEK BASINS, TEXAS

ABSTRACT

The Sulphur River and Cypress Creek basins are adjacent basins in the northeast corner of Texas. The combined drainage area in Texas is 6,370 square miles. Both basins are completely within the West Gulf Coastal Plain section of the Coastal Plain physiographic province. The topography is characterized by irregular rolling and hilly uplands and flat flood plains.

The climate of the study basins ranges from moist subhumid to humid. The average annual precipitation ranges from 42 inches in the west to 48 inches in the east and averages about 45 inches. About one-fourth of the precipitation appears in the streams as runoff.

Surface water in the Sulphur River and Cypress Creek basins is generally of good chemical quality and is suitable for most municipal, industrial, and agricultural purposes.

The kinds and quantities of minerals dissolved in surface waters of the basins are related principally to the geology of the runoff area and to rainfall and streamflow characteristics, but is also affected by industrial activities.

The rocks exposed in the basins are sedimentary deposits of Cretaceous and Tertiary age, composed mainly of sand, marl, chalk, limestone, and clay. Throughout much of the basins, abundant rainfall has leached much of the readily soluble material from the exposed rocks and soils, and the water in streams is usually low in concentration of dissolved materials. Water from the Cretaceous and Tertiary rocks in the Sulphur River basin is generally of a mixed type containing less than 250 ppm (parts per million) dissolved solids, except in the White Oak Creek subbasin where oil-field drainage intermittently degrades the quality of the water. In the Cypress Creek basin, the Cretaceous rocks contribute a sodium chloride type water that generally contains less than 250 ppm dissolved solids.

The chloride content of the surface waters is generally less than 25 ppm. Higher concentrations are found in White Oak Creek near the Talco oil field and in Glade Creek, a tributary to Little Cypress Creek, where oil-field drainage is affecting the quality of the water.

Surface water of the basins ranges from soft to hard. The South Sulphur, North Sulphur, and Sulphur Rivers usually contain moderately hard water and White Oak Creek has hard water. Cypress Creek has moderately hard water in its upper reaches and soft water downstream.

All the reservoirs in the basins contain water of very good quality. The dissolved-solids concentration is usually less than 150 ppm. Water available for storage at potential reservoirs is also of very good quality.

The Sulphur River and Cypress Creek basins are free of serious water-quality problems. Continued municipal and industrial growth will increase the wastedisposal burdens of the streams, and planned impoundments will cause a reduction in the streamflow which now aids in waste assimilation. As the water resources of the basins are developed, the magnitude and significance of the probable changes in water quality will necessitate studies of the resulting problems.

RECONNAISSANCE OF THE CHEMICAL QUALITY OF SURFACE WATERS OF THE SULPHUR RIVER AND CYPRESS CREEK BASINS, TEXAS

INTRODUCTION

The investigation of the chemical quality of the surface waters of the Sulphur River and Cypress Creek basins is part of a statewide reconnaissance study. Each major river basin in the State is being studied and a report prepared presenting the results of the study and a summary of all available chemical-quality data. The area of this report and the river basins for which reports are published are shown on Figure 1.

The purpose of this report is to present the available information on the water quality of the Sulphur River and Cypress Creek basins that will further proper development, control, and use of the water resources of the area. In the study the following items were considered: the nature and amounts of mineral constituents in solution; the geologic, hydrologic, and cultural influences that determine water quality; the amount and probable source of the salt discharged by the streams; and the suitability of the water for domestic, industrial, and irrigation use.

A network of daily chemical-quality stations on principal streams in Texas is operated by the U.S. Geological Survey in cooperation with the Texas Water Development Board and with other federal and local agencies. This network has not been adequate to inventory completely the chemical quality of the surface waters of the State. To supplement the information being obtained by the network, a cooperative statewide reconnaissance by the U.S. Geological Survey and the Texas Water Development Board was begun in September 1961. In this reconnaissance, samples for chemical analysis are collected periodically at numerous sites throughout Texas so that some quality-of-water information will be available for locations where waterdevelopment projects are likely to be built. These data aid in the delineation of areas having water-quality problems and in the identification of probable sources of pollution, thus indicating areas where more detailed investigations are needed.

SULPHUR RIVER AND CYPRESS CREEK DRAINAGE BASINS

General Description

The Sulphur River and Cypress Creek basins are adjacent basins in the northeast corner of Texas. The combined area is bordered on the east by the states of Arkansas and Louisiana, on the south and west by the Sabine River basin, and on the north by the Red River basin (Figure 1).

The Sulphur River is formed at the extreme eastern edge of Delta County by the junction of the North and South Sulphur Rivers. The South Sulphur River has its source in south-central Fannin County and flows eastward about 60 miles to its junction with the North Sulphur River. The North Sulphur River has its source in southeastern Fannin County and flows eastward about 50 miles to its junction with the South Sulphur River.

The Sulphur River, thus formed, flows eastward about 75 miles and crosses the Arkansas boundary at the Cass-Bowie County line, joining the Red River about 15 miles southeast of the Texas-Arkansas boundary. The Sulphur River, which drains 3,558 square miles in Texas, has two major tributaries, Cuthand Creek and White Oak Creek.

Cypress Creek has its source in southeastern Hopkins County and flows eastward into Caddo Lake at the Louisiana boundary. Little Cypress Creek, the major tributary, rises in northeastern Wood County and flows eastward about 70 miles before joining Cypress Creek about 12 miles west of the Texas-Louisiana boundary. Of the many small tributaries, Black Cypress Bayou, Frazier Creek, and Black Bayou are the most significant. The drainage area in Texas of the Cypress Creek basin totals 2,812 square miles.

The study area is completely within the West Gulf Coastal Plain section of the Coastal Plain physiographic province. Low relief and a gentle gulfward slope of the land surface characterize this section. Local topographic

Figure 1 .-- Index Map Showing River Basins and Coastal Areas

features are irregular rolling and hilly uplands and flat flood plains and terraces. The streams have wide, nearly flat flood plains bounded by a series of terraces, which may be more than 100 feet higher than the stream channel.

The climate of the study basins ranges from moist subhumid to humid (Thornthwaite, 1952, p. 32). The boundary between the moist subhumid and humid belts extends across Camp and Titus Counties; east of the boundary the climate is humid. The average annual precipitation ranges from 42 inches in the west to 48 inches in the east and averages about 45 inches. Mean annual precipitation in the study basins and average (normal) monthly precipitation at two U.S. Weather Bureau stations are shown on Figure 2. Precipitation is fairly evenly distributed throughout the year with April and May usually the wettest months and August, September, and October the driest. Runoff is defined as that part of the precipitation appearing in surface streams, and is the same as streamflow unaffected by artificial storage or diversion (Langbein and Iseri, 1960, p. 17). Temperature, seasonal distribution of rainfall, storm intensity, infiltration rates, channel configuration, and types and density of vegetation affect the amount of runoff from a drainage basin.

About one-fourth of the precipitation in the Sulphur River and Cypress Creek basins appears in the streams as runoff. The average annual runoff in the Sulphur River basin ranges from about 9 inches at the headwaters in Fannin County to about 13 inches at the Texas-Arkansas line. Annual runoff measured at the former gaging station Sulphur River near Darden for the 33-year period 1924-56 is given on Figure 2 as mean discharge in cubic feet per second and as inches per year. The average annual runoff was 1,670,000 acre-feet (11.2 inches) and ranged from a minimum of 353,100

acre-feet (2.4 inches) in 1925 to a maximum of 4,025,000 acre-feet (27.2 inches) in 1945.

The average annual runoff in the Cypress Creek basin ranges from about 11 to 16 inches but due to differences in physiography and surface geology does not vary in proportion to annual average rainfall. Annual runoff measured at the former gaging station Cypress Creek near Jefferson for the 35-year period 1925-59 is given on Figure 2 as mean discharge in cubic feet per second and as inches per year. The average annual runoff was 501,600 acre-feet (11.1 inches) and ranged from a minimum of 110,000 acre-feet (2.4 inches) in 1925 to a maximum of 1,346,000 acre-feet (29.7 inches) in 1958.

Population and Municipalities

The Sulphur River and Cypress Creek basins constitute about 2.4 percent of the area of Texas and have about 2.2 percent of the State's population. The population of the study basins in 1965 was about 222,000; 130,000 in the Sulphur River basin and 92,000 in the Cypress Creek basin. More than half of the people in the basins live in urban areas. The cities in the basin with populations of more than 2,500 are listed in the following table.

Sulphur River basin

CITY	POPULATION*	CITY	POPULATION*
Texarkana,			
Texas	31,490	New Boston	3,750
Sulphur Springs	10,400	Clarksville	3,700
Commerce	6,200		

Cypress Creek basin

CITY	POPULATION*	CITY	POPULATION*		
Mt. Pleasant	10,450	Atlanta	4,100		
Gilmer	4,560	Daingerfield	3,600		
Pittsburg	4,120	Jefferson	2,900		

* Population estimates for 1965, from Texas Almanac, 1966-67 edition.

Economic Development

Agriculture in the Sulphur River and Cypress Creek basins is limited chiefly to livestock raising and truck farming. Some cotton, grain, and livestock feed is grown mainly in the extreme western part of the Sulphur River basin.

Oil production and processing, lumbering and associated lumber processing plants, and various light manufacturing plants form the economic base in the central and eastern parts of the study basin. Hunting, fishing, and associated recreational activities have developed into substantial income producing activities, especially in the vicinity of Texarkana Reservoir, Lake O' the Pines, and Caddo Lake.

Development of Surface-Water Resources

The Sulphur River and Cypress Creek basins constitute only 2.4 percent of the total area of Texas but have 10 percent of the total runoff for the State. Figure 3 gives the average annual runoff, drainage area, and population of each major river basin in Texas, as percentages of the State totals. Only the Sabine and

Figure 3.--Average Annual Runoff, Drainage Area, and 1960 Populations of Major River Basins in Texas, as Percentages of State Totals Neches River basins have runoff-population ratios as favorable as the Sulphur River and Cypress Creek basins.

The surface-water resources of the study basins, especially the Sulphur River basin, are to a great extent undeveloped. Texarkana Reservoir, owned by the U.S. Army Corps of Engineers, is the largest reservoir in the area. Although the 2,654,300 acre-feet capacity reservoir was built primarily for flood control, it serves as a source of municipal supply for the cities of Texarkana, Texas, and Texarkana, Arkansas. Lake O' the Pines and Caddo Lake, both on Cypress Creek, are the only other large reservoirs. Table 1 lists all the reservoirs with more than 5,000 acre-feet capacity and gives their capacities and uses. Figure 4 shows the locations of the existing reservoirs, of Cooper Reservoir which Congress has authorized for construction, and a number of potential damsites which have been considered by various agencies.

The Soil Conservation Service of the U.S. Department of Agriculture administers a program designed to develop flood-prevention and land-treatment measures on subwatersheds having less than 250,000 acres in drainage area. In the Sulphur River basin, 24 floodwaterretarding structures partly controlling runoff from 56,700 acres have been constructed. Because of the small direct monetary damage from flooding, no floodwater-retarding structures have been constructed in the Cypress Creek basin.

CHEMICAL QUALITY OF THE WATER

Chemical-Quality Records

The collection of chemical-quality data on surface water of the Sulphur River and Cypress Creek basins by the U.S. Geological Survey began in 1947 when a sampling station was established on the Sulphur River near Darden. This station was discontinued in 1950, and no daily stations were operated until 1957 when a station was established on the South Sulphur River near Cooper. The Cooper station was discontinued in September 1966 and a new station, Sulphur River near Talco, was established.

Collection of chemical-quality data for this reconnaissance began in 1964 and continued through July 1967. Samples were collected periodically from most of the principal streams and reservoirs. Numerous miscellaneous samples have been collected by the U.S. Geological Survey in earlier years and the results of the analyses of these samples are included in this report. Discharge measurements were usually made when a sample was collected.

The periods of record of all data-collection sites are shown in Table 4 and the locations are shown on Figure 10. The chemical-quality data for the daily stations are summarized in Table 5, and the complete records are published in an annual series of U.S. Geological Survey Water-Supply Papers and in reports of

Table 1.--Reservoirs with Capacities of 5,000 Acre-Feet or More in the Sulphur River and Cypress Creek Basins, December 31, 1967

(The purpose for which the impounded waters are used is indicated by the following symbols: M, municipal; I, industrial; FC, flood control; R, recreation.)

RESERVOIR	DATE COMPLETED	STREAM	CAPACITY ^a (ACRE-FEET)	OWNER	COUNTY	USE
River Crest	1953	Sulphur (off channel)	7,200	Texas Power & Light Co.	Red River	1
Texarkana	1957	Sulphur River	2,654,300	U.S. Army Corps of Engineers	Bowie, Cass, Morris, Titus, Red River	M,FC
Ellison Creek	1943	Ellison Creek	24,700	Lone Star Steel Co.	Morris	1
Johnson Creek	1961	Johnson Creek	10,100	Southwestern Electric Power Co.	Marion	I,R
Lake O' the Pines	1959	Cypress Creek	842,100	U.S. Army Corps of Engineers	Marion, Camp, Morris, Upshur, Harrison	M,I, FC,R
Caddo Lake	1914	Cypress Creek	175,000	do	Harrison, Marion	R

^a Total capacity is that capacity below the lowest uncontrolled outlet or spillway and is based on the most recent reservoir survey available.

the Texas Water Development Board (see table in references). Results of all the periodic and miscellaneous analyses are given in Table 6.

The Texas State Department of Health makes available to the U.S. Geological Survey the data collected in its statewide stream-sampling program. The data-collection sites are listed in the following table. Most of them are at U.S. Geological Survey gaging stations and the numbers refer to locations on Figure 10.

REFERENCE TEXAS STATE DEPARTMENT OF HEALTH NO. DATA-COLLECTION SITE

3	Sulphur River near Talco
10	White Oak Creek near Omaha
11	Sulphur River near Darden
	Sulphur River near Maud
17	Cypress Creek near Pittsburg
21	Cypress Creek near Jefferson
~	Cypress Creek at Jefferson
24	Black Cypress Bayou near Jefferson
27	Little Cypress Creek near Jefferson

Streamflow Records

Streamflow in the Sulphur River and Cypress Creek basins was measured as early as 1924 when the U.S. Geological Survey established streamflow stations on the Sulphur River near Darden and on Cypress Creek near Jefferson. Over 30 years of continuous record was collected at both sites before the construction of reservoirs forced the discontinuance of both stations. In 1966 the Geological Survey operated 9 streamflow stations in the study basins, 5 of which have been operated for over 15 years. The U.S. Army Corps of Engineers maintains reservoir-content gages on Texarkana Reservoir and Lake O' the Pines and has made numerous discharge measurements at various sites in the study basins.

The periods of record for all the streamflow stations are given in Table 4 and the locations are shown on Figure 10. Records of discharge and stage of streams, and stage and contents of lakes and reservoirs from 1924 to 1960 have been published in the annual series of U.S. Geological Survey Water-Supply Papers (see table in references). Beginning with the 1960 water year, streamflow records have been released by the Geological Survey in annual reports on a State boundary basis (U.S. Geological Survey, 1961, 1962, 1963, 1964b, 1965, 1966). Summaries of discharge records giving monthly and annual totals have been published (U.S. Geological Survey, 1960, 1964a; Texas Board of Water Engineers, 1958).

Environmental Factors and Their Effects on the Chemical Quality of the Water

All water from natural sources contains mineral constituents dissolved from the rocks and minerals of the earth's crust. The water may run into streams quickly and dissolve only a small amount of material, or infiltrate to ground-water reservoirs and eventually be discharged to a stream and thereby be more mineralized. Many environmental factors determine the chemical quality of a water, the most important of which are geology, patterns and characteristics of streamflow, and the activities of man.

Waters usually are classified in various ways to illustrate similarities and differences in composition. In the following discussions which relate chemical quality of water to environmental factors, water is classified on the basis of geochemical type (principal chemical constituents) and hardness.

Waters are classified as to geochemical type on the basis of the predominant cations and anions in equivalents per million. For example, water is referred to as a sodium chloride type if the sodium ion constitutes 50 percent or more of the cations (positively charged ions) and the chloride ion constitutes 50 percent or more of the anions (negatively charged ions). Waters in which one cation and one anion are not clearly predominant are classified as mixed types and are identified by the names of all the major ions.

On the basis of hardness, waters are classified as follows: Soft, 0 to 60 ppm (parts per million) hardness; moderately hard, 61 to 120 ppm; hard, 121 to 180 ppm; and very hard, more than 180 ppm.

Geology

When industrial and municipal influences are small, the chemical character of a river water is dependent primarily on the mineral and physical properties of the geologic formations that are traversed and the time the water is in contact with the rocks.

The amount of minerals in the rocks and soils available for solution is decreased by leaching; therefore, in areas of high rainfall such as the Sulphur River and Cypress Creek basins, much of the readily soluble materials have been removed from the surface rocks and soils, and surface runoff usually contains less than 250 ppm dissolved solids. Ground-water inflow is more highly mineralized than surface runoff, but the base flow of most streams in the Sulphur River and Cypress Creek basins seldom exceeds 500 ppm dissolved solids.

Some streams in the Sulphur River and Cypress Creek basins drain outcrops of more than one geologic formation and the water is therefore a composite of several geochemical types. Also the mineral composition of a particular formation may differ from area to area.

Figure 5 shows the geochemical character and ionic concentration of some surface waters in the study basins. The equiaxial quadrilaterals depict the concentration of the ions in solution. The total ionic concentration in equivalents per million is equal to twice the length of either the vertical or horizontal axis. If the major part of the quadrilateral is in the lower left quarter, sulfate or chloride predominate among the anions and sodium or potassium among the cations. If the major part is in the upper right quarter, calcium or magnesium and carbonate or bicarbonate are predominant.

The North Sulphur River rises on sedimentary rocks of Late Cretaceous age composed mainly of fossiliferous sand, marl, and chalk. Water from this area is generally dilute and of a mixed type; calcium, sodium, bicarbonate, and sulfate are the principal ions and dissolved-solids content is usually near 250 ppm. The South Sulphur River rises on sedimentary rocks of Late Cretaceous age composed mainly of calcareous clay and limestone. Runoff from these rocks is a dilute, calcium bicarbonate type water. Downstream from the confluence of the North and South Forks, the Sulphur River drains Cretaceous and Tertiary rocks similar to those in the headwater reaches. Near Talco (site 3) the water is a mixed type, with calcium and bicarbonate the principal ions. Between Talco (site 3) and Darden (site 11) two large tributaries, Cuthand Creek and White Oak Creek, enter the river. Cuthand Creek drains Cretaceous and Tertiary rocks and contributes a relatively dilute water of a mixed type. White Oak Creek, which also drains Cretaceous and Tertiary rocks, is highly variable in quality, probably because of oil-field waste disposal in the watershed. The quality of the water in Texarkana Reservoir, however, has not been seriously affected by the sometimes poor-quality water from White Oak Creek.

Cypress Creek rises on Tertiary rocks composed mainly of sand, silt, clay, lignite, and glauconite. Limited data for Cypress Creek north of Pittsburg (site 16) indicate that the low flow is a sodium chloride type water usually containing near 250 ppm dissolved solids. Little Cypress Creek, which drains Tertiary rocks similar to those drained by Cypress Creek, contributes water that is lower in dissolved-solids content, but also of the sodium chloride type.

Streamflow

The patterns and characteristics of streamflow usually affect the chemical character of water in streams. In most streams where the flow is not regulated by upstream reservoirs, the concentrations of dissolvedmineral constituents vary inversely with the stage of the stream. The base flow, or sustained low flow, of a stream is predominantly water that has entered as ground-water effluent. Usually this water has been in contact with rocks and soils for a sufficient time to dissolve part of their soluble materials. Conversely, at high stages most of the flow of a stream consists of surface runoff that has been in contact with exposed rocks and soils for only a short time. Therefore, the dissolved-solids content of a stream is usually lowest during periods of high flow. This relationship is generally applicable to the water of the Sulphur River and Cypress Creek basins. Figure 6 shows the relationship of dissolved solids to water

Figure 6.--Relation of Dissolved Solids to Water Discharge for South Sulphur River Near Cooper

discharge for the South Sulphur River near Cooper (site 1). Obviously the salt content has varied over relatively wide ranges, and the probability of accurately estimating chemical quality from water discharge is poor. However, the mean concentration within selected discharge ranges shows a definite trend in quality. Because ground-water inflow is small and the stream is subject to periods of no flow, the points are very scattered during low flows. Many of the low-flow values plotted occurred after a rise and do not represent ground-water inflow. Figure 7 shows duration curves of dissolved solids and water discharge for the same site (site 1). The duration curves are cumulative frequency curves that show percent of time which specified concentrations were equaled or exceeded and percent of time that water discharge was equal to or less than a specified discharge during a specified period. The steep slope of the flow-duration curve denotes a highly variable stream whose flow is largely from direct runoff. The curves also show the inverse relationship of rates of water discharge to the concentration of dissolved solids.

Figure 7,--Duration Curves for Dissolved Solids and Water Discharge for South Sulphur River Near Cooper Water Years 1959-66

Activities of Man

The activities of man often have a deteriorative effect on the chemical quality of water. Oil-field brine, municipal and industrial wastes, and irrigation return flows increase the concentration of dissolved materials in streams.

Brine is produced in nearly all oil fields and it may, if improperly handled, eventually reach the streams. The composition of oil-field brine varies; but the principal chemical constituents in order of magnitude of their concentration (in ppm) are generally chloride, sodium, calcium, and sulfate. The Texas Water Commission and Texas Water Pollution Control Board (1963) compiled an inventory conducted by the Texas Railroad Commission which showed that approximately 80 million barrels (10,800 acre-feet) of brine was produced in 1961 in the Sulphur River and Cypress Creek basins. Oil is produced in several areas in the study basins (see Figure 10), but most of the brine reported by the Texas Water Commission was produced in the Talco field in northern Franklin and Titus Counties and in the East Texas field in southeastern Upshur County. Although almost 99 percent of the brine in both fields is reinjected into the subsurface, some deterioration of water quality is occurring in both areas. Chemical analyses of samples from White Oak Creek near Mount Vernon (site 8) and near Omaha (site 10) strongly indicate that oil-field brines are reaching that stream. The Sulphur River also receives runoff from the Talco field but is not affected as seriously as White Oak Creek. Smith, Montgomery, and Blakey (1966) reported that saline inflows to Little Cypress Creek apparently resulted from oil-field activity in that watershed. The photographs in Figure 8 show the effects of oil-field brines in the Glade Creek subbasin. Glade Creek empties into Little Cypress Creek just downstream from the Ore City streamflow station (site 25).

Relation of Quality of Water to Use

Quality-of-water studies usually are concerned with determining the suitability of water-judged by the chemical, physical, and biological characteristics-for its proposed use. In the Sulphur River and Cypress Creek basins, surface water is used primarily for municipal and industrial supplies and a limited amount is used for irrigation. This report considers only the chemical character of the water and its relation to the principal uses.

All natural water contains dissolved-mineral matter. Most of this mineral matter in water is dissociated into charged particles, or ions. Principal cations (positive charged) in natural water are calcium (Ca), magnesium (Mg), potassium (K), sodium (Na), and iron (Fe). The principal anions (negative charged) are carbonate (CO₃), bicarbonate (HCO₃), sulfate (SO₄), chloride (Cl),

Oil-well site showing brine pollution which is killing vegetation and contributing to soil erosion.

Brine disposal pond adjacent to Glade Creek showing the devastating effects of polluted surface water.

Figure 8.--Effects of Oil-Field Pollution in the Little Cypress Creek Watershed

fluoride (F), and nitrate (NO_3) . Other constituents and properties are often determined to help define the chemical and physical quality of water. Table 2 lists the constituents and properties commonly determined by the U.S. Geological Survey, and includes a résume of their sources and significance.

Domestic Purposes

Because of differences in individuals, varying amounts of water used, and other factors, it is difficult to define the safe limits for the mineral constituents usually found in water. The limits usually accepted in the United States for drinking water are the drinkingwater standards established by the U.S. Public Health Service. Originally established in 1914 to control the quality of water used on interstate carriers for drinking and culinary purposes, these standards have been revised several times. The latest revision was in 1962 (U.S. Public Health Service, 1962). These standards have been accepted by the American Water Works Association and by most of the state departments of public health as minimum standards for all public water supplies.

The maximum concentrations permitted by these standards are given for selected constituents in the following table:

CONSTITUENT	MAXIMUM CONCENTRATION (PPM)
Sulfate	250
Chloride	250
Nitrate	45
Fluoride	.9 ^a
Dissolved solids	500

^a Based on temperature records for Clarksville.

In the Sulphur River and Cypress Creek basins the concentrations of these constituents are considerably lower than the maximum concentrations recommended.

Industrial Use

The quality requirements vary greatly for almost every industrial application, as is indicated by the water-quality tolerances given in Table 3. One requirement of most industries is that the concentrations of the various constituents in the water remain relatively constant. When concentrations of undesirable substances in water vary, constant monitoring is required.

Hardness is one of the more important properties of water that affects its utility for industrial purposes.

Excessive hardness is objectionable because it contributes to the formation of scale in steam boilers, pipes, water heaters, radiators, and various other equipment where water is heated, evaporated, or treated with alkaline materials. The accumulation of scale increases costs for fuel, labor, repairs, and replacement, and lowers the quality of many wet-processed products. However, some calcium hardness may be desirable because calcium carbonate sometimes forms protective coatings on pipes and other equipment and reduces corrosion.

The corrosive property of a water receives considerable attention in industrial water supplies. A high concentration of dissolved solids in a water may be closely associated with the corrosive property of the water especially if chloride is present in appreciable quantities. Water that contains a high concentration of magnesium chloride may be highly corrosive because the hydrolysis of this salt yields hydrochloric acid.

Surface water of the Sulphur River and Cypress Creek basins is relatively low in dissolved solids and only moderately hard, therefore very little treatment is necessary to make it suitable for use by many industries.

Irrigation

The chemical composition of a water is an important factor in determining its usefulness for irrigation because the irrigation water should not adversely affect the productivity of the land. The extent to which chemical quality limits the suitability of a water for irrigation depends on factors such as: the nature, composition, and drainage of the soil and subsoil; the amounts of water used and the methods of application; the kind of crops grown; and the climate of the region, including the amounts and distribution of rainfall. Because these factors are highly variable, every method of classifying water for irrigation is somewhat arbitrary.

The most important characteristics in determining the quality of irrigation water, according to the U.S. Salinity Laboratory Staff (1954, p. 69), are: (1) total concentration of soluble salts, (2) relative proportion of sodium to other cations, (3) concentration of boron or other elements that may be toxic, and (4) the excess of equivalents of bicarbonate over equivalents of calcium plus magnesium.

High concentration of dissolved salts in irrigation water may cause a buildup of salts in the soil solution, and may make the soil saline. The increased salinity of the soil may drastically reduce crop yields by decreasing the ability of the plants to take up water and essential plant nutrients from the soil solution. The tendency of irrigation water to cause a high buildup of salts in the soil is called the salinity hazard of the water. The specific conductance of the water is used as an index of the salinity hazard.

Table 2.--Source and Significance of Dissolved Mineral Constituents and Properties of Water

CONSTITUENT		
OR	SOURCE OR CAUSE	SIGNIFICANCE
Silica (SiO ₂)	Dissolved from practically all rocks and soils, commonly less than 30 ppm. High concentra- tions, as much as 100 ppm, gener- ally occur in highly alkaline waters.	Forms hard scale in pipes and boilers. Carried over in steam of high pressure boilers to form deposits on blades of turbines. Inhibits deterioration of zeolite-type water softeners.
Iron (Fe)	Dissolved from practically all rocks and soils. May also be derived from iron pipes, pumps, and other equipment. More than 1 or 2 ppm of iron in surface waters generally indicate acid wastes from mine drainage or other sources.	On exposure to air, iron in ground water oxidizes to reddish- brown precipitate. More than about 0.3 ppm stain laundry and utensils reddish brown. Objectionable for food processing, tex- tile processing, beverages, ice manufacture, brewing, and other processes. U.S. Public Health Service (1962) drinking-water standards state that iron should not exceed 0.3 ppm. Larger quantities cause unpleasant taste and favor growth of iron bacteria.
Calcium (Ca) and magnesium (Mg)	Dissolved from practically all soils and rocks, but especially from limestone, dolomite, and gypsum. Calcium and magnesium are found in large quantities in some brines. Magnesium is present in large quantities in sea water.	Cause most of the hardness and scale-forming properties of water; soap consuming (see hardness). Waters low in calcium and magnesium desired in electroplating, tanning, dyeing, and in textile manufacturing.
Sodium (Na) and potassium (K)	Dissolved from practically all rocks and soils. Found also in ancient brines, sea water, indus- trial brines, and sewage.	Large amounts, in combination with chloride, give a salty taste. Moderate quantities have little effect on the usefulness of water for most purposes. Sodium salts may cause foaming in steam boilers and a high content may limit the use of water for irrigation.
Bicarbonate (HCO ₃) and carbonate (CO ₃)	Action of carbon dioxide in water on carbonate rocks such as lime- stone and dolomite.	Bicarbonate and carbonate produce alkalinity. Bicarbonates of calcium and magnesium decompose in steam boilers and hot water facilities to form scale and release corrosive carbon dioxide gas. In combination with calcium and magnesium, cause carbon- ate hardness.
Sulfate (SO ₄)	Dissolved from rocks and soils containing gypsum, iron sulfides, and other sulfur compounds. Commonly present in mine waters and in some industrial wastes.	Sulfate in water containing calcium forms hard scale in steam boilers. In large amounts, sulfate in combination with other ions gives bitter taste to water. Some calcium sulfate is considered beneficial in the brewing process. U.S. Public Health Service (1962) drinking water standards recommend that the sulfate content should not exceed 250 ppm.
Chloride (Cl)	Dissolved from rocks and soils, Present in sewage and found in large amounts in ancient brines, sea water, and industrial brines.	In large amounts in combination with sodium, gives salty taste to drinking water. In large quantities, increases the corrosiveness of water. U.S. Public Health Service (1962) drinking water stan- dards recommend that the chloride content should not exceed 250 ppm.
Fluoride (F)	Dissolved in small to minute quantities from most rocks and soils. Added to many waters by fluoridation of municipal sup- plies.	Fluoride in drinking water reduces the incidence of tooth decay when the water is consumed during the period of enamel calcification. However, it may cause mottling of the teeth, depending on the concentration of fluoride, the age of the child, amount of drinking water consumed, and susceptibility of the individual. (Maier, 1950)
Nitrate (NO ₃)	Decaying organic matter, sewage, fertilizers, and nitrates in soll.	Concentration much greater than the local average may suggest pollution. U.S. Public Health Service (1962) drinking-water standards suggest a limit of 45 ppm. Waters of high nitrate content have been reported to be the cause of methemoglo- binemia (an often fatal disease in infants) and therefore should not be used in infant feeding. Nitrate has been shown to be helpful in reducing inter-crystalline cracking of boiler steel. It encourages growth of algae and other organisms which produce undesirable tastes and odors.
Dissolved solids	Chiefly mineral constituents dis solved from rocks and soils. Includes some water of crystalli- zation.	U.S. Public Health Service (1962) drinking water standards recommend that waters containing more than 500 ppm dissolved solids not be used if other less mineralized supplies are available. Waters containing more than 1,000 ppm dissolved solids are unsuitable for many purposes.
Hardness as CaCO ₃	In most waters nearly all the hardness is due to calcium and magnesium. All the metallic cations other than the alkali metals also cause hardness.	Consumes soap before a lather will form. Deposits soap curd on bathtubs. Hard water forms scale in boilers, water heaters, and pipes. Hardness equivalent to the bicarbonate and carbonate is called carbonate hardness. Any hardness in excess of this is called non-carbonate hardness. Waters of hardness as much as 60 ppm are considered soft; 61-120 ppm, moderately hard; 121-180 ppm hard; more than 180 ppm, very hard.
Specific conductance (micromhos at 25 ⁰ C)	Mineral content of the water.	Indicates degree of mineralization. Specific conductance is a measure of the capacity of the water to conduct an electric current. Varies with concentration and degree of ionization of the constituents.
Hydrogen ion concentration (pH)	Acids, acid-generating salts, and free carbon dioxide lower the pH. Carbonates, bicarbonates, hydrox- ides, and phosphates, silicates, and borates raise the pH.	A pH of 7.0 indicates neutrality of a solution. Values higher than 7.0 denote increasing alkalinity; values lower than 7.0 indicate increasing acidity. pH is a measure of the activity of the hydrogen ions. Corrosiveness of water generally increases with decreasing pH. However, excessively alkaline waters may also attack metals.

Table 3.--Water-Quality Tolerances for Industrial Applications ${\rm l}{\rm j}$

[Allowable Limits in Parts per Million Except as Indicated]

1-	د ^в		D D	0.0	0 60	0.1		2.1.2	102	V 12 - 52 - 14	2		
GEN	Α,		ບໍ່ບໍ່	00	, A, C,	51	1	< ! !	щ	111	111	;	-
Na2S04 to Na2S03 RATIO	11	1 to 1 2 to 1 3 to 1	11	11	1111	::	;	111	1	111	111	;	quality
CaS04	11	111	100-200 200-500	11		::	;		ł		111	ł	rk-beer
НО	11	50 40	11	::	1111	11	ł	111	;	111	111	ŧ	of da
HC03	11	50 50	1.1	11	1111	11	;	111	;			;	ater
c03	::	200 100 40	11	11	1111	()	;	111	ł			;	ing w
D.,	11	111		:	9111	11	ł	111	ł	111	111	ł	mash
Cu	11	111	13	1.1	1111	11	;	111	1	911	111	Ĩ	ifskey
S102	11	40 20	11	11	1111	10	ł	111	ł	25 	111	;	ay; wh
A1203	11	5 .5	11	: :		11	ł	111	;	°.11 89	111	1	ppm. r qualit
Fc + Mn	0.5	111		.2			.02	.1		.05	1 25	-2	275 t-bee
W	0.5	111			5.5.5		. 02	.1.05	• 05	.03	.25	.2	.NaCl,
F.c.	0.5	111		5 5	4424	.2	. 02	1.0	.1	.05	.25 .25 1.0 1	.2	ary; D
Са	11	111	100-200 200-500	11	1111	: :	1	111	ł	111	111	:	s necesse mashing w
TOTAL SOL IDS	11	3,000-1,000 2,500-500 1,500-100	500 1,000	11	850 100 	300	200	300	200	100		;	rater standard Loning. 1 and spirits
Hq	í í	8.8 2,5 2,5 2,5	6.5-7.0 7.0 -	11	1811	11	ł		1	7.8-8.3	111	;	drinking v Hr condit; ewing (gir
ALKA- LINITY (AS CaCO3)	11	111	75 150	: :	20111	30-50	;		1	50 135	111	ł	federal le for a s for br
HARD- NESS	(7)	75 40 8	11	25-75	250 50	50	ł	180 100 100	50	8 55 50-135	20 20	20	ance to insuitab ements a
ODOR	: :	111	Low	Low	0 Low Low	::	;	111	;	111	111	LOW	nforma nost u
DIS- SOLVED OXYGEN (m1/1)	11	0.2	: :	::		: :	;		;			:	n; CCol ors are i eneral r
COLOR + 02 CON- SUMED	11	100 50 10		11	10	: :	;	111	1	1.11		1	1950. formatio lfide od
COLOR	10	40 5	;;	11	1 1 1 1	5 I	2	20 15 10	5	5 	20 5-20 70	5	ciation, o slime rogen su meet the
TUR- BID- ITY	10	20 10 5	10 10	10	2 50 10	115	2	50 25 15	5	5 •3	ر م م	5	rks Associate, and hyda rable. ng must
INDUSTRY	Air conditioning \mathcal{U}_{\bullet} Baking	Boiler feed: 0+150 psi 150-250 psi 250 psi and up	Brewing: Sy Light Dark	Canning: Legumes General	Carbonated bev- erages g Confectignary Cooling g Food, general	lce (raw water) g Laundering Plastics, clear	undercolored	Paper and pulp:19 Groundwood Kraft pulp Soda and sulfite Lioht maner	HL-Grade	Rayon (viscose) pulp: Production Manufacture Tanning l <u>U</u>	Textiles: General Dyeing 12 Wool scouring 13	age 13	Marrican Water Woi 22 ANo corrosivened 33 Waters with algae 44 Some hardness desi 56 Water for distilli 66 Clarr for distilli

0 control of corrosterers is not value rators increased us accuss gating product. 9 control of corrosterers is necessary as is also control of organisms, such as sulfur and into heatering, which tend to form slimes. 9 control of corrosterers is necessary as is also control of organisms, such as sulfur and is which tend to form slimes. 9 (notice butts). 10 Uniformity of compositions and temperature desirable. Iron objectionable as cellulose adsorbs iron from dilute solutions. Manganese very objectionable, clogs pipelines and is 11 Uniformity of compositions and temperature desirable. Iron objectionable as cellulose adsorbs iron from dilute solutions. Manganese very objectionable, clogs pipelines and is 12 contacted to permanganese by chlorine, causing reddish color. 13 contact composition; residual alumina 0.5 pm. 13 contant composition; residual alumina 0.5 pm. 13 calcium, magnesium, iron, manganese, suspended matter, and soluble organic matter may be objectionable.

High concentrations of sodium relative to the concentrations of calcium and magnesium in irrigation water can adversely affect soil structure. Cations in the soil solution become fixed on the surface of the soil particles; calcium and magnesium tend to flocculate the particles, whereas sodium tends to deflocculate them. This adverse effect on soil structure caused by high sodium concentrations in an irrigation water is called the sodium hazard of the water. An index used for predicting the sodium hazard is the sodium-adsorption ratio (SAR), which is defined by the equation:

$$SAR = \frac{Na^+}{\sqrt{\frac{Ca^{++} + Mg^{++}}{2}}},$$

where the concentrations of the ions are expressed in equivalents per million.

The U.S. Salinity Laboratory Staff has prepared a classification for irrigation waters in terms of salinity and sodium hazards. Empirical equations were used in developing a diagram, reproduced in modified form as Figure 9, which uses SAR and specific conductance in classifying irrigation waters. With respect to salinity and sodium hazards, waters are divided into four classes: low, medium, high, and very high. The classification range encompasses those waters which can be used for irrigation of most crops on most soils as well as those which are generally unsuitable for irrigation.

Figure 9.--Classification of Irrigation Waters

Representative data from analyses of water from different sources in the Sulphur River and Cypress Creek basins are plotted in Figure 9. The data show that the sodium and salinity hazards are low or medium for all surface water in the basins.

Geographic Variations in Water Quality

Variations in dissolved solids, hardness, and chloride in the streams in the Sulphur River and Cypress Creek basins are shown in Figures 11, 12, and 13. These values are based on the discharge-weighted average concentrations as calculated from chemical-quality data. The discharge-weighted average represents approximately the chemical character of the water if all the water passing a point in the stream were impounded in a reservoir and mixed, with no adjustments for evaporation, rainfall, or chemical changes that might occur during storage. For many of the streams chemicalquality data are limited, especially data on flood flows. All the streams will at times have concentrations exceeding those shown, but the averages shown on the maps at a potential reservoir site are indicative of the type of water that would be stored in a reservoir.

Dissolved Solids

The concentration of dissolved solids in surface water of the Sulphur River and Cypress Creek basins is generally less than 250 ppm (Figure 11). The North Sulphur River generally has dissolved-solids concentrations of near 250 ppm. The South Sulphur River usually has concentrations of between 100 and 150 ppm. The weighted-average concentration for the period 1959-65 was 140 ppm. Drainage from the Talco oil field slightly degrades the water of the Sulphur River and White Oak Creek, but good-quality inflow downstream from the oil field, and flood runoff, is of sufficient quantity so that the dissolved-solids content of Texarkana Reservoir is usually less than 150 ppm.

In the upper reaches of Cypress Creek, low and moderate flows frequently contain more than 250 ppm dissolved solids. Chemical-quality data on flood flows are lacking, but Lake O' the Pines usually contains about 100 ppm dissolved solids indicating that high flows are of excellent quality. Little Cypress Creek generally contains less than 150 ppm dissolved solids. Oil-field drainage is degrading Little Cypress Creek in northern Gregg County but the effect is minor when considering weighted averages. Tributary inflow in the eastern part of the Cypress Creek basin usually contains less than 100 ppm dissolved solids.

Chloride

The chloride content of surface waters of the Sulphur River and Cypress Creek basins is generally less than 25 ppm (Figure 12). The North Sulphur and Sulphur Rivers contain less than 25 ppm chloride throughout their reach and the South Sulphur River contains less than 10 ppm. White Oak Creek contains less than 25 ppm chloride upstream from the Talco oil field and between 50 and 100 ppm downstream. The headwater reaches of Cypress Creek contain slightly more than 25 ppm chloride but downstream from Pittsburg better quality inflow decreases the concentration to less than 25 ppm. Little Cypress Creek contains less than 25 ppm upstream from the oil field in northern Gregg County and more than 50 ppm downstream. Tributary streams in the eastern part of the basin generally contain less than 25 ppm chloride.

Hardness

Surface water of the study basins generally ranges from soft to hard (Figure 13). The South Sulphur, North Sulphur, and Sulphur Rivers are moderately hard throughout most of their course. White Oak Creek contains hard water throughout its course. Cypress Creek has moderately hard water in its upper reaches, but downstream from Pittsburg, Cypress Creek and all its tributaries have soft water.

Other Constituents

Other constituents of importance in the evaluation of the quality of a water include silica, sodium, bicarbonate, sulfate, fluoride, and nitrate.

Most of the streams in the Sulphur River basin contain less than 10 ppm silica and most of the streams in the Cypress Creek basin contain less than 20 ppm.

Sodium concentrations are generally less than 50 ppm in most of the streams. In those waters having high chloride concentrations, sodium occurs in larger quantities. It is, therefore, present in highest concentrations in those areas affected by oil-field brine.

Bicarbonate is the principal anion in most waters of the Sulphur River basin. Bicarbonate concentrations are subject to considerable variation and although concentrations of over 200 ppm are not uncommon, the weighted-average concentration is usually less than 150 ppm. In the Cypress Creek basin, bicarbonate concentrations are much lower, always averaging less than 50 ppm.

Sulfate concentrations are generally less than 50 ppm in both basins, although higher concentrations are found in those streams receiving oil-field drainage.

Tributary inflow in the eastern part of the basins usually contains less than 10 ppm sulfate.

Fluoride and nitrate concentrations are low throughout the study basins; fluoride concentrations seldom exceed 0.5 ppm, and nitrate concentrations are generally less than 2.0 ppm.

Water Quality in Reservoirs

The principal reservoirs in the basins were sampled during the reconnaissance and the chemical analyses are given in Table 6. Analyses are also available for some of the small reservoirs used for public supply (Sundstrom and others, 1948).

Texarkana Reservoir.-Texarkana Reservoir was built primarily for flood-control purposes, but also provides municipal water for the cities of Texarkana, Texas, and Texarkana, Arkansas. Three analyses during 1966 show that the water usually contains between 100 and 150 ppm dissolved solids, is moderately hard (61 to 120 ppm), and usually contains about 15 to 20 ppm chloride and about 20 ppm sulfate.

Ellison Creek and Johnson Creek Reservoirs.— These privately owned reservoirs supply industrial water for the Lone Star Steel plant and cooling water for two steam-electric plants. Chemical analyses of the stored water are not available, but the water should be similar to that stored in Lake O' the Pines.

Lake O' the Pines.—The water in Lake O' the Pines is of good quality as shown in one analysis in 1965 and two in 1966. In August 1965 and January 1966, the water contained about 100 ppm dissolved solids, but in July 1966, the dissolved-solids content was 60 ppm and most constituents were only about half the January concentrations.

Water Quality at Potential Reservoir Sites

One of the purposes of the reconnaissance was to appraise the quality of the water which will be available for storage in future reservoirs. These evaluations are based on present conditions. Population growth, industrial expansion, and the continuing development of water resources will cause significant changes in the quality of the water that can be impounded.

Cooper. –A reservoir on the South Sulphur River at the Cooper site would impound water of excellent quality. Records for the daily sampling station South Sulphur River near Cooper indicate that the impounded water would be a calcium bicarbonate type and contain less than 150 ppm dissolved solids, less than 10 ppm chloride, less than 20 ppm sulfate, and be moderately hard.

- American Water Works Association, 1950, Water quality and treatment: Am. Water Works Assoc. Manual, 2d ed., tables 3-4, p. 66-67.
- Baker, E. T., Long, A. T., Reeves, R. D., and Wood, L. A., 1963, Reconnaissance investigation of the groundwater resources of the Red River, Sulphur River, and Cypress Creek basins, Texas: Texas Water Comm. Bull. 6306, 127 p.
- Darton, N. H., Stephenson, L. W., and Gardner, Julia, 1937, Geologic map of Texas: U.S. Geol. Survey map.
- Hughes, L. S., and Leifeste, D. K., 1965, Reconnaissance of the chemical quality of surface waters of the Sabine River basin, Texas and Louisiana: U.S. Geol. Survey Water-Supply Paper 1809-H, 71 p.
- _____1967, Reconnaissance of the chemical quality of surface waters of the Neches River basin, Texas: U.S. Geol. Survey Water-Supply Paper 1839-A, 72 p.
- Hughes, L. S., and Rawson, Jack, 1965, Reconnaissance of the chemical quality of surface waters of the San Jacinto River basin, Texas: Texas Water Devel. Board Rept. 13, 45 p.
- Kunze, H. L., and Lee, J. N., 1968, Reconnaissance of the chemical quality of surface waters of the Canadian River basin, Texas: Texas Water Devel. Board Rept. 86, 33 p.
- Langbein, W. B., and Iseri, K. T., 1960, General introduction and hydrologic definitions: U.S. Geol. Survey Water-Supply Paper 154-A, p. 1-29.
- Leifeste, D. K., and Hughes, L. S., 1967, Reconnaissance of the chemical quality of surface waters of the Trinity River basin, Texas: Texas Water Devel. Board Rept. 67, 65 p.
- Leifeste, D. K., and Lansford, M. W., 1968, Reconnaissance of the chemical quality of surface waters of the Colorado River basin, Texas: Texas Water Devel. Board Rept. 71, 78, p.
- Maier, F. J., 1950, Fluoridation of public water supplies: Jour. Am. Water Works Assoc., v. 42, pt. 1, p. 1120-1132.
- Rawson, Jack, 1967, Study and interpretation of chemical quality of surface waters in the Brazos River basin, Texas: Texas Water Devel. Board Rept. 55, 113 p.
- Smith, J. T., Montgomery, J. H., and Blakey, J. F., 1966, Base-flow studies, Little Cypress Creek,

Upshur, Gregg, and Harrison Counties, Texas, Quantity and Quality, January and June 1964: Texas Water Devel. Board Rept. 25, 23 p.

- Sundstrom, R. W., Hastings, W. W., and Broadhurst, W. L., 1948, Public Water supplies in eastern Texas: U.S. Geol. Survey Water-Supply Paper 1047, 283 p.
- Texas Almanac, 1966, A. H. Belco Corp., Dallas, Texas, 736 p.
- Texas Board of Water Engineers, 1958, Compilation of surface water records in Texas through September 1957: Texas Board Water Engineers Bull. 5807-A, 503 p.
- Texas Water Commission and Texas Water Pollution Control Board, 1963, A statistical analysis of data on oil-field brine production in Texas for the year 1961 from an inventory conducted by the Texas Railroad Commission: Summary volume, 81 p.
- Thornthwaite, C. W., 1952, Evapotranspiration in the hydrologic cycle, in The physical and economic foundation of natural resources, v. II, The physical basis of water supply and its principal uses: U.S. Cong., House of Representatives, Committee on Interior and Insular Affairs, p. 25-35.
- U.S. Geological Survey, 1960, Compilation of records of surface waters of the United States through September 1950, Part 7, Lower Mississippi River basin: U.S. Geol. Survey Water-Supply Paper 1311, 606 p.
- _____1961, Surface water records of Texas, 1961: U.S. Geol. Survey open-file rept.
- _____1962, Surface water records of Texas, 1962: U.S. Geol. Survey open-file rept.
- ____1963, Surface water records of Texas, 1963: U.S. Geol, Survey open-file rept.
- _____1964a, Compilation of records of surface waters of the United States, October 1950 to September 1960, Part 7, Lower Mississippi River basin: U.S. Geol. Survey Water-Supply Paper 1731, 552 p.
- _____1964b, Surface water records of Texas, 1964: U.S. Geol. Survey open-file rept.
- _____1964c, Water quality records in Texas, 1964: U.S. Geol. Survey open-file rept.
- _____1965, Water resources data for Texas, 1965--Part 1, Surface water records; Part 2, Water quality records: U.S. Geol. Survey open-file rept.

Sulphur Bluff 1.—Sulphur Bluff 1 would be immediately downstream from Cooper Reservoir and should store water of generally the same quality as that impounded in Cooper Reservoir.

Sulphur Bluff 2.-The waters of the North Sulphur River impounded at Sulphur Bluff 2 would be moderately hard and contain about 250 ppm dissolved solids.

Naples 1. —A reservoir on the Sulphur River at the Naples 1 site would store water containing less than 250 ppm dissolved solids. The water would be hard and of a mixed type.

Naples 2.—The Naples 2 site is on White Oak Creek which is receiving oil-field drainage. Water stored at this site would be of acceptable quality for municipal uses if natural runoff from the area continues to be of sufficient quantity to dilute the oil-field wastes.

Texarkana Enlargement. – The enlargement of Texarkana Reservoir should not cause significant change in the quality of the water stored. The water should still be moderately hard and contain less than 150 ppm dissolved solids.

Franklin County and Titus County. – These adjoining reservoirs on Cypress Creek would store a sodium sulfate chloride type water containing less than 250 ppm dissolved solids.

Marshall.—A reservoir on Little Cypress Creek at the Marshall site would store a sodium chloride type water containing less than 150 ppm dissolved solids.

Black Cypress. – According to periodic chemicalquality data for Black Cypress Bayou near Jefferson, water impounded at the Black Cypress site would be low in all dissolved constituents and contain less than 100 ppm dissolved solids.

Problems Needing Additional Investigation

This reconnaissance of the chemical quality of surface water in the Sulphur River and Cypress Creek basins has shown that, in general, the basins are remarkably free of water-quality problems. Specifically, two streams—White Oak Creek near Talco, and Little Cypress Creek downstream from the Ore City streamflow station—show indications of pollution. High chloride concentrations in low-flow waters in these streams indicate that oil fields may be contributing brine to the watersheds.

Most of the brine produced in the Sulphur River and Cypress Creek basins is reportedly reinjected into wells. Waterflooding in oil fields and reinjection of brines should be carefully watched to ensure that brine does not enter fresh ground-water supplies or surface streams.

Continued municipal and industrial use in the larger cities in the basins will cause an increase in the waste-disposal burdens of the streams and impoundment of water in reservoirs will cause a reduction of streamflow now utilized for the assimilation of wastes.

Impoundment of water will result in some changes of water quality. Beneficial effects will include: the reduction of turbidity, silica, color, and coliform bacteria; the evening out of sharp variations in chemical quality; the entrapment of sediment; and a reduction in temperature. On the other hand, detrimental effects will include an increased growth of algae and a reduction of dissolved oxygen. As the water resources of the basins are extensively developed, the magnitude and significance of the probable changes in water quality will necessitate studies of the resulting problems. ____1966, Water resources data for Texas, 1966-Part 1, Surface water records: U.S. Geol. Survey open-file rept.

U.S. Public Health Service, 1962, Public Health Service drinking water standards: U.S. Public Health Service Pub. 956, 61, p.

.

U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. Agriculture Handb. 60, 160 p. The following U.S. Geological Survey Water-Supply Papers contain results of stream measurements in the Sulphur River and Cypress Creek basins, 1924-60:

WATER-SUPPLY

YEAR

Quality-of-water records for the Sulphur. River and Cypress Creek basins are published in the following U.S. Geological Survey Water-Supply Papers and Texas Water Development Board reports (including reports formerly published by the Texas Water Commission and Texas Board of Water Engineers):

1000000	PAPER NO.	board of water	Engineers):	
1924	587	WATER	11868	THIND
1925	607	YEAR	WATER-SUPPLY	REPORT NO.
1926	627		PAPER NO.	
1927	647	1947	1102	*1947
1928	667	1948	1133	*1948
1929	687	1949	1163	*1949
1930	702	1950	1188	*1950
1931	717	1951	1199	*1951
1932	732	1952	1252	*1952
1933	747	1953	1292	*1953
1934	762	1954	1352	*1954
1935	787	1955	1402	*1955
1936	807	1956	1452	Bull. 5905
1937	827	1957	1522	Bull. 5915
1938	857	1958	1573	Bull. 6104
1939	877	1959	1644	Bull. 6205
1940	897	1960	1744	Bull. 6215
1941	927	1961	1884	Bull. 6304
1942	957	1962	1944	Bull. 6501
1943	977	1963	1950	Rept. 7
1944	1007	• "Chem	ical Composition of Te	xas Surface Waters"
1945	1037	was design	ated only by water yea	phor to 1990.
1946	1057			
1947	1087			
1948	1117			
1949	1147			
1950	1177			
1951	1211			
1952	1241			
1953	1281			
1954	1341			
1955	1391			
1956	1441			
1957	1511			
1958	1561			
1959	1631			
1960	1711			

Table 4.--Index of Surface-Water Records in the Sulphur River and Cypress Creek Basins

Refer-		Drainage			Type and perio	ed of record		
ence No.	Stream and Location	area (Sq. miles)	Daily chemical quality	Discharge	Periodic chemical quality	Periodic discharge measurements	Reservoir contents	Water temperature
			SULPHUR RIV	ER BASIN				
1	South Sulphur River near Cooper	527	1958-66	1942-66				1949-66
2	North Sulphur River near Cooper	276		1949-66	1950, 1958			1949-66
3	Sulphur River near Talco	1.365		1956-66	1965-66			1956-66
4	Cuthand Creek near Bogata	69		1963-66				1963-66
5	Cuthand Creek south of Clarksville				1965-66	1965-66		
6	Kickapoo Creek south of Clarksville				1965-66	1965-66		
7	Sulphur River north of Omaha				1960, 1965-66	1965-66		
8	White Oak Creek near Mount Vernon				1965-66	1965-66		
9	White Oak Creek near Talco	494		1949-66				1949-66
10	White Oak Creek near Omaha				1965-66	1965-66		
11	Sulphur River near Darden	2,774	1947-50	1923-54				1949-54
12	Caney Creek Reservoir near Redwater				1952, 1962 1964-65			
13	Caney Creek near Redwater	18.0			1961-62	1958-62		
14	Texarkana Reservoir near Texarkana	3,443			1957, 1966		1953-66	
15	Aiken Creek near Texarkana	12.2				1958-61		
			CYPRESS CRE	EK BASIN				
16	Cypress Creek north of Pittsburg				1965-66	1965-66	1	1
17	Cypress Creek near Pittsburg	366		1943-63				1949-63
18	Boggy Creek near Daingerfield	72		1943-66				1949-66
19	Ellison Creek Reservoir near Daingerfield	37					1943-62	
20	Lake O' the Pines near Jefferson	850			1965-66		1957-66	
21	Cypress Creek near Jefferson	850		1924-61				
22	Kelly Creek near Marietta	50.5			1942 1961-62	1958-62		
23	Hughes Creek near Avinger	49			. 1961-62	1958-62		
24	Black Cypress Bayou near Jefferson	365			1965-66	1964-66		
25	Little Cypress Creek near Ore City	383		1962-66	1965-66			
26	Moccasin Creek near Harleton	30			1961-62	1958-62		
27	Little Cypress Creek near Jefferson	675		1946-66	1964-66			1949-66
28	Prewitt Creek near Karnack	19			1961-62	1958-62		
29	Kitchens Creek near Smithland	27				1958-62		
30	Jims Bayou near Kildare	82.9				1958-62		
31	Frazier Creek near Linden	47.9				1958-62		
32	Frazier Creek near McLeod	199				1964-65		
33	Black Bayou near Atlanta	52.1			1961-62	1958-62		
34	Caddo Lake				1952-56 1958-63			

Table 5.-Summary of Chemical Analyses at Daily Stations on Streams in the Sulphur River and Cypress Creek Basins

(Analyses listed as maximum and minimum were classified on the basis of the values for dissolved solids only: values of other constituents may not be extremes. Results in parts per million except as indicated.)

Date of collection	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Dia	solved sol	ida	Hard as Co	ness rCO,	Per-	So-	Specific conduct-	
Date of collection	charge (cfs)	(SiO ₂)	(Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO,)	ride (Cl)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	ance (micro- mhos at 25° C)	рН
							1.	SOUTH	SULPHUR	RIVER N	EAR CO	OOPER										
Water year 1959 Maximum, Nov. 18-20,1958. Minimum,	11.7	10		55	6.7	10)3	139	60	148	0.6	1.2		452	0.61	14.3	164	50	58	3.5	815	7.6
Apr. 17-21,1959. Weighted average	$\begin{array}{c} 583\\91.2\end{array}$	12 13		23 32	2.9 3.2	1	15 21	78 106	23 26	7.5 14	- 4 - 5	3.2 3.7		125 167	.17 .23	197 41.1	69 93	5 6	32 33	. 8 . 9	208 285	7.6
Water year 1960 Maximum, Nov. 1, 1959 Minimum	19.0	16		88	9.1	32	28	182	36	555		2.2		1120	1.52	57.5	257	108	74	8.9	2040	8.2
Jan. 6-8, 1960 Weighted average	3396 339	9.4 11		19 28	$2.4 \\ 2.9$	1	12	75 98	13 21	4.0 9.7	.6 .4	$\begin{array}{c} 1 \cdot 0 \\ 3 \cdot 1 \end{array}$		98 143	.13 .19	899 131	57 82	0 1	31 31	.7 .8	164 236	7.4
Water year 1961 Maximum, Feb. 1-5, 1961	18.2	12		113	14		75	361	112	61	. 3	2.5		592	.81	29.1	340	44	32	1.8	911	7.6
Dec. 8-14,1960 Weighted average	6225 387	8.8 9.7		18 27	2.3 2.8	6.9	2.9	64 92	9.2 18	4.0 8.9	.4	1.0		84 129	.11 .18	1410 135	54 79	23	21 28	.4.7	141 220	7.0
Water year 1962 Maximum, Nov. 11-21,1961. Minimum,	. 4	9.4		54	6.7	1:	27	240	110	88	. 6	1.5		529	.72	. 57	162	0	63	4.3	877	6.9
June 28-30,1962. Weighted average	3603 331	14 13		17 27	$1.1 \\ 2.8$		8.2 14	61 93	8.2 18	2.8 8.1		2.8 3.2		84 134	.11 .18	817 120	47 79	0 6	28 28	. 5 . 7	124 220	7.2 7.0
Water year 1963 Maximum, Nov. 9, 1962 Minimum,Nov.26-30. Weighted average	7.3 3668 156	12 11 12		100 26 32	10 2.2 3.2	3:	26 11 17	168 85 103	41 17 26	580 6.5 12		.8 2.0 3.2		1150 118 159	1.56 .16 .22	22.7 1170 77.0	290 74 92	153 4 8	71 25 30	8.3 .6 .8	2130 204 258	7.6 6.4 6.7
Water year 1964 Maximum, May 9, 1964 Minimum,May 30-31. Weighted average.	$166 \\ 3945 \\ 134$	11 6.1 9.9		103 21 28	8.5 2.8 3.3	1	75 11 14	184 70 93	46 17 19	335 7.4 7.9		1.8 2.0 1.3		770 101 134	1.05 .14 .18	345 1076 82.0	292 64 84	141 7 3	57 27 38	4.4 .6 .7	1400 176 227	7.7 6.8 7.2
Water year 1965 Maximum, Mar. 10-31,1965. Minimum, Feb. 8-14 Weighted average	21.2 6717 430	9.2 7.9 9.0		100 18 24	$ \begin{array}{c} 14 \\ 2.7 \\ 2.8 \end{array} $	6.3	56 2.5 82	340 66 82	78 10 15	48 2.8 5.0	=	1.0 3.8 2.8		473 86 111	.64 .12 .15	$27.1 \\ 1560 \\ 142$	307 56 70	28 2 2	28 22 23	1.4 .4 .5	781 144 188	7.7 7.6 6.9
							11	. SULP	HUR RIV	ER NEAR	DARDE	N										
Water year 1948 Maximum, Aug.1, 1948 Minimum, Dec. 16-27, 1947.	1 52 11940	10		111 20	33 4.1	11	50 13	76 64	477 30	1670		4.0		3570 107	4.75	1430 3450	412 67	350 14	86 29		5910 160	
Weighted average <u>Water year 1949</u> <u>Maximum, Oct. 24</u> ,	2905			27	3.8		21	81	26	22		1.9		171	. 23	1340	83	17	35		253	
27-31, 1948 Minimum, Jan. 26-31 Weighted average	23.7 28750 2225	7.5 5.8 7.3		194 17 24	52 1.5 3.5	19	70 14 22	158 66 81	733 10 20	2900 10 25		1.0 1.1		5930 122 168	8.06 .17 .23	379 9470 1010	698 49 74	568 0 8	86 39 39		10000 150 252	

Table 6.--Chemical Analyses of Streams and Reservoirs for Locations Other Than Daily Stations

Date of collection	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Dia	solved sol	ids	Hard as Co	ness rCO ₁	Per-	So- dium	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO,)	ride (Cl)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	ance (micro- mhos at 25° C)	рН
							2	. NORTI	H SULPHI	UR RIVER	NEAR	COOPER										
July 20, 1950 July 22 July 27 Aug. 7 Sept. 26, 1958	2.6 1820 3770 5.6 .8	6.4 9.8 11 11 13		11 41 53 53 70	3.8 2.0 1.2 5.2 8.1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 3 6 2 3	94 120 158 146 81	77 41 61 79 210	21 13 8.0 30 57		$ \begin{array}{c} 0.0 \\ 1.5 \\ 3.0 \\ .0 \\ .5 \\ \end{array} $		244 209 252 296 472	0.33 .28 .34 .40 .64		118 110 150 154 208	$ \begin{array}{r} 41 \\ 12 \\ 20 \\ 34 \\ 142 \end{array} $	37 31 28 37 43	1.3 1.0 .9 1.5 2.2	390 322 391 485 751	7.8 7.7 7.8 7.9 7.8
Jan. 16, 1967 Feb. 21 Apr. 7 May 5	2.73 6.33 3.56 139	3.9 6.2 3.1 10		95 84 61 67	9.4 7.4 6.5 4.0	75 60 60 25	2.6 2.5 2.8 2.8	196 162 126 182	$ \begin{array}{r} 190 \\ 171 \\ 140 \\ 64 \end{array} $	62 43 42 16	0.3 .5 .3 .6	.0 1.0 .0 1.2		534 456 378 280	. 73 . 62 . 51 . 38		276 240 178 184	115 107 75 34	37 35 42 23	2.0 1.7 2.0 .8	853 724 622 456	7.2 7.2 7.3 8.0
								3.	SU LP HUR	RIVER N	EAR TA	LCO										
Jan. 6, 1965 Mar. 17 Apr. 22 May 26 July 8	62.5 60 13.6 63.8 2.2	7.7 6.5 4.9 11 10		52 90 100 68 73	7.4 9.6 9.4 6.0 5.6		3 51 53 53 53 53	149 230 264 199 220	58 121 133 69 72	19 41 49 21 31	0.4 .4 .3 .5	0.2 1.0 .0 .2 .2		241 434 490 306 344	0.33 .59 .67 .42 .47		160 264 288 194 205	38 76 72 31 24	24 30 32 27 32	0.8 1.4 1.6 1.0 1.3	410 742 828 526 585	7.9 7.2 7.2 6.8 7.2
Sept. 25 Nov. 30 Jan. 5, 1966 Feb. 15 Mar. 16	843 1.0 11.4 193 33.1	7.8 8.0 2.7 6.6 6.8		37 88 98 40 76	2.1 8.9 9.1 3.6 6.5	60 100 14 51	3 3.8 3.6 3.3 3.9	118 270 230 126 196	22 104 191 31 113	5.3 46 80 7.7 33	.3 .4 .4 .2 .5	1.2 .0 .0 2.0 .8		147 452 598 170 388	. 20 . 61 . 81 . 23 . 53		101 256 282 115 216	4 34 91 11 56	22 33 43 20 33	.6 1.6 2.6 .6 1.5	255 758 986 299 634	$ \begin{array}{c} 6.6 \\ 7.1 \\ 7.6 \\ 6.8 \\ 8.0 \\ \end{array} $
							5.	CUTHA	ND CREE	K SOUTH	OF CLA	RKSVIL	LE									
July 7, 1965 Sept 23 Jan 4, 1966 Feb 8. Apr 19 July 20	$ \begin{array}{r} 1 \\ 27.3 \\ 3.2 \\ 3.1 \\ 1.6 \\ .1 \\ \end{array} $	11 5.1 9.3 2.5 5.7 12		90 21 27 41 119 122	5.5 .9 1.9 3.1 6.6 8.6	6.6 65 38 167 116	9 2.9 4.9 2.9 4.0 3.3	203 59 130 141 418 196	99 17 45 45 159 230	43 5.3 43 27 134 130	0.4 .1 .3 .3 .7 .3	0.2 .2 11 .2 .8 .0		388 88 271 229 803 718	$\begin{array}{c} 0.53 \\ .12 \\ .37 \\ .31 \\ 1.09 \\ .98 \end{array}$		247 56 75 115 324 340	80 8 0 0 0 180	25 19 63 41 52 42	$ \begin{array}{r} 1.1\\.4\\3.3\\1.5\\4.0\\2.7\end{array} $	646 154 480 409 1340 1140	7.3 6.3 6.7 7.5 7.2 7.4
Jan. 17, 1967 Apr. 8	$ \begin{array}{c} 1 & 75 \\ 1 & 87 \end{array} $	5 10 7 7.5		93 99	5.2 6.2	53 92	4.4 5.0	198 306	125 114	54 70	. 2	· 2 · 2		442 544	. 60 - 74		254 272	91 22	31 42	$1.4 \\ 2.4$	719 885	7.0 7.5
							6.	KICKAP	OO CREE	K SOUTH	OF CLA	RKSVIL	LE									
July 7, 1965 Sept. 24 Jan. 4, 1966 Feb. 8 Apr. 19 Jan. 17, 1967 Apr. 8 Apr. 8 Apr. 27	9.2 .8 7.0 .1 .4 .11 1.48 .74 219	13 8.6 6.9 8.6 10 10 8.4 317 415 8.2		43 25 17 32 64 72 48 65 22	$ \begin{array}{c} 2.6\\ 1.4\\ 1.6\\ 2.6\\ 4.7\\ 4.6\\ 4.0\\ 5.8\\ 1.6 \end{array} $	13 17 42 39 28 47 5.3	25 23 4.2 3.2 3.8 5.2 4.5 4.3 3.0	$ \begin{array}{r} 137 \\ 60 \\ 48 \\ 75 \\ 122 \\ 174 \\ 102 \\ 162 \\ 68 \\ \end{array} $	26 21 13 33 86 60 61 64 10	22 33 20 24 58 58 58 38 64 5.8	$ \begin{array}{c} 0.3 \\ .1 \\ .5 \\ .1 \\ .3 \\ .1 \\ .3 \\ .1 \\ .3 \\ .1 \end{array} $	0.5.5.8.8.5.2.2.5		199 143 101 158 330 334 251 346 90	0.27 .19 .14 .21 .45 .45 .34 .47 .12		118 68 49 91 179 198 136 136 62	6 19 10 29 79 56 53 53 6	31 42 34 28 33 29 30 35 15	1.0 1.2 .8 1.4 1.2 1.0 1.5 .3	329 258 188 278 564 570 417 591 154	7.3 6.3 6.4 6.5 6.9 7.3 6.8 7.1 6.6

(Results in parts per million except as indicated)

- 24 -

Table 6 .-- Chemical Analyses of Streams and Reservoirs for Locations Other Than Daily Stations-- Continued

.

(Results in parts per million except as indicated)

Date of collection	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Dis	solved sol	ds	Hard as Co	nees xCO ₁	Per-	So-	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	lron (Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₁)	fate (SO,)	ride (Cl)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent 30- dium	adsorp- tion ratio	ance (micro- mhos at 25° C)	рН
								7. SUL	PHUR RI	VER NOR	TH OF	омана										
Mar. 18, 1960 Jan. 12, 1965 Mar. 18 Apr. 23 May 27	3420 304 32.1 282	6.8 7.3 7.2 4.9 12		41 32 64 89 52	4.0 4.4 4.7 7.3 4.2	2 1 2 5 1	2 0 9 0 7	115 108 164 237 167	45 17 68 102 30	17 9.2 25 42 11	0.2 .4 .3 .4 .3	0.8 .2 .8 .2 .2 .2		194 134 280 413 209	0.26 .18 .38 .56 .28		119 98 179 252 147	24 9 45 58 10	29 19 26 30 20	0.9 .4 .9 1.4 .6	324 233 490 711 365	7.2 7.8 7.0 7.3 6.7
Sept. 26 Jan. 6, 1966 Apr. 21 June 17 July 22	1630 50.0 18.4 	7.9 6.1 2.8 9.8 3.8		41 30 92 60 69	2.4 .8 7.1 3.4 3.2	29 59 10 52	0 4.0 4.2 3.6 3.3	128 84 234 199 158	33 16 114 13 112	9.9 41 54 7.0 41	.4 .3 .4 .4 .0	1.8 1.0 .0 1.0 1.0		$179 \\ 169 \\ 448 \\ 206 \\ 364$. 24 . 23 . 61 . 28 . 50		112 78 258 164 194	7 9 66 1 64	28 43 33 11 36	.8 1.4 1.6 .3 1.6	315 310 763 361 621	6.5 6.7 7.3 7.4 7.0
Aug. 25 Jan. 20, 1967	25.4 13.9	6.5 7.9		46 67	2.7 5.4	13 79	3.4 4.7	146 152	24 58	7.2 126	.4 .2	1.8 .0		177 423	.24		126 189	6 64	18 47	.5 2.5	311 751	6.9 7.5
							8.	WHITE	OAK CRE	EK NEAR	MOUNT	VERNO	N									
Feb. 25, 1965 Mar. 18 Apr. 23 May 27 Sept. 26 Oct. 29	10.8 43.9 22.1 46.7 62.8 .2	7.3 1.3 7.3 16 7.9 6.6		13 22 22 25 6.8 14	4.8 10 9.0 12 2.7 6.8	2 4 4 4 1 2	2 2 4 2 4 2 4 2 4 2 4 8 6	34 42 59 57 23 58	31 83 66 85 18 34	24 46 40 46 14 25	1.0 .6 2.0 .7 .5 .9	3.2 .8 10 1.2 1.0 .0		123 227 299 256 76 142	.17 .31 .41 .35 .24 .19		52 96 92 112 28 63	24 62 44 65 9 15	47 49 51 45 53	1.3 1.9 2.0 1.7 1.2 1.4	223 422 407 448 133 270	6.7 6.3 6.4 6.3 6.2 6.5
	L							10. WH	ITE OAP	CREEK	NEAR C	MAHA										1
July 20, 1950 Aug. 7 Mar. 18, 1960 Feb. 4, 1965 Mar. 18	23.9 20.2 38.8 414	6.8 11 6.4 8.8 8.5		17 14 14 16 18	6.2 6.5 5.9 7.6 10	17	1 97 92 91 91	37 45 27 35 32	81 48 58 71 67	230 132 48 56 56	 0.1 .3 .3	0.5 .0 .2 .8 .2		558 360 188 228 217	0.76 .49 .26 .31 .30		68 62 59 71 86	38 25 37 42 60	85 77 61 61 51	9.0 5.4 2.4 2.6 1.9	1010 616 323 378 407	$\begin{array}{c} 7.1 \\ 7.3 \\ 6.5 \\ 6.8 \\ 6.8 \end{array}$
Apr. 23. May 27. Sept. 26. Oct. 28. Dec. 1.	29.8 891 129 .9 1.6	6.6 9.9 4.9 7.6 7.0		35 13 41 17 25	17 4.8 12 6.5 7.9	146	06 21 51 77 4.9	69 51 38 69 80	126 21 150 41 62	140 23 515 96 208	.8 .3 .2 .4 .4	.2 .8 1.0 .2 .2		466 119 1090 280 500	.63 .16 1.48 .38 .68		158 52 152 69 95	101 10 121 12 30	59 46 83 71 76	3.7 1.3 12 4.0 6.5	850 212 2050 533 953	6.5 6.5 6.1 6.8 6.9
Jan. 6, 1966 Apr. 21 June 17 June 22 Jan. 20, 1967	225 41.5 26.3 29.4	5.4 6.0 1.0 14		36 42 24 30	14 17 8.9 13	270 150 62 78	6.8 5.1 4.7 5.6	43 68 59 88 28	122 141 53 114	418 223 64 78 114	.7 .0 .4 .1	.2 1.0 .2 .0		894 618 275 383	1.22 .84 .37 .52		148 175 80 96 128	112 120 32 24 106	79 64 57 56	9.6 4.9 2.8 3.0	1700 1120 425 513 674	$6.2 \\ 6.8 \\ 6.4 \\ 6.9 \\ 6.2$
						í	12.	CANEY (CREEK RI	ESERVOIR	NEAR	REDWAT	ER									
July 11, 1952 Apr. 20, 1962 Mar. 3, 1964 Apr. 8, 1965		7.4 4.7 8.3 6.1	0.09 .51 .70 .62	3.6 2.2 3.5 3.0	2.5 1.2 1.5 .9		9.8 3.6 6.6 5.4	28 9 12 11	8.7 6.2 11 8.6	5.2 3.0 4.7 3.0	0.2 .1 .4 .2	0.8 .0 .2 .2		52 25 42 33	0.07 .03 .06 .04		19 10 15 11	0 3 5 2	52 43 49 51	1.0 .5 .7 .7	70 43 67 47	7.2 5.6 6.8 6.2

Table 6.--Chemical Analyses of Streams and Reservoirs for Locations Other Than Daily Stations--Continued

Date of collection	Mean			Cal-	Mag-	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Di	ssolved sol	ida	Hare as C	acO,	Per-	So-	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	Iron (Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO,)	ride (Cl)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent 30- dium	adsorp- tion ratio	ance (micro- mhos at 25° C)	pН
								13.	CANEY C	REEK NE	AR RED	WATER										
May 23, 1961 Sept. 18, 1962	3.9 .6	17 22	0.00	5.2 9.0	3.0 2.9	$\begin{smallmatrix}13\\9.4\end{smallmatrix}$	$\begin{array}{c} 1.2\\ 1.9 \end{array}$	$40 \\ 45$	4.0 5.4	12 10	0.2 .2	0.9 .0		76 83	0.10		26 34	0	36	$^{1.1}_{.7}$	113 114	6.5 6.3
							14.	TEXAR	KANA RES	SERVOIR	NEAR T	EXARKA	NA									
Dec. 20, 1957 ª/ Jan. 7, 1966 Apr. 20 Nov. 6 Apr. 9, 1967		$ \begin{array}{c} 6.4 \\ 4.2 \\ 3.4 \\ 5.8 \\ .0 \end{array} $	0.55	20 32 25 24 25	1.6 3.0 2.4 2.3 3.0	7.4 17 14 12 24	3.6 3.6 3.0 3.4 3.4 3.4	66 105 72 76 55	12 18 21 16 38	7.5 19 16 13 34	0.2 .3 .1 .1	0.2 .2 .2 1.0 .5		91 149 120 115 155	0.12 .20 .16 .16 .21		56 92 72 69 75	0 6 13 7 30	21 28 29 26 40	0.4 .8 .7 .6 1.2	160 270 223 199 286	7.3 6.8 6.6 7.7 6.4
Mar. 18, 1965 Apr. 23 May 27 July 9 Sept. 26	309 20.1 72.4 5.8 10.9	10 15 18 17 12		15 22 19 22 10	8.7 12 9.6 8.5 4.4	3 5 3 8 2	1 5 9 6 4	22 42 33 52 17	56 71 61 52 36	45 79 56 116 27	0.2 .3 .3 .4 .2	0.5 3.2 1.8 20 5.0		177 278 221 348 127	0.24 .38 .30 .47 .17		73 104 87 90 43	55 70 60 48 29	48 53 49 68 54	1.6 2.3 1.8 3.9 1.6	331 500 393 640 223	5.9 6.0 6.1 6.4 5.8
Oct. 28 Dec. 1 Apr. 21, 1966 June 15 Feb. 28, 1967	2.9 4.6 29.2 10.7 44.6	15 17 11 19 12		25 15 22 19 24		15 70 45 45 46	9 5.3 3.6 3.1 2.7	37 33 28 40 24	56 36 66 47 87	230 97 80 68 70	.5 .7 .3 .5 .1	34 14 2.8 2.0		546 274 253 232 268	.74 .37 .34 .32 .36		97 51 100 81 109	66 24 77 48 90	78 72 48 54 47	7.0 4.3 2.0 2.2 1.9	1050 511 462 411 480	6.0 6.2 6.4 7.0 6.2
May 9	260	12		15	6.9	24	3.4	31	43	36	. 4	1.2		157	. 21		66	40	43	1.3	271	7.0
			T				20	. LAKE	O' THE	PINES N	EAR JE	FFERSO	N	1	1							
Aug. 18, 1965 Jan. 7, 1966 July 7 Mar. 7, 1967		$ \begin{array}{r} 6.4 \\ 7.5 \\ 1.4 \\ 4.3 \end{array} $		12 12 8.5 9.0	3.4 3.9 1.9 2.7	18 7.6 8.8	9 3.7 3.3 3.2	32 34 24 28	24 22 13 14	24 25 11 12	0.2 .3 .0 .3	0.2 .0 .8 .5		105 109 60 69	0.14 .15 .08 .09		44 46 29 34	18 18 9 11	49 44 33 34	$1.2 \\ 1.2 \\ .6 \\ .7$	196 198 117 122	6.4 6.8 6.8 6.9
								22.	KELLY C	REEK NEA	R MARI	ETTA										
Mar. 17, 1942 May 23, 1961 Sept. 18, 1962	6.2 .4	14 29	1.6 .00 .01	5.4 2.9 6.2	$3.1 \\ 1.6 \\ 2.5$	3.7 4.9	8.1 1.3 2.8	21 12 2	12 5.6 28	$\begin{array}{c}10\\3.5\\6.0\end{array}$	0.2 .1	2.6		78 40 81	0.11 .05 .11		26 14 26	9 4 24	 27	0.7 .4 .4	93 49 93	6.1 5.4
								23.	HUGHES	CREEK NE	AR AV	NGER										
May 23, 1961 Sept. 18, 1962	9.9 8.0	10 22	0.00	2.5 2.5	$1.5 \\ 2.0$	3.7 5.3	1.2 2.3	10 15	5.0 6.4	5.0 7.2	0.0	1.5		35 55	0.05		12 14	4 2	40	0.5	47 62	5.8 5.8

(Results in parts per million except as indicated)

a/ Boron 0.05 ppm.

- 26 -

Table 6.--Chemical Analyses of Streams and Reservoirs for Locations Other Than Daily Stations--Continued

(Results in parts per million except as indicated)

Date of collection	Mean			Cal-	Mag.	So-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Di	solved so	lidø	Hard as Co	iness aCO,	Per-	So-	Specific conduct-	
Date of collection	charge (cfs)	(SiO ₂)	(Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO,)	ride (Cl)	ride (F)	trate (NO ₃)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent so- dium	adsorp- tion ratio	ance (micro- mhos at 25° C)	pН
							24.	BLACK	CYPRES	S BAYOU	NEAR J	EFFERS	ON									
Mar. 22, 1965 Apr. 24 May 29 July 10. Sept. 27	$355 \\ 99.8 \\ 422 \\ 16.4 \\ 2.2$	12 13 17 22 12	2 2 2 2	2.0 4.8 3.5 5.2 8.8	2.4 2.4 1.3 1.7 2.9	$ \begin{array}{r} 4.1 \\ 5.9 \\ 4.0 \\ 5.8 \\ 1 \end{array} $	1.4 1.1 1.5 1.8 9	8 21 14 21 15	9.0 6.0 5.2 4.6 5.6	6.5 8.7 5.0 8.2 41	0.2 .2 .1 .1 .0	0.2 .8 .8 .8 .2		42 53 45 60 96	0.06 .07 .06 .08 .13		15 22 14 20 34	8 5 3 22	35 36 35 36 55	0.5 .5 .6 1.4	59 78 55 77 180	$ \begin{array}{c} 6.2 \\ 6.7 \\ 6.1 \\ 6.4 \\ 6.0 \end{array} $
Oct. 29 Dec. 2 July 7. 1966 Aug. 2 Sept. 8	$\begin{array}{r}.1\\3.2\\6.9\\1.6\\11.5\end{array}$	$ \begin{array}{r} 13 \\ 18 \\ 16 \\ \\ 17 \end{array} $		$ \begin{array}{c} 11 \\ 6.0 \\ 6.8 \\ \\ 4.8 \end{array} $	4.0 2.2 1.4 1.4	9.6 6.0 11 4.2	15 3.1 2.1 2.4 1.8	$ \begin{array}{r} 18 \\ 10 \\ 20 \\ \\ 14 \end{array} $	5.0 17 6.4 1.6 6.8	70 16 10 21 7.2	.2 .1 .2 .1 .1	.3 .2 1.2 .5		147 77 59 51	.20 .10 .08 		44 24 23 18	29 16 6 6	$ \begin{array}{r} 63 \\ 43 \\ 34 \\ \overline{} \\ \overline{} \\ 31 \end{array} $	2.3 .9 .5 	285 123 109 137 62	6.0 6.1 6.5 6.6
Jan. 26, 1967 May 17	136 366	18 17		3.5 4.5	$\begin{array}{c}1.3\\1.7\end{array}$	5.2 3.9	1.6 2.0	7 18	$9.0 \\ 4.4$	8.3 5.6	.0 .4	.2 .8		50 49	. 07 . 07		14 18	8 4	41 29	.6 .4	63 62	5.9 6.1
							25.	LITTL	E CYPRE	SS CREEK	NEAR	ORE CI	ТҮ									1
Sept. 12, 1964 Oct. 27. Feb. 13, 1965 Apr. 24. May 30.	0,1 5,4 1600 110 1260	11 19 11 24 17		9.2 11 4.2 10 7.0	3.4 3.8 1.8 4.1 2.8	4 7 1 3 1	0 5 5 5	14 8 20 18	38 29 10 24 15	51 111 24 54 21	0.2 .2 .1 .2 .2	0.2 .8 .5 .5		160 249 71 162 88	0.22 .34 .10 .22 .12		37 43 18 42 29	26 37 11 25 14	70 78 65 65 52	2.9 4.6 1.5 2.3 1.2	298 444 137 279 141	6.4 6.4 5.7 6.0 6.0
Sept. 27 Dec. 2 Jan. 9, 1966 Feb. 15 Mar. 20	3.4 1.6 20.8 56.3 39.1	11 16 21 19 13		9.5 10 9.3 6.7 8.5	3.7 2.2 2.6 3.0 2.9	48 19 22 17	4.3 3.0 2.7 2.8	53 4 0 6 13	17 93 52 25 30	68 31 19 32 22	.1 .1 .0 .0 .2	1.8 .5 .2 .2		192 207 126 114 103	.26 .28 .17 .16 .14		39 34 34 29 33	0 31 34 24 22	75 73 52 60 50	3.8 3.6 1.4 1.8 1.3	356 352 216 190 176	6.3 5.6 4.4 6.0 6.3
Jan. 28, 1967 Mar. 6 Apr. 20 May 18	63.2 295 89.2	23 13 17 25	3	6.0 8.0 7.5 8.0	2.4 2.8 2.9 3.2	14 22 9.0 17	2.4 2.5 4.4 2.9	6 11 7 16	28 30 31 26	17 28 12 23	.0 .2 .2 .4	.2 .4 .5 .8		96 112 88 114	.13 .15 .12 .16		25 31 31 33	20 22 25 20	52 58 35 50	1.2 1.7 .7 1.3	142 187 129 172	$5.7 \\ 6.1 \\ 5.4 \\ 6.0$
								26. MO	CCASIN	CREEK NE	CAR HAR	RLETON										
May 23, 1961 Sept. 19, 1962 June 10, 1964	1.4 .6 .03	19 34 	0.00 .02 	3.8 4.5 	1.8 2.2 	8.8 7.3 	1.4 3.7 	$\begin{array}{c}10\\10\\24\end{array}$	7.2 17 	14 10 12	0.1 .2 	1.3 .2 		62 84 	0.08 .11 		17 20 24	9 12 4	 39 	0.9 .7 	87 95 108	5.8 5.7 5.7
		,	,				27.	LITTL	E CYPRE	SS CREEK	NEAR	JEFFER	SON									
June 12, 1962 Sept. 13, 1964 Oct. 22 Feb. 14, 1965 Apr. 26	$ \begin{array}{r} 10.6 \\ .5 \\ 2.0 \\ 643 \\ 38.8 \\ \end{array} $	22 14 16 11 15		$ \begin{array}{r} 12 \\ 21 \\ 9.5 \\ 4.2 \\ 9.5 \\ \end{array} $	$ \begin{array}{r} 3.7\\10\\3.7\\1.8\\4.4\end{array} $		52 55 56 1 39	20 2 6 10 14	22 45 46 18 32	83 285 76 9.4 57	0.2 .1 .1 .1 .2	0.5 .8 .0 .8 1.5		205 542 210 61 166	0.28 .74 .29 .08 .23		45 94 39 18 42	29 92 34 10 30	71 79 76 56 67	3.4 7.4 3.9 1.1 2.6	373 1040 378 100 292	5.8 5.8 5.9 5.8 5.9
May 31 Sept. 29 Dec. 2 Jan. 7, 1966 Feb. 13	636 1.2 2.0 70.7 214	16 14 6.1 20 19		5.5 14 10 9.8 9.8	2.3 3.2 2.9 2.8 3.4	53 52 38	1 34 4.1 3.3 2.8	16 0 28 5 4	17 82 41 22 17	11 24 67 89 75	.5 .0 .2 .0 .1	.2 2.2 .2 .0 .2		72 173 198 201 167	.10 .24 .27 .27 .23		23 48 37 36 38	10 48 14 32 35	52 60 73 74 66	1.0 2.1 3.8 3.8 2.7	106 303 379 370 303	5.9 4.6 6.7 6.4 5.6

Table 6 .-- Chemical Analyses of Streams and Reservoirs for Locations Other Than Daily Stations-- Continued

							(Result	s in pa	rts per	millio	n excep	ot as i	indica	ted)								
	Mean			Cal-	Mag-	50-	Po-	Bicar-	Sul-	Chlo-	Fluo-	Ni-	Bo-	Di	solved sol	ids	Hare as C	dness aCO ₃	Per-	So-	Specific conduct-	
Date of collection	dis- charge (cfs)	Silica (SiO ₂)	(Fe)	cium (Ca)	ne- sium (Mg)	dium (Na)	tas- sium (K)	bonate (HCO ₃)	fate (SO.)	ride (Cl)	ride (F)	trate (NO,)	ron (B)	Parts per mil- lion	Tons per acre- foot	Tons per day	Cal- cium, magne- sium	Non- carbon- ate	cent 30- dium	adsorp- tion ratio	ance (micro- mhos at 25° C)	рН
						27	LITT	LE CYPR	ESS CRE	EK NEAR	JEFFEI	RSONC	Contin	ued								
Mar. 18, 1966 Apr. 27 Jan. 25. 1967 Mar. 6 Apr. 19 May 17	122 	16 2.7 14 14 18		10 2.0 9.8 7.2 8.5	$ \begin{array}{c} 3.2\\.2\\.3.1\\2.6\\3.1\end{array} $	42 1.5 53 40 28 18	2.8 1.9 2.3 3.6 3.2	8 6 8 10 8 18	23 4.0 27 23 16 19	75 1.3 89 65 51 30	.2 .1 .3 .2 .5	· 8 · 2 · 2 · 4 · 5		177 17 163 127 110	0.24 .02 .22 .17 .15		38 6 40 37 29 34	32 1 33 29 22 19	69 28 68 65 51	3.0 .3 3.6 2.9 2.3 1.3	332 30 373 299 225 180	$ \begin{array}{r} 6.6 \\ 5.7 \\ 6.3 \\ 6.1 \\ 5.5 \\ 6.1 \\ \hline 6.1 \\ \end{array} $
								28.	PREWITT	CREEK	NEAR K	ARNAK										
May 23, 1961 Sept. 19, 1962	3.2 .5	12 18	0.00 .04	2.7 3.0	1.5 1.9	3.7 3.3	0.7	12 13	5.2 4.8	4.0 5.5	0.2	1.3		32 44	0.04		12 15	2 5	30	0.5	47 48	6.2 6.2
								33.	BLACK B	AYOU NE	AR ATL	ANTA										
May 23, 1961 Sept. 18, 1962	$\begin{array}{c} 8.1\\ 4.9\end{array}$	10 19	0.00	3.0 4.2	1.9 1.8	19 31	1.7 2.9	36 53	3.8 3.4	15 27	0.3	2.9 4.0		76 120	0.10 .16		16 18	00	76	2.1 3.2	121 189	6.7 6.2
									34.	CADDO L	AKE											
Feb. 26, 1952 June 21 Aug. 25, 1953 Nov. 2, 1954 Aug. 20, 1956 July 22, 1959 July 22, 1959 July 18, 1960 June 14, 1962 June 23, 1963		15 28 22 15 14 15 18 17 13	$\begin{array}{c} 0.76 \\ 5.2 \\ .94 \\ .54 \\ .16 \\ .13 \\ 1.8 \\ 1.8 \\ .46 \end{array}$	$ \begin{array}{c} 6.9\\ 6.2\\ 7.0\\ 7.4\\ 6.2\\ 8.0\\ 5.0\\ 5.5\\ 8.0 \end{array} $	$\begin{array}{c} 3.4\\ 3.9\\ 3.0\\ 3.7\\ 4.0\\ 2.7\\ 3.7\\ 2.2\\ 3.2\\ \end{array}$	17	3.6 22 23 24 28 23 19 21 24	16 23 25 39 33 26 16 12 20	20 19 14 13 11 14 12 11 17	27 27 31 28 38 31 30 33 36	0.3 .2 .3 .4 .1 .1 .2	0.5 1.5 .2 .2 .2 .2 .2 .8 1.0 .2		127 119 125 120 118 107 97 97 112	0.17 .16 .17 .16 .16 .15 .13 .13 .15		31 32 30 34 32 31 28 23 33	18 13 9 2 5 10 15 13 17	51 60 62 61 66 61 60 67 61	1.3 1.7 1.7 1.8 2.2 1.8 1.6 1.9 1.8	168 172 178 185 203 177 157 156 189	$\begin{array}{c} 6.4 \\ 7.1 \\ 6.9 \\ 7.1 \\ 6.8 \\ 6.2 \\ 6.0 \\ 5.8 \\ 6.0 \end{array}$