T E X A S W A T E R D E V E L O P M E N T B O A R D

COMPARATIVE RESULTS OF SEDIMENT SAMPLING WITH THE TEXAS SAMPLER AND THE DEPTH-INTEGRATING SAMPLERS and SPECIFIC WEIGHT OF FLUVIAL SEDIMENT DEPOSITS IN TEXAS

2 M Clarce

ANUARY 1967

TEXAS WATER DEVELOPMENT BOARD

REPORT 36

COMPARATIVE RESULTS OF SEDIMENT SAMPLING WITH THE TEXAS SAMPLER AND THE DEPTH-INTEGRATING SAMPLERS

and

SPECIFIC WEIGHT OF FLUVIAL SEDIMENT DEPOSITS IN TEXAS

Ву

Clarence T. Welborn United States Geological Survey

Prepared by the U.S. Geological Survey in cooperation with the Texas Water Development Board

January 1967

TEXAS WATER DEVELOPMENT BOARD

Mills Cox, Chairman Robert B. Gilmore Milton T. Potts Marvin Shurbet, Vice Chairman Groner A. Pitts W. E. Tinsley

Joe G. Moore, Jr., Executive Director

Authorization for use or reproduction of any material contained in this publication, i.e., not obtained from other sources, is freely granted without the necessity of securing permission therefor. The Board would appreciate acknowledgement of the source of original material so utilized.

> Published and distributed by the Texas Water Development Board Post Office Box 12386 Austin, Texas 78711

FOREWORD

On September 1, 1965 the Texas Water Commission (formerly, before February 1962, the State Board of Water Engineers) experienced a far-reaching realignment of functions and personnel, directed toward the increased emphasis needed for planning and developing Texas' water resources and for administering water rights.

Realigned and concentrated in the Texas Water Development Board were the investigative, planning, development, research, financing, and supporting functions, including the reports review and publication functions. The name Texas Water Commission was changed to Texas Water Rights Commission, and responsibility for functions relating to water-rights administration was vested therein.

For the reader's convenience, references in this report have been altered, where necessary, to reflect the current (post September 1, 1965) assignment of responsibility for the function mentioned. In other words credit for a function performed by the Texas Water Commission before the September 1, 1965 realignment generally will be given in this report either to the Water Development Board or to the Water Rights Commission, depending on which agency now has responsibility for that function.

Texas Water Development Board

John J. Vandertulip Chief Engineer

COMPARATIVE RESULTS OF SEDIMENT SAMPLING WITH THE TEXAS SAMPLER AND THE DEPTH-INTEGRATING SAMPLERS..... Page 1

£1

SPECIFIC WEIGHT OF FLUVIAL SEDIMENT DEPOSITS IN TEXAS..... Page 99

COMPARATIVE RESULTS OF SEDIMENT SAMPLING WITH

THE TEXAS SAMPLER AND THE DEPTH-INTEGRATING SAMPLERS

TABLE OF CONTENTS

Page

INTRODUCTION	9
Purpose and Scope of Study	10
Prior Investigations	10
COMPARISON OF THE TEXAS SAMPLER WITH	
THE DEPTH-INTEGRATING SAMPLERS	11
Vertical Distribution of Suspended Sediment	11
Description of Samplers	14
Comparison of Results Obtained by Texas Sampler with Those Obtained by Depth-Integrating Sampler	14
SUMMARY AND CONCLUSIONS	18
DEFINITION OF TERMS	19
REFERENCES	21
APPENDIX A: SUMMARIES OF DATA COLLECTED AT 15 STATIONS	23
Sabine River at Logansport, La	25
Sabine River near Bon Wier, Tex	27
Neches River near Rockland, Tex	30
Trinity River at Romayor, Tex	33
West Fork San Jacinto River near Conroe, Tex	37
Double Mountain Fork Brazos River near Aspermont, Tex	40
Brazos River near South Bend, Tex	43
Leon River at Gatesville, Tex	47
Brazos River at Richmond, Tex	51
Colorado River at Robert Lee, Tex	55
Colorado River near San Saba, Tex	57

		Page
	Colorado River at Columbus, Tex	60
	Lavaca River near Edna, Tex	62
	Guadalupe River at Victoria, Tex	64
	San Antonio River at Goliad, Tex	66
APP	PENDIX B: BASIC DATA	69
	TABLES	
1.	Example of computations to correct the size distribution for a sample from a single point by the application of a coefficient	13
2.	Comparison of suspended-sediment concentrations collected with depth-integrating samplers to concentrations col- lected near the surface with the Texas sampler	71
3.	Particle-size analyses of suspended-sediment samples for Texas streams	78
	ILLUSTRATIONS	
	Figures	
1.	Nomograph of Coefficients to Determine Mean Sediment Concentration in a Vertical from a Sample at a Single Depth	12
2.	Photograph of U.S. Depth-Integrating Samplers and Texas Sampler	15
3.	Graph of Ratio of Sediment Concentration from Depth-Integrated Samples to Sediment Concen- tration from Surface Samples Plotted Against Percentages of Sand from Depth-Integrated Sediment Samples	17
4.	Graph of Ratio of Sediment Concentration from Depth-Integrated Samples to Sediment Concen- tration from Surface Samples Plotted Against Water Discharge, Sabine River at Logansport, La	26
5.	Graph of Ratio of Sediment Concentration from Depth-Integrated Samples to Sediment Concentration from Surface Samples Plotted Against Water Discharge, Sabine River near Bon Wier, Tex	28

TABLE OF CONTENTS (Cont'd.)

		Page
6.	Graph of Particle-Size Distribution of Suspended- Sediment Samples Collected by the Texas Sampler and by the Depth-Integrating Samplers, Sabine River near Bon Wier, Tex	29
7.	Graph of Ratio of Sediment Concentration from Depth-Integrated Samples to Sediment Concen- tration from Surface Samples Plotted Against Water Discharge, Neches River near Rockland, Tex	31
8.	Graph of Particle-Size Distribution of Suspended- Sediment Samples Collected by the Texas Sampler and by the Depth-Integrating Samplers, Neches River near Rockland, Tex	32
9.	Graph of Ratio of Sediment Concentration from Depth-Integrated Samples to Sediment Concen- tration from Surface Samples Plotted Against Water Discharge, Trinity River at Romayor, Tex	34
10 .	Graph of Particle-Size Distribution of Suspended- Sediment Samples Collected by the Texas Sampler and by the Depth-Integrating Samplers, Trinity River at Romayor, Tex	35
11.	Graph of Vertical Distribution of Suspended- Sediment Concentration of the Trinity River at Romayor, Tex., September 18 and 20, 1962	36
12.	Graph of Ratio of Sediment Concentration from Depth-Integrated Samples to Sediment Concen- tration from Surface Samples Plotted.Against Water Discharge, West Fork San Jacinto River near Conroe, Tex	38
13.	Graph of Particle-Size Distribution of Suspended- Sediment Samples Collected by the Texas Sampler and by the Depth-Integrating Samplers, West Fork San Jacinto River near Conroe, Tex	39
14.	Graph of Comparison of Sediment Concentration from the Texas Sampler and from the Depth- Integrating Samplers, Double Mountain Fork Brazos River near Aspermont, Tex	41
15.	Graph of Particle-Size Distribution of Suspended- Sediment Samples Collected by the Texas Sampler and by the Depth-Integrating Samplers, Double Mountain Fork Brazos River near Aspermont, Tex	42

- 5

TABLE OF CONTENTS (Cont'd.)

Page

.16.	Graph of Ratio of Sediment Concentration from Depth-Integrated Samples to Sediment Concen- tration from Surface Samples Plotted Against Water Discharge, Brazos River near South Bend, Tex	44
17.	Graph of Particle-Size Distribution of Suspended- Sediment Samples Collected by the Texas Sampler and by the Depth-Integrating Samplers, Brazos River near South Bend, Tex	45
18.	Graph of Vertical Distribution of Suspended- Sediment Concentration of the Brazos River near South Bend, Tex., June 12 and September 9, 1962	46
19.	Graph of Ratio of Sediment Concentration from Depth-Integrated Samples to Sediment Concentration from Surface Samples Plotted Against Water Discharge, Leon River at Gatesville, Tex	48
20.	Graph of Particle-Size Distribution of Suspended- Sediment Samples Collected by the Texas Sampler and by the Depth-Integrating Samplers, Leon River at Gatesville, Tex	49
21.	Graph of Vertical Distribution of Suspended- Sediment Concentration of the Leon River at Gatesville, Tex., September 11, 1962	50
22.	Graph of Ratio of Sediment Concentration from Depth-Integrated Samples to Sediment Concentra- tion from Surface Samples Plotted Against Water Discharge, Brazos River at Richmond, Tex	52
23.	Graph of Particle-Size Distribution of Suspended- Sediment Samples Collected by the Texas Sampler and by the Depth-Integrating Samplers, Brazos River at Richmond, Tex	53
24.	Graph of Vertical Distribution of Suspended- Sediment Concentration of the Brazos River at Richmond, Tex., September 17, 1962	54
25.	Graph of Ratio of Sediment Concentration from Depth-Integrated Samples to Sediment Concentra- tion from Surface Samples Plotted Against Water Discharge, Colorado River at Robert Lee, Tex	56
26.	Graph of Comparison of Sediment Concentration from the Texas Sampler and from the Depth- Integrating Samplers, Colorado River near San Saba, Tex	58

TABLE OF CONTENTS (Cont'd.)

27.	Graph of Particle-Size Distribution of Suspended- Sediment Samples Collected by the Texas Sampler and by the Depth-Integrating Samplers, Colorado River near San Saba, Tex	59
28.	Graph of Ratio of Sediment Concentration from Depth-Integrated Samples to Sediment Concentra- tion from Surface Samples Plotted Against Water Discharge, Colorado River at Columbus, Tex	61
29.	Graph of Ratio of Sediment Concentration from Depth-Integrated Samples to Sediment Concentra- tion from Surface Samples Plotted Against Water Discharge, Lavaca River near Edna, Tex	63
30.	Graph of Ratio of Sediment Concentration from Depth-Integrated Samples to Sediment Concentra- tion from Surface Samples Plotted Against Water Discharge, Guadalupe River at Victoria, Tex	65
31.	Graph of Ratio of Sediment Concentration from Depth-Integrated Samples to Sediment Concentra- tion from Surface Samples Plotted Against Water Discharge, San Antonio River at Goliad, Tex	67
32.	Graph of Particle-Size Distribution of Suspended- Sediment Samples Collected by the Texas Sampler and by the Depth-Integrating Samplers, San Antonio River at Goliad, Tex	68

- 7 -

COMPARATIVE RESULTS OF

SEDIMENT SAMPLING WITH THE TEXAS

SAMPLER AND THE DEPTH-INTEGRATING

SAMPLERS

INTRODUCTION

Investigations of the amounts of suspended sediment transported by Texas streams began before 1900 when sediment data were collected for the Rio Grande near El Paso. In 1924 the U.S. Department of Agriculture, in cooperation with the Texas Water Development Board, began collecting suspended-sediment data at several points on the Brazos River and its tributaries. Gradually the program was expanded to cover other river basins. At the present time most of the major streams in Texas are being sampled for suspended sediment by the Texas Water Development Board. Information on monthly and annual sediment loads, in acrefeet and in tons, has been published since 1940 by the Texas Water Development Board in a series of reports: "The Silt Load of Texas Streams."

Since 1949 the U.S. Geological Survey has measured suspended-sediment concentration and particle-size distribution at a number of daily stations, and has collected total sediment discharge data at some of these stations and at several non-daily stations. The data are published annually in U.S. Geological Survey Water-Supply Papers: "Quality of Surface Waters of the United States," Parts 7 and 8.

Different methods of sediment sampling are used by the Texas Water Development Board and by the U.S. Geological Survey primarily because the sediment samplers used by the two agencies are different in construction and operation. Since the beginning of the cooperative program between the Department of Agriculture and the Texas Water Development Board in 1924, suspended-sediment samples have been collected by the Board with the Texas sampler. This sampler collects a sample of the water-sediment mixture, usually at one point in the vertical near the water surface, in a narrow-mouth bottle that is held vertically in the sampler. The Geological Survey uses the U.S. standard depthintegrating samplers which collect a sample of the water-sediment mixture while being lowered and raised through the vertical at a constant transit rate. The water-sediment mixture enters the depth-integrating sampler through a nozzle, which is oriented into the streamflow, at a velocity about equal to that of the stream.

Knowledge of the comparison of results obtained with the two types of samplers is needed so that past and future sediment records derived from the

- 9 -

Texas sampler can be correlated with those derived from the U.S. standard samplers.

Purpose and Scope of Study

The major objective of this study was to learn, from a comparison of results obtained with the two samplers, whether a coefficient or coefficients can be determined which, when applied to the suspended-sediment concentration in samples collected near the surface with the Texas sampler, will approximate the concentration in samples collected with the U.S. depth-integrating samplers.

Suspended-sediment samples for comparison were collected during the period September 1, 1961 to August 31, 1963. Most of these samples were collected at stations where the Texas Water Development Board is currently collecting sediment data with the Texas sampler. Samples were collected at a few other sites to give a better overall comparison of the samplers. Eight suspended-sediment samples for comparison were preferred at each station, and when possible the samples were collected over a broad range of water discharges. Low runoff during the study period, however, prevented the collection of sufficient data at some stations. Data collected in 1950-51 for a similar sediment study by George Porterfield of the U.S. Geological Survey are included as supplementary data in this report (Porterfield, written communication, 1951).

Particle-size analyses were determined for some of the suspended-sediment samples collected with depth-integrating samplers and with the Texas sampler (Table 3 in Appendix B). Table 3 also includes particle-size analyses of suspended-sediment samples collected by the U.S. Geological Survey at a number of other locations in Texas.

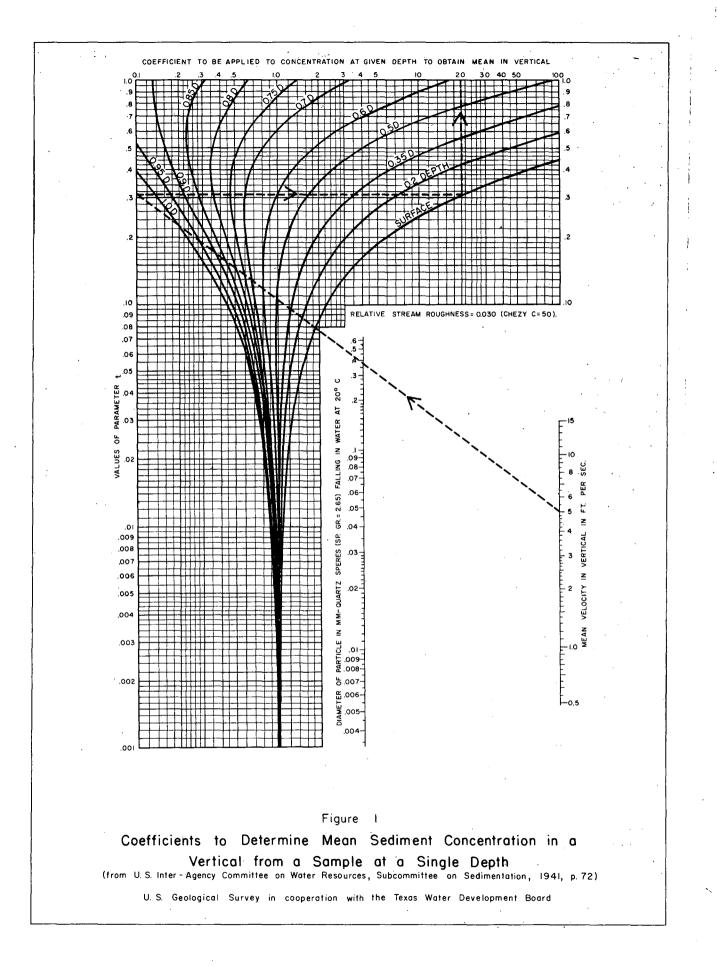
Prior Investigations

An investigation of different types of sediment samplers and sampling methods was made by the U.S. Inter-Agency Committee on Water Resources, Subcommittee on Sedimentation (1941), and the results were published in Report No. 3 of the series, "Measurement and Analysis of Sediment Loads in Streams." To ascertain the best sampler and the optimum method of sampling a stream, the investigators experimented with samplers having vertical and horizontal intakes, collected sediment samples at points throughout the vertical, and determined the vertical velocity, roughness coefficients, and other significant parameters. These researchers concluded that the true mean sediment concentration usually cannot be determined by sampling at a single point near the surface because the depth at which the mean sediment concentration occurs varies with particle size and with the characteristics of the stream. They also concluded that sampling at or near the surface yields large negative errors in sediment concentration for all streams except those transporting predominantly clay particle sizes. The investigators further determined that the depth-integration method, whereby the sampler fills at a rate equal to the velocity at every point in the vertical and traverses at least 95 percent of the stream depth, will give results most closely approximating the true mean sediment concentration.

The U.S. Army Corps of Engineers, Tulsa, Oklahoma District, made an investigation of the Texas-type sampler and the U.S. D-43 depth-integrating samplers to determine their relative accuracy in sampling streams that transport a high percentage of clay. The resultant report concluded: "These tests show a definite tendency for the Texas-type sampler to collect more of the clay sizes than does the D-43 sampler, or conversely, that the Texas-type sampler captures fewer sand and silt particles" (U.S. Army Corps of Engineers, 1949, p. 3).

In 1950 an investigation similar to that of the U.S. Army Corps of Engineers was begun in Texas by George Porterfield of the Geological Survey. Porterfield studied the difference in sediment samples collected from Texas streams by means of the Texas sampler and the depth-integrated samplers. Because an extended drought precluded collection of adequate data, no positive conclusions were made at the time.

COMPARISON OF THE TEXAS SAMPLER WITH THE DEPTH-INTEGRATING SAMPLERS


Vertical Distribution of Suspended Sediment

Sediment transported by flowing water may be classified as suspended load and bed load. The suspended load is the only classification of load which will be of concern in this report. The suspended load (suspended sediment) is sediment that is supported by the upward components of turbulent currents or by colloidal suspension if the sediment particles are very small (Colby, 1964, p. VI).

The way in which suspended sediment is distributed in the vertical should be understood in order to compare the results obtained with the depth-integrating samplers and with the Texas sampler. The concentration of suspended sediment increases from the water surface to the streambed. The upward components of turbulent currents tend to lift the sediment particle into suspension. The concentration of sediment at any given point in the vertical will depend on the individual grain size of the sediment and the force of the upward currents. A depth-integrating sediment sampler is designed to collect an integrated sample of sediment and water in a vertical so that when the quantity of sediment in the sample, expressed as concentration, is multiplied by the product of mean velocity and depth of the vertical the result is the suspended-sediment discharge per unit width. The U.S. Inter-Agency Committee on Water Resources, Subcommittee on Sedimentation (1941, p. 77) stated: "A sampler which fills at a rate equal to the velocity at every point in the vertical and which will traverse 95 percent of the depth, or more, gives the most accurate results." The mean sediment concentration may be approximated by collecting a sediment sample at one point in the vertical and applying the proper coefficient. However, the selection of the proper coefficient is very difficult because the coefficient will vary according to the stream characteristics and to the particle-size distribution of the sediment.

The following discussion states the difficulties involved in selecting the proper coefficients, the wide range of coefficients, and a method of computing the mean suspended-sediment concentration in a vertical from point samples. The discussion is taken from the U.S. Inter-Agency Committee on Water Resources, Subcommittee on Sedimentation (1941).

Figure 1 is a nomograph from which coefficients may be derived to obtain the mean suspended-sediment concentration in a vertical from a sediment sample

collected with a point sampler. The nomograph is drawn for a relative stream roughness of 0.030 (Chezy C of 50). For every change in the relative stream-roughness factor, a new nomograph must be constructed. The coefficient that is used to adjust the individual particle sizes of a point sample varies with the parameter \underline{t} (Figure 1). The parameter \underline{t} is an index of vertical sediment distribution. The nomograph reveals that the parameter \underline{t} varies with the relative stream roughness, with the particle size of the sediment, and with the mean velocity in the vertical. If a sample is collected near the surface the coefficient is large for a considerable range of conditions. This characteristic indicates that, although a coefficient may be applied to the concentration of a surface sample, collecting a single sample from the upper portion of a vertical is inadvisable when the sediment and velocity distributions are of considerable curvature. When this type of distribution is present, the sample should be collected between the 0.5 and 0.7 depths where the coefficients are close to 1.0.

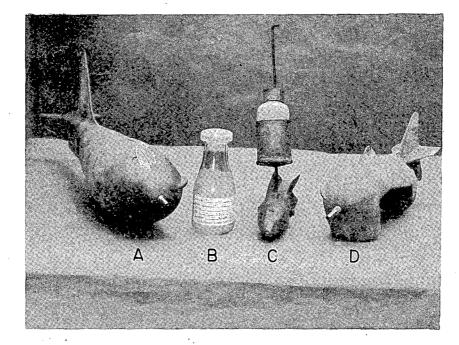
Table 1 presents an example of computations in which coefficients are applied to correct the concentrations of the individual grain sizes.

- Table 1.--Example of computations to correct the size distribution for a sample from a single point by the application of a coefficient
- Given: The particle-size distribution and sediment concentration (columns 1 through 3, below) of a sediment sample collected on September 15, 1961, on the Sabine River near Bon Wier, using the Texas (surface) sampler.
- Assume: Mean velocity in vertical = 5 feet per second.

The relative stream roughness = 0.030 (Chezy C = 50).

Diameter of particle in mm. (Mean diameter of given size range)	Percent of sample in size range	Concentration of size range (ppm)	Coefficient from Figure 1	Corrected concentration (ppm) (Col. 3 times Col. 4)
0.37	0.4	2	20	40
.18	2.2	11	2.6	29
.092	12.2	62	1.4	87
.047	10.6	53	1.1	58
.023	9.8	49	1.01	د 49 '
.01,2	6.9	35	1.00	35
.0059	5.1	26	1.00	26
.0028	11.5	58	1.00	58
.0020	41.3	208	1.00	208
Total	100.0	504		590

Description of Samplers


The Texas sampler consists of a 1/8- by 3/4- by 15-inch hanger bar to which a sheet-metal bottle holder is fastened. The hanger bar is fastened to a 15pound lead current-meter weight (Figure 2). When the sampler is used, an 8ounce small-mouth bottle is placed in a vertical position in the bottle holder and is lowered one foot below the surface of the stream. The sampler is brought to the surface when air bubbles cease to come from the bottle.

The depth-integrating samplers used in this study ranged in weight from 24 to 100 pounds (Figure 2). These samplers have a cast bronze streamlined body in which the sample container is enclosed. The nose of the sampler is drilled and tapped for intake nozzles of 1/4-, 3/16-, and 1/8-inch diameters. An exhaust port is located on the side of the head of the sampler. Integrallycast tail vanes orient the sampler in the streamflow. All depth-integrating samplers use 1-pint round milk bottles for sample containers. The depthintegrating sampler continuously accumulates a sample of the water-sediment mixture by moving vertically at a constant rate and by admitting the watersediment mixture at a velocity equal to that of the stream through the nozzle, which is oriented upstream. Some depth-integrating samplers collect a watersediment mixture within 0.3 foot of the streambed; others collect samples within ' 0.5 foot of the streambed. The depth-integrating samplers used in this study were the U.S. D-43, U.S. P-46, U.S. D-49, and U.S. DH-59 depth-integrating samplers. For information on other samplers of this type see U.S. Inter-Agency Committee on Water Resources, Subcommittee on Sedimentation (1959).

Comparison of Results Obtained by Texas Sampler with Those Obtained by Depth-Integrating Sampler

On the basis of a study by Faris (1933), the Texas Water Development Board uses a coefficient of 1.102 to correct the sediment data collected with the Texas sampler. Faris concluded that the mean suspended-sediment concentration generally occurred at the 0.6 depth and that if the concentration of a sample collected near the surface is multiplied by the factor of 1.102 the results would equal the mean concentration for the vertical.

A comparison of the suspended-sediment data collected with the Texas sampler and with a depth-integrating sampler indicates that no single coefficient can be used for all streams in Texas. The greatest variation between the results obtained with the two types of samplers is for the sand-bed streams of southeast Texas. The concentrations of suspended-sediment samples collected with the Texas sampler from streams in east and southeast Texas differ greatly from the concentrations of suspended-sediment samples collected with a depthintegrating sampler. The ratio of suspended-sediment concentrations collected with a depth-integrating sampler to the suspended-sediment concentrations collected with the Texas sampler ranged from 0.96 to 3.41. The suspended load of the Sabine, Neches, lower Trinity, and San Jacinto Rivers contains a high percentage of sand (averages about 48 percent in the Sabine River near Bon Wier). More than 30 percent of the suspended-sediment load of the Neches, Trinity, and San Jacinto Rivers is sand. The concentrations of samples collected with the Texas sampler from the sandy streams must be multiplied by a coefficient greater than 1.102. Data collected for these streams show that neither a coefficient nor a set of coefficients could be computed to correct data collected with the Texas sampler.

Figure 2

U.S. Depth-Integrating Samplers and Texas Sampler

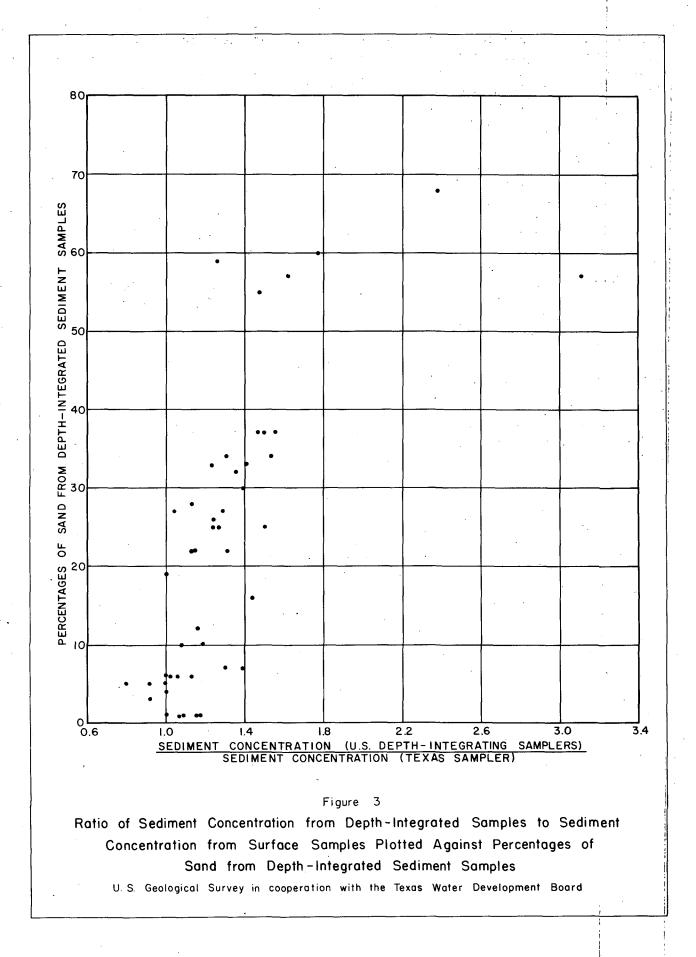
A. U.S. D-49 depth-integrating sampler

B. Sample bottle used in A and D

C. Texas sampler

í

D. U.S. DH-59 depth-integrating sampler


U.S. Geological Survey in cooperation with the Texas Water Development Board

To illustrate that no single coefficient can be applied to the sediment samples collected with the Texas sampler to obtain the mean sediment concentration of a stream, suspended-sediment samples were collected with both the Texas sampler and a depth-integrating sampler. The resulting sediment concentrations from the Texas sampler were divided into the sediment concentrations from the depth-integrating sampler to obtain coefficients. These coefficients were plotted against water discharge. Figure 9 is an example of how wide a range the coefficients can have. The Trinity River at Romayor is a sandy stream. This is the probable cause of the wide range of coefficients. Figure 10 shows that the depth-integrating sampler collects approximately 35 percent sand and the Texas sampler collects approximately 8 percent sand at this station. For information on the range of coefficients for the locations that were studied see Appendix A.

For streams carrying higher percentages of silt and clay in suspension. the coefficients for correcting the suspended-sediment concentrations of samples collected with the Texas sampler are nearer unity than those for sandy streams. The Brazos River carries a large suspended-sediment load, but the percentage of sand is less than that of either the silt and clay fractions. For example, the sediment load of the Brazos River near South Bend averages about 12 percent sand, 24 percent silt, and 64 percent clay; the ratios of suspended-sediment concentrations obtained by the two samplers ranged from 1.02 to 1.49. Most of the computed ratios were less than 1.102. At Richmond the suspended-sediment load averages about 18 percent sand, 30 percent silt, and 52 percent clay; the ratios of suspended-sediment concentrations obtained by the two samplers ranged from 0.98 to 1.50. At the Richmond station the suspended-sediment concentrations of most of the samples collected with the Texas sampler differed from the mean sediment concentration determined with a depth-integrating sampler by a ratio greater than 1.102. The fine sediment particles (silt and clay) were almost uniformly distributed throughout the vertical at South Bend and Richmond but the concentration of sand increased with depth. Although the percentage of sand in suspension in the Brazos River is not high, the percentage of sand is highly variable near the surface where samples are collected with the Texas sampler. Therefore no single coefficient can be assigned for correcting sediment data collected with the Texas sampler at South Bend and Richmond or probably at intermediate sites.

The range of ratios between the results obtained by the two samplers is not large for streams where sand makes up less than 10 percent of the suspendedsediment load. Such stream stations are the Double Mountain Fork Brazos River near Aspermont, Leon River at Gatesville, Colorado River near San Saba, San Antonio River at Goliad, and Nueces River near Three Rivers. Because the suspended-sediment load of these streams consists largely of silt and clay, the suspended-sediment concentration is nearly uniform throughout the vertical and the concentration of a sediment sample collected near the surface approximates the mean sediment concentration.

To illustrate how the data collected with the Texas sampler is affected by sand in suspension, the sand percentages of depth-integrated sediment samples are plotted against the ratio of sediment concentrations of depth-integrated samples to the sediment concentrations of samples collected near the surface with the Texas sampler (Figure 3). The points on the graph correlate fairly well up to about 40 percent sand in suspension. The range of ratios between

- 17 -

the two types of samplers for suspended-sand percentages from 0 to 40 was from 0.8 to 1.6. A coefficient of 0.8 to 1.6 would have to be applied to the sediment concentration of a sample collected with the Texas sampler in order to obtain the mean sediment concentration of the vertical. Above 40 percent sand in suspension the points were widely scattered and the ratios of the two samplers ranged from 1.26 to 3.10.

SUMMARY AND CONCLUSIONS

Suspended-sediment samples were collected with the Texas sampler and depthintegrating samplers in all the major river basins in Texas except the Red River and Rio Grande. Results showed that suspended-sediment samples collected with the Texas sampler from streams that carried a high percentage of sand (such as the Sabine, Neches, San Jacinto, lower Trinity, and lower Brazos Rivers) were not representative of the mean suspended-sediment concentration of the streams. Furthermore, the ratio of the suspended-sediment concentration of samples collected by the depth-integrating samplers to the suspended-sediment concentration of samples collected by the Texas sampler varied over such a wide range on these sandy streams that no single coefficient could be applied to the concentrations collected by the Texas sampler to obtain a mean concentration. On streams in which less than 10 percent of the suspended sediment is sand, the difference between the sediment concentrations collected by the two types of samplers is not large; a single coefficient can be computed for these streams to apply to the sediment concentration collected by the Texas sampler in order to obtain the mean sediment concentration of the stream. The depth-integrating samplers should be used on streams in which 10 percent or more of the suspended sediment is sand.

The results of the study also indicate that:

1. Additional comparison data should be collected for stations having insufficient data so as to provide a more definitive comparison between the two types of samplers.

2. Additional samples should be collected for particle-size analyses at stations where only a limited number of samples have been collected.

3. More than one vertical should be sampled in a cross section on streams where the suspended sediment is not evenly distributed throughout the cross section.

Bedload is the sediment that moves by sliding, rolling, or skipping on or very near the streambed and is supported mainly by the bed rather than by the turbulence of flow (Colby, 1964, p. V).

<u>Chezy C</u> is the friction coefficient which is equal to $\frac{1.5}{1/6}$, where n/D

n = Manning roughness coefficient
and D = depth of the stream, in feet.

<u>Concentration</u> is a ratio of the weight of sediment to the weight of the watersediment mixture (Colby, 1964, p. V).

- Depth-integrating sampler is a sampling device that continuously accumulates a water-sediment mixture by moving vertically at a constant transit rate and by admitting the water-sediment mixture at a velocity about equal to the stream velocity at every point of the sampler's travel.
- Particle-size classification is the classification recommended by the American Geophysical Union Subcommittee on sediment terminology (Lane and others, 1947, p. 937). According to this classification, clay-size particles have diameters between 0.0002 and 0.004 mm, silt-size particles have diameters between 0.004 and 0.062 mm, and sand-size particles have diameters between 0.062 and 2.0 mm.
- Relative roughness is equal to $n/D^{1/6}$, where n = Manning roughness coefficientand D = depth of the stream, in feet.
- Suspended load (suspended sediment) is sediment that is supported by the upward components of turbulent currents or by colloidal suspension if the sediment particles are very small (Colby, 1964, p. VI).

Texas sampler is a sampling device that collects a water-sediment mixture at one point in the vertical by the mixture flowing into a narrow-mouth bottle positioned in a vertical position.

Total sediment discharge. Weight of all sediment passing a section in a unit of time.

Vertical is an imaginary line from the surface of the stream to the streambed.

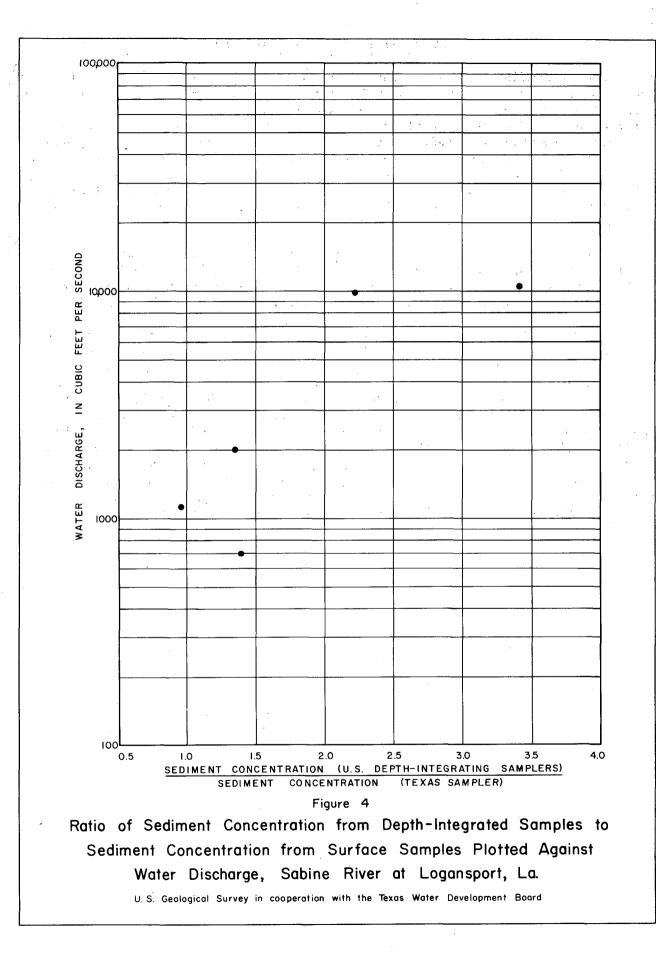
- Colby, B. R., 1964, Discharge of sands and mean-velocity relationships in sandbed streams: U.S. Geol. Survey Prof. Paper 462-A, 47 p.
- Faris, O. A., 1933, The silt load of Texas streams: U.S. Dept. Agr. Tech. Bull. 382, 71 p.
- Lane, E. W., and others, 1947, Report of the subcommittee on sediment terminology: Am. Geophys. Union Trans., v. 28, no. 6, p. 936-938.
- U.S. Army Corps of Engineers, 1949, Second interim progress report on sedimentation investigations in Tulsa District, Arkansas and Red River basin, February 1949: Tulsa, Okla. Dist., 65 p.
- U.S. Inter-Agency Committee on Water Resources, Subcommittee on Sedimentation, 1941, Analytical study of methods of sampling suspended sediment: U.S. Inter-Agency Committee on Water Resources, Subcommittee on Sedimentation Rept. 3, Iowa City, Iowa, 82 p.

1959, Federal Inter-Agency sedimentation instruments and reports: U.S. Inter-Agency Committee on Water Resources, Subcommittee on Sedimentation, Minneapolis, Minn., 38 p.

APPENDIX A

SUMMARIES OF DATA COLLECTED AT 15 STATIONS

Sabine River at Logansport, La.

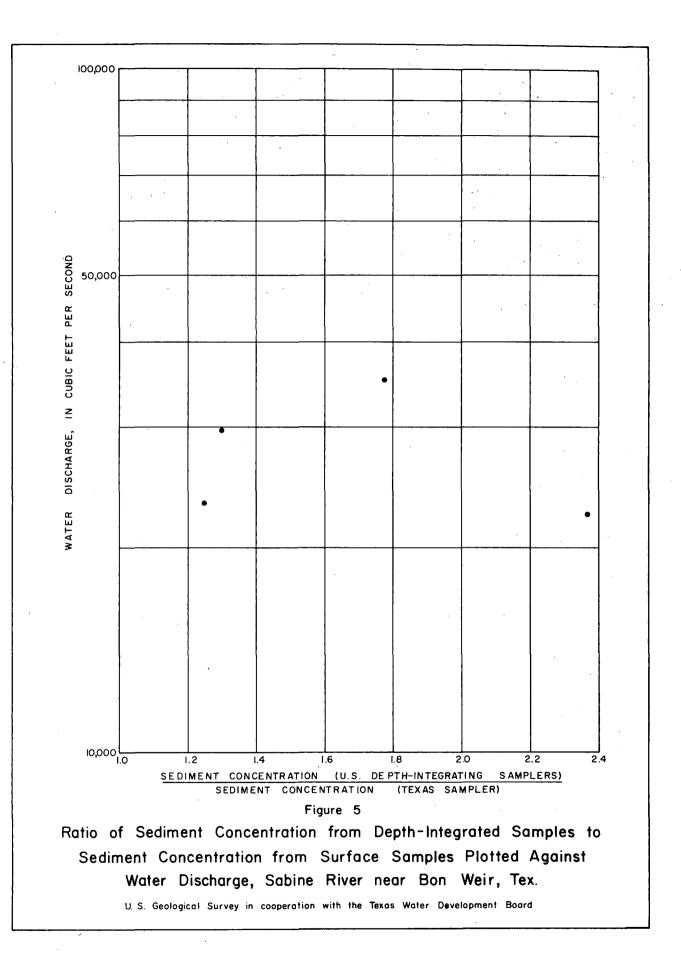

The streamflow station on the Sabine River at Logansport (8-0225) is 4,600 feet upstream from the bridge on U.S. Highway 84. (In the following pages the number in parentheses after a station name is the serial number assigned to the station by the U.S. Geological Survey. The number identifies the station in the national network.) Streamflow records are available from 1903 to the present. The Texas Water Development Board established a sediment station at the bridge in 1932. The sediment station was discontinued in 1933, was reestablished in 1935, and is still in operation. The U.S. Geological Survey has periodically collected sediment data for the Bureau of Reclamation for use in the planning of the Bureau's Texas Basins Project.

Suspended-sediment samples were collected with the Texas sampler and a depth-integrating sampler for comparison. (See Table 2 of Appendix B.) The ratios of the concentrations collected by the depth-integrating sampler to the concentrations collected by the Texas sampler ranged widely (Figure 4).

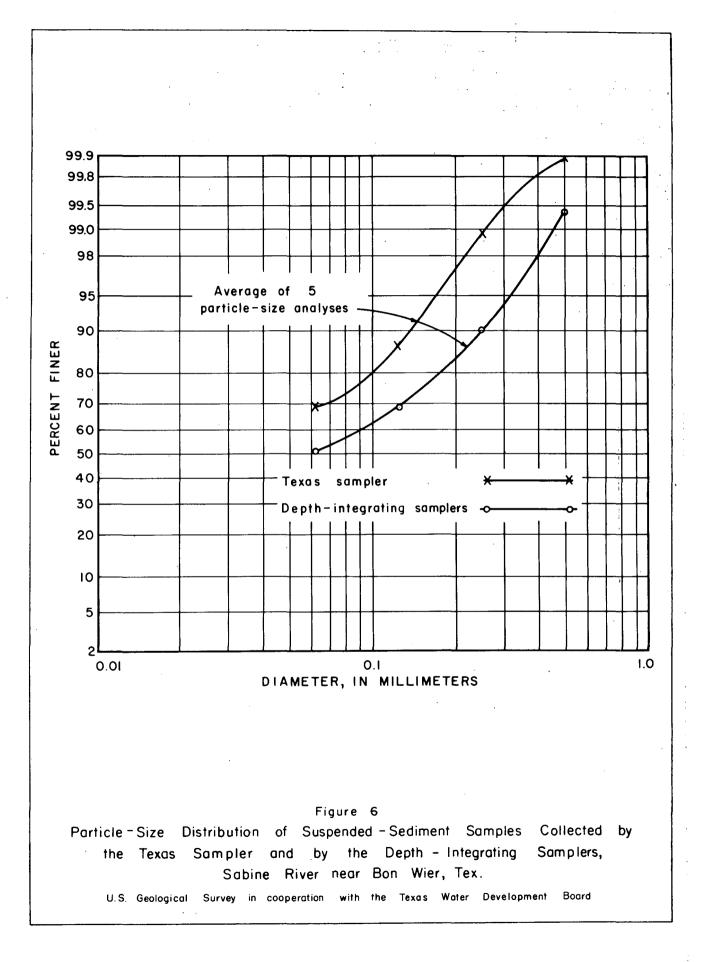
The velocity of the Sabine River at Logansport is low and the concentration of suspended sediment is low. Of the 5 dual sets of samples collected for comparison of the 2 types of samplers, only 1 sample had a concentration greater than 100 ppm. Some of the variation between the concentrations of samples collected by the two samplers could have been due to the technique of analyzing the concentration of the small quantity of sediment. However, because the Sabine River is a sand-carrying stream, the suspended sediment will not be uniformly distributed throughout the vertical, and the distribution will vary with time. Computing a coefficient to adjust the sediment concentration of the surface samples to the mean sediment concentration of the stream would therefore be difficult if not impossible. Two of the dual sediment samples were analyzed for the sand-size distribution. (See Table 3 of Appendix B.)

>

- 25 -


Sabine River near Bon Wier, Tex.

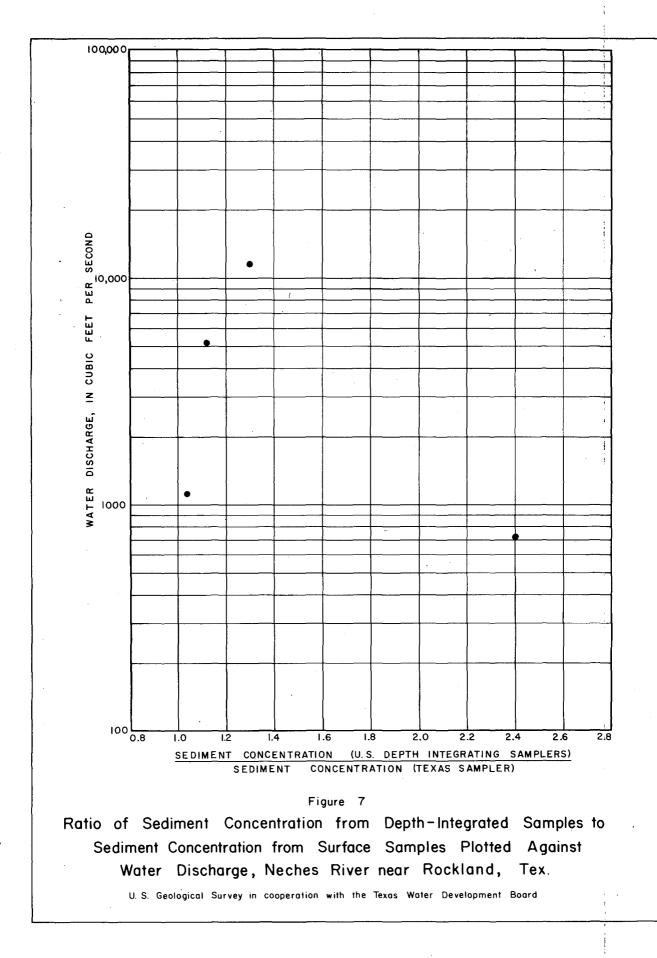
The streamflow station on the Sabine River near Bon Wier (8-0285) is at the bridge on State Highway 63. Streamflow records date back to 1923, but sediment data have been collected only periodically since 1957. A few sediment discharge measurements for computation of total load were made between 1957 and 1959 for use in planning the Texas Basins Project of the Bureaù of Reclamation. Four dual sets of suspended-sediment samples were collected in 1961 and 1962 for comparison of the two types of samplers. (See Table 2.) The ratios of the concentrations of samples collected by depth-integrating samplers to the concentrations of samples collected by the Texas sampler ranged from 1.25 to 2.37. No correlation exists between the ratios and water discharge (Figure 5).


All four sets of samples were analyzed for the sand-size distribution and are listed in Table 3. The size distribution (Figure 6) indicates that the percent sand collected by the Texas sampler is about 18 percent less than that collected by depth integration.

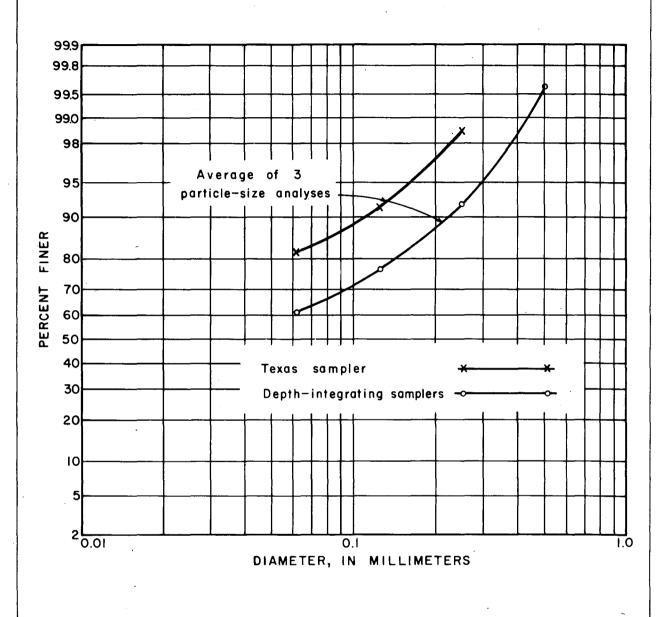
- 27 -

..

- 28 -



- 29 -


Neches River near Rockland, Tex.

The streamflow station on the Neches River near Rockland (8-0335) is 2,200 feet downstream from the bridge on U.S. Highway 69 and 1 mile north of Rockland. Streamflow data have been collected at this station since 1903. The Texas Water Development Board has collected sediment data since 1930. Four dual sets of suspended-sediment samples were collected in 1961 and 1962 for comparison of the Texas sampler and the depth-integrating samplers. Figure 7 gives the relation of the ratios of sediment concentrations of samples collected by the two types of samplers to water discharge. The ratios, which ranged from 1.05 to 2.40, have no correlation to water discharge.

Three sets of samples were analyzed for sand-size distribution. (See Table 3.) The averages of the particle-size analyses (Figure 8) indicate that the percent sand collected by the depth-integrating samplers is about 20 percent more than that collected by the Texas sampler.

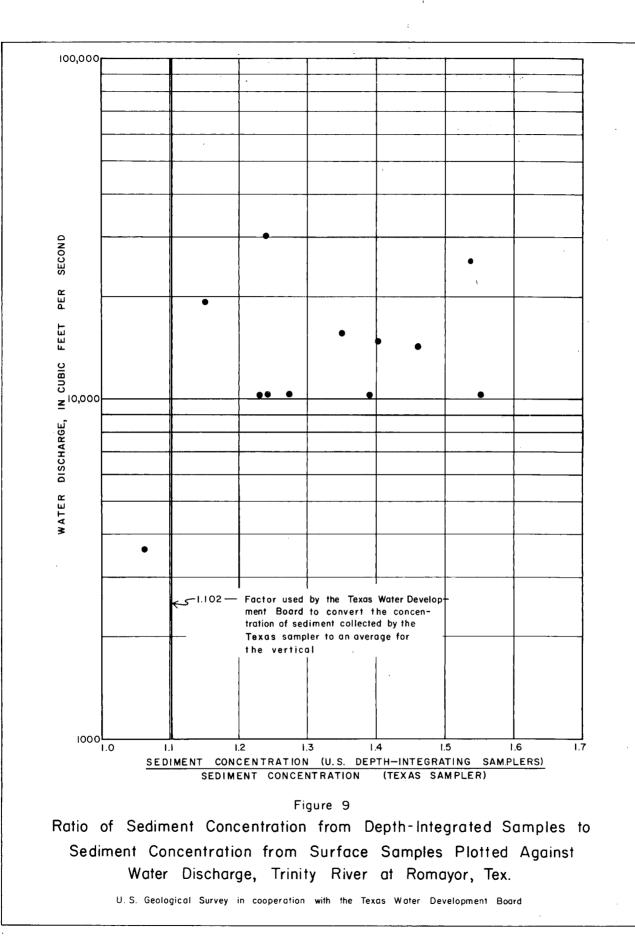
- 31 -

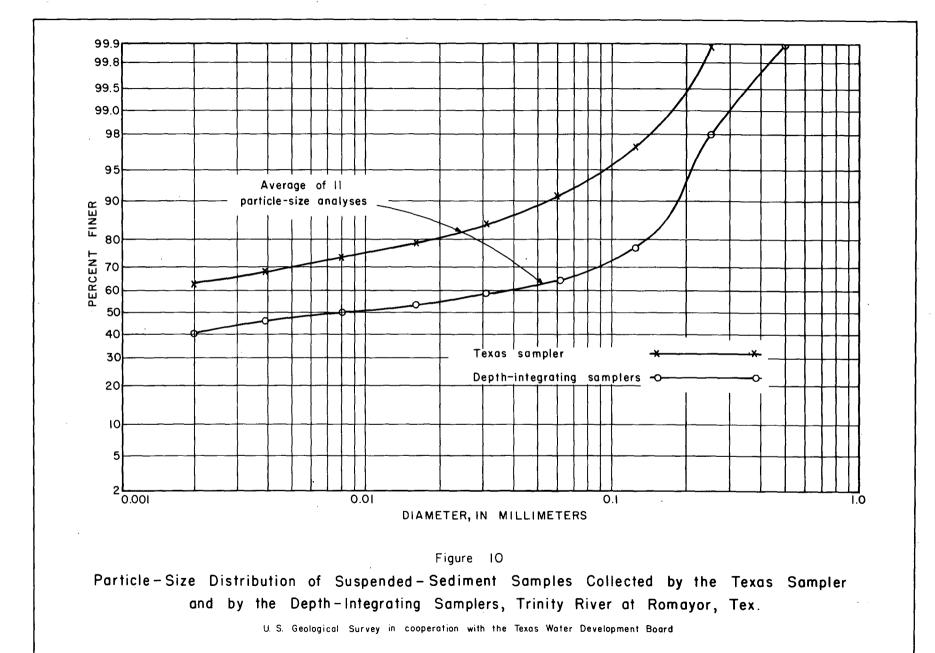
Figure 8

Particle-Size Distribution of Suspended-Sediment Samples Collected by the Texas Sampler and by the Depth-Integrating Samplers, Neches River near Rockland, Tex.

U.S. Geological Survey in cooperation with the Texas Water Development Board

- 32 -


Trinity River at Romayor, Tex.


The streamflow station on the Trinity River at Romayor (8-0665), which has been in operation since 1924, is at the bridge on State Highway 105 and is 1.9 miles south of Romayor. Since 1936 sediment data have been collected here by the Texas Water Development Board. To compare the two types of samplers the U.S. Geological Survey made periodic total-sediment-discharge measurements and collected suspended-sediment samples with each type of sampler. Thirteen sets of suspended-sediment samples for comparison were collected during 1961 and 1962 (Table 2).

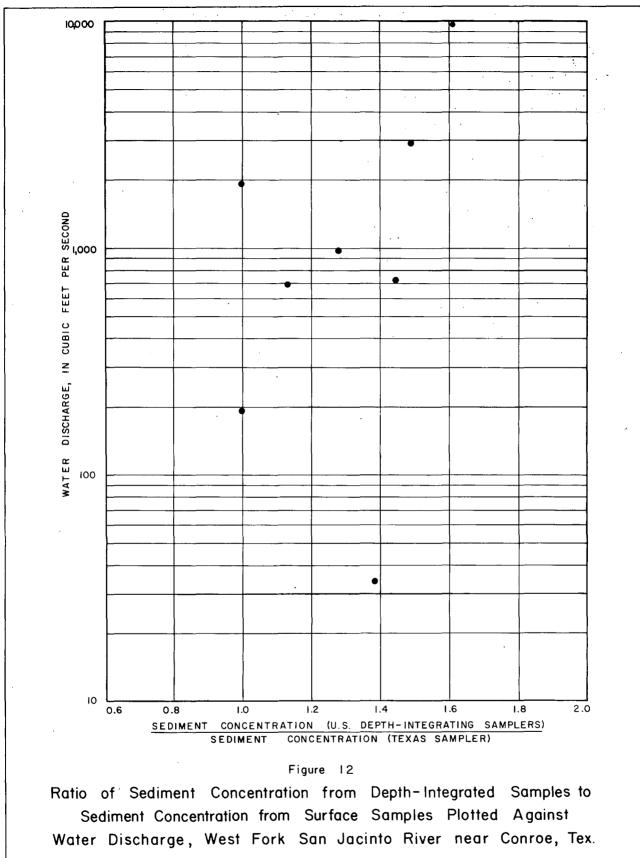
The samples were collected with both types of samplers at discharges ranging from 3,600 to 30,800 cfs, and had suspended-sediment concentrations (for the depth-integrated samples) of 421 to 1,240 ppm. The ratios, ranging from 1.06 to 1.55, were plotted against water discharge (Figure 9). Obviously, there is no correlation between water discharges and ratios.


Eleven sets of samples were analyzed for particle-size distribution (Table 3). The average of these analyses shows that the depth-integrating sampler will collect a higher percentage of suspended sand than will the Texas sampler. The Texas sampler collects approximately 8 percent sand while the depth-integrating sampler collects approximately 35 percent (Figure 10).

The vertical distribution of suspended sediment, determined by collecting point samples, is illustrated by two examples in Figure 11. For September 20, 1962, the suspended-sediment concentration was relatively constant throughout the upper 0.8 of depth; but from 0.8 of depth to the streambed the turbulence increases the suspended-sediment concentration about 82 percent. The vertical distribution for September 18, 1962, shows about a 35 percent increase in sediment concentration from the surface to the streambed. These two examples clearly illustrate why the Texas sampler collects less material than the depthintegrating sampler. Because of the variations, especially in the lower part of the vertical, no single coefficient can be used to adjust the sediment concentrations of samples collected with the Texas sampler at this station.

ι 35

- 36


.

West Fork San Jacinto River near Conroe, Tex.

The streamflow station on the West Fork San Jacinto River near Conroe (8-0680) is at the bridge on U.S. Highway 75 and is 4-1/4 miles south of Conroe, Texas. The station, established in 1924, was discontinued in 1927. It was reestablished in 1939, and operation has continued to the present. The Texas Water Development Board established a sediment station here in 1952 to replace the one on the San Jacinto River near Humble, Texas.

Eight sets of suspended-sediment samples were collected during 1961 and 1962 for comparison of the two types of samplers (Table 2). Because the San Jacinto River transports a high percentage of sand, a sediment sample collected near the surface will not represent the mean sediment concentration. This fact is shown by Figure 12, a graph of the ratios of sediment concentrations collected by depth-integrating samplers to the sediment concentrations collected by the Texas sampler plotted against water discharge. The coefficients, which range from 1.00 to 1.61, have no relation to stream discharge.

Seven sets of the samples were analyzed for particle-size distribution in the sand-size range (Table 3). The averages of the particle-size analyses (Figure 13) indicate that the depth-integrating samplers collected 12 percent more sand than did the Texas sampler.

U. S. Geological Survey in cooperation with the Texas Water Development Board

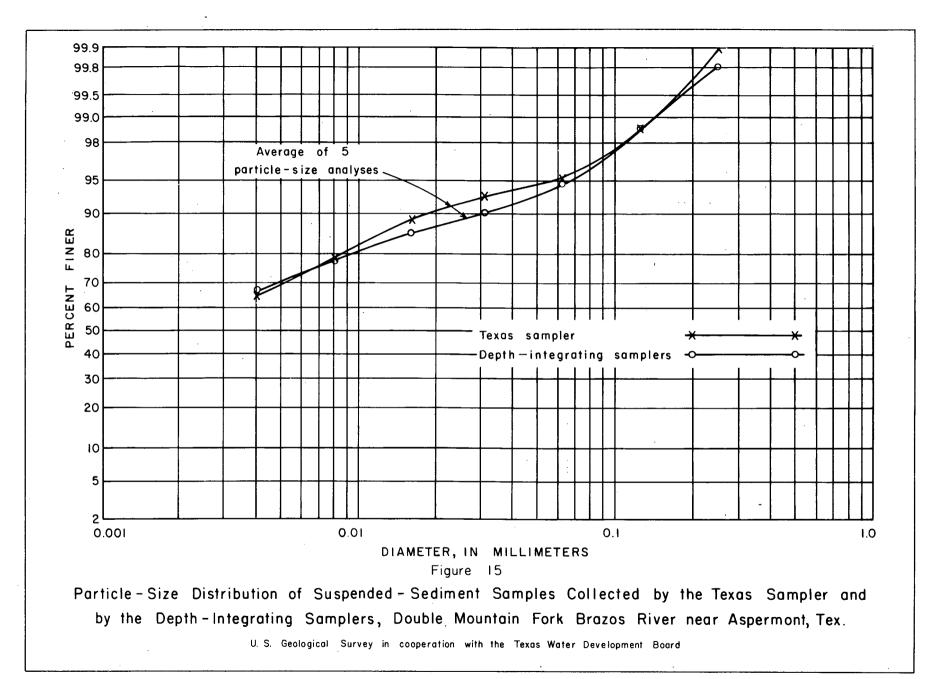

99.9 99.8 99.5 99.0 98 Average of 7 95 particle—size analyses 90 FINER 08 PERCENT 70 60 50 40 Texas sampler 30 Depth-integrating samplers -0-20 10 5 2 0.01 1.0 0.1 DIAMETER, IN MILLIMETERS

Figure 13.

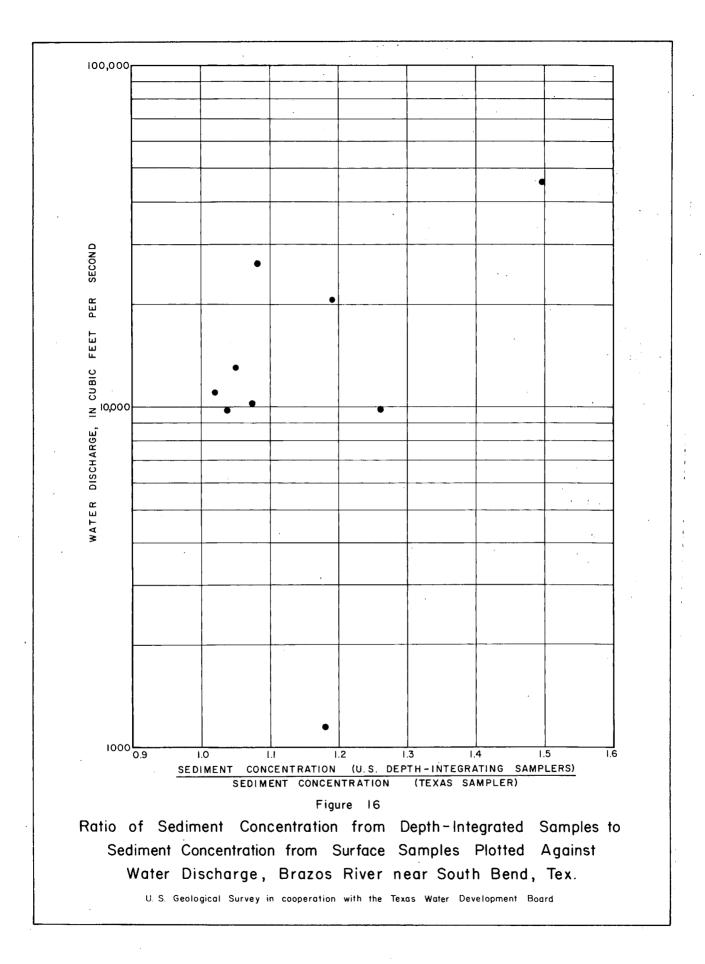
Particle-Size Distribution of Suspended-Sediment Samples Collected by the Texas Sampler and by the Depth-Integrating Samplers, West Fork San Jacinto River near Conroe, Tex. U.S. Geological Survey in cooperation with the Texas Water Development Board The streamflow station on the Double Mountain Fork Brazos River near Aspermont (8-0805) is at the bridge on U.S. Highway 83 and is 10 miles south of Aspermont. Except during water years 1935-39, the streamflow station has been operating continuously since 1923. (Data and illustrations for this station were taken from a written communication by George Porterfield, 1953). A sediment station was operated here by the Texas Water Development Board from 1924-33 and by the U.S. Geological Survey from 1949-51. Data comparing the two types of samplers were collected during 1951 (Table 2). The sediment concentrations collected by the depth-integrating samplers have been plotted against those by the Texas sampler (Figure 14); a 45° line on the graph is a line of equal sediment concentration. As illustrated by Figure 14, the sediment concentrations collected by the two types of samplers are indeed very similar.

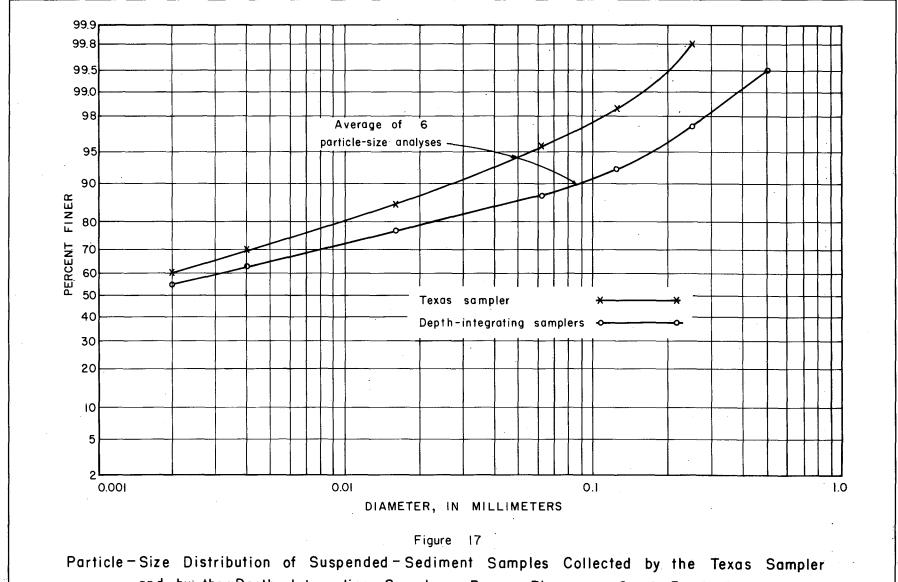
Six sets of sediment samples for comparison were analyzed for size distribution (Table 3), and averages of 5 of them were plotted (Figure 15). Both the sediment concentration and the distribution of particle size appeared to be equally distributed throughout the vertical. Of the 11 sets of comparison samples collected, only 1 had a ratio greater than 1.10; the majority had a ratio of less than 1.03. A coefficient of about 1.02, if applied to concentrations obtained at this station with the Texas sampler, should give results correct within about 5 or 6 percent.

7 Line of equal concentration CONCENTRATION, IN PARTS PER MILLION X 10⁻⁴ (DEPTH-INTEGRATING SAMPLERS) 6 5 4 3 2 SEDIMENT I . 0 5 6 2 3 4 7 0 L SEDIMENT CONCENTRATION, IN PARTS PER MILLION X 10⁻⁴ (TEXAS SAMPLER) Figure 14 Comparison of Sediment Concentration from the Texas Sampler and from the Depth-Integrating Samplers, Double Mountain Fork Brazos River near Aspermont, Tex. U.S. Geological Survey in cooperation with the Texas Water Development Board

- 42

ı


Brazos River near South Bend, Tex.


The South Bend streamflow station (8-0880) is upstream from Possum Kingdom Reservoir at the bridge on State Highway 67 and is 2 miles northeast of South Bend. In 1942 a sediment station was established here by the Texas Water Development Board to study the suspended-sediment inflow to the Possum Kingdom Reservoir. Streamflow data have been collected at this site since 1938.

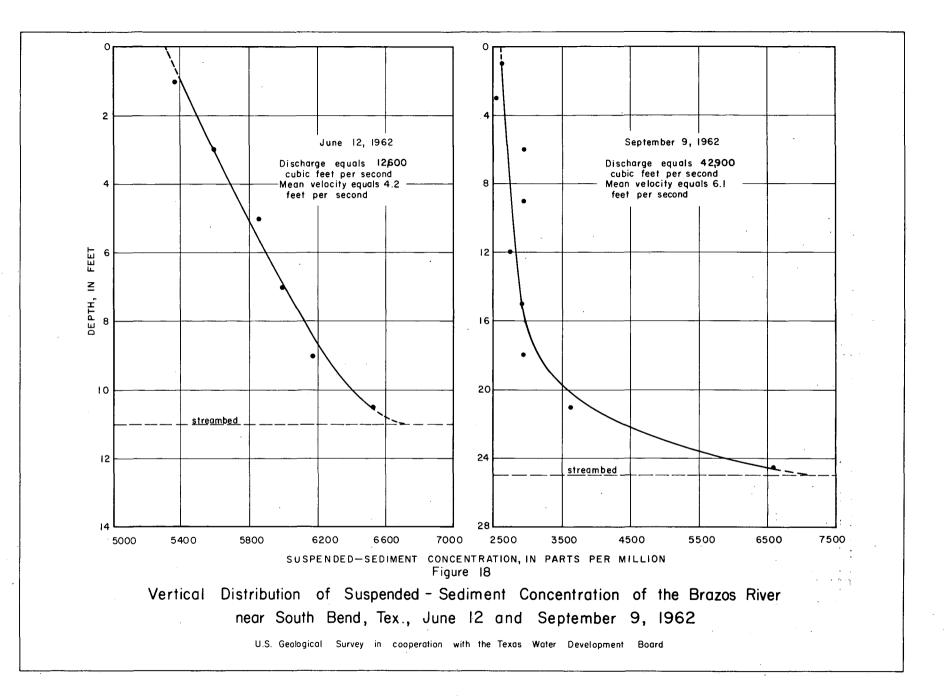
Nine sets of sediment samples were collected for comparison of the Texas sampler and the depth-integrating samplers. The water discharge ranged from 1,240 to 42,900 cfs, and the suspended-sediment concentration of the depthintegrated samples ranged from 3,140 to 8,670 ppm (Table 2). The ratios between the sediment concentrations collected by the two types of samplers were plotted against water discharge (Figure 16); the ratios, which ranged from 1.02 to 1.49, had no relation to water discharge.

Six sets of the samples for comparison were analyzed for particle-size distribution (Table 3). The averages of the particle-size distributions for the samples collected with the depth-integrating sampler showed that the suspended-sediment samples consisted of 64 percent clay, 24 percent silt, and 12 percent sand, while those collected with the Texas sampler consisted of 70 percent clay, 26 percent silt, and 4 percent sand. Figure 17 indicates that the depth-integrating samplers collect a greater percentage of sand than the Texas sampler.

The vertical distribution of suspended sediment, determined by collecting point samples, is shown in Figure 18. Figure 18 shows that the suspendedsediment concentration increases from the surface to the streambed. This increase in suspended-sediment concentration is due to an increase of suspended-sand particles at lower depths. On June 12, 1962, when the water discharge was 12,600 cfs the suspended-sediment concentration ranged from about 5,400 ppm near, the surface to about 6,400 ppm near the streambed, an increase of about 19 percent. On September 9, 1962, when the water discharge was 42,900 cfs, the suspended-sediment concentration ranged from about 2,600 ppm near the surface to about 6,600 ppm near the streambed, an increase of about 155 percent.

and by the Depth-Integrating Samplers, Brazos River near South Bend, Tex.

. . . .

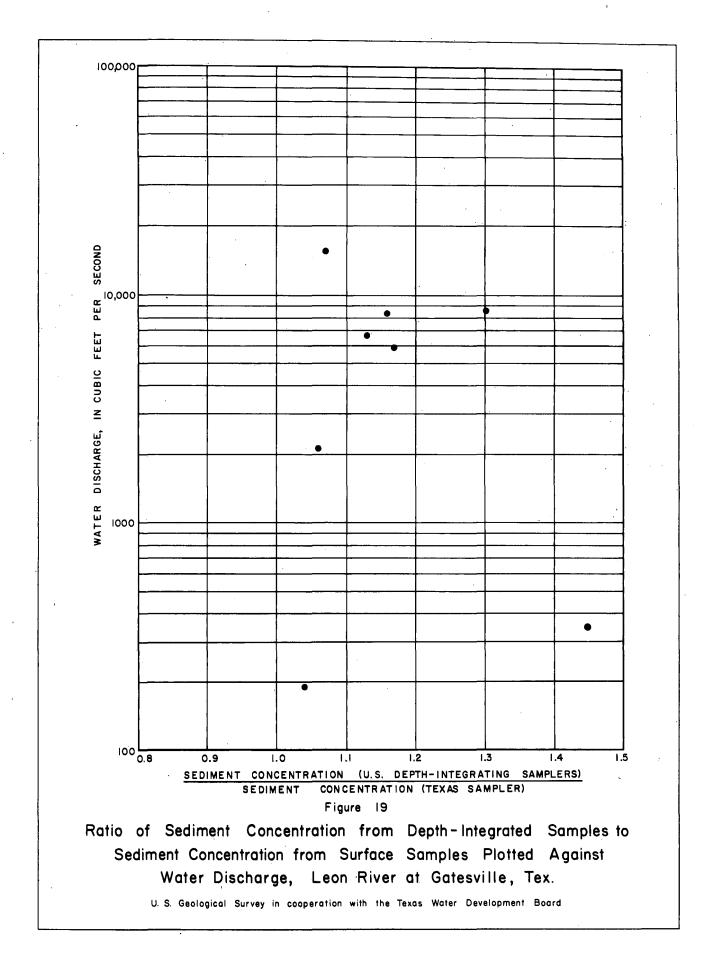

. .

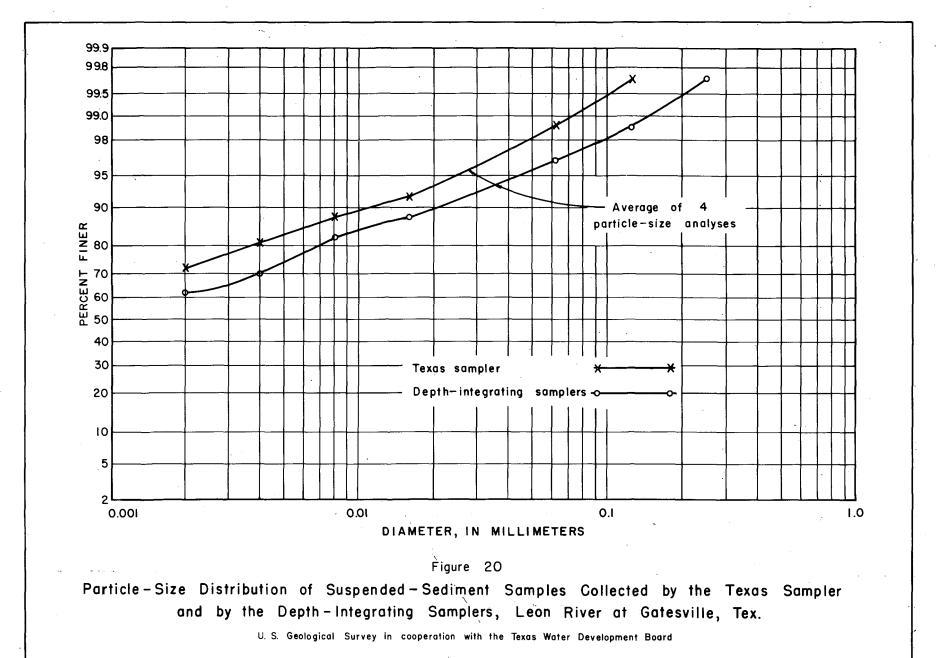
U.S. Geological Survey in cooperation with the Texas Water Development Board

.

.

- 45 -

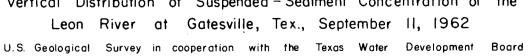



Leon River at Gatesville, Tex.

The streamflow station on the Leon River at Gatesville (8-1005) is at the bridge on U.S. Highway 84 in Gatesville. Collection of streamflow data at this station, which began in 1950, is continuing. The Texas Water Development Board has collected sediment data here since 1953; during the 1962 water year, the U.S. Geological Survey collected sediment data at the station for comparing the depth-integrating samplers and the Texas sampler. A total of nine sets of samples were collected for comparison (Table 2). The ratios of sediment concentrations collected by the depth-integrating samplers to that of the Texas sampler are plotted against water discharge (Figure 19). No relation of ratio and water discharge is indicated.

Four sets of sediment samples for comparison were analyzed for particlesize distribution (Table 3). The averages of the analyses of the depth-intetrated samples showed that the suspended load consisted of 70 percent clay, 27 percent silt, and 3 percent sand. The comparison of the average size distributions of suspended sediment collected by the depth-integrating samplers and by the Texas sampler indicated that the latter collected only slightly less sand than the former (Figure 20).

Because most of the material in suspension is silt and clay, the suspendedsediment concentration was equally distributed throughout the vertical. Figure 21 shows the vertical distribution of suspended-sediment concentration for a discharge of 6,890 cfs on September 11, 1962. The overall increase in sediment concentration from top to bottom was less than 10 percent. This percentage change in concentration and the small quantity of sand in the suspended load indicates that the variation between the samples collected by the two samplers should not be very high. With two exceptions the ratios range from 1.04 to 1.17 and average 1.10 (Table 2). Additional data should be collected at this site to determine the range and average more closely.



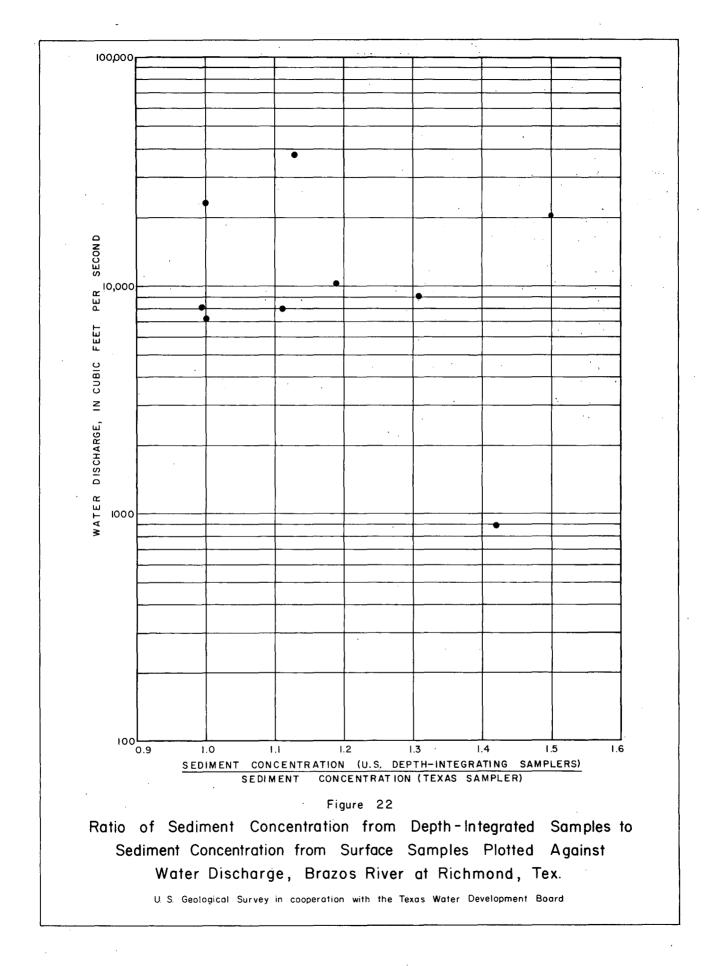
- 49

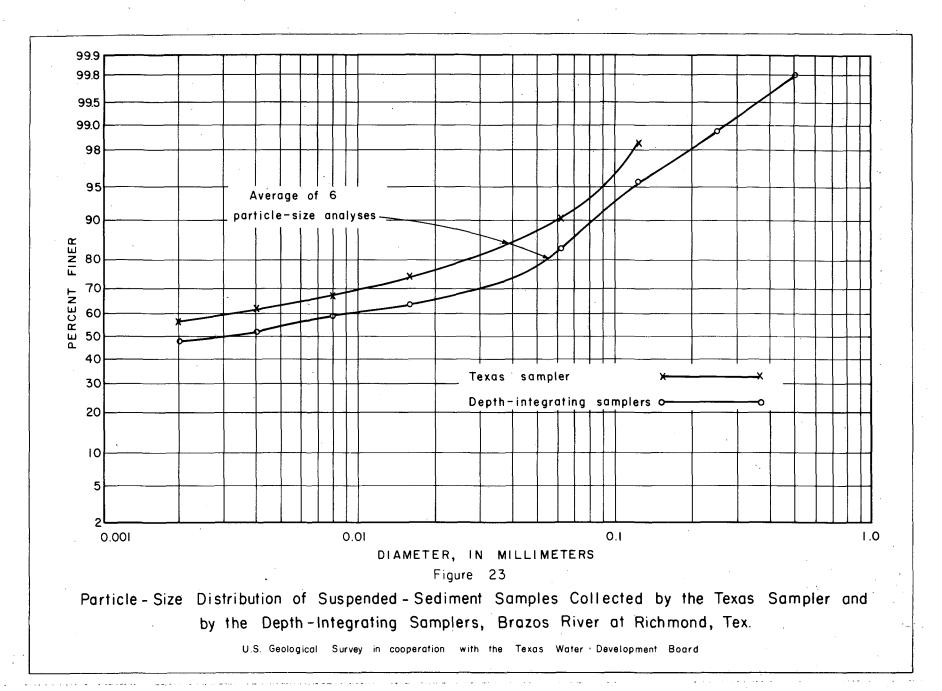
Ŀ

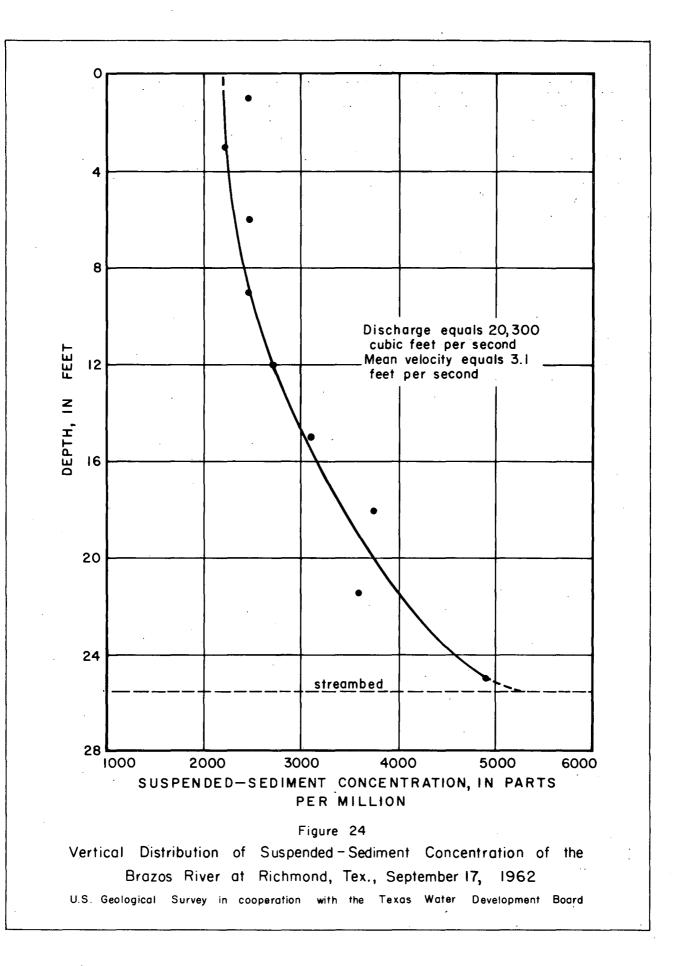
0 4 Discharge equals 6890 cubic feet per second Mean velocity equals 2.7 feet per second 8 DEPTH, IN FEET 12 16 20 streambed 24 1200 1300 1400 1500 1600 1100 SUSPENDED-SEDIMENT CONCENTRATION, IN PARTS PER MILLION Figure 21 Vertical Distribution of Suspended-Sediment Concentration of the

.....

- 50 -

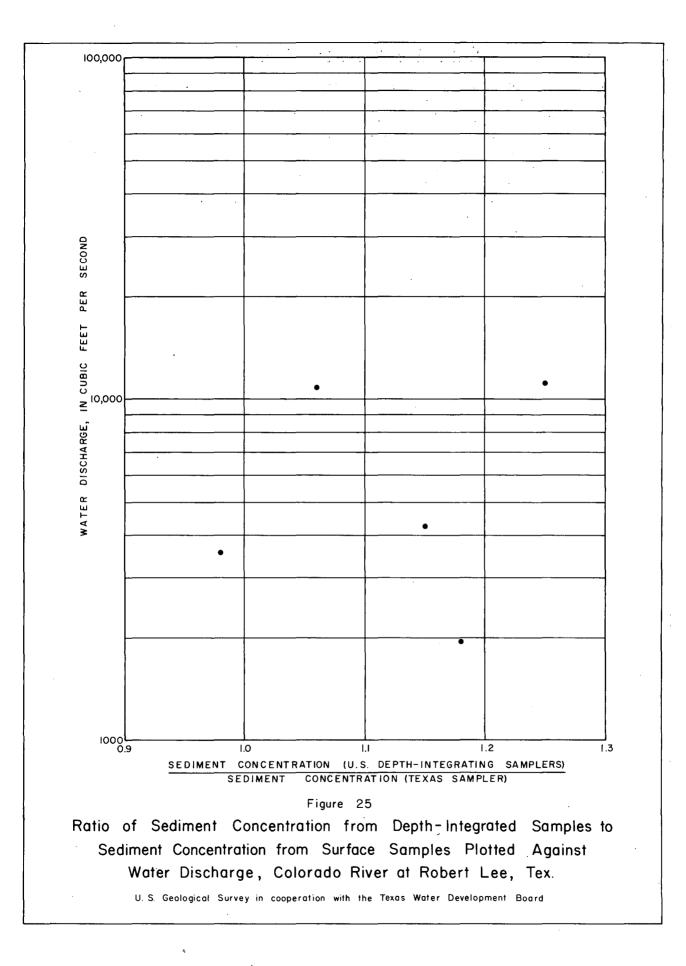

Brazos River at Richmond, Tex.


The streamflow station on the Brazos River at Richmond (8-1140) is at the bridge on U.S. Highway 59. Streamflow records are available from 1903 to 1906 and from 1922 to the present. Sediment data have been collected by the Texas Water Development Board since 1924.


During 1961 and 1962 the U.S. Geological Survey collected nine sets of sediment samples for comparison (Table 2) at discharges ranging from 880 to 39,900 cfs. The ratios of the 2 types of samplers ranged from 0.98 to 1.50. These ratios show no relation to water discharge (Figure 22). No single coefficient can be applied to the samples collected at this station with the Texas sampler because much of the sediment load is sand.

Six sets of samples were analyzed for size distribution (Table 3). The average suspended-sediment load during flood runoff was 52 percent clay, 30 percent silt, and 18 percent sand. The samples collected with the Texas sampler contained 7 percent less sand than the samples collected by depth integration (Figure 23).

Point samples were collected with the U.S. P-46 sediment sampler to define ' the vertical distribution of the suspended-sediment concentration on September 17, 1962 (Figure 24). The water discharge at this time was 20,300 cfs. Figure 24 shows that the suspended-sediment concentration in the vertical increased about 96 percent from near the surface to near the streambed.



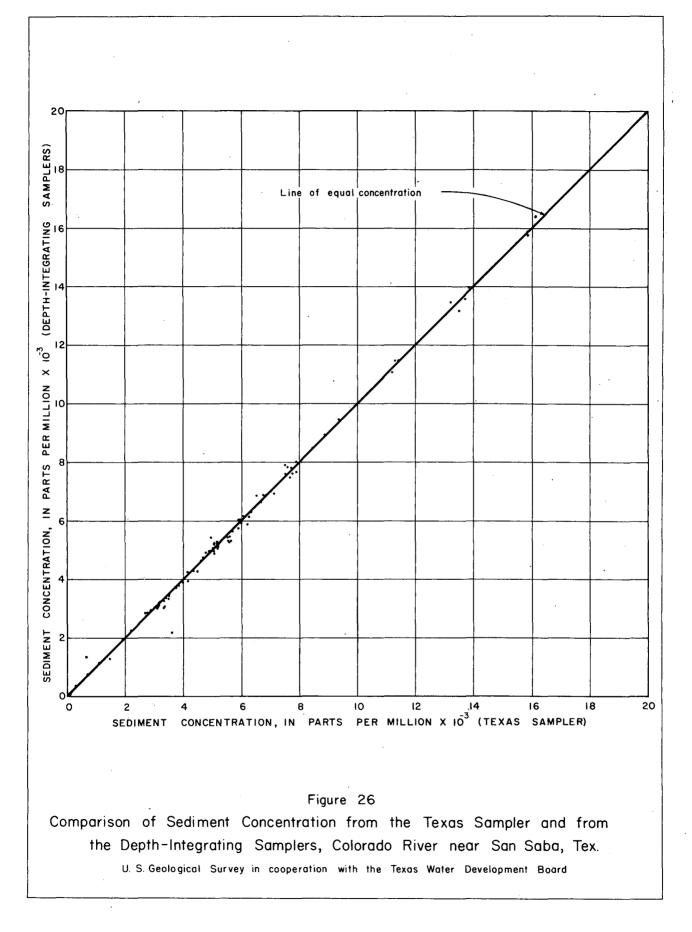
Colorado River at Robert Lee, Tex.

. .

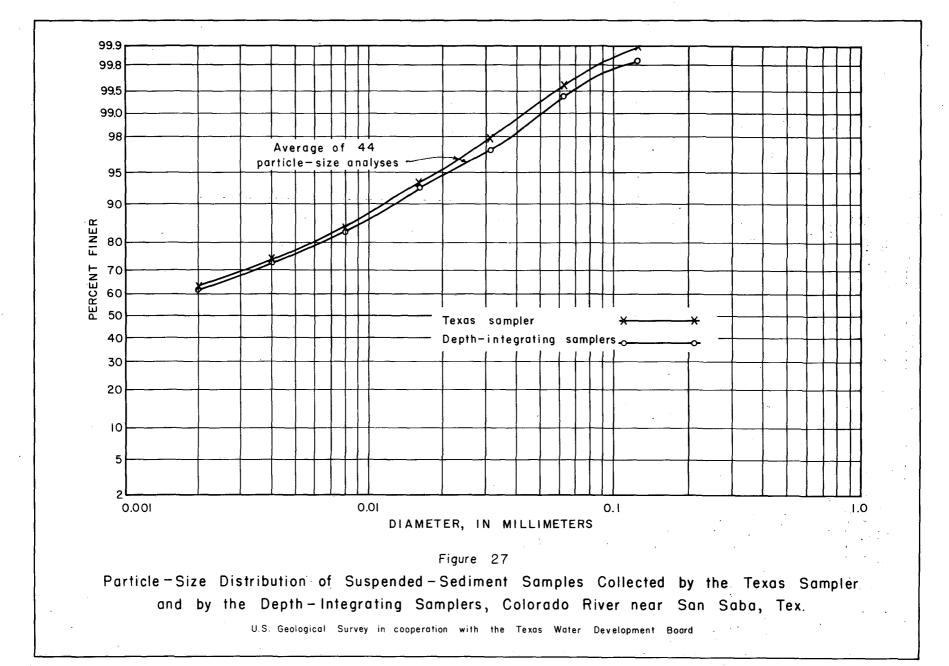
The streamflow station on the Colorado River at Robert Lee (8-1240) was at the bridge on State Highway 108. Streamflow data were collected at intervals of 4 to 16 years between 1915 and 1956. The U.S. Geological Survey operated a daily suspended-sediment station here from 1949 to 1951; during 1949 five sets of suspended-sediment samples were collected for comparison of the depth-integrating samplers with the Texas sampler (Table 2). Figure 25 indicates that no relation exists for the ratios (0.98 to 1.25) of sediment concentration of the samplers and water discharge. Data are not available for comparing the particle-size distribution of samples collected with the two types of samplers.

- 56 -

Colorado River near San Saba, Tex.


The streamflow station on the Colorado River near San Saba (8-1470) is at the bridge on U.S. Highway 190 and is 9.2 miles east of San Saba. Streamflow data have been collected here since 1930. Also since 1930 the Texas Water Development Board has been collecting sediment data at this site. Late in 1950 the U.S. Geological Survey established a daily suspended-sediment station here; this station was discontinued by the Survey in September 1962.

During the 1951 and 1952 water years the U.S. Geological Survey intensively compared the depth-integrating samplers with the Texas sampler. Approximately 60 comparison sets of sediment samples were collected (Table 2). The sediment concentrations of those samples collected by the Texas sampler were plotted against the sediment concentrations of those collected by the depth-integrating samplers (Figure 26); the 45° line represents a line of equal sediment concentration. As indicated by Figure 26, all the points are on or close to this line, showing that the concentrations collected by the two types of samplers are in good agreement.

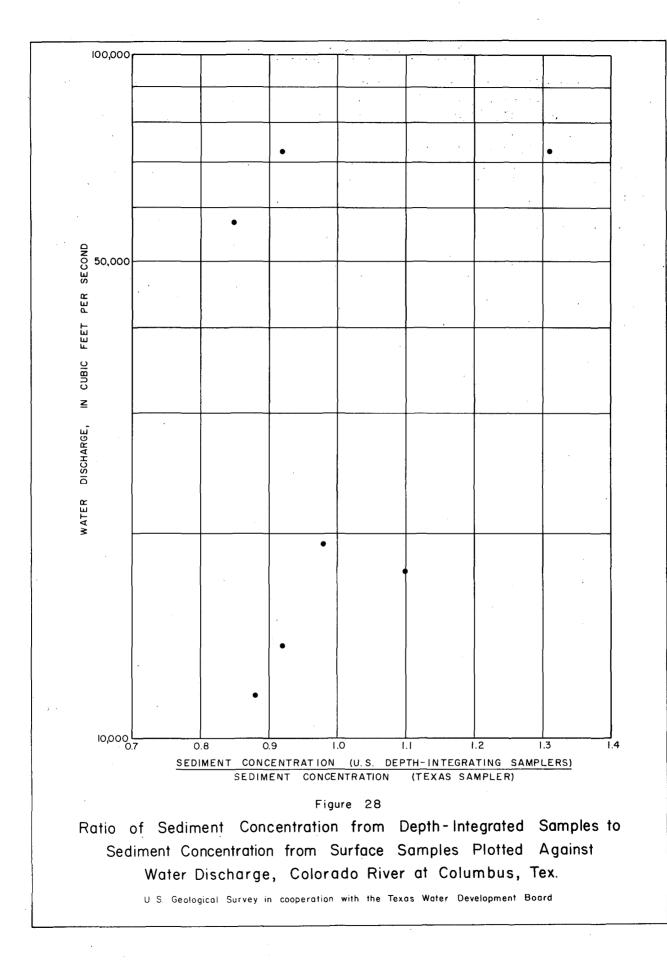

A number of sets of sediment samples for comparison was analyzed for particle-size distribution and some of these are listed in Table 3. The particle-size distribution shows essentially no sand in suspension at this station. An arithmetic average of the particle-size distribution was computed and is plotted on Figure 27. The figure indicates that the two types of samplers collect sediment samples that have approximately the same particle-size distribution.

The Texas sampler can be used at this station to collect a representative sediment sample. The coefficient should be 1.00.

- 57 -

- 58 -

- 59

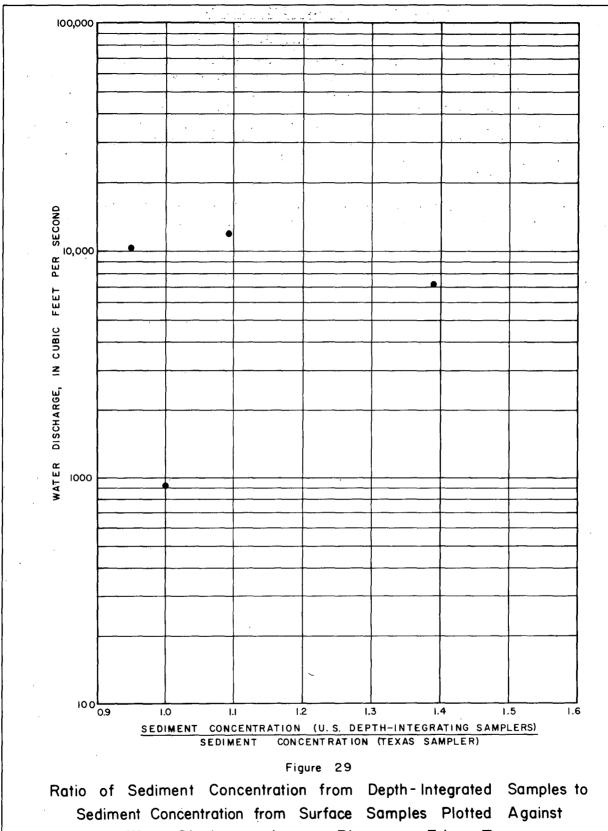

ч 1

Colorado River at Columbus, Tex.

The streamflow station on the Colorado River at Columbus (8-1610) is at the bridge on U.S. Highway 90 at the eastern edge of Columbus. Streamflow records are available from 1903 to 1911 and from 1916 to present. Sediment samples have been collected here by the U.S. Geological Survey since March 1957.

Seven sets of sediment samples for comparison were collected at this station (Table 2). In 5 of the 7 sets of samples collected, the Texas sampler collected more material than did the depth-integrating samplers. Figure 28 indicates that no relation exists for the ratios (0.85 to 1.31) of sediment concentration for the two types of samplers and water discharge.

None of the sediment samples collected by the Texas sampler were analyzed for particle-size distribution; however, particle-size analyses of samples collected by depth integration since March 1957 are listed in Table 3. Apparently the Texas sampler does not collect a representative sample at this station.

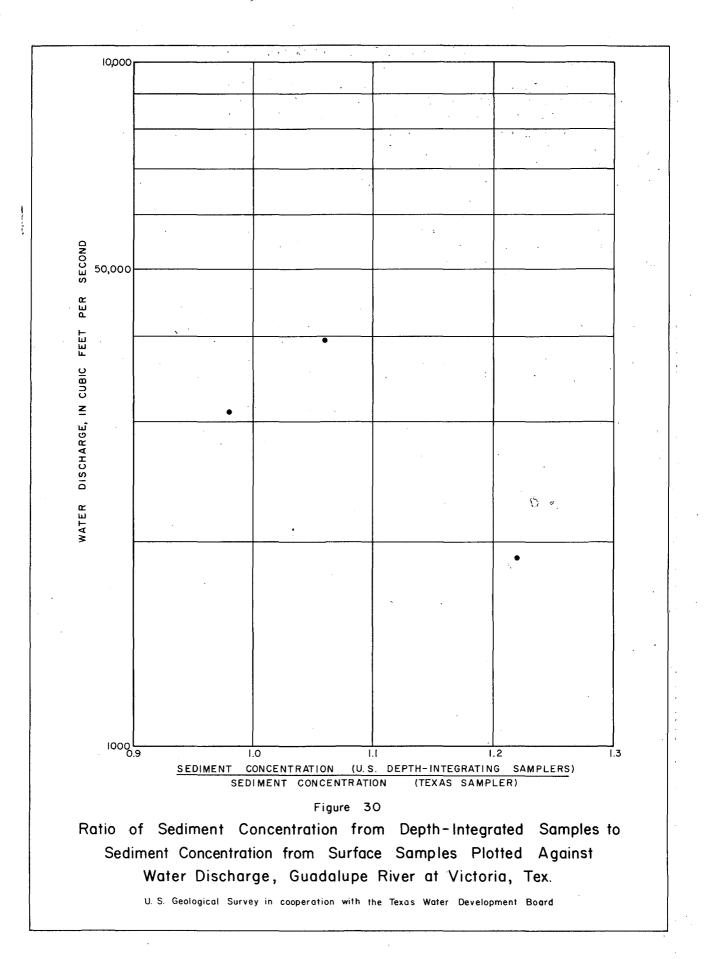


- 61 -

Lavaca River near Edna, Tex.

The streamflow station on the Lavaca River is at the bridge on U.S. Highway 59, 2.8 miles southwest of Edna (8-1640). Streamflow data have been available here since 1938. Sediment data collected by the Texas Water Development Board have been available here since 1945. Five sets of suspended-sediment samples were collected for comparison of the two types of samplers during the 1961 and 1962 water years (Table 2). Figure 29 indicates that the large variation of the ratios of suspended-sediment concentration has no relation to stream discharge.

Four sets of the sediment samples were analyzed for particle-size distribution. The particle-size analyses indicate that very little difference exists in size distribution of the suspended sediment collected by the two types of samplers (Table 3). Although more data should be collected at this station for comparison of the two samplers, the available data indicate that the Texas sampler does not collect a representative sample at this station even though the proportion of sand is small. This may indicate rapid fluctuations of sediment concentration in a short period of time.


Water Discharge, Lavaca River near Edna, Tex.

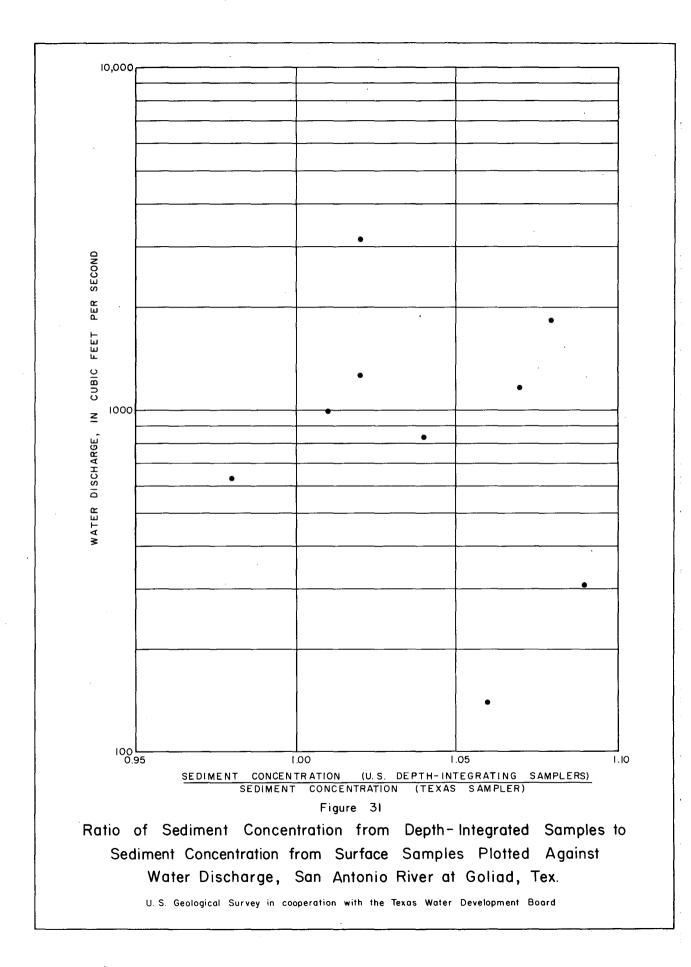
U. S. Geological Survey in cooperation with the Texas Water Development Board

Guadalupe River at Victoria, Tex.

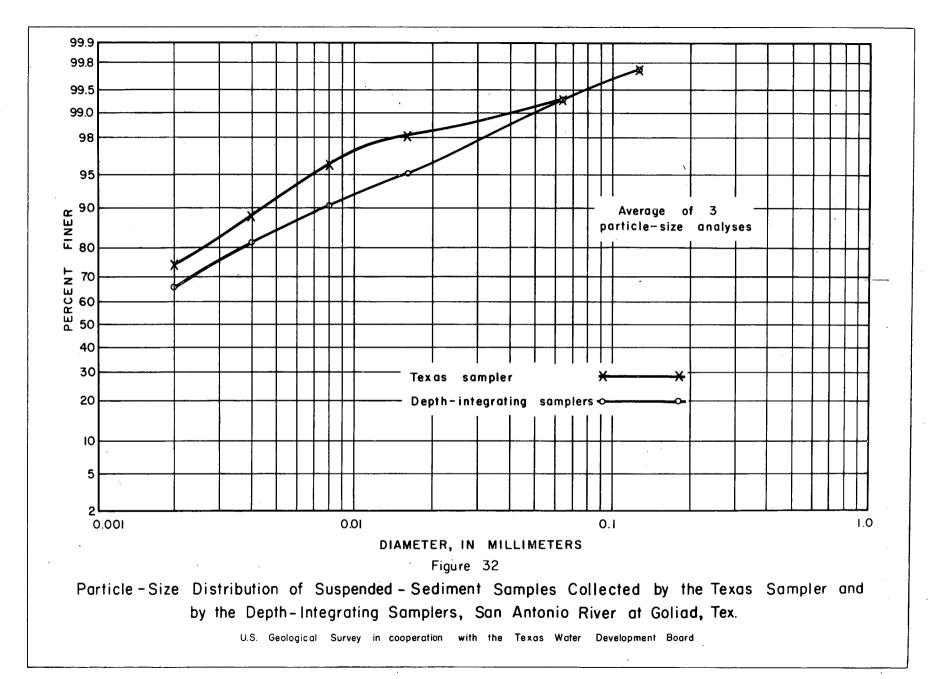
The streamflow station on the Guadalupe River at Victoria (8-1765) is at the bridge on U.S. Highway 59. Streamflow records have been collected here since 1934. The Texas Water Development Board has operated a sediment station here since 1945. Three sets of sediment samples for comparison were collected (Table 2). Although data were insufficient to evaluate adequately the Texas sampler, the ratios of sediment concentration plotted in Figure 30 probably have little relation to stream discharge. The ratios indicate that the Texas sampler probably will give results within 10 percent of accuracy if a coefficient of 1.1 is applied.

Data were not available to compare the particle-size distribution of samples collected by the depth-integrating samplers and by the Texas sampler.

- 65 -


San Antonio River at Goliad, Tex.

The streamflow station on the San Antonio River at Goliad (8-1885) is at the bridge on U.S. Highway 183, 1.3 miles southeast of the Goliad courthouse. Streamflow data are available for water years 1924-29 and from 1939 to the present. Sediment data have been collected by the Texas Water Development Board since 1942. The U.S. Geological Survey made total sediment discharge measurements in 1958-59, and in 1961-62 the Survey collected nine sets of suspendedsediment samples for comparison of the depth-integrating samplers and the Texas sampler (Table 2).


The ratios of the sediment concentrations of samples collected with the depth-integrating samplers to those of the Texas sampler were plotted against water discharge (Figure 31). The ratios have little relation to stream discharge.

Three sets of sediment samples for comparison were analyzed for particlesize distribution (Table 3). Because the suspended-sediment, load carried by the San Antonio River contains only very small quantities of sand, the sediment could be expected to be almost uniformly distributed from the water surface to the bed; apparently the sediment concentration does not fluctuate rapidly with time. Thus the sediment concentrations of samples collected by the two types of samplers could be expected to be similar. A sample collected near the surface with the Texas sampler is representative probably within 5 percent. The particle-size distribution of sediment samples collected by the two samplers are similar but not the same (Figure 32).

A coefficient of 1.04 applied to the sediment concentrations collected by the Texas sampler for all rates of water discharge should give about 5 percent accuracy.

- 67 -

- 68

1

APPENDIX B

BASIC DATA

Table 2.--Comparison of suspended-sediment concentrations collected with depth-integrating samplers to concentrations collected near the surface with the Texas sampler

Station	Date	Time (24-hour)	Water discharge (cfs)	Suspended-sediment concentration (ppm)		Ratio ¹
				Depth- integrating sampler	Texas sampler	nacio
Sabine River at				,		
Logansport, La.	Apr. 7, 1961	0930	9,860	80	36	2.22
	May 10	1530	1,300	47	49 ·	.96
	Apr. 17, 1962	0840	2,000	67	50	1.34
	May 4	1045	10,600	150	44	3.41
	June 19	0810	705	46	33	1.39
Sabine River near						
Bon Wier, Tex.	Jan. 12, 1961	.1500	35,200	807	457	1.77
	Apr. 6	1400	23,300	205	164	1.25
	Sept. 15	0945	29,700	656	504	1.30
	May 4, 1962	1600	22,400	511	216	2.37
Neches River near						
Rockland, Tex.	Sept. 15, 196	1 1310	5,340	1/2	120	1 1 1
Rockrand, Tex.	May 3, 1962	1 1510	1 ⁷	143	129	1.11
	June 18	1500	12,200	138	107	1.29
	Nov. 30	1045	1,200 708 [,]	65 180	52 75	1.05
		1045	708	100	75	2.40
Neches River at			14 400			
Evadale, Tex.	Apr. 6, 1961	0915	16,600	38	33	1.15
	May 10	0915	4,120	161	110	1.46
West Fork Trinity River				•		
near Jacksboro, Tex.	Apr. 25, 1962	1505	818	886	848	1.04
	June 13	1445	1,740	234	236	.99
Trinity River at						
Romayor, Tex.	Apr. 5, 1961	1000	16,600	780	579	1.35
, <u> </u>	Sept. 14	1345	30,800	631	509	1.24
· · · ·	Jan. 30, 1962	1130	15,900	832	596	1.40
	do	1630	15,200	776	533	1.46
	May 3	1145	26,200	1,240	813	1.53
	May 5	1000	19,300	600	600	1 1 -
	-		10,200	690	600	1.15
	Sept. 18 do	1345 1815	10,200	629	512	1.23
	Sept. 19	0900	10,300	1,230	397 433	3.10 1.55
	-]			
	do	1530	10,400	588	424	1.39
	Sept. 20	0915	10,400	468	377	1.24
	do	1240	10,400	587	462	1.27
	Nov. 30	0845	3,600	421	399	1.06

<u>l</u>/Ratio of suspended-sediment concentration collected with depth-integrating samplers to concentration collected near the surface with the Texas sampler.

Table 2.--Comparison of suspended-sediment concentrations collected with depth -integrating samplers to concentrations collected near the surface with the Texas sampler --Continued

Station	· · ·			Suspended-sediment concentration		,
			Water			
	Date	Time	discharge	(ppm)		Ratio
		(24-hour)	(cfs)	Depth-	Texas	
				integrating sampler	sampler	ł
i da la companya	· · ·		÷ · · · ·	Jumpici		
Vest Fork San Jacinto			: :			
Tex.	Sept. 14, 1961	1100	9,900	238	148	1.61
lex.	Sept. 21	1430	198	36	36	1.00
	Jan. 29, 1962	1650	2,920	491	335	1.47
		0910	1,960	186	186	1.00
	Jan. 31	0910	1,,000	100	100	1.00
	Feb. l	1315	970	140	110	1.27
1	May 3	0945	730	108	75	1.44
	May 27	1330	35	40	29	1.38
	Nov. 29	1530	695	233	206	1.13
	100.27	1990		200	200	
Spring Creek near						
Spring	Sept. 14, 1961	1030	9,180	38	35	1.09
012200	, 1901	· · ·	,	-		
Cypress Creek near		1. 1				
Westfield	Sept. 14, 1961	1000	5,090	901	722	1.25
East Fork San		•				
Jacinto River near						
Cleveland, Tex.	Sept. 20, 1962		19.7	79	45	1.76
	Nov. 29	1640	370	387	379	1.02
	May 24, 1963	1235	21.2	106	80	1.32
6		· · ·				
Double Mountain Fork		· ·				
Brazos River near						
Aspermont, Tex.	May 19, 1951	0845	1,150	35,100	35,200	1.00
	do	0847	1,150	34,900	34,600	1.01
	do	1023	1,000	32,300	32,900	.98
	do	1040	964	32,700	31,300	1.04
	June 13	1108	127	6,640	5,160	1.29
			(= 0.0			
19	June 15	1100	4,720	43,300	42,000	1.03
	do	1145	5,180	39,800	38,000	1.05
	do .	1245	5,180	38,000	38,300	.99
	do	1400	4,600	36,500	33,100	1.10
	Aug. 22	0855	102	22,000	21,600	1.02
	do	0920	100	19,900	19,900	1.00

1/ Ratio of suspended-sediment concentration collected with depth-integrating samplers to concentration collected near the surface with the Texas sampler.

ł

72

Table 2.--Comparison of suspended-sediment concentrations collected with depth-integrating samplers to concentrations collected near the surface with the Texas sampler --Continued

Station	Date	Time (24-hour)	Water discharge (cfs)	Suspended-sediment concentration (ppm)		Ratio ¹
				Depth- integrating sampler	Texas sampler	Aacio
Brazos River near					1.	· · · · ·
South Bend, Tex.	June 11, 1962	1930	20,200	5,110	4,300	1.19
	June 12	1100	12,600	6,030	5,720	1.06
	do	1530	10,800	6,120	5,980	1.02
	do	1900	9,800	6,040	5,800	1.04
	June 13	0900	9,800	3,640	2,900	1.26
	do	1215	10,200	3,520	3,300	1.07
	June 20	0900	1,240	8,670	7,320	1.18
	Sept. 9	1540	42,900	3,680	2,470	1.49
	Sept. 10	0915	27,600	3,140	2,920	1.08
North Bosque River		1005		20		
at Hico, Tex.	June 20, 1962	1205	3.30	38	19	2.00
León River at						
Gatesville, Tex.	Oct. 10, 1961		16,000	1,550	1,450	1.07
	June 14, 1962		330	420	290	1.45
	June 20	1330	62.6	197	187	1.05
	Sept. 8	1645	2,240	3,170	2,990	1.06
	Sept. 9	0835	195	1,250	1,200	1.04
	Sept. 11	1330	5,980	2,010	1,72,0	1.17
	do	1745	6,890	1,440	1,280	1.13
	Sept. 12	0900	8,550	871	671	1.30
	do	1345	8,330	693	595	1.16
Javasota River near		•				
Easterly, Tex.	June 18, 1962	1000	73.2	145	112	1.29
Srazos River at						
Richmond, Tex.	Feb. 15, 1961	1530	23,700	1,610	1,610	1.00
	Apr. 4	1615	7,310	690	688	1.00
	Sept. 13	1715	39,900	5,650	5,000	1.13
	Nov. 14	1515	8,250	1,200	1,220	.98
	Jan. 31, 1962	1100	9,100	1,080	826	1.31
	July 27	0825	880	51	36	1.42
	Sept. 17	1530	20,300	3,340	2,230	1.50
	Sept. 21	0855	10,800	1,800	1,510	1.19
	Nov. 29	1330	8,080	2,200	1,980	1.11

1/ Ratio of suspended-sediment concentration collected with depth-integrating samplers to concentration collected near the surface with the Texas sampler. Table 2.--Comparison of suspended-sediment concentrations collected with depth-integrating samplers to concentrations collected near the surface with the Texas sampler --Continued

		Time	Water	Suspended-s concentra		1
Station	Date	(24-hour)	discharge	(ppm)		Ratio ¹
			(cfs)	Depth- integrating sampler	Texas sampler	
Colorado River at						
Robert Lee, Tex.	Apr. 20, 1949	1350	3,590	11,300	11,500	0.98
	Apr. 21	1050	1,950	13,700	11,600	1.18
	May 8	1630	11,100	13,800	11,000	1.25
•	do	1930	10,800	11,700	11,000	1.06
	May 9	0730	4,260	10,100	8,810	1.15
Colorado River near						
San Saba, Tex.	May 23, 1951	1222	11,400	7,700	7,680	1.00
	June 12	1215	4,910	3,750	3,780	.99
	do	1450	6,230	4,780	4,710	1.01
	Aug. 14	0815	235	1,340	1,420	.94
	do	0843	1,950	1,200	1,120	1.07
	do	0940	3,810	3,020	3,040	.99
	do	1053	5,040	6,630	6,670	.99
	do	1145	5,560	9,520	9,380	1.01
	do	1315	6,100	11,500	11,400	1.01
	do	1435	6,360	14,000	13,900	1.01
	do	1550	6,500	13,600	13,700	.99
	do	1700	6,500	13,200	13,500	.98
	do	1848	6,500	15,700	15,800	.99
	do	2145	5,820	15,800	15,800	1.00
	Aug. 15	0230	4,170	11,100	11,200	.99
	do	0705	2,900	8,970	8,880	1.01
	Aug. 23	1700	543	340	330	1.03
	Apr. 22, 1952	1325	6,100	6,880	6,820	1.01
	do	1450	6,100	6,100	6,000	1.02
	do	1730	5,690	5,920	5,940	1.00
	do	1700	5,820	6,180	6,210	1.00
	do	2140	4,910	6,980	7,140	.98
	do	2400	4,410	6,900	7,060	.98
	Apr. 23	0330	3,690	5,900	5,860	1.01
	do	0720	3,810	6,060	5,900	1.03

 $\frac{1}{2}$ Ratio of suspended-sediment concentration collected with depth-integrating samplers to concentration collected near the surface with the Texas sampler.

. •

- 74 -

Table ².--Comparison of suspended-sediment concentrations collected with depth-integrating samplers to concentrations collected near the surface with the Texas sampler --Continued

				Suspended-se	ediment	
		m t	Water	concentra	ation	. 1
Station	Date	Time	discharge	(ppm))	Ratio ¹
		(24-hour)	(cfs)	Depth- integrating sampler	Tovas	
			· · · · · · · · · · · · · · · · · ·	Jampier		
Colorado River near						
San Saba, Tex						
Continued	Apr. 23, 1952	0855	4,170	5,470	5,520	0.99
Continued	do	1020	4,530	4,940	4,960	1.00
	do	1205	5,040	4,900	4,840	1.01
	do	1335	5,430	4,980	4,710	1.06
	do	1455	5,690	5,090	5,060	1.00
		1455	5,090	5,090	5,000	1.01
	do	1640	5,960	5,970	5,970	1.00
	do	1910	6,100	7,700	7,660	1.00
	do	2245	5,820	7,310	7,380	.99
		0755	3,340	5,300	5,180	1.02
	Apr. 24		3,810			
	do	1300	5,010	6,040	6,200	.97
-	More 1	1600	820	359	343	1.05
	May 1	1740	1,280	773	766	1.01
	do		5,690			
	do	2100	7,890	8,580	8,100	1.06
	do	2310		16,400	16,400	1.00
	May 2	0435	11,300	11,500	11,400	1.01
	do	0715	12,300	8,520	8,520	1.00
	do	0940	12,900	6,960	6,830	1.00
	do	1155	13,400	6,350	6,340	1.00
	do .	1340	13,600	5,780	5,900	.98
	do .	1700	13,600	5,130	5,210	.98
	ά0.	1,00	15,000	5,150	5,210	.90
	do	1800	13,600	5,000	4,980	1.00
	do .	2010	12,800	5,090	5,180	.98
	do	2350	10,100	5,460	5,460	1.00
	May 3	0420	5,690	4,930	4,950	1.00
	· do	0420	3,810		4,950	1.00
		0705	5,010	4,650	4,000	1.00
	do	1030	2,570	4,360	4,370	1.00
	do	1300	2,210	3,960	4,370	1.00
			2,070			1.00
	do	1450 1800	1,880	4,270	4,130	.98
	do		1,660	3,930	3,990	
	do	2315	1,000	3,800	3,820	.99

<u>I</u> Ratio of suspended-sediment concentration collected with depth-integrating samplers to concentration collected near the surface with the Texas sampler.

Table 2.--Comparison of suspended-sediment concentrations collected with depth-integrating samplers to concentrations collected near the surface with the Texas sampler --Continued

Station	Date	Time (24-hour)	Water discharge	Suspended-s concentra (ppm	tions	Ratio ¹
		(24-11001)	(cfs)	Depth- integrating sampler	Texas •sampler	
Colorado River near San Saba, Tex						
Continued	May 4, 1952 do May 19 do do do	0845 1230 1315 1500 2145 2400	1,210 1,100 13,300 14,200 11,500 9,900	3,320 3,020 5,620 5,270 4,880 4,250	3,290 3,220 5,680 5,380 5,030 4,300	1.01 .94 .99 .98 .97 .99
Colorado River at Columbus, Tex.	Feb. 18, 1961 do Sept. 12 Sept. 13 do Sept. 15 do	0915 1225 1540 1020 1120 1020 1230	17,600 19,300 57,000 72,500 72,500 13,700 11,600	1,820 2,430 1,550 704 631 715 809	1,650 2,490 1,830 584 683 890 921	1.10 .98 .85 1.31 .92 .92 .88
Lavaca River near Edna, Tex.	Sept. 13, 1961 Nov. 14 Nov. 15 July 25, 1962 Sept. 19	1130 1730 1130 0815 0835	13,600 7,260 10,400 30.7 920	244 335 103 59 674	224 241 108 24 675	1.09 1.39 .95 2.46 1.00
Navidad River at Halletsville, Tex.	May 23, 1962	1140	26.5	35	· 33	1.06
Guadalupe River at Victoria, Tex.	Sept. 12, 1961 Nov. 14 Nov. 15	1730 2040 0825	3,100 1,900 3,950	258 168 211	261 139 195	.99 1.21 1.08
San Antonio River at Goliad, Tex.	Sept. 12, 1961 Nov. 14 Nov. 15 July 24, 1962 Nov. 28	1530 1850 0920 1240 0900	306 1,820 3,140 139 830	110 2,150 1,660 118 1,300	101 1,990 1,630 111 1,250	1.09 1.08 1.02 1.06 1.04

1/ Ratio of suspended-sediment concentration collected with depth-integrating samplers to concentration collected near the surface with the Texas sampler.

- 76 -

Table 2.--Comparison of suspended-sediment concentrations collected with depth-integrating samplers to concentrations collected near the surface with the Texas sampler--Continued

Station	Date	Time	Water discharge	Suspended-s concentra (ppm)	tion	Ratio ¹
Station	Date	(24-hour)	(cfs)	Depth- integrating sampler	Texas sampler	Katio
San Antonio River at Goliad, Tex				· · ·	 	-
Continued	Nov. 28, 1962	1130	990	2,280	2,250	1.01
continued	do	1425	1,160	2,770	2,580	1.07
	do	2040	1,250	3,320	3,260	1.02
	Nov. 29	0915	, 630	3,840	3,980	.98
Nueces River near				×		2 B
Three Rivers, Tex.	June 5, 1951	1255	12,780	847	849	1.00
,	do	1615	12,660	740	704	1.05
	do .	2305	12,300	595	566	1.05
	June 6	0330	12,180	568	52.5	1.08
	do	0950	11,400	508	481	1.06

<u>I</u> Ratio of suspended-sediment concentration collected with depth-integrating samplers to concentration collected near the surface with the Texas sampler.

[Methods of analysis: S, sieve; P, pipette; W, in distilled water; C, chemically dispersed; M, mechanically dispersed; B, bottom-withdrawal tube]

							Su	spended	sedimer	nt						
Date of collection	Time	Water temperature (°F)	Discharge (cfs)	Concentration of sample	Discharge			Percent	finer th	an indica	ated size	e, in mil	limeters			Methods of analysis
				(ppm)	(tons per day)	0.002	0.004	0.008	0,016	0.031	0.062	0. 125	0, 250	0.500	1.000	
				7-2985. PR	AIRIE DOG TOWN FOR	K RED RIV	ER NEAR	BRICE, TE	x.'							
Oct. 10, 1949	1700		285	36,300	27,900	34	51	72	85	90	95	99	100			SBWCM
Oct. 13	0845		2.6	9,760	68	74	88	96	100		• -		·			BWCM
May 14, 1950	0850		452	20,400	24,900	48	51	54	60	68	87	98	100			SBWCM
June 2	0937	1	325	29,100	25,500	66	69	82	· 88	93	95	99	100		1	SBWCM
June 21	0930		759	38,600	79,100	42	62	68	76	80	86	92	98	100		SBWCM
Do	1310		444	23,600	28,300	56	80	. 89	97	98	99.	100				SBWCM
June 22	0900		47	14,700	1,870	75	91	97	99	100	100					SBWCM
June 24	1015		2.9	1,690	13	91	98	100							-	SBWCM
June 27	0940		27	22,200	1,620	65	76	88	97	99	100		1	·		SBWCM .
June 29	0810		4,020	47,400	514,000	21	28	36	47	62	80	91	100			SBWCM
June 30	1225		148	18,400	7,350	59	65	74	78	82	85	90	97	100		SBWCM
July 2	1050		27	2,910	212	59	80	88	93	94	96	98	100			SBWCM
July 4	1515		1,740	37,900	178,000	34	46	56	68	79.	90	99	100			SBWCM
Do	1700		1,540	33,700	140,000		54	. 69	79	87	94	98	100			SBWCM
July 5	1315	-	9,100	54,200	1,330,000	25	34	40	51	66	81	93	97	100		SBWCM
July 6	1212		531	9,730	14,000	41	51	60	69	78	83	91	95	100		SBWCM
July 8	1800	1	128	4,340	1,500	39	54	62	67	71	77	90	98	100		SBWCM
July 27	1340		244	5,950	3,920	50	61	70	78	82	92	100			-	SBWCM
July 21	1245		1,780	28,200	136,000	38	48	60	71 .	82	90	98	100			SBWCM
Aug. 1	1430	Í	947	15,200	38,900	27	38	44	53	65	78	93	99	100		SBWCM
Aug. 9	1732		244	19,500	12,800		46	58	73	83	85	95	99	100		SPWCM
Aug. 27	1900		618	28,700	47,900		58	69	80	85	88	96	100			SPWCM
Sept. 4	1100		148	8,160	3,260	40	51	63	70	74	80	95	100			SPWCM
Sept. 11	1515		1,080	24,200	70,600	42	50	62	74	. 82	87	94	100			SBWCM
Sept. 26	1140		1,370	23,000	85,100	41	47	56	66	79	88	97	100			SBWCM
Oct. 3	1330		57	18,600	2,860	73	88	97	100							SPWCM
May 16, 1951	1550	1	6,340	43,300	741,000		34	42	50	62	68	82	99	100		SPWCM
May 18	1520		4,620	22,800	284,000	29	33	42	54	67	79	92	97	100		SPWCM
May 26	1150		222	4,240	2,540	46	64	72	80	85	90	99	100			SBWCM
June 3	1145		174	3,760	1,770	44	56	63	70	76	80	92	99	100		SBWCM
June 13	1640		340	6,500	5,970		53	63	73	76	83	96	100			SPWCM
June 15	1645		450	9,020	11,000		47	58	71	80	86	98	100	,		SPWCM
June 22	0730		313	14,300 、	12,100		67	79	86	89	92	97	99	100		SPWCM
Do	1100		236	9,560	6,090		61	75	83	87	91	98	100			SPWCM
June 25	1245		486	30,700	40,300		57	· 70	83	89	97	100				SPWCM
July 2	1100		730	22,400	44,200		46	60	75	86	90	97	100			SPWCM

- 78 -

		· · · ·			<u></u>		Su	spended	sedimer	ht i						
Date of collection	Time	Water temperature (°F)	Discharge (cfs)	Concentration of sample	Discharge			Percent	finer th	an indic	ated size	e, in mil	limeters			Method of analysi
				(ppm)	(tons per day)	0.002	0.004	0.008	0.016	0.031	0.062	0.125	0.250	0,500	1.000	
			1	7-	2990. MULBERRY CR	EEK NEAR	BRICE, T	EX.								
June 2, 1950 July 4 Do July 5 July 16	1550 0900 1842 1951 1845		109 535 90 87 23,800	26,900 28,100 11,200 5,030 39,200	7,920 40,600 2,720 1,180 2,520,000	38 41 31 38 33	53 50 40 57 47	63 61 52 65 60	68 74 57 71 76	71 82 60 76 94	74 88 91 81 100	83 95 95 89	83 99 98 99 	96 100 100 100		SBWCM SBWCM SPWCM SBWCM SBWCM
July 17 July 22 July 24 Aug. 9 Aug. 28	0809 1010 1530 1620 1050		185 133 213 109 34	4,760 17,500 6,000 3,460 8,280	2,380 6,280 3,450 1,020 760	38 36 19 48 50	46 46 28 57 70	55 58 37 69 88	64 68 50 75 92	69 79 60 80 - 94	78 90 83 86 99	96 98 96 93 99	100 100 99 99 100	100 100 		SBWCM SBWCM SBWCM SBWCM SPWCM
Sept. 4 Sept. 11 Sept. 26 May 17, 1951 May 19 June 2	1350 1640 0920 1000 1600 1400		29 225 535 1,260 109 414	26,500 10,200 10,200 12,700 3,180 11,500	2,070 6,200 14,700 43,200 936 12,900	 36 35 46 35	31 43 41 37 57 45	44 52 53 51 63 53	58 61 62 59 70 59	72 67 64 67 78 66	84 74 82 85 83 74	98 85 93 94 * 91 88	100 95 100 99 95 100	100 100 100 		SPWCM SBWCM SBWCM SPWCM SBWCM SPWCM
June 6 June 15 Do July 1 July 2 Do	1935 1445 1815 1940 1410 2010		84 269 93 290 213 75	2,890 5,620 5,580 23,000 11,600 12,300	655 4,080 1,400 18,000 6,670 2,490	35 	47 41 64 62 52 80	53 52 73 78 72 89	60 64 80 92 77 97	66 76 81 94 83 98	74 83 84 96 88 99	88 90 91 99 96 100	98 96 98 100 99	100 100 100 100		SBWCM SBWCM SBWCM SPWCM SPWCM SPWCM
		, * ,*		8-	0225. SABINE RIVE	R AT LOGA	NSPORT,	LA.						•		• • •
Apr. 7, 1961 Do May 4, 1962 Do	0930 0930 1045 1045		9,860 9,860 10,600 10,600	80 a36 150 a44	2,130 4,290 						46 83 32 68	63 100 50 86	95. 93 100	100	, ,	S S S S
a 1				8-	0285. SABINE RIVE	R NEAR BO	N WIER,	TEX.					:			
Apr. 4, 1957 May 13 Oct. 30 May 15, 1958 Sept. 27	1430 1400 1200 1830 1330	67 75 64 74 77	12,800 38,700 9,620 25,200 25,400	402 631 150 244 438	13,900 65,900 3,900 16,600 30,000	16 39 26 25	54 19 47 30 28	59 21 55 32 32	65 22 60 41 38	72 27 67 51 45	81 32 71 69 52	93 58 84 91 72	99 71 99 99 99 94	100 100 100 100 100		SPWCM SBWCM SBWCM SBWCM SBWCM
Mar. 19, 1959 Oct. 5, 1960 Nov. 16 Dec. 21 Jan. 12, 1961	1430 1300 1235 1330 1500	59 74 66 46 49	7,240 2,950 2,550 - 20,500 35,200	108 188 87 394 807	2,110 1,500 599 21,800 76,700	55 	61 25 17	66 	· 72 33 22	75 	79 44 84 54 40	85 46 86 76 62	97 63 98 96 90	100 97 100 100 97		SBWCM S S SPWCM SPWCM

[Methods of analysis: S, sieve; P, pipette; W, in distilled water; C, chemically dispersed; M, mechanically dispersed; B, bottom-withdrawal tube]

a Collected with the Texas sampler.

,

.

ε

						•	Su	spended	sedimer	nt ,						
Date of collection	Time	Water temperature (°F)	Discharge (cfs)	Concentration of sample	Discharge			Percent	finer th	an indic	ated size	e, in mil	limeters			Metho of analys
•				(ppm)	(tons per day)	0,002	0.004	0.008	0.016	0.031	0.062	0. 125	0.250	0.500	1.000	
		-		8-0285.	SABINE RIVER NEAR	BON WIEF	, TEX	Continued	1			•		,		
an. 12, 1961 eb. 28 pr. 6 Do	1 500 1 3 5 0 1 4 0 0 1 4 0 0	57 62 62	35,200 19,000 23,300 23,300	a457 202 205 a164	10,400 12,900	 18 	 20 	 24 	 25 	 30 	28 42 41 66	53 57 68 86	96 90 94 99	100 100 100 100		S S SBWCM SPWCM
ept. 15 Do ay 4, 1962 Do	0945 0945 1600 1600	76 76 76 76 76	29,700 29,700 22,400 22,400	656 a504 511 a216	52,600 30,900	32 41 	38 53 	39 58 	50 65 	56 75 	66 85 32 61	83 97 49 90	96 99 69 99	100 100 99 100		SBWCM SBWCM S S
		•		8-	0335. NECHES RIVE	R NEAR RO	CKLAND,	TEX .								
Lept. 15, 1961 Do Lay 3, 1962 Do Lov. 30 Do	1310 1310 1615 1615 1045 1045		5,340 5,340 12,200 12,200 708 708	143 al29 138 al07 180 a75	2,060 4,550 344 		•				73 79 59 74 50 93	93 92 81 83 56 94	99 97 98 100 79 100	100 100 100 99 		S S S S S S
			•••••••		3-0410. NECHES RIV	ER AT EV	DALE, TE	x.		•						
Do Do Do	0915 0915 0915 0915	60 60 	16,600 16,600 4,120 4,120	38 a33 161 a110	1,700 1,790 						82 95 · 79 84	85 98 84 91	92 100 93 98	100 98 100		S S S S
				8-0428.	WEST FORK TRINITY	RIVER NE	AR JACKS	BORO, TEX	κ.							
pr. 25, 1962 Do une 13 Do	1505 1505 1445 1445		818 818 1,740 1,740	886 a840 234 a236	1,960 1,100						99 99 98 99	100 100 99 99	 100 100			S S S S
				8-0503	. ELM FORK TRINITY	RIVER NE	AR MUENS	TER, TEX								
pr. 23, 1957 pr. 26 ay 1 ay 11 ay 13	0700 0900 0930 0820 1045	61 63 67 76 66	510 560 465 345 535	2,100 2,060 1,640 2,020 1,420	2,890 3,110 2,060 1,880 2,050	52 44 33 40 38	57 48 34 43 42	62 54 50 49 44	72 58 52 52 47	84 64 63 55 51	94 82 - 76 67 65	98 92 89 78 82	99 98 97 91- 97	100 100 100 - 100 100		SBWCM SBWCM SBWCM SBWCM SBWCM

. .

[Methods of analysis: S, sieve; P, pipette; W, in distilled water; C, chemically dispersed; M, mechanically dispersed; B, bottom-withdrawal tube]

a Collected with the Texas sampler.

							Su	spended	sedimer	ıt						
Date of collection	Time	Water temperature (°F)	Discharge (cfs)	Concentration	Discharge			Percent	finer th	an indica	ated size	e, in mil	limeters			Method of analysi
				of sample (ppm)	(tons per day)	0.002	0.004	0.008	0.016	0.031	0.062	0.125	0, 250	0.500	1,000	
				8-0503. ELM	FORK TRINITY RIVER	NEAR MU	ENSTER, T	EXCon	tinued			•				
ay 18, 1957	0530	65	735	1,660	3,290	43	47	50	56	64	77	92	98	100		SBWCM
ay 24	0610	67	485	2,330	3,050	42	47	51	57	64	76	90	98	100		SBWCM
ov. 7	1000	56	735	2,460	4,880	46	51	52	58	62	78	88	98	100		SBWCM
an. 19, 1958	1615	47	30	1,380	112	62	67	75	82	93	98	99	100			SBWCM
eb. 5	0615	55	12	5,170	168	52	58	66	69	71	97	99	100			SBWCM
			24	1 050	107		60	- 1								
ar. 6	1100	49	26	1,950	137	67	69	76	83	94	98	99	100			SBWCM
pr. 20	0645 0530	61	78	1,210	255	56	58	62	68	77	86	94	99	100		SBWCM
pr. 30 ay 2	0530	55 65	1.1 810	2,440		39 40	45 42	48	53 51	62	69	80	95	100		SBWCM
ay 2	0800		2,380	9,080	3,560	38	42	46 51	59	· 61 69	75	94 78	99 92	100		SBWCM
	0000 ,		2,500	3,000	58,500		42	21		09		10	92	100		SBWCM
ct. 10	1030		4,020	4,020	43,600	47	50	58	61	74	87	90	96	98		SBWCM
an. 12, 1960	0830		610	2,460	4,050	49	51	57	64	70	82	86	87	90		SBWCM
ar. 25	0900		76	488	100	45	52	56	61	64	95	99	100	·		SBWCM
une 8	0530		70	201	38	73	. 82	84	88	90	99	100				SBWCM
ar. 25, 1961	0600		71	3,240	621	66	67	71	80	84	98	100				SBWCM
				[· · · ·		· ·	· ·					
et. 2	0730		98	1,540	407	72	84	89	96	98	100					BWCM
ct. 10	0740	1	114	1,700	523	50	. 59	66	75	89	99	100				SBWCM
pr. 24	1010		840	6,670	15,100	44	54	66	72	. 83	94	96	98	100		SBWCM
Do	1300		350	1,600	1,510	59	70	74	80	. 90	97	99	100	· · · ·		SBWCM
				8	-0625. TRINITY RIV	ER NEAR F	OSSER, T	EX.								
pr. 26, 1962	1400 ·	.69	3,130	440	3,720	81	88	94	95	97	99	99	100			SBWCM
Do	1400	69	3,130	a514		82	87	89	96	97	99	99	- 99 .	100		SBWCM
				8-	-0632. PIN OAK CRE	EK NEAR H	WBBARD,	TEX.								
ov. 4, 1956	0745		1,030	3,740	10,400		77	84	90	94	97	99	100	·		SPWCM
Do	1300		1,870	3,040	15,300	73	81	86	92	96	97	99.	100	·		SBWCM
Bo	1 500		1,470	1,840	7,300	79	86	89	93	96	97	98	99	100		SBWCM
ec. 20	1330		4.1	780	86	97	98	99	99	99	99	99	99	100		SBWCM
an. 27, 1957	1330	36	22	4,140	246		85	91	94	98	99	99	100			SPWCM
eb. 1	0600	49	1.07	5 000	7 600		66	71	80	0.5	06	00	100			-
eb. 1 ar. 17	1830	62	484 48	5,830 1,290	7,600	76	82	71 84	80	85 90	96 91	99 93	100 98	100		SPWCM
Do	2230	62	258	4,670	3,250	68	73	84 80	87	89	.95	93	98	100		SBWCM SBWCM
ar. 18	1000	61	33	773	3,250	83	90	91	96	98	.95	98	99	100		SBWCM
ar. 21	0700	57	252	1,560	1,060	70	76	81	87	96 94	96	99	100	100		SBWCM

a Collected with the Texas sampler.

81 1

Ł

			×				Su	spended	sedimer	ıt						
Date of collection	Time	Water temperature (°F)	Discharge (cfs)	Concentration of sample	Discharge			Percent	finer th	an indica	ated size	e, in mil	limeters			Methods of analysis
				(ppm)	(tons per day)	0.002	0.004	0.008	0.016	0.031	0.062	0, 125	0, 250	0.500	1.000	
				8-0632.	PIN OAK CREEK NE	AR HUBBAR	D, TEX	Continue	đ							
4ar. 27, 1957	1900	52	124	26,200	8,770		72	78	84	95	97	99	100			SPWCM
Do	2100	51	96	8,110	2,100		75	81		98	99	100				SPWCM
lar. 31	1830	60	8.5	3,920	90	79	87	89	94	. 96	98	99	99	100		SBWCM
pr. 20	0800	64	3,310	2,100	10,700	75	81	86	94	.97	98	99	99	100		SBWCM
Do`	1900	71	81	1,980	433	66	74	. 81	85	88	96	99	99	100		SBWCM
pr. 23	0600	63	215	6,280	3,646		70	. 73	77	88	95	99	100			SPWCM
Do	0700	62	988	9,070	24,200		70	73	82	90	98	100				SPWCM
pr. 24	1700	66	926	14,200	35,500		72	79	88	96	98	100				SPWCM
Do	1900	66	1,260	4,870	16,600		73	80	88	95	97	99	100			SPWCM
4ay 3	1900	70	425	2,810	3,220	58	64	72	77	86	93	99	99	100		SBWCM
1av 25	. 1900	75	96.	13,500	3,500		62	66	72	79	99	. 99	100			SPWCM
lay 31	0600	71	168	8,700	3,950	1	79	85	90	96	98	100	1		1	SPWCM
June 3	1530	73	2 5 2	15,000	10,200		74	82	87	94	99	99	100			SPWCM
Sept. 22	1600	71	27	2,360	172	67	· 77	82	87	93	95	97	99	100		SBWCM
Oct. 13	1630	63	3.6	3,560	346		87	93	95	99	100					SPWCM
Oct. 14	0730	63	50	3,840	518		84	93	98	99	100					SPWCM
Oct. 15	2430	64	364	7,000	6,880	62	68	75	81	85	95	98	99	100		SBWCM
Nov. 8	0900	56	1.8	604	29	94	98	98	99	99	99	99	100			SBWCM
Nov. 18	0630	56	57	3,770	580	66	74	80	86	. 93	97	100				SBWCM
Nov. 24	0930	42	225	1,910	1,160	64	68	. 75	80	88	92	98	100			SBWCM
Mar. 23, 1958	0900	60	11	1,360	. 40	71	76.	84	91	96	98	100		·		SEWCM
Apr. 21	2030	61	142	13,600	5,210	70	77	82	86	87	98	100			1.1	SBWCM
Apr. 30	0700	59	81	2,370	518	76	85	88	93	97	98	100				SBWCM
May 2	1700	67	. 8	1,380	30	76	80	84	88	94	98	100				SBWCM
May 29	0630	72	18	2,540	1,230	74	. 85	90	95	96	99	100				SBWCM
Aug. 18	1130	75	74	5,840	1,170	62	71	77	86	92	95	99	100			SBWCM
Aug. 23	1330	75	9.3	1,780	45	82	91	95	98	92	100	99				BWCM
Aug. 23 Sept. 11	1330	78	3.1	6,080	51	69	74	95 85	90	99	98	99	100			SBWCM
Sept. 16	1400	76	.7	2,770	5	83	92	96	92	100	98	99	100			BWCM
Sept. 22	1600	76	765	4,050	8,370	72	83	96 86	99 91	94	96	99	100			SBWCM
	0.700	70	1 16	0.75	,,,,	70		0.2	0.5			1.00				
Oct. 9	0700	70	15	2,750	111	79	89	93.	95 88	96	99	100	100		1	SBWCM
Nov, 28	0753	42	40	2,080	225	71	78	85 76	88	93	96	99	100			SBWCM
reb. 14, 1959	1516	60	166	2,000	896	62	70	76 90	94	89	96	98	99 100	100	1	SBWCM
Apr. 10	0657	53	21 508	6,050	343	74 63	85 71	90 76	94 81	97 89	98 94	99 99	100		· ·	SBWCM
pr. 11	1150	1 22	000	5,020	6,890	1 0.5	1 /1	/0	l or	1 07	1 94	1 22	1 100		I	SBWCM

ŕ

[Methods of analysis: S, sieve; P, pipette; W, in distilled water; C, chemically dispersed; M, mechanically dispersed; B, bottom-withdrawal tube]

.

ł

	[Methods*	of analysis: S	, sieve; P, pi	pette; W, in dist	illed water; C, ch	emically	disperse	d; M, mec	hanicall	y dispers	sed; B, b	ottom-wi	thdrawal	tube]		<u> </u>
			-				Si	aspended	sedime	nt						
Date of collection	Time	Water temperature (°F)	Discharge (cfs)	Concentration of sample	Discharge			Percent	finer th	an indic	ated size	e, in mil	limeters			Methods of analysis
				(ppm)	(tons per day)	0.002	0.004	0,008	0.016	0.031	0,062	0.125	0.250	0,500	1.000	
`				8-0632.	PIN OAK CREEK NEA	R HUBBARI), TEX	Continued	1				_			
Apr. 19, 1959 May 11 May 23 May 24 June 5	1449 0642 1655 0740 1130	69 62 70 68 70	310 1,100 14 186 281	5,380 9,920 1,860 3,680 3,940	4,500 29,500 70 1,850 2,990	72 68 83 62 68	83 72 94 68 70	88 79 98 75 75	94 88 100 81 83	97 92 86 93	99 96 95 99	99 99 99 100	100 100 100 	 		SBWCM SBWCM EWCM SBWCM SBWCM
June 22 July 21 July 27 Oct. 4 Nov. 4	1044 1550 1840 0820 1300	72 78 76 70 68	1,800 14 25 1,340 245	2,000 3,540 6,500 3,640 896	9,720 134 439 13,200 593	71 79 62 84	83 98 84 72 87	89 98 90 77 91 .	92 98 96 84 95	95 99 100 92 99	98 99 95 99	98 100 99 100	100 100 			BWCM BWCM SPWCM SBWCM SBWCM
Dec. 15 Dec. 31 Jan. 1, 1960 Feb. 3 Apr. 28	1535 1600 1400 0930 0620	58 42 38 49 66	988 434 364 32 35	1,670 3,120 1,920 2,550 1,940	4,450 3,660 1,890 220 183	64 56 83	69 65 62 80 83	76 69 69 83 89	79 71 74 88 94	87 83 82 95 97	93 91 92 99 99	98 99 98 100 100	99 100 100 	100 		SBWCM SPWCM SBWCM SPWCM SBWCM
Apr. 29 May 5 June 26 Aug. 21 Do	1415 0730 0800 1000 0130	64 68 71 73 83	144 264 186 1 92	13,800 2,170 3,310 2,440 5,840	5,370 1,550 1,660 7 1,450		74 82 79 65 51	78. 83 85 	83 85 89 80 70	91 93 93 	95 97 97 98 92	99 99 99 99 99	100 100 100 100 100			SPWCM SPWCM SPWCM SPWCM SPWCM
				ξ	3-0665. TRINITY RI	VER AT RO	MAYOR, T	EX.	<u> </u>					· · ·		
Sept. 26, 1958 Mar. 18, 1959 Apr. 18 May 20 Dec. 20, 1960	1430 1630 1600 1745 1550	81 62 66 78 	21,200 5,050 37,200 21,200 35,000	1,300 293 3,350 998 901	74,400 4,000 336,000 57,100 85,100	61 70 35 44	71 80 41 47 	75 86 46 50	79 92 52 54 	82 95 59 58 	85 96 70 65 54	95 99 82 81 78	100 100 99 99 95	100 100 96		SBWCM SBWCM SBWCM SBWCM S
Feb. 27, 1961 Apr. 5 Do Sept. 14 Do		 79 79	28,300 16,600 16,600 30,800 30,800	530 780 a579 631 a509	40,500 35,000 52,500	 53 69	 57 77	 : 64 82	 66 85	 70 . 86	75 68 88 74 91	89 80 96 85 97	98 99 99 99 100	100 100 100 100	. 1	SBWCM S S SBWCM SBWCM
Jan. 30, 1962 Do Do Do May 3	1630 1630	55 55 73	15,900 15,900 15,200 15,200 26,200	832 a596 776 a533 1,240	35,700 31,800 87,700	43 62 38 65 35	47 65 45 67 42	50 70 48 72 46	55 75 52 76 52	59 83 56 81 58	67 90 63 89 66	84 97 74 96 76	98 100 99 100 96	100 100 100		SBWCM SBWCM SBWCM SBWCM SBWCM

[Methods'of analysis: S. sieve: P. pipette: W. in distilled water: C. chemically dispersed: M. mechanically dispersed: B. battom-withdrawal tube]

Table 3. Particle-size analyses of suspended-sediment samples for Texas streams--Continued

a Collected with the Texas sampler.

<u>က</u>္က

 ϕ

							Su	spended	sedimer	nt	_					
Date of collection	Time	Water temperature (°F)	Discharge (cfs)	Concentration of sample	Discharge			Percent	finer th	an indic	ated size	e, in mil	limeters			Method of analys
~				(ppm)	(tons per day)	0.002	0.004	0,008	0.016	0,031	0.062	0.125	. 0, 250	0.500	1.000	
				8-0665	. TRINITY RIVER AT	ROMAYOR	TEXC	ontinued								
y 3, 1962	1145	73	26,200	a813		51	· 63	69	73	85	93	98	100			SBWCM
y 5	1000	74	19,300	690	36,000	53	57	62	67	72	78	86	97	100		SBWCM
Do	1000	74	19,300	a600		62	67	72	79	85	92	97	100		1	SBWCM
pt. 18	1345	77	10,200	629	17,300						77	90	99	100	1	S
Do	1345,	77	. 10,200	a512]	92	98	100		1	S
Do	1815	77	10,200	1,230	33,900	25	31		34		43	59	, 98	100		SPWCN
Do	1815	77	10,200	a397		70	75		85		92	97	98	100		SPWCM
ept, 19	0900		10,300	672	18,700						63	73	99	100	}	s
Do	0900		10,300	a433							92	98	100			s
Do	1530		10,400	588	16,500						70	85	98	100		s
Do	1530		10,400	a424							91	98	100			s
ept. 20	0915	77	10,400	468	13,100	51	54		65		75	87	99	100	Į	SPWCM
Do	0915	77	10,400	a377		42	49		61		93	98	100			SPWCM
				8-0680. WEST	FORK SAN JACINTO R	IVER NEAF	CONROE,	TEX.								
ept. 14, 1961	1100		9,900	238	6,360						43	61	89	98		s
Do	1100	'	9,900	a148	1						66	80	97	99		s
ept. 21	1430		198	36	19						94	98	99	100		s
Do	1430		198	• a36						1	94	97	98	99	-	s
an. 29, 1962	1650		2,920	491	3,870	1				}	45	54	82	99		S
Do	1650		2,920	a335							73	84	95	100		s
n. 31	0910		1,960	186	984					ľ	68	73	92	99		ŝ
Do	0910		1,960	a205		1					72	80	95	100	1	s
eb. 1	1315	56	970	140	367						75	80	95	100		S
Do	1315	56	970	a121							86	. 91	100			s
ay 3	0945		730	108	213	ŀ					84	88	100			s
Do	0945		730	a75		l I					89	94	100		l	s
ov. 29	1530		695	233	437					1	72	75	85	99		s
Do	1530		695	a206							85	89	98	100		s
				6	3-0685. SPRING CREE	K NEAR SF	RING, TEX	κ.								
ept. 14, 1961	1030	Γ	9,180	38	942	[89 .	93	97	100		SPWCM
		1	9,180	~~	1	1					78	90			1	014011

[Methods of analysis: S, sieve; P, pipette; W, in distilled water; C, chemically dispersed; M, mechanically dispersed; B, bottom-withdrawal tube]

- 84 -

							Su	spended	sedimer	1t						
Date of collection	Time	Water temperature (°F)	Discharge (cfs)	Concentration	Discharge			Percent	finer th	an indica	ated size	e, in mil	limeters			Methods of analysis
				of sample (ppm)	(tons per day)	0.002	0.004	0.008	0,016	0.031	0.062	0, 125	0, 250	0.500	1.000	
······································	·····	<u></u>	<u></u>	8-(0690. CYPRESS CREE	K NEAR WE	STFIELD,	TEX.								
Sept. 14, 1961 Do	1000 1000		5,090 5,090	901 a722	12,400						49 65	83 91	98 99	100 100		. S S
			•	8-0700. I	EAST FORK SAN JACIN	TO RIVER	NEAR CLE	VELAND, T	TEX.				.	•		<u> </u>
Nov. 29, 1962 Do	1640 1640		370 370	387 a379	387						99 99	100 99	100			S . S
		-	L	8-0805. DOUI	BLE MOUNTAIN FORK E	RAZOS RIV	ER NEAR	ASPERMON	r, TEX.			•	4	L		L ·
Sept. 5, 1950 Do Do Do Sept. 15	1035 1150 1420 1845 1720		9,680 13,200 15,400 12,400 985	16,700 14,000 9,900 26,400 17,800	436,000 499,000 412,000 884,000 47,300	 37 36 76	40 44 44 39 92	49 55 52 47 97	59 65 61 61 100	69 75 66 78	83 86 81 91 	96 97 94 99	100 100 100 100		ı	SBWCM SBWCM SBWCM SBWCM BWCM
Sept. 22 Sept. 26 May 19, 1951 Do Do	1547 1655 0045 0847 0847		340 165 2,220 1,150 1,150	14,600 4,340 77,700 34,900 a34,600	13,400 1,930 466,000 108,000	33 30 	49 75 43 55 58	65 81 53 70 72	82 86 66 80 87	93 92 71 87 93	99 100 83 94 96	100 92 99 99	 98 100 100	 100 		SBWCM SPWCM SPWCM SPWCM SPWCM
Do Do Do Do May 21	1040 1040 1023 1023 1830		964 964 1,000 1,000 280	32,700 a31,300 32,300 a32,900 18,600	85,100 87,200 14,100	 51	68 63 63 63 66	69 78 77 72 76	78 88 85 86 83	83 94 94 93 92	96 94 95 96 95	. 99 99 99 100 99	100 100 100			SPWCM SPWCM SPWCM SPWCM SBWCM
June 2 June 13 Do June 15 June 17	1715 1108 1108 1010 1849		545 127 127 4,260 435	16,800 6,640 a5,160 53,000 7,720	24,700 2,280 610,000 9,070	 	50 60 72 36 71	63 71 86 46 85	73 72 87 58 94	83 78 93 77 98	94 73 92 90 -100	98 79 98 98	100 89 100 99 	100		SBWCM SBWCM SPWCM SPWCM · SPWCM
June 18 July 3 July 5 July 25 Do,	0940 1940 1930 1630 1340		276 320 72 33 29	5,080 8,820 1,600 2,390 2,250	3,790 7,620 311 213 176	51 60 33 47 55	71 76 49 58 75	88 87 70 71 90	94 95 74 74 98	96 99 79 77 99	100 99 86 82 99	100 98 96 100	100 100			BWCM SBWCM SBWCM SBWCM SBWCM

[Methods of analysis: S, sieve; P, pipette; W, in distilled water; C, chemically dispersed; M, mechanically dispersed; B, bottom-withdrawal tube]

a Collected with the Texas sampler.

							Su	spended	sedimer	nt						
Date of collection	Time	Water temperature (°F)	Discharge (cfs)	Concentration of sample	Discharge			Percent	finer th	an indic	ated size	e, in mil	limeters			Method of analysi
				(ppm)	(tons per day)	0.002	0.004	0.008	0.016	0.031	0.062	0.125	0,250	0, 500	1.000	
		-	8-	0805. DOUBLE MOL	INTAIN FORK BRAZOS	RIVER NEA	R ASPERM	ONT, TEX	Contin	ued						
ug. 22, 1591	0750	-	96	23,200	6,010		76	86	93	93	96	99	100			SPWCM
Do	0855		102	22,000	6,060		74	85	91	91	94	98	100	·		SPWCM
Do	0855		102	a21,600			69	89	94	95	96	99	100			SPWCM
Do	0920		100	19,900 .	5,370		74	87	93	94	95	99	100			SPWCM
Do	0920		100	al9,900			73	86	91	91	93	96	100			SPWCM
ıg. 23	0820		4,830 [.]	36,300	473,000	41	49	61	74	87	94	99	.100			SPWCM
				8-0855.	CLEAR FORK BRAZOS	RIVER AT	FORT GRI	FFIN, TE	x.							
r. 16, 1950	0825		389	1,780	1,870	43	80	92	·98	99	100			T		BWCM
r. 17	1547		2,440	3,280	21,600	44	69	87	96	99	100	[1		BWCM
Do	1715		2,320	3,550	22,200	46	71	93	97	100						BWCM
r. 18	0845		1,740	3,040	14,300	49	82	92	98	99	100			1		BWCM
Do	1115		1,700	2,920	13,400	66	85 .	91	96	98	99	100				SBWCM
Do	1750		1,640	2,690	11,900	59	82	92	95	99	100					BWCM
r. 19	1115		650	2,330	4,090	65	79	93	98	98	100					BWCM
y 13	0745		664	806	1,440	67	80 -	84	93	98	100					BWCM
y 17	1800		274	1,810	1,340	79	94	96	97	99	100					BWCM
y 19	1030		113	382	117	96	100									BWCM
y 26	2430		1,170	2,340	7,390	66	76	88	95	97	100					BWCM
y 27	0800		2,220	5,310	31,800	75	80	91	95	96	100					BWCM
y 28	0900		2,730	3,240	23,900	43	70	83	93	96	100					BWCM
Do	1800		3,500	7,390	69,800	69	82	88	96	98	100			1		BWCM
y 29	2230		3,120	3,450	29,100	83	84	94	98	98	100					BWCM
ly 13	0830		281	3,340	2,530	52	67	76	83	91	98	100				SBWCM
ily 27	1445		1,530	1,800	7,440	51	62	71	80	92	100					BWCM
ig. 6	1025		166	513	230	96	100									BWCM
pt. 6i	1600	1	740	972	. 1,940	77	89	94	98	100						BWCM
pt. 8	1900	•	2,480	4,140	27,700	72	84	92	97	98	99	100				SBWCM
y 20, 1951	0920		1,460	2,370	9,340	63 [']	80	84	95	100			1			BWCM
y 26	1400		1,200	1,470	4,760	79	84	91	96	98	100				•	BWCM
ne 4	0730		1,340	2,500	9,040	64	67	77	87	95	99	100			1	SBWCM
ne 12	1745		2,690	5,360	38,900		72	87	94	96	98	100				SBWCM
ine 13	-1845		3,010	5,820	47,300	67	81	89	94	98	99	100			•	SBWCM

.

[Methods of analysis: S, sieve; P, pipette; W, in distilled water; C, chemically dispersed; M, mechanically dispersed; B, bottom-withdrawal tube]

a Collected with the Texas sampler.

							Sı	ispended	sedimer	nt.		•				
Date of collection	Time	Water temperature (°F)	Discharge (cfs)	Concentration	Discharge			Percent	finer th	an indic	ated size	e, in mil	limeters			Method of analys
				of sample (ppm)	(tons per day)	0.002	0.004	0.008	0.016	0.031	0.062	0.125	0.250	0.500	1.000	
				8-0855. CLEAR	FORK BRAZOS RIVER	AT FORT G	GRIFFIN,	TEXCon	tinued						<u>-</u>	
une 14, 1951	2220		2,380	3,140	20,200	69	82	88	96	99	100					BWCM ·
lune 15	2445		766	2,240	4,630	73	87	93	97	98	99	100				SBWCM
lune 16	0730	1	2,130	3,620	20,800		74	77	95	97	99	100				SBWCM
lune 17	0840		1,630	2,470	10,900	65	73	84	93	98	99	100			1	SBWCM
July 4	0800		878	1,030	2,440	81	99	100								BWCM
July 5	1840		982	1,200	3,180	82	90	92	96	97	98	99	100	L		SBWCM
				8-08	880. BRAZOS RIVER	NEAR SOUT	H BEND,	TEX.								• •
June 11, 1962	1930		20,200	5,100	278,000	50	57		72		[•] 90	94	99	100		SPWCM
Do	1930		20,200	a4,300		57	66		82		97	99	100		1	SPWCM
lune 12	1530		12,600	6,120	208,000	54	66		91	~-	94	96	99	100	1	SPWCM
Do	1530		12,600	a5,980		54	66		92		96	98	100		· ·	SPWCM
June 13	0900		9,800	3,640	96,300	69	75		86		88	91	98	100		SPWCM
Do	0900		9,800	a2,900		62	72		86 .		94	97	99	100		SPWCM
June 20	0900		1,240	· 8,670	29,000	67 [·]	78		83		99	100				SPWCM
1)0	0900		1,240	a7,320		64	78	,	83.		100		·			SPWCM
Sept. 9	1540	73	42,900	4,080	473,000	41	47		55		63	77	89	97		SPWCM
Do	1540	73	42,900	a2,470		70	75		86		92	98	100			SPWCM
Sept. 10	0915		27,600	3,140	234,000	51	57	65	75		93	97	99	100		SPWCM
Do	0915		27,600	a2,920		60	65	69	80		96	99	.100			SPWCM
				8	3-1005. LEON RIVER	AT GATES	SVILLE, T	EX.								
oct. 10, 1961	1415	73	16,000	1,550	67,000	63	78	91	95	· 98	99	99	100			SBWCM
Do	1500	73	16,000	a1,450		63	82	95	96	97	99	100				SBWCM
Sept. 8, 1962	1645		2,240	3,170	19,200	56	74	84	91		99 .	·100			}	SPWCM
Do	1645		2,240	a2,990		54	68	82	90		99	100			1	SPWCM
Sept. 11	1745		6,890	1,440	26,800	70	71	79	82		94	97	99	100		SPWCM
Do	·1745		6,890	al,280		80	82	85	88		97	99	100		1	SPWCM
ept. 12	0900		8,550	. 871	20,100	56	,56	77	88		93	98	99	100		SPWC
Do	0900		8,550	a671		90	90	92	92		99.	100			1	SPWCI

a Collected with the Texas sampler.

							Si	uspended	sedimer	nt					•	
Date of collection	Time	Water temperature (°F)	Discharge (cfs)	Concentration of sample	Discharge			Percent	finer th	an indic	ated size	e, in mil	limeters			Method of analysi
	•			(ppm)	(tons per day)	0.002	0.004	0.008	0.016	0.031	0.062	0. 125	0, 250	0.500	1.000	
			•	8	-1140. BRAZOS RIV	ER AT RIC	HMOND, T	EX.	•		•	•	•	•	•	•
pr. 3, 1957	1130	69	8,460	3,880	88,600		79	85	90	92	93	97	100			SPWC
or. 24	1630	74	31,800	6,760	580,000		68	79.	84	90	92	96	99	100		SPWC
ay 7	1200	72	107,000	2,240	647,000		38	43	48	· 56	64	77	95	100		SPWC
ay 14	1030	75	59,000	3,000	47,800		51	60	69	79	88	96'	99	100		SPWC
ct. 18	1300	67	85,500	7,070	1,630,000		57	65	72	81	87	95	99	100		SPWC
ct. 24	1730	67	51,300	4,240	587,000		41	46	52	61	72	91	98	100	ļ	- SPWC
ay 9, 1958	1830	74	31,500	3,190	271,000		47	52	59	73	84	96	99	100		SPWC
eb. 15, 1961	i 545	1	23,700	1,610	103,000		51		64		81	95	99	100		SPWC
Do	1545		23,700	al,610 ·							83	98	100			. s
or. 4	1615		7,310	690	13,600						95	10 0 ·				S
Do	1615		7,310	a688							96	100				s
ept. 13	1715	75	39,900	5,650	609,000	37	43	47	54		78	93	99	100		SPWC
Do	1715	75	39,900	a5,000		36	47	54	61		82	96	100			SPWC
ov. 14	1515		8,250	1,200	26,700	53	60	66	74	84	95	99	100			SBWC
Do	1515		8,250	al,220		56	62	67	73	85	95	99	100			SBWC
an. 31, 1962	1100		9,100	1,080	26,500	58	61	63	68	73	78	94	100			SBWC
Do	1100		9,100	a826		75	77	81	84	88	93	99	100		1	SBWC
ept. 17	1530	75	20,300	3,340	183,000	44	46		59		75	87	95	99	1	SPWC
Do	.1530	75	20,300	a2,230		60	64	·	81 .		94	98	100			SPWC
			l												l	
				8-1	240. COLORADO RIV	ER AT ROE	BERT LEE,	TEX.								
pr. 16, 1950	0630		847	4,460	10,200	27	36	57	71	82	89	92	94	97		SBWCM
Do	1250	1	2,500	5,400	36,500	27 .	52	64	77	87	97	99	100			SBWCM
Do	1510		3,480	9,330	87,700	20	30	49	64	78	92	96	97	98		SBWCM
Do	1730	ļ	4,480	12,800	155,000	32	47	60	76	85	92	96	98	100		SBWCM
or. 17	0730		4,260	15,000	173,000	29	46	61	73	81	· 94	98	99	100		SBWCM
Do	1130		3,920	14,900	158,000	32	49	65	78	87	93	97	98	100		SBWCM
pr. 18	1535		431	5,940	6,910	43	65	80	91	93	97	98	100			SBWCH
ay 12	0930		8,960	18,300	443,000	47 .	59	72	79	84	94	98	99	100		SBWCM
Do	1220	· ·	9,380	22,500	570,000	44	57	67	76	82	87	91	97	99		SBWCM
ay 13	0915		1,760	14,700	70,000	57	69	80	90	95	98	99	100			SBWCM
Do	1700		• 1,190	11,500	36,900	62	81	87	94 .	96	98	98	100			SBWCM
ay 16	1730		252	1,380	939	84	96	99	100			50				SBWCM
ay 26	0800		356	1,030	. 990	58	69	78	84	94	98	100				SBWCM
Do	1620		702	4,310	8,170	40	54	59	68	75	80	86	97	100		SBWCM
ay 27	0645		4,940	20,100	268,000	47	57	66	75	83	87	93	99	100		SBWCM

7

[Methods of analysis: S, sieve; P, pipette; W, in distilled water; C, chemically dispersed; M, mechanically dispersed; B, bottom-withdrawal tube]

a Collected with the Texas sampler.

1.1

ŧ 88

]				Su	spended	sedimer	nt						
Date of collection	Time	Water temperature (°F)	Discharge (cfs)	Concentration of sample	Discharge			Percent	finer th	an indic	ated size	e, in mil	limeters			Meth of anal
				(ppm)	(tons per day)	0.002	0.004	0,008	0,016	0.031	0,062	0, 125	0.250	0.500	1.000	
				8-1240.	COLORADO RIVER AT	ROBERT LI	E, TEX	-Continue	≥d							
ay 27, 1950	0915	1	5,,290	15,200	217,000	45	52.	62	71	80	86	93	98	100		SBWC
y 28	0727		3,480	9,430	88,600	39	49	56	64	69	76	87	99	100		SBWG
Do	1430		2,000	7,540	40,700	41	56	62	67	74	80	86	97	100		SBW
ne 7	1000		342	1,040	960	65	76	81	86	90	96	97	99	100		SBW
ne 12	1800		1,150	10,600	32,900	64	78	83	89	92	.94	96	99	100		SBW
ly 6	1630		66	1,340	239	81	85	97	99	100						BWC
ly 12	1730	1	209	5,190	2,930	81	94	97	99	100	[BWC
ly 26	1800		324	8,300	7,260	75 /	85	93	99	100						
ly 28	0730		770	2,440	5,070	64	77	87	90	92	93	94	99	100		BWC
g. 3	1700		189 .	2,350	1,200	82	92	97	98	99	100	94		100		S BW BWC
	1500		1.450	7,570	20,600	56	64	76	88	94	07			100		
g. 17		1	1,450		29,600	74		76 94	98		96	97	98	100		SBW
pt. 4	1900)	126	2,450	833		84			100	1					BWC
pt. 7	1300		990	13,000	34,700	63	78	89	96	98	99	100				SBW
pt. 10	1530	1	262	4,940	3,490	84	92	97	99	100		·				BWC
pt. 22	0820		777	9,970	20,900		81	92 -	100							SPW
pt. 24	1730		165	3,960	1,760		94	97	97	99	100					SPW
y 19, 1951	1200		1,510	12,500	51,000	53	64	77	86	94	96	98	100			SPW
y 21	1245		302	6,770	5,520		47	56	67	76	91	98	100			SPW
y 22	0019	ļ	410	7,770	8,600		53	68	81	95	98	100				SPW
ne 3	1930		· 3,350	13,800	125,000	38	52	63	75	88	95	99	100			SBW
ne 7	1300		189	9,260	4,720		91	94	95	98	100					SP
ne 16	1030	{	2,420	17,000	111,000		61	73	83	87	95	98	100			SPW
ly 3	0830		3,240	17,600	154,000		55	64	77	84	90	96	100			SPW
ly 6	1900		214	7,120	4,100		86	97	97	98	100					SPW
g. 12	1230		220	2,270	1,350	54	74	82	94	97	98	100				
g. 23	0930		3,130	32,400	274.000	55	68	79	88	93	98	99	100			SBW
Do	1530		2,520	23,900	163,000		73	83	91	96	98	100				SBV SPV
g. 26	1830		296	7,500	5,990		89	92	92	96	100	100				SPW
g. 20		L	_ · 270	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5,,,,,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		100				L	51%
		.	•	8-	1470. COLORADO RIV	ER NEAR S	SAN SABA,	TEX.	·							- · ·
y 8, 1951	1800		440	2,980	3,540	84	92	95	99	100						BWC
y 22	1320		711	828	1,600	59	74 ·	82	90	94	100					BWC
Do .=	2020		6,640	12,200	219,000		78	87	97	99	100					SPW
у 23	1222		11,400	7,700	237,000		77	90	99	100			÷-			SPW
v 26	0800		20,100	5,090	276,000	57	70	81	90	86	99	100				SPW

[Methods of analysis: S, sieve; P, pipette; W, in distilled water; C, chemically dispersed; M, mechanically dispersed; B, bottom-withdrawal tube]

- 68

I

\$

							Sı	ispended	sedimer	nt						
Date of collection	Time	Water temperature (°F)	Discharge (cfs)	Concentration of sample	Discharge			Percent	finer th	an indic	ated size	e, in mill	imeters			Method of analysi
				(ppm)	(tons per day)	0.002	0.004	0.008	0.016	0.031	0.062	0, 125	0.250	0.500	1.000	
		· · · ·		8-1470.	COLORADO RIVER NEA	R SAN SAI	BA, TEX	-Continue	ed							
June 16, 1951	1800		4,910	1,640	21,700	65	81	89	95	99	100					I
July 6	1800		2,460	1,780	11,800	75	78	84	92	96	100					
pr. 22, 1952	1325		6,100	6,880	113,000		74	84	96	98	100					SPWCM
Do	1325	·	6,100	a7,070			73	82	96	98	100	·				SPWCM
Do	1730		5,690	6,040	92,800		74	85	93	96	100		· `			SPWCM
Do	1730		5,690	a6,460			73	85	95	- 98	100					SPWCM
Do	2400		4,410	6,900	82,200	56	69	81	91	97	100					BWCM
Do	2400		4,410	a7,180			74	82	94	98	100					SPWCM
pr. 23	0720		3,810	6,060	62,300		72	83	92	96	100					SPWCM
Do	0720		3,810	a6,160			74	84	90	96	100					SPWCM
Do	0855		4,170	5,470	61,600		77	. 88	95	98	100					SPWCM
Do	0855		4,170	a5,700	01,000		74	88	94	98	100					SPWCM
Do	1205		5,040	4,900	66,700		73	85	93	98	100					SPWCM
Do	1205		5,040	a4,840			76	92	95	99	99	100				SPWCM
Do	1910		6,100	7,700	127,000		62	75	83	91	100					SPWCM
	1010		6 100	-7 660			66		86	92	99	1.00				
Do	1910 1300		6,100 3,810	a7,660 5,920	61,000		69	77 86	95	100		100				SPWCM
Apr. 24	1300		3,810	a6,200	61,000		76	79	95	97	100					SPWCM
tay 1	2040		5,300	5,180	74,100		76	84	95	99	99	, 100				SPWCM
Do	2310		7,890	16,400	349,000	61	71	80	94	97	99	100				SPWCM SPWCM
Do	2310		7,980	a16,800			73	85	98	99	99	100		·	•	SPWCM
lay 2	0435		11,300	11,500	351,000		66	81	92	99	99	100				SPWCM
Do	0940		12,900	6,960	242,000	·	75	87	95	97	99	100				SPWCM
Do	0940		12,900	. a6,830			77	88	95	98	99	99	100			SPWCM
Do	1600		. 12,600	5,340	182,000	- -	79	88	94	99	99 -	100				SPWCM
Do	1600		12,600	a5,630			77	86	92	96	99	100				SPWCM
lay 3	0420		5,690	4,930	75,700		77	87	97	98	100					SPWCM
Do	0420		5,690	a4,950	·		80	94	95	99	100					SPWCM
Do	1300		2,210	3,980	23,700	65	77	87	95	99	100					BWCM
Do	1300		2,210	a4,180		63	78	88	97	99	100		, '			BWCM
May 4	0845		1,210	4,040	132,000		64	75	85	93	100					SPWCM
May 19	1500	'	14,200	5,270	202,000	60	69	81	91	97	98	100		·		SPWCM
Do	1500		14,200	a5,380			73	83	92	95	99	100				SPWCM
Do	1755		13,600	5,330	196,000		73	84	94	97	99	100				SPWCM
Do.			9,900	4,250	114,000	63	75	87	95	98	100					BWCM

-

[Methods of analysis: S, sieve: P, pipette; W, in distilled water; C, chemically dispersed; M, mechanically dispersed; B, bottom-withdrawal tube]

a Collected with the Texas sampler.

а,

06

.

							Su	spended	sedimer	nt		_				
Date of collection	Time	Water temperature (°F)	Discharge (cfs)	Concentration of sample	Discharge			Percent	finer th	an indic	ated size	e, in mill	limeters			Methoda of analysi
				(ppm)	(tons per day)	0.002	0.004	0,008	0.016	0.031	0.062	0. 125	0.250	0.500	1.000	ļ
				8-1470.	COLORADO RIVER NEA	AR SAN SAI	BA, TEX	-Continue	ed							
fay 19, 1952	2400]	9,900	a4,300		76	84	93	98 .	99	100] [SPWCM
1ay 20	1138		3,540	3,300	31,500	64	77	85	94	98	100			·		BWCM
lay 24	1830		7,360	3,920	77,900		76	88	95	96	98~	100				SPWCM
lay 25	1200		11,500	5,560	· 173,000		67	80	91	96	99	100				SPWCM
une 3	1900]	2,020	6,100	- 33,300	62	74	85	95	98	100]				BWCM
ept. 11	0700		50,700	4,120	564,000		61	77	89	94	95	.98	100			SPWCM
Do	1500		68,800	2,140	398,000	64	79	84	93	97	98	99 '	100			SBWCM
ept, 12	0150		50,700	3,440	471,000	61	76	86	95	99	100					BWCM
Do	0150		50,700	a3,470		69	77 ·	86	95	98	99	100				SBWCM
Do	1600		31,100	2,870	241,000	62	75	83	94	97	99	100	['		1	SBWCM
Do	1600		31,000	a2,820		43	64	78	92	96	99	100				SBWCM
ov. 26	1100		2,740	3,240	24,000		62	73	87	92	100					SPWCM
ar. 10, 1953	1310		12,600	4,160	142,000	51	59	72	83	· 92	99	100]		SBWCM
y 15	1140		10,400	4,340	122,000	64	80	90	94	96	99	100				SPWCM
ay 22	0800		972	910	2,390	59	78	95	99	100					1	SBWCM
1g. 23	1805		15,300	1,510	62,400	91	94	96	100							SBWCM
ct. 4	1935		10,900	7,990	235,000	52	66	77	88	93	99	100			1	SPWCM
t. 30	0800		1,060	3,400	9,730	69	85	92	99	100	1					SBWCM
pr. 14, 1954	1110		14,900	5,630	226,000	68	77	90	97 •	99	100					SBWCM
pr. 30	0830		9,100	7,830	192,000	47	62	75	87	94	99	100				SPWCM
y 26	1140		15,300	1,920	79,300	71	79	89	97	100	1	'		· ·		SBWCM
t. 29	0800		590	1,620	2,580	73	91	97	99	99	100					SBWCM
v. 14	1400		11,800	7,940	253,000		55	79	81	92	98	99.	100			SPWCM
or. 10, 1955	1800		1,220	1.700	5,600	79	88	96	99	99	100					SBWCM
ine 17	1800	'	6,250	2,500	42,200	49	64	70	87	98	100	'				SBWCM
.1	0800		21,700	2,540	149,000	53	62	74	87	92	99	100			ł	-
uly 20 ept. 24	1800		30,100	2,240	185,000	58	73	85	90	92.	99	100				SBWCM
ept. 24	0800		1,200	3,140	10,200	68	82	92	98.	100	99					SBWCM
st. 7	0800		2,040	3,820	21,000		74	87	93	93	100					SPWCM
or. 30, 1956	1720		6,920	13,300	248,000	42	57	72	85	94	98	99	100			SPWCM
	1730		53 500	2,670	378 000		80	01	98		100					-
y 3 r. 21, 1957	1430		52,500 7,520	2,870	378,000	68	73	91 80	98 87	98	100	94	99	100		SPWCM
r. 21, 1957	0827		1,520	746	3,060	77	81	80	90	90	92	94	99 100	100	[SPWCM
or. 4	0816		864	581	1,360	94	95	95	90	92	100		100			SPWCM BWCM
pr. 4	1730		60,200	1,820	296,000	67	73	78	84	86	87	89	98	100	ł	SBWCM
er	1,20	•		,		, .,					,		, ,,	, 100	•	1 3DWCM

.

.

. .

. [Methods of analysis: S, sieve; P, pipette; W, in distilled water; C, chemically dispersed; M, mechanically dispersed; B, bottom-withdrawal tube]

a Collected with the Texas sampler.

,

۰.

							Sı	spended	sedimer	ıt						
Date of collection	Time	Water temperature (°F)	Discharge (cfs)	Concentration of sample	Discharge			Percent	finer th	an indica	ated size	e, in mill	imeters		_	Metho of analy
				(ppm)	(tons per day)	0,002	0.004	0,008	0,016	0.031	0.062	.0. 125	0.250	0.500	1.000	
		<u> </u>		8-1470.	COLORADO RIVER NEA	R SAN SA	BA, TEX	-Continu	eđ							
ay 14, 1957	1830		25,800	826	57,500	52	60	65	73	80	86	92	100			SBWCN
pt. 26	1030		52,500	2,780	394,000	45	49	55	59	64	68	73	91	99	•	SBWC
t. 12	. 0800	65	1,810	2,060	10,100	57	75	90	98	99	100					BWCM
at. 16	1100	66	43,000	2,090	243,000	57	75	83	92	97	- 99	100				SBWC
ov. 3	0830	60	3,880	3,360	35,200	39	52	65	79	92	98	100				SBWC
eb. 24, 1958	0800	50	11,200	2,030	61,400	49	64	69	84	93	98	100				SBWC
ay 1	0800	52	2,250	2,040	12,400	60	74	83	93	98	100					SBWC
ine 23	1015	78	2,530	1,430	9,770	68	80	88	95	98	99	100				SBWC
nie 25	0800	56	1,280	1,620	5,600	68	80	93	96	98	100					SBWC
ay 24, 1959	0800	65	3,400	2,400	22,000	54	.79	82	94	99	100					SBWC
		75		1,430	70,700	65	76	84	92	97	99	100				
une 6	1715	/3 .	18,300	1,450	70,700	0.5	70	04	1 12	, "	, ,,	100				SBWC
uly 20	1750	79	7,360	1,870	37,200	52	67	72	89	97	100					BWCM
ct. 4	1500		27,600	1,730	129,000	53	68	80	86	94	99	100				SBWC
an. 6, 1960	0800	42	9,580	1,720	44,500	56	59	69	78	90	98	99	100			SBWC
eb. 4	0800	50	3,360	769	6,980	60	69	78	82	93	98	100				SBWC
lay 24, 1962	1340	72	1,250	4,000	13,500	70	80	87	98	99	99	100				SBWC
uly 29	0700	80	1,520	1,670	6,850	86	92	97	99	99	99	100				SBWC
				8-	1610. COLORADO RI	VER AT C	OLUMBUS,	TEX.								
ar. 21, 1957	1915	66	7,520	3,610	73;300		70	80	88	93	95	96	99	100		SBWC
Do	1430	66	7,520	2,980	60,500	68	73	80	87	90	92	94	99	100		SBWC
ar. 22	0920	65	5,840	2,600	41,000		75	82	89	90	93	93	99	100		SBWC
ar, 23	1027	67	6,680	4,000	72,100		65	66	71	74	76	76	95	100		SPWC
ar. 24	0827	60	3,410	5,600	51,600		88	94	95	96	100					SPWC
ar. 30	0827	62	1,520	746	3,060	77	81	85	90	92	94	95	100			SBWC
pr. 1	1128	63	4,330	5,760	67,300	40	48	52	56	57	61	61	76	100		SBWC
or. 2	1110	68	2,250	1,570	9,540		88	93	96	97	99	99	100			SPWC
pr. 4	0816	68	864	581	1,360	94	95	95	97	97	100					SBWC
or. 24	0730	73	3,630	1,390	13,600	.76	78	83	87	88	88	90	97	100		SBWC
pr. 25	0740	. 73	5,570	2,580	38,800		82	85	90	93	94	95	98	100		SPWC
Do	1355	76	4,600	1,970	24,500		87	91	94	96	97	97	99	100		SPWC
pr. 26	1624	75	8,100	3,520	77,000		85	89	90	92	94	95	99	100		SPWC
pr. 27	1340	73	31,600	4,380	374,000		56	67	71	74	76	77	88	100	4	SPWC
Do	1730	70	29,500	4,200	335,000	63	79	84	90	95	97	98	100			SBWC

[Methods of analysis: S, sieve; P, pipette; W, in distilled water; C, chemically dispersed; M, mechanically dispersed; B, bottom-withdrawal tube]

	[Methods	of analysis: S,	sieve; P, pi	pette; W, in dist	illed water; C, ch	mically	disperse	d; M, mec	hanically	/ dispers	ed; B, b	ottom-wit	hdrawal (tube]		
							Su	spended	sedime	nt						
Date of collection	Time	Water temperature (°F)	Discharge (cfs)	Concentration	Discharge			Percent	finer th	an indic	ated size	e, in mil	limeters			Methods of analysis
				of sample (ppm)	(tons per day)	0.002	[.] 0, 004	0.008	0.016	0.031	0.062	0. 125	0. 250	0,500	1.000	
				8-1610.	COLORADO RIVER AT	COLUMBUS	S, TEX	Continue	đ							
Apr. 28, 1957 Apr. 29 May 1 May 5 May 9	2200 1730 0750 1600 1645	67 68 67 68 69	54,000 60,200 26,100 30,400 13,000	2,820 1,820 2,740 780 448	411,000 296,000 193,000 64,000 15,700	60 67 74 45 	67 73 82 49 53	75 78 87 54 63	81 84 93 61 75	84 86 95 65 86	88 87 97 71 91	96 89 98 78 96	98 98 99 97 100	100 100 100 100		SBWCM SBWCM SBWCM SBWCM SPWCM
May 14 May 21 May 30 June 1 June 5	1830 2430 1100 0800 1445	73 74 76 73 73	25,800 36,800 16,400 36,000 32,100	826 562 2,140 647 2,080	57,500 55,800 94,800 62,900 180,000	52 45 52 31	60 49 62 37 51	65 55 64 42 58	73 65 78 52 68	80 72 85 57 77	86 78 95 75 82	92 84 98 84 87	100 100 100 100 95			SBWCM SBWCM SBWCM SBWCM SPWCM
June 14 June 30 Sept. 25 Sept. 26 Do	1730 1730 0730 1030 1630	81 80 70 66 69	46,100 11,200 9,460 52,500 61,000	2,090 1,100 2,000 2,780 1,940	260,000 33,300 51,100 394,000 320,000	65 62 59 45 	74 65 67 49 46	78 68 70 55 51	83 72 77 59 57	87 81 82 64 62	93 90 86 68 69	95 97 91 73 73	99 100 99 95 91	100 100 100 100		SBWCM SBWCM SBWCM SBWCM SPWCM
Oct. 15 Oct. 17 Oct. 21 Nov. 23	1100 0730 1730 0715 0735	66 68 70 68 50	51,300 44,900 36,800 16,200 18,400	2,440 2,100 2,570 896 1,060	338,000 255,000 255,000 39,200 52,700	59 69 37 56	66 76 74 44 64	71 82 83 48 66	80 87 89 54 72	87 90 91 61 78	90 92 94 68 85	95 95 95 80 94	98 99 98 97 98	100 100 100 100 100		SBWCM SBWCM SBWCM SPWCM SBWCM
Feb. 23, 1958 May 4 June 20 July 9 Sept. 8	1400 1745 0721 1155 1405	53 67 80 80 79	62,900 24,000 10,600 6,670 4,730	2,830 2,320 2,090 382 744	480,000 150,000 59,800 6,880 9,500	 65 66 50	53 47 80 70 66	57 51 89 78 73	64 62 96 83 82	72 72 97 83 88	75 82 98 90 91	82 90 99 94 93	94 99 100 99 99	100 100 100 100		SBWCM SPWCM SPWCM SBWCM SBWCM
Sept. 22 Oct. 2 Oct. 15 Oct. 31 Nov. 14	1650 0715 0722 0738 0744	79 68 72 60 72	24,600 5,570 2,100 5,980 8,400	2,550 1,020 1,580 1,080 2,150	169,000 15,300 9,000 17,400 48,800	67 70 82 58 60	78 - 81 93 60 65	83 85 98 64 72	86 91 99 67 77	87 95 99 70 82	90 97 100 72 90	93 99 74 92	98 100 83 96	100 99 100		SBWCM SBWCM BWCM SBWCM SBWCM
Feb. 16, 1959 Apr. 9 Apr. 10 Apr. 12 Apr. 18	1330 1000	56 61 60 66	9,460 8,550 14,800 30,400 23,200	1,440 3,350 1,420 1,830 3,360	36,800 77,300 56,700 150,000 210,000	62 55 60 56 52	62 60 65 61 61	67 68 72 67 69	71 73 77 73 75	87 75 82 78 81	89 77 85 84 85	90 78 89 86 89	94 88 97 95 98	100 99 99 100 100		SBWCM SBWCM SBWCM SBWCM SBWCM

93

1

تي 1

-

Table 3. Particle-size analyses of suspended-sediment samples for Texas streams--Continued

							Su	ispended	sedimen	it ,						
Date of collection	Time	Water temperature (°F)	Discharge (cfs)	Concentration of sample	Discharge			Percent	finer th	an indic	ated size	, in mil	limeters	_		Methods of analysis
				(ppm)	(tons per day)	0.002	0.004	0.008	0.016	0.031	0.062	0, 125	0, 250	0,500	1.000	- S 1.
				8-16	10. COLORADO RIVE	R AT COLU	MBUS, TE	- XConti	Inued							
y 11, 1959	0742	67	7,100	1,250	24,000	54	61	68	75	84	94	99	100		r——	SBWCM
iy 23	0945	67	14,400	2,560	99,500	50	58	65	70	79	86	93	99	100	1	SBWCM
ec. 18	0755	55	5,180	876 912	12,300	75	84 77	92 80	93 88	95 93	96 96	97 97	100	100		SBWCM
an. 1, 1960	0845 0739	53 51	6,680 10,400	1,200	16,400 33,700	46	62	66	68	75	80	81	87	96		SBWCM
	0755		10,400	1,200	55,700		02			13	00					Dirett
or. 30	1045	68	64,000	2,370	410,000		43	51	55	61	64	68	85	[.] 99		SPWCM
Do	1615	68	61,000	1,710	282,000		49	55	60	67	69	74	87	99		SPWCM
ay 1	1030	68	35,000	1,220 906	115,000		70 68	76 74	81 78	85	88 86	92 90	97 96	100	1	SPWCM
Do	1445 · 0958	68 75	25,800	2,450	63,100 97,900		57		69	82	84	90	98	100 100		SPWCM SPWCM
me 25	0938	15	14,800	2,450	57,500		57		05		04	91	30	100		SEWCH
t. 30	0925	71	35,700	2,020	195,000		51		62		73	. 77	89	99 ⁻		SPWCM
ct. 31	1200	67	55,400	1,950	292,000		71		77		86	89	95	99		SPWCM
eb. 18, 1961	1235	65	19,100	2,320	120,000		70		84		93	96	98	100		SPWCM
eb. 19 une 20	1505 0920	67 80	19,800	2,400	128,000 293,000	58 59	68 62	77	83 68	88	92 74	95 77	99 85	100 98		SBWCM SPWCM
		<u> </u>						L		<u> </u>					E	
	<u> </u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·	8-1640. LAVACA RI	VER NEAR	EDNA, TE	х. Г				· · · · · · · · · · · · · · · · · · ·	· · · · · · ·		r	
ept. 13, 1961	1130	79	13,600	244	9,000	75	76	78	88	96	99	99	100		1	SBWCM
Do	1130	79	13,600	a224	6 570	77	79	83	89	95	100					BWCM
Do	1730 1730	65 65	7,260	335 a241	6,570	75	81	85	85	89	93 93	97 97	98 98	100 100		SBWCM S
00	1750	05	7,200	8241							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ,,	30	100		5
ov. 15	1130	64	10,400	103	2,890						97	98	99	100	ļ	s
Do	1130	64	10,400	a108							94	94	99	100	1	s
ept. 19, 1962	0835	81	920	674	1,670						99	100		·		S
Do	0825	81	920	a675	1,670						99	100				S
				8	-1765. GUADALUPE	RIVER AT	VICTORIA	, TEX.								
ept. 23, 1958	1400	83	7,570	694	14,200	54	70	79	91	95	98	100	· · · · ·	<u> </u>	1	SBWCM
pr. 11, 1959	1100	63	4,680	1,800	22,700	67	80 .	87	91	92	93	100	1			SBWCM
pr. 13	1200	61	8,150	1,230	27,100	66	76	79	82	82	83	100				SBWCM
ept. 12, 1961	1730	78	3,100	258	2,160	84	90	92	95	95	96	100				SBWCM
Do	1730	78	3,100	a261		86	90	92	96	98	98	99	100	1	1	SBWCM

a Collected with the Texas sampler.

94 ł

							Su	spended	sedimer	nt						}
Date of collection	Time	Water temperature (°F)	Discharge (cfs)	Concentration of sample	Discharge		_	Percent	finer th	an indica	ated size	e, in mill	limeters		•	Method of analys
				(ppm)	(tons per day)	0.002	0.004	0.008	0.016	0.031	0.062	0, 125	0, 250	0,500	i.000	
				8-18	35. SAN ANTONIO RI	VER NEAR	FALL CIT	Y, TEX.								
uly 8, 1958	1205	89	444	493	591	77	85	96	99	99	100			[BWCM
Do	1545	85	570	457	703	73	81	92	97	98	99	99	99	100		SBWCM
Do	1945		774	671	1,400	60	74	85	93	96	100					SBWCM
Do	2115	84	975	636	1,670	55	68	77	91	96	99	99	100		ļ	SBWCM
uly 9	0705	83	1,400	1,300	4,910	57	76	87	94	95	. 99	100				SBWCM
Do	1250		1,650	1,460	6,500	56	74	88	93	97	´99	100				SBWCM
Do	1750		1,820	2,160	10,600	61	77	91	95	96	98	100				SBWCM
uly 10	1115	83	1,900	853	4,380	69	79	88	93	96	98	99	100			SBWCM
ay 4, 1959			1,050	2,730	7,740	55	67	77	82	84	87	99	100]	SBWCM
ay 18	1315		908	3,160	7,750	69	80	89	96	98	99	100				SBWCM
Do	1530		938	1,840	4,660	63	79	89	95	98	100				1	BWCM
				. 8-1	1885. SAN ANTONIO	RIVER AT	GOLIAD,	TEX.				,			•	
uly 9, 1958	1450		572	1,560	2,410	74	86	95	98	98	99	99	99	100	[SBWCM
uly 10	0810		640	500	2,410	71	76	84	91	95	96	97	99	100		SBWCM
Do	1300		784	449	950	70	72	82	88	92	98	99	100			SBWCM
Do	2150		1,060	774	2,220	65	74	83	90	93	98	99	100			SBWCM
uly 11	0705	·	1,300	1,140	4,000	66 ·	73	83	89	91	98	98	99	100		SBWCM
			0.470	070	0.(10)	70.4		0.5	0.0		99	100				
ept. 25	1030		3,670 712	970 1,100	9,610 2,110	73 [·] 72	89 84	95 90	98 95	 97	99	99	100			SBWCM SBWCM
pr. 11, 1959 ay 4	1730 1900	62 64	2,440	1,940	12,800	78	91	90 97	99	99	100					BWCM
ay 4	1850	64	1,820	2,150	10,600	66	77	88	93	98	99	100				SBWCN
Do	1850	64	1,820	a1,990							99	99	100	·		SBWCM
				ļ											1	
ov. 15	0920	65	3,140	1,660	14,100	81	86	92	94	97	98	98	99	100	ŀ	SBWCM
ov. 28, 1962	1425	66	1,140	2,770	8,530	62	78	87	95		99	99	100		1	SPWCM
Do	1425		1,140	a2,580	6,740	73	88	96	99		99	100		:		SPWCM
ov. 29	0915		650 650	3,840	0,740	72	86 88	96	98 97		100 100					SPWCM SPWCM
Do	0915			a3,980		/5	00		97		100]		L		L
				8	-1945. NUECES RIVE	R NEAR T	ILDEN, TE	х.				•	<u>.</u>	•	•	
eb. 25, 1950	0715		200	970	524	63	94	96	98	100					:	BWCM
'eb. 26	0755		91	630	155	79	95	99	100				i.	ľ.,	÷	BWCM
· b. 28	0720		16	327	14	94	96	97	100							BWCM
pr. 14	0700		272	2,720	2,000	74	88	92	96	. 98	100				· ·	BWCM
pr. 15	0715	I	144	859	334	89	96 ·	99	99	100				L.		BWCM

.

[Methods of analysis: S, sieve; P, pipette; W, in distilled water; C, chemically dispersed; M, mechanically dispersed; B, bottom-withdrawal tube]

a Collected with the Texas sampler.

95° -

.

							Su	ispended	sedimer	it						
Date of collection	Time	Water temperature (°F)	Discharge (cfs)	Concentration of sample	Discharge			Percent	finer th	an indic	ated size	e, in mil	Limeters			Methods of analysis
				(ppm)	(tons per day)	0,002	0.004	0.008	0.016	0,031	0.062	0. 125	0, 250	0,500	1.000	
				8-1945.	NUECES RIVER NEA	R TILDEN,	TEXC	ontinued			-					
Apr. 18, 1950 tay 12 tay 13 tay 15 tay 20	0710 1300 1200 1215 0655		187 666 990 1,260 - 512	1,640 4,340 1,880 757 2,120	828 7,800 5,030 2,580 2,930	61 71 85 74 78	86 89 90 84 87	94 94 95 90 91	99 99 97 92 96	100 100 99 96 99	 100 98 99	 100 100				BWCM BWCM BWCM SBWCM SBWCM
Do May 23 May 28 Muly 21 Sept. 26	1800 1810 1930 1845 0630		740 725 1,100 334 250	2,840 890 962 1,830 3,230	5,670 1,740 2,860 1,650 2,180	81. 82 86 85 	88 91 89 89 82	95 95 92 91 84	98 98 95 93 99	100 98 97 98 100	99 97 100	100 100 				BWCM SBWCM SBWCM BWCM BWCM
				8-21	00. NUECES RIVER	NEAR THRE	E RIVERS	, TEX.					•	•	•	
Mar. 30, 1951 May 5 May 7 Do May 13	1500 1430 2200 1900 0830		154 152 645 1,440 364	2,040 1,460 2,840 10,300 2,660	848 599 4,950 40,000 2,610	 84 71 65	99 90 86 76 81	100 95 92 85 89	99 98 93 96	100 99 97 100	 100 99	 100 				SPWCM BWCM BWCM SBWCM BWCM
lay 16 lay 21 lay 25 Do une 3	1900 1330 0830 1900 0730		2,170 2,770 5,810 6,500 965	3,520 1,890 2,610 1,640 1,310	20,600 14,100 40,900 28,800 3,410	71 82	89 79 86 89 80	94 82 95 91 88	97 91 98 95 95	98 97 100 96 99	100 100 97 99	 99 100				SPWCM BWCM SPWCM SPWCM SPWCM
une 4 une 16 ept. 14 ept. 15 ept. 24	1900 0800 0800 1300 0730		11,000 645 11,700 18,800 2,000	1,660 2,160 2,420 836 3,420	49,300 3,760 76,400 42,400 18,500	80 73 62 77	92 93 83 84 86	97 97 90 90 94	97 99 96 92 98	99 100 99 96 99	100 100 97 100	 98 	 100 			SPWCM BWCM BWCM SBWCM BWCM
ept. 28 ct. 23 ov. 3 eb. 23, 1952 Do	0730 1730 1030 . 0900 1630		2,530 336 197 2,030 1,730	1,700 3,500 1,220 2,880 2,600	11,600 3,180 649 15,800 12,100	82 84 75	89 83 94 85 81	93 87 96 91 88	98 95 99 94 93	99 99 100 95 98	100 100 99 99	 100 100	 			BWCM SPWCM BWCM SPWCM SPWCM
eb. 24 eb. 25 eb. 27 pr. 2 Do	0930 0900 0900 0830 1415		785 460 585 965 825	1,830 1,780 2,290 3,790 3,080	3,880 2,210 3,620 9,870 6,860	86 85 70	91 92 96 91 87	95 96 97 93 94	96 100 99 96 97	99 100 96 98	100 100 99					SPWCM BWCM BWCM SPWCM SPWCM

[Methods of analysis: S, sieve; P, pipette; W, in distilled water; C, chemically dispersed; M, mechanically dispersed; B, bottom-withdrawal tube]

96

.

· · · · · · · · · · · · · · · · · · ·					liled water; C, ch				sedimen							
Date of collection	Time	Water temperature (°F)	Discharge (cfs)	Concentration	Discharge			Percent	finer th	an indica	ted size	, in mill	imeters			Methods of analysis
				of sample (ppm)	(tons per day)	0.002	0.004	0.008	0.016	0.031	0.062	0.125	0.250	0.500	1,000	

[Methods of analysis: S, sieve; P, pipette; W, in distilled water; C, chemically dispersed; M, mechanically dispersed; B, bottom-withdrawal tube]

8-2100. NUECES RIVER NEAR THREE RIVERS, TEX. -- Continued

Apr. 23, 1952	0700	585	8,100	12,800	}	81	91	96	99	100	{ {		1	SPWC
Do	1600	2,350	4,770	30,300		-84	92	96	99	99	100	}	1	SPWC
Apr. 25	0730	488	1,340	1,770	96	97	98	99	100]	BWCM
May 27	0730	402	3,070	⁻ 3,330		94	97	99	99	100	1 1		ł	SPWCI
May 28	0900	3,100	4,840	40,500	71	81	90	97	99	100				SPWCI
May 29	0800	5,370	2,030	29,400	ļ ,	92	97	98	99	99	100		Ì	SPWC
July 19	1600	1,260	2,020	6,870		91	96	97	99	100	1			SPWC
Sept. 11	0900	1,890	1,960	10,000	69	78	82	88	92	98	100			SPWC
Sept. 12	2260	2,260	1,260	7,690	76	87	90	93	95	97	100		1	SPWC

-{A

SPECIFIC WEIGHT OF FLUVIAL SEDIMENT DEPOSITS IN TEXAS

X

TABLE OF CONTENTS

	Page
INTRODUCTION	103
COMPUTATION OF SPECIFIC WEIGHT	103
REFERENCES	109
TABLES	

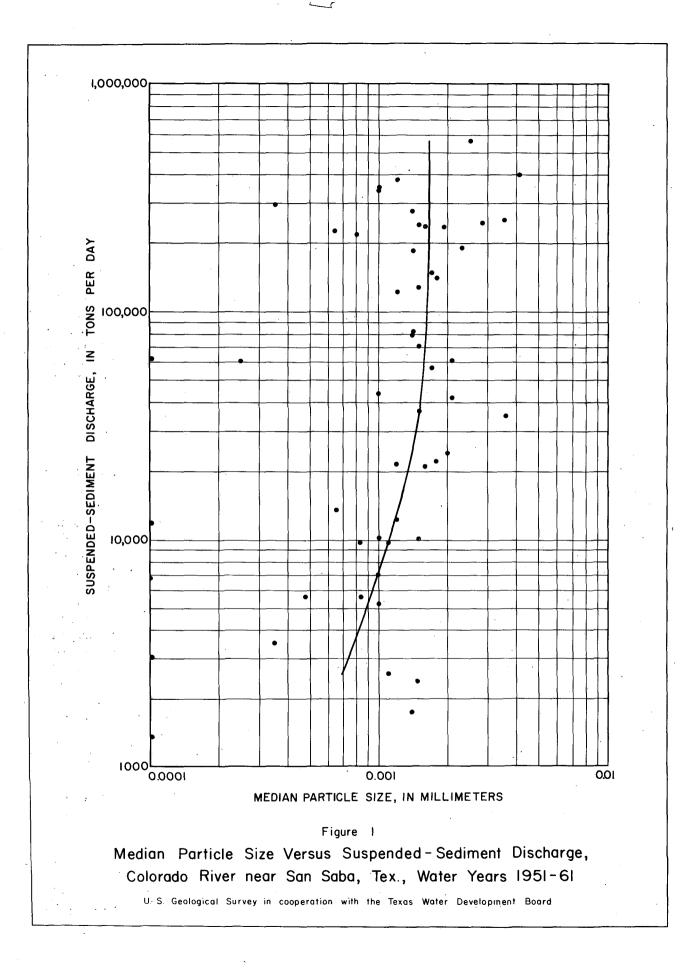
1.	Specific weight of fluvial sediment based on	,
	median particle size for Colorado River near	
	San Saba, Tex	105
2.	Computed specific weight of deposited sediment	108
	ILLUSTRATIONS	

Figures

1.	Graph Showing Median Particle Size Versus Suspended-	
	Sediment Discharge, Colorado River near San Saba,	
	Tex., Water Years 1951-61	104
2.	Graph Showing Relation of Specific Weight of Sedi-	
	ment Deposits in Reservoirs in Various Parts of	
	the United States to Median Particle Size	106

SPECIFIC WEIGHT OF FLUVIAL SEDIMENT DEPOSITS IN TEXAS

INTRODUCTION


In order for the rate of reservoir depletion by sediment deposition to be calculated, the amount, location, and specific weight of the deposited sediment must be known. The amount of sediment can be measured at inflow stations. The location of the sediment deposit in the reservoir will depend on the type and particle size of the sediment and on the velocity gradient in the reservoir. The specific weight of deposited sediment will depend on the particle-size distribution of the sediment deposit and on the rate of compaction.

COMPUTATION OF SPECIFIC WEIGHT

The specific weight of a deposit that might be formed from suspended sediment can be computed from the median particle size of the sediment (Hembree and others, 1952). Figure 1 and Table 1, which are based on sediment data collected from the Colorado River near San Saba, Texas, illustrate this method of computing specific weight. Approximately 50 sediment samples, collected over a period of 11 years at discharges ranging from 440 to 68,000 cfs (cubic feet per second), were analyzed for particle-size distribution, and the median size for each sample was then plotted against the instantaneous sediment discharge. These particle-size analyses for the Colorado River near San Saba. Texas, and other particle-size analyses used in the computation of the specific weight of sediment for other stations are listed in Appendix B of the companion report in this volume, "Comparative Results of Sediment Sampling with the Texas Sampler and the Depth-Integrating Samplers". For predetermined class intervals (in tons per day) of suspended-sediment discharge, the corresponding median particle sizes were taken from the curve of Figure 1 and were listed in Table 1. Figure 2 shows a relation between the median particle size and the specific weight of relatively uncompacted sediment deposits in reservoirs in various parts of the United States (Hembree and others, 1952, p. 39; U.S. Geological Survey, 1954, p. 68-83, 109-119).

The specific weight of a deposit that might be formed from the suspended sediment of the Colorado River near San Saba was computed to be about 35 1b per cu ft (pounds per cubic foot) (Table 1).

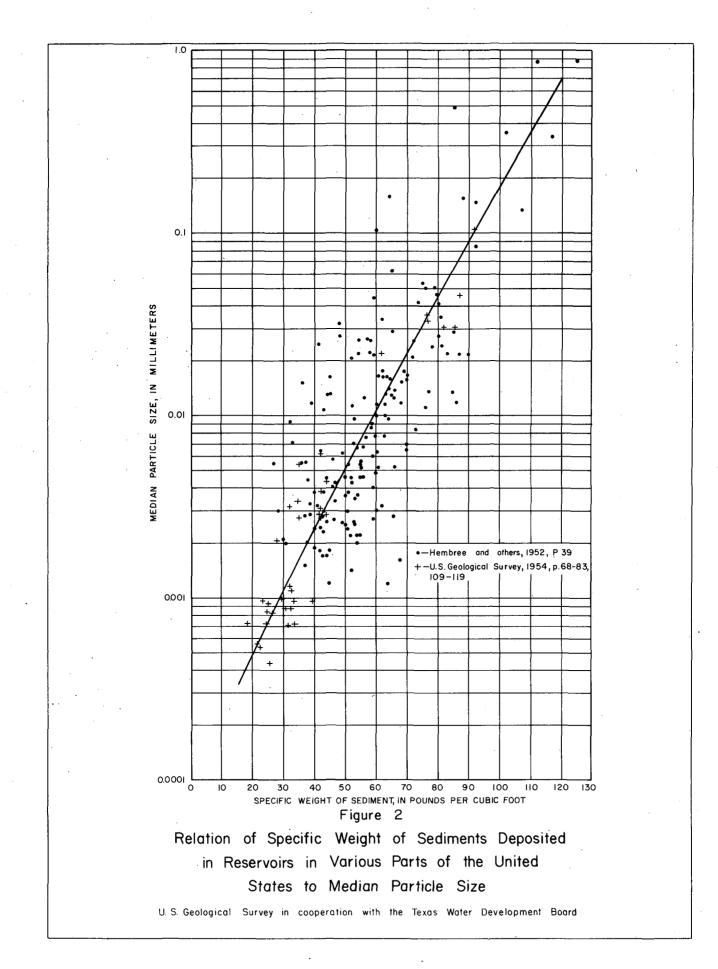
Another method of computing the specific weight of a sediment deposit is by a formula derived by Lane and Koelzer (1943) in which the particle-size distribution by volume, compaction time, and the exposure of deposits to drying are used. The equation by Lane and Koelzer was modified by Wark and others (1961)

to express the particle-size distribution by weight rather than volume. The equation for the initial specific weight becomes:

Initial specific weight =
$$\frac{100}{\frac{\% \text{ clay}}{30} + \frac{\% \text{ silt}}{65} + \frac{\% \text{ sand}}{93}}$$

For the Colorado River near San Saba the percentages of sand, silt, and clay are 1, 26, and 73, respectively. Using the above formula,

Initial specific weight =
$$\frac{100}{\frac{73}{30} + \frac{26}{65} + \frac{1}{93}}$$
 = 35 lb per cu ft.


Table 1.--Specific weight of fluvial sediment based on median particle size for Colorado River near San Saba, Tex.

Suspendec	l-sediment discha	rge			Total tons
Class interval (tons per day)	Middle of class interval (tons per day)	Total tons	Median particle size (mm)	Specific weight (1b/cu ft)	divided by specific weight
0- 8,000 8,000- 32,000 32,000- 64,000 64,000-128,000 128,000-256,000 256,000-512,000	4,000 20,000 48,000 96,000 192,000 384,000	39,700 153,800 400,900 353,900 2,407,000 2,659,000	0.00088 .00145 .00155 .00160 .00165 .00168	27 32 34 35 35 35	1,470 4,810 11,800 10,100 ,68,800 76,000
Total	······································	6,014,300			172,980

$\frac{6,014,300}{172,980}$ = 34.8 lb per cu ft.

Computation of the depletion rate of a reservoir by sediment deposition requires knowledge of how the initial specific weight of a sediment deposit will be affected by time and of the method of reservoir operation. Using the data for the Colorado River near San Saba, a compaction period of 50 years, and compaction coefficients from Lane and Koelzer (1943, p. 49) for a reservoir with a moderate drawdown, the specific weight of a sediment deposit after 50 years of compaction is as follows:

$$W_{50} = \frac{100}{\frac{\% \text{ clay}}{46 + \text{K log T}} + \frac{\% \text{ silt}}{74 + \text{K log T}} + \frac{\% \text{ sand}}{93}}$$
$$= \frac{100}{\frac{73}{46 + 10.7 (1.699)} + \frac{26}{74 + 2.7 (1.699)} + \frac{1}{93}}$$
$$= 68 \text{ lb per cu ft},$$

in which

 W_{50} is specific weight after 50 years of compaction, K is coefficient of compaction, T is time in years.

Table 2 lists the computed specific weight of deposited sediment for stations in Texas where sediment data suitable for computation of specific weight have been collected. The specific weight was computed by the median particlesize method for stations for which a large number of particle-size distributions have been analyzed. For stations for which only a few particle-size distributions have been analyzed the specific weight was computed by the formula by Lane and Koelzer (1943, p. 50) and modified by Wark and others (1961). The computations show initial specific weights ranging from 32 lb per cu ft for the Nueces River near Tilden to 57 lb per cu ft for the Double Mountain Fork Brazos River near Aspermont. After 100 years of compaction the deposited sediment from the same stations would have specific weights of 68 lb per cu ft for the Nueces River near Tilden and 72 lb per cu ft for the Double Mountain Fork Brazos River near Aspermont.

Table 2.--Computed specific weight of deposited sediment

Station	Water years	Number of particle- size analyses	Initial specific weight (lb/cu ft)		ight after in reservoir te drawdown 100 years
Prairie Dog Town Fork Red River near Brice	1950-51	36	47	74	. 76
Mulberry Creek near Brice	1950-51	22	53	71	74
*Sabine River near Bon Wier	1957-62	15	56	81	. 81
Elm Fork Trinity River near Muenster	1957-62	24	51	73	75
Pin Oak Creek near Hubbard	1956-60	63	35	68	[.] 70
*Trinity River near Romayor	1958-62	15	45	75	76
Double Mountain Fork Brazos River near Aspermont	1950-51	55	57	69	. 72
Clear Fork Brazos River near Fort Griffin	1950-51	38	34	. 67	70
*Brazos River near South Bend	1962	6	41	72	74
*Leon River at Gatesville	1961-62	4	35	68	71
*Brazos River at Richmond	1957-63	12	43	73	75
Colorado River at Robert Lee	1950-51	48	41	70	72
Colorado River near San Saba	1951-62	52	35	68	70
Colorado River at Columbus	1957-61	62	39	71	74
*Lavaca River near Edna	1961	2	35	68.	71
*Guadalupe River at Victoria	1958-61	4	35	68	71
*San Antonio River near Fall City	1958-59	11	35	68	70
*San Antonio River at Goliad	1958-62	12	33	66	69
Nueces River near Tilden	1950	16	32	66	68
Nueces River near Three Rivers	1951-52	33	33 .	66	.69

* Accuracy of specific weight limited by number of particle-size analyses.

- 108 -

7.4

REFERENCES

- Hembree, C. H., Colby, B. R., Swenson, H. A., and Davis, J. K., 1952, Sedimentation and chemical quality of water in the Powder River drainage basin, Wyoming and Montana: U.S. Geol. Survey Circ. 170, 92 p.
- Lane, E. W., and Koelzer, V. A., 1943, Density of sediments deposited in reservoirs: U.S. Inter-Agency Rept. 9, St. Paul, Minn., U.S. Dept. Army, 60 p.
- U.S. Geological Survey, 1954, Supplemental base data for Lake Mead comprehensive survey of 1948-49, 121 p.
- Wark, J. W., Keller, F. J., and Feltz, H. R., 1961, Reconnaissance of sedimentation and chemical quality of surface water in the Potomac River basin, <u>in</u> Comprehensive survey of the water resources of the Potomac River basin: Baltimore, Md., U.S. Dept. Army, Appendix H, 75 p.