TEXAS WATER DEVELOPMENT BOARD

REPORT 162

GROUND-WATER RESOURCES OF WASHINGTON COUNTY, TEXAS

By

W. M. Sandeen United States Geological Survey

This report was prepared by the U.S. Geological Survey under cooperative agreement with the Texas Water Development Board

November 1972

Reprinted by the Texas Department of Water Resources

January 1983

TEXAS DEPARTMENT OF WATER RESOURCES

Charles E. Nemir, Executive Director

TEXAS WATER DEVELOPMENT BOARD

Louis A. Beecherl Jr., Chairman Glen E. Roney W. O. Bankston George W. McCleskey, Vice Chairman Lonnie A. ''Bo'' Pilgrim Louie Welch

TEXAS WATER COMMISSION

Lee B. M. Biggart, Chairman Felix McDonald, Commissioner John D. Stover, Commissioner

Authorization for use or reproduction of any original material contained in this publication, i.e., not obtained from other sources, is freely granted. The Department would appreciate acknowledgement.

Published and distributed by the Texas Department of Water Resources Post Office Box 13087 Austin, Texas 78711

TABLE OF CONTENTS

	Page
ABSTRACT	1
INTRODUCTION	3
Location and Extent of Area	3
Purpose and Scope of the Investigation	3
Methods of Investigation	3
Previous Investigations	4
Economic Development	4
Physiography, Drainage, and Climate	4
Well-Numbering System	5
Acknowledgments	5
Definitions of Terms	5
GEOLOGIC AND HYDROLOGIC UNITS AND THEIR WATER-BEARING PROPERTIES	9
General Stratigraphy and Structure	9
Claiborne Group	9
Carrizo Sand	9
Reklaw Formation	13
Queen City Sand	13
Weches Greensand	13
Sparta Sand	13
Cook Mountain Formation	13
Yegua Formation	13
Jackson Group	13
Catahoula Sandstone	17
Jasper Aquifer	17
Burkeville Aquiclude	17

TABLE OF CONTENTS (Cont'd.)

	Page
Evangeline Aquifer	17
Alluvium of the Brazos River	17
GROUND-WATER HYDROLOGY	17
Source and Occurrence of Ground Water	17
Recharge, Movement, and Discharge of Ground Water	21
Hydraulic Characteristics of the Hydrologic Units	25
Hydraulic Principles	25
Aquifer Tests	25
Use of Ground Water	27
Changes in Water Levels	28
Well Construction	29
QUALITY OF GROUND WATER	29
Chemical-Quality Standards and Suitability for Use	29
Quality of the Water in the Hydrologic Units	31
Jackson Group	35
Catahoula Sandstone	35
Jasper and Evangeline Aquifers	35
Alluvium of the Brazos River	35
Protection of Ground Water	35
AVAILABILITY OF GROUND WATER	35
RECOMMENDATIONS FOR FURTHER STUDIES	36
REFERENCES CITED	46

TABLES

1.	Well Numbers Used by Follett (1943) and Corresponding Well Numbers Used in This Report	8
2.	Physical Characteristics and Water-Bearing Properties of the Hydrologic Units	10
3.	Hydraulic Properties From Aquifer Tests	26
4.	Water Used for Public Supply, 1930-68	28
5.	Estimated Ground-Water Usage, 1967-68	28

TABLE OF CONTENTS (Cont'd.)

Page

6.	Records of Wells, Springs, and Test Holes	48
7.	Drillers' Logs of Wells	78
8.	Water Levels in Wells	96
9.	Chemical Analyses of Water From Wells and Springs	98

FIGURES

1.	Map Showing Location of Washington County	3
2.	Graphs Showing Average Monthly Temperature, Gross Lake-Surface Evaporation, and Precipitation	5
3.	Graph Showing Annual Precipitation at Brenham, 1889-1968	6
4.	Diagram Showing Well-Numbering System	7
5.	Map Showing the Outcrops of the Geologic and Hydrologic Units	11
6.	Map Showing the Approximate Altitude of the Top of the Sparta Sand and the Base of the Evangeline Aquifer	15
7.	Map Showing the Approximate Altitude of the Base of the Jasper Aquifer	19
8.	Map Showing the Approximate Altitude of Water Levels in Wells Screened in the Jasper Aquifer, 1968	23
9.	Graph Showing the Relationship of Drawdown to Transmissibility	27
10.	Graph Showing the Relationship of Drawdown to Time and Distance	27
11.	Hydrograph Showing Water-Level Changes in Wells Tapping the Jasper and Evangeline Aquifers	29
12.	Hydrographs Showing Water-Level Changes in Wells Tapping the Alluvium of the Brazos River	29
13.	Diagram Showing Classification of Irrigation Water	32
14.	Map Showing the Chemical Quality of Ground Water From Selected Wells and Springs	33
15.	Map Showing the Approximate Altitude of the Base of Fresh Water	37
16.	Map Showing the Approximate Thickness of Sand Containing Fresh Water	39
17.	Map Showing the Approximate Altitude of the Base of Slightly Saline Water	41
18.	Map Showing the Approximate Thickness of Sand Containing Slightly Saline Water	43
19.	Map Showing the Locations of Wells, Springs, and Test Holes	107
20.	Chart Showing Correlation of the Geohydrologic Units Along Line A-A', Fayette, Washington, and Waller Counties	109
21.	Chart Showing Correlation of the Geohydrologic Units Along Line B-B', Burleson and Washington Counties	111

GROUND-WATER RESOURCES OF

WASHINGTON COUNTY, TEXAS

By

W. M. Sandeen

United States Geological Survey

ABSTRACT

Large quantities of undeveloped fresh water, extending to depths as much as 1,200 feet below sea level occur in the Catahoula Sandstone, Jasper aquifer, Evangeline aquifer, and the alluvium of the Brazos River. In 1968, an estimated 3.2 mgd (million gallons per day) was pumped from the ground-water reservoir. Almost a third of this amount was pumped from a small area within the city of Brenham. Ground-water pumpage has not resulted in any major decline in water levels.

At least 8,500 acre-feet per year (7.6 mgd) of fresh ground water is being transmitted through the Catahoula Sandstone, the Jasper aquifer, and the Evangeline aquifer, and about 18,700 acre-feet per year (16.7 mgd) of fresh ground water is being rejected from the outcrops of these units. About 30,700 acre-feet per year (27.3 mgd) of fresh ground water probably could be withdrawn continuously from the aquifers. About 118,000 acre-feet per year (105.2 mgd) is available for development from the alluvium of the Brazos River. In general, the chemical quality of the water is suitable for most uses, but about 83 percent of all samples analyzed for hardness were found to be very hard.

Nitrate concentrations in 23 of the samples analyzed exceeded 45 mg/l (milligrams per liter). Although water from the alluvium of the Brazos River is suitable for irrigation, it should be carefully checked before being considered for public supply and domestic use because it is subject to contamination.

It is recommended that the program for measuring water levels be expanded to include wells tapping the artesian aquifers. Annual inventories of pumpage and of new wells should be undertaken. A program for measuring the base flow of streams should be developed because one of the larger future sources of water is the recharge now being rejected in the outcrop areas.

- MD14

GROUND-WATER RESOURCES OF

WASHINGTON COUNTY, TEXAS

INTRODUCTION

Location and Extent of Area

Washington County is in south-central Texas on the West Gulf Coastal Plain (Figure 1). It is bounded by Fayette and Lee Counties on the west, by Burleson and Brazos Counties on the north, by Grimes and Waller Counties on the east, and by Austin County on the south. Brenham, the county seat, is 65 miles northwest of Houston. Washington County has an area of 611 square miles.

Figure 1.-Location of Washington County

Purpose and Scope of the Investigation

This investigation was a cooperative project of the United States Geological Survey and the Texas Water Development Board. Its purpose was to determine the occurrence, availability, dependability, quality, and quantity of ground water in Washington County. Special emphasis was placed on describing the sources of ground water suitable for public supply, industrial use, and irrigation.

The investigation included determination of the extent of sands containing fresh and slightly saline water, a study of the chemical quality of the water, estimates of the quantities of water being withdrawn and a study of the effects of these withdrawals on water levels in wells, determination of the hydraulic characteristics of the water-bearing sands, estimates of the quantities of water available for development, and determination of potential sources of contamination.

Methods of Investigation

The investigation, begun in June 1968, included the following items:

 An inventory was made of all industrial, public supply, and irrigation wells and a representative number of domestic and livestock wells (Table 6). Locations of the wells, springs, and test holes are shown on Figure 19.

2. Electrical logs of oil and gas tests and water wells and drillers' logs of water wells (Table 7) were used to determine the thickness of fresh and slightly saline water-bearing sands (Figures 16 and 18), and the altitudes of the base of fresh water and the base of slightly saline water (Figures 15 and 17).

3. An inventory was made of the quantity of ground water withdrawn for public supply, industrial use, and irrigation, and estimates were made of the rural domestic and livestock use (Tables 4 and 5).

 Altitudes of water wells were determined from topographic maps.

 Climatological records were collected and compiled (Figures 2 and 3).

 Measurements of water levels were made in wells and water-level records were compiled (Table 8 and Figures 8, 11, and 12).

 Water samples were analyzed to determine the chemical quality of ground water (Table 9 and Figures 13 and 14). 8. Areas of recharge and discharge were delineated.

9. Aquifer tests were made to determine the hydraulic characteristics of the water-bearing sands (Table 3).

 The hydrologic data were analyzed to determine the quantity and quality of ground water available for development.

 Maps, charts, and graphs were prepared to correlate and illustrate the geologic and hydrologic data.

Previous Investigations

Taylor (1907) was the first to mention the presence of water wells in Washington County. Follett (1942) discussed briefly the geology and hydrology of a part of Washington County and in an additional study (1943) inventoried 245 wells.

Sundstrom, Hastings, and Broadhurst (1948, p. 275-276) published basic data on the public water supply of Brenham. Cronin and others (1963) made a reconnaissance study of ground water in the Brazos River basin which includes most of Washington County. Cronin and Wilson (1967) studied the water-bearing characteristics of the flood-plain alluvium along the Brazos River, including a part of Washington County.

Recent detailed investigations of ground-water resources of adjacent counties include: Lee County (Thompson, 1966); Fayette County (Rogers, 1967); and Austin and Waller Counties (Wilson, 1967).

Economic Development

From colonial times until about 1968, agriculture was the mainstay of the Washington County economy. At first corn, peas, and tobacco were grown. Later, as small holdings evolved into ranches and plantations, forage sorghums, oats, and cotton became important crops.

By 1968, the value of goods manufactured in Washington County exceeded farm income and the number of farms in operation continued to decline. In that year approximately three-fourths of all farm income came from livestock, predominately beef and dairy cattle; although hogs and poultry provided other important sources of revenue.

Through 1968, oil wells in Washington County had produced approximately 11,400,000 barrels of oil, most of which came from the Clay Creek and Brenham Fields.

The use of water for recreation is becoming increasingly important. Since 1967, Somerville Reservoir

has attracted considerable attention for fishing, swimming, and boating. The reservoir stores 160,100 acre-feet of water and inundates about 11,460 acres in Washington, Lee, and Burleson Counties.

In 1960, the population of Washington County was 19,145. Brenham, which had a population of 7,740, is the county seat. Other communities include Burton, Chappell Hill, Gay Hill, Independence, and Washington.

Physiography, Drainage, and Climate

The land surface in Washington County is rolling to gently rolling. Locally along the Brazos River, nearly flat areas are as much as 4 miles wide. Altitudes range from about 150 feet above sea level in the extreme southeastern corner of the county to about 560 feet west of Burton.

In the southern and northeastern parts of the county, the drainage is primarily east and southeast to the Brazos River. In the northwestern part, the drainage is primarily northwest to Somerville Reservoir and Yegua Creek. The drainage is a prominent cuesta formed by the outcrop of the Oakville Sandstone.

Stream-gaging stations are maintained by the U.S. Geological Survey at five localities in Washington County (Figure 19). The station name, drainage areas, and periods of record are given in the following table (U.S. Geological Survey, 1968).

GAGING STATION	DRAINAGE AREA (SQ. MI.)	PERIOD OF RECORD
Yegua Creek near Somerville	1,008	1924-68
Brazos River at Washington	39,740	1965-68
New Year Creek near Chappell Hill リ	167	1948, 1964-68
Brazos River near Hempstead	42,640	1938-68
Winkleman Creek near Brenham ${ m y}$	0.75	1966-68

1/ Partial-record station.

Washington County has a warm semihumid climate. Precipitation averages about 39 inches annually (Figures 2 and 3). The average annual gross lake-surface evaporation for the period 1940-65 was 54.6 inches (Kane, 1967).

The average annual temperature at Brenham (Figure 2) is about 68° F (20° C). Temperatures below freezing occur occasionally in the winter; temperatures above 100° F (38° C) are rare. The approximate dates of the first and last freezes are December 2 and

February 25, respectively (Orton, 1969). The average growing season is about 280 days.

Figure 2.-Average Monthly Temperature, Gross Lake-Surface Evaporation, and Precipitation

Well-Numbering System

The well-numbering system used in this report was developed by the Texas Water Development Board for use throughout the State. Under this system, each 1-degree quadrangle is given a number consisting of two digits. These are the first two digits in the well number. Each 1-degree quadrangle is divided into 7½-minute quadrangles which are given 2-digit numbers from 01 to 64. These are the third and fourth digits of the well number. Each 7½-minute quadrangle is divided into 2½-minute quadrangles which are given a single digit number from one to nine. This is the fifth digit of the well number. Finally, each well within a 2½-minute

quadrangle is given a 2-digit number in the order in which it was inventoried, starting with 01. These are the last two digits of the well number (Figure 4).

On the well-location map (Figure 19), only the last three digits of the well number are shown at each well location; the third and fourth digits are shown in the northwest corner of each 7½-minute quadrangle. All of Washington County is within the 1-degree quadrangle 59, therefore this number constitutes the first two digits of the numbers of all the wells in the county. This number (59) is not shown on the map.

In addition to the 7-digit well number, a two-letter prefix is used to identify the county. The prefixes for Washington and adjacent counties are as follows: Washington, YY; Austin, AP; Brazos, BJ; Burleson, BS; Fayette, JT; Grimes, KW; Lee, RZ; and Waller, YW.

As an example, well YY-59-53-501 (owned by the Old Brazos Forge) is in Washington County (YY), in the 1-degree quadrangle number 59, in the 7½-minute quadrangle 53, in the $2\frac{1}{2}$ -minute quadrangle 5, and was the first well (01) inventoried in that $2\frac{1}{2}$ -minute quadrangle.

The well numbers used by Follett (1943) and the corresponding numbers used in this report are given in Table 1.

Acknowledgments

Appreciation is expressed to those who contributed data and helped with the preparation of this report. Particular thanks are due to officials of Shell Oil Company; the city of Brenham; and the staff of the Soil Conservation Service in Brenham.

Drillers of water wells generously supplied drillers' logs, electrical logs, and well completion data. Property owners granted access to their lands, wells, and records.

Mr. and Mrs. Verde Pomykal, Pomykal Drilling Company; Travis Voelkel, Beaumier Iron Works; Donald Wilder, The Old Brazos Forge; George Blackburn, Brenham Cotton Mills; and Colonel H. R. Matthews, Chappell Hill Water Supply Corporation are among the many individuals from whom help is gratefully acknowledged.

Definitions of Terms

Many of the following definitions have been taken or adapted from Meinzer (1923a) and the American Geological Institute (1960).

Acre-foot.-The volume of water required to cover 1 acre to a depth of 1 foot (43,560 cubic feet), or 325,851

Figure 3.-Annual Precipitation at Brenham, 1889-1968

gallons. The term is commonly used in measuring volume of water in storage in an aquifer or surface reservoir or volume of water used.

11

Aquifer.—A formation, group of formations, or part of a formation that is water bearing.

Aquifer test, pumping test.—This test consists of measuring at specific intervals, the discharge and water level of the well being pumped, and the water levels in nearby observation wells. Formulas have been developed to show the relationship of the yield of a well, the shape and extent of the cone of depression, and the properties of the aquifer (such as the specific yield, porosity, and coefficients of permeability, transmissibility, and storage).

Aquifer test, recovery test.-This test consists of measuring at specific intervals the water levels in the previously pumped well and the observation wells (see definition: "Aquifer test, pumping test"). Measurements are begun shortly after the pump is stopped and are continued until the water levels rise to (or recover) their positions previous to the start of the test.

Artesian aquifer, confined aquifer.—Artesian (confined) water occurs where an aquifer is overlain by rock of lower permeability (for example, clay) that confines the water under pressure greater than atmospheric pressure. The water level in an artesian well will rise above the top of the aquifer. The well may or may not flow.

Artesian well.-One in which the water level rises above the top of the aquifer, whether or not the water flows at the land surface.

Cone of depression.—Depression of the water table or piezometric surface surrounding a discharging well; more or less the shape of an inverted cone. *Drawdown.*—The lowering of the water table or piezometric surface caused by pumping (or artesian flow). In most instances, drawdown is the difference, in feet, between the static level and the pumping level.

Electrical log.—A graphic log showing the relationship of the electrical properties of the rocks and their fluid content when penetrated by a well. The electrical properties are natural potentials and resistivities to induced electrical currents. Sometimes the properties are modified by the presence of the drilling mud.

Evapotranspiration.—Water withdrawn by evaporation from a land area, a water surface, moist soil, or the water table; and the water consumed by transpiration of plants.

Hydraulic gradient.—The slope of the water table or piezometric surface, usually given in feet per mile.

Hydrologic cycle.—The cyclic phenomena through which water passes, commencing as atmospheric water vapor, changing into liquid or solid form as precipitation, then along or into the ground, and finally again returning to the form of atmospheric water vapor by means of evaporation and transpiration.

Milliequivalent per liter (me/l).—An expression of the concentration of chemical substances in terms of the reacting values of electrically charged particles, or ions, in solution. One me/l of a positively charged ion (such as sodium) will react with 1 me/l of a negatively charged ion (such as chloride):

me/l = concentration of an ion in milligrams per liter combining weight of the ion

- 7 -

Table 1.-Well Numbers Used by Follett (1943) and Corresponding Well Numbers Used in This Report

OLD NUMBER	NEW NUMBER	OLD NUMBER	NEW NUMBER	OLD NUMBER	NEW NUMBER
1	YY-59-43-101	77	YY-59-46-409	162	YY-59-62-108
3	59.44-706	79	59-46-408	164	59.62.101
5	59.44.804	83	59-46-201	167	59.54.701
6	59-44-902	84	59.46.304	170	59.62.202
8	59-45-702	85	59-46-305	171	59-62-201
9	59-44-905	89	59-47-402	173	59-62-204
13	59-52-304	90	59-47-401	176	59-62-203
15	59-52-102	94	59-46-803	177	59-62-308
16	59-52-404	97	59-46-704	180	59-62-307
18	59-51-605	98	59-46-705	184	59-63-104
19	59-51-103	99	59-46-706	188	59-63-105
20	59-51-202	100	59-54-203	191	59-55-806
22	59-51-602	101	59-54-202	192	59-55-809
24	59-51-805	103	59-53-306	196	59-54-912
25	59-51-902	107	59-45-802	197	59-54-910
27	59-52-505	110	59-53-205	198	59-54-901
28	59-52-504	111	59-53-102	200	59-54-801
30	59-52-801	113	59-53-206	201	59-54-908
32	59-52-802	115	59-53-207	202	59-54-906
33	59-52-804	120	59-53-702	203	59-55-704
35	59-52-905	121	59-53-811	204	59-55-907
36	59-52-906	122	59-53-602	205	59-55-507
37	59-52-907	123	59-54-405	210	59-55-101
38	59-52-501	124	59-53-923	212	59-47-704
40	59-52-603	125	59-53-918	216	59-47-503
41	59-52-607	126	59-53-914	218	59-47-101
42	59-52-606	127	59-53-901	219	59-47-202
43	59-52-901	128	59-53-902	221	59-47-203
44	59-60-202	129	59-53-903	222	59-47-301
49	59-60-105	130	59-53-904	223	59-47-302
50	59-60-103	131	59-53-905	224	59-47-605
51	59-60-101	132	59-53-906	225	59-47-607
52	59-60-109	133	59-53-912	226	59-47-610
54	59-60-108	134	59-53-907	227	59-47-609
55	59-60-505	135	59-53-913	229	59-45-504
56	59-60-204	136	59-53-925	230	59-47-806
58	59-60-605	140	59-53-926	231	59-47-807
59	59-60-604	141	59-61-206	233	59-55-202
60	59-60-603	142	59-53-810	234	59-55-304
62	59-45-502	144	59-61-204	235	59-55-305
63	59-45-804	146	59-61-101	236	59-47-902
66	59-45-803	152	59.61-409	237	59-48-705
67	59-45-605	155	59-61-410	238	59-47-904
68	59-45-608	157	59-61-503	241	59-47-905
74	59-45-607	161	59-61-304	243	59-48-701
				244	59-48-702

Milligrams per liter (mg/l).-One milligram per liter represents one milligram of solute in one liter of solution. For water containing less than 7,000 mg/l dissolved solids, 1 milligram per liter is equivalent to 1 part per million.

Permeability, coefficient of.—A measure of the capacity of an aquifer to transmit water. The rate of flow in gallons per day through a cross-sectional area of 1 square foot under a hydraulic gradient of 1 foot per foot and at a temperature of 16 °C (60 °F). Potentiometric surface.—An imaginary surface that everywhere coincides with the static level of the water in the aquifer. The surface to which the water from a given aquifer will rise under its full head.

Porosity.-The ratio of the aggregate volume of interstices (openings) in a rock or soil to its total volume, usually stated as a percentage.

Rejected recharge.—The natural discharge of ground water in the recharge area of an aquifer by springs and seeps. Rejection of recharge occurs when the rate of recharge exceeds the rate of transmission in the aquifer. Salinity of water.—Modified from a general classification of water based on dissolved-solids content by Winslow and Kister (1956, p. 5): Fresh water, less than 1,000 mg/l (milligrams per liter); slightly saline water, 1,000 to 3,000 mg/l; moderately saline water, 3,000 to 10,000 mg/l; very saline water, 10,000 to 35,000 mg/l; and brine, more than 35,000 mg/l.

Specific capacity.—The rate of yield of a well per unit of drawdown, usually expressed as gallons per minute per foot of drawdown. If the yield is 250 gpm and the drawdown is 10 feet, the specific capacity is 25 gpm/ft.

Specific yield.—The quantity of water that an aquifer will yield by gravity if it is first saturated and then allowed to drain; the ratio expressed in percentage of the volume of water drained to volume of the aquifer that is drained.

Storage coefficient.—The volume of water that an aquifer releases from or takes into storage per unit surface area of the aquifer per unit change in the component of head normal to that surface. Storage coefficients of artesian aquifers may range from about 0.00001 to 0.001; those of water-table aquifers may range from about 0.05 to 0.30.

Transmissibility.—The rate of flow of water in gallons per day through a vertical strip of the aquifer 1 foot wide extending through the vertical thickness of the aquifer at a hydraulic gradient of 1 foot per foot and at the prevailing temperature of the water. The transmissibility from a pumping test is reported for the part of the aquifer tapped by the well.

Transmission capacity of an aquifer.—The quantity of water that can be transmitted through a given width of an aquifer at a given hydraulic gradient, usually expressed in acre-feet per year or million gallons per day.

Water-table aquifer (unconfined aquifer).—An aquifer in which the water is unconfined; the upper surface of the zone of saturation is under atmospheric pressure only and the water is free to rise or fall in response to the changes in the volume of water in storage. A well penetrating an aquifer under water-table conditions becomes filled with water to the level of the water table.

Yield of a well.—The rate of discharge, commonly expressed as gallons per minute, gallons per hour, or gallons per day. In this report, yields are classified as: Small, less than 50 gpm (gallons per minute); moderate, 50 to 500 gpm; and large, more than 500 gpm.

GEOLOGIC AND HYDROLOGIC UNITS AND THEIR WATER-BEARING PROPERTIES

General Stratigraphy and Structure

Geological units relating to the occurrence of fresh and slightly saline ground water in Washington County range in age from Eocene to Holocene. The thicknesses, lithologic characteristics, age, and water-bearing properties of the formations and their correlation with hydrologic units are given in Table 2. The outcrops are shown on Figure 5. The units consist of about 6,000 feet of alternating beds of sand, silt, and clay or shale. Lesser amounts of limestone, tuff, lignite, gravel, gypsum, and volcanic ash are found.

All formations except the alluvial deposits crop out in belts that trend generally northeast-southwest and dip to the southeast (Figure 5). Dips increase with depth, creating wedge-shaped units that thicken Gulfward. For example, the top of the Sparta Sand dips at a rate of about 200 feet per mile; beds at the base of the Evangeline aquifer dip about 40 feet per mile. Faults are common, but they probably have little effect on the occurrence and movement of ground water.

The salt domes that underlie the Clay Creek and Brenham oilfields (Figure 19) disrupt the regional stratigraphy and structure and bring salt, anhydrite, gypsum, and limestone beds in contact with many of the water-bearing units. The quality of the ground water in the vicinity of the domes is probably affected by circulation through these disrupted beds.

More detailed discussions of the geology of Washington County are included in the publications of Deussen (1914 and 1924); Sellards, Adkins, and Plummer (1932); Doering (1935); Ellisor (1944); the Houston Geological Society (1954); Bernard and LeBlanc (1965); and Thompson (1966).

The units that yield fresh to slightly saline water to wells in Washington County are, from oldest to youngest: The Jackson Group of Eocene age; the Catahoula Sandstone, Jasper aquifer, and Burkeville aquiclude of Miocene age; the Evangeline aquifer of Miocene and Pliocene age; and the alluvium of the Brazos River of Pleistocene and Holocene age. The Carrizo Sand, Queen City Sand, and Sparta Sand of the Claiborne Group would probably yield small to moderate amounts of slightly saline water in northwestern Washington County (Thompson, 1966, Figure 7; and Rogers, 1967, Figure 6). The other units in the geologic section (Table 2) are not known to yield water to wells in Washington County. The stratigraphic correlations of the units are shown in Figures 20 and 21.

Claiborne Group

The formations in the Claiborne Group are the oldest units that are hydrologically significant in relation to the occurrence of fresh to slightly saline water in Washington County. The group is not exposed in Washington County, but crops out in the adjacent counties to the north.

Carrizo Sand

The Carrizo Sand is a continental sequence of predominately sand and some shale that unconformably overlies the Wilcox Group (Eocene). The formation ranges from 170 to 465 feet in thickness in Lee County (Thompson, 1966, p. 20). Thickness in Washington County was not determined. At the surface, the Carrizo is a highly permeable, fine- to medium-grained, well

					< 7 8 - 4							<->>><->>C)	SYSTEM
				Eocene					Miocene		Pliocene	Holocene Pleistocene	SERIES
Carrizo Sand	Reklaw Formation	p Queen City Sand	G Greensand	Sparta	Cook Mountain Formation	Yegua Formation	Jackson Group	Catahoula Sandstone		Fleming	Goliad Sand	Alluvium	GEOLOGIC
Carrizo Sand	Reklaw Formation	Queen City Sand	Weches Greensand	Sparta Sand	Cook Mountain Formation	Yegua Formation	Jackson Group	Catahoula Sandatone	Jasper aquifer	Burkeville aquiclude	Evangeline aquifer	Alluvium of the Brazos River	HYDROLOGIC
4651	2701/	500	110	280	570	1,300	1,400	800	1,300	200	550	75	MAXIMUM THICKNESS (FT)
Massive, friable, commonly cross-bedded, well sorted, fine- to medium-grained, light-gray sandstone. Contains increasing amounts of shale downdip.	Gray to brown shale in upper part and glau- conitic sandstone interbedded with shale in lower part. The sandstone is fine- to coarse-grained and highly ferruginous.	Massive to thin-bedded, ferruginous and slightly lignitic sandstone interbedded with gray or brown, slity, lignitic shale.	Predominately fossiliferous glauconitic shale; some sandstone and thin fossiliferous limestone.	. Fine to medium sand containing some brown lightic shale, in places shale beds divide massive sand into an upper and lower unit.	Predominately fossiliferous shale con- taining a 50-75 foot thick sand bed near the middle of the formation, Contains thin lenses of limestone, glauconitic sandstone and gypsum.	Interbedded sand and carbonaceous clay, sandy clay, and silt; contains lignite and volcanic ash.	Predominately a terrestial shale; contains clay, volcanic ash, sandstone, and lime- stone.	Alternating beds of gray clay, tuff, and sandstone. Lower sandstones may be hard, white, and opaline.	Alternating beds of sand and clay, includes massive beds of gray to brown sand inter- bedded with gray clay.	Predominately clay; contains some thin beds of sand.	Interbedded sand and clay; in places black chert grains in whitish sand give a salt and popper effect.	Red-brown to brown clay and silt; commonly overlying lighter-colored fine to coarse sand and gravel. Present beneath the flood plain of the Brazos River; in places forms teo- lated terraces.	GENERAL COMPOSITION
Not known to yield water to wells in Washington County. May yield small amounts of slightly sallne water.	Not known to contain fresh or slightly saline water in Washington County.	Not known to yield water to wells in Washington County. May yield small amounts of slightly saline water.	Not known to contain fresh or slightly saline water in Washington County.	Not known to yield water to welts in Washington County. May yield moderate amounts of slightly saline water in north- western part of county.	Not known to contain fresh or slightly saline water in Washington County.	Not known to contain fresh to slightly saline water in Washington County.	Yields small to moderate amounts of water.	Yields small to moderate amounts of fresh water.	Yields moderate to large amounts of fresh to slightly saline water.	Yields small amounts of fresh water.	Vields moderate amounts of fresh water.	Yields small to large amounts of fresh water to wells on the flood plain of the Brazos River.	WATER-BEARING PROPERTIES AND DISTRIBUTION OF SUPPLY

Table 2.-Physical Characteristics and Water-Bearing Properties of the Hydrologic Units

1/In Lee County.

· 01 ·

sorted sandstone containing a small amount of shale. Downdip, the proportion of shale to sand increases progressively. According to Thompson (1966, Figure 7) and Rogers (1967, Figure 6), the Carrizo contains slightly saline water in an area of about 20 square miles in the western part of Washington County. In this area, the Carrizo occurs at a depth of nearly 3,000 feet, and because part of the unit contains saline water, the Carrizo should not be considered as a source of usable water in Washington County.

Reklaw Formation

The Reklaw Formation, which overlies the Carrizo Sand, consists of gray to brown shale in the upper part and glauconitic sandstone interbedded with shale in the lower part. The sandstone is fine to coarse grained and is highly ferruginous. In Lee County (Thompson, 1966), the Reklaw attains a thickness of 150 to 270 feet, is highly faulted in places, and yields only small quantities of water. The Reklaw does not contain fresh or slightly saline water in Washington County.

Queen City Sand

The Queen City Sand conformably overlies the Reklaw Formation. The formation consists of about 500 feet of massive- to thin-bedded, ferruginous, and slightly lignitic sandstone interbedded with gray or brown, silty, lignitic shale. Rogers (1967, Figure 7) shows that slightly saline water probably occurs in the Queen City Sand in the extreme western tip of Washington County. Although the Queen City Sand may yield small amounts of slightly saline water, the depth of its occurrence (more than 2,000 feet) and small areal extent preclude its consideration as a source of water in Washington County.

Weches Greensand

The Weches Greensand disconformably overlies the Queen City Sand (Stenzel, 1938; p. 109-110). The Weches, which is about 110 feet thick, consists predominantly of fossiliferous glauconitic shale containing some sandstone and thin beds of fossiliferous limestone. The Weches Greensand does not contain fresh or slightly saline water in Washington County.

Sparta Sand

The Sparta Sand conformably overlies the Weches Greensand. Most of the Sparta consists of continental deposits of fine to medium, stratified, loose sand. Some individual beds are moderately crossbedded and separated by thin layers of brown lignitic shale. In places, a lignitic shale divides the Sparta into an upper and lower unit. In Washington County, the Sparta averages about 200 feet in thickness and has a maximum thickness of 280 feet. The formation dips at an average rate of approximately 175 feet per mile, but northeast of the Clay Creek oilfield, the dip of the Sparta steepens to as much as 500 feet per mile. The structural configuration of the top of the unit and the approximate downdip limits of slightly saline water are shown on Figure 6.

Some wells produce water from the Sparta Sand in adjacent Lee and Fayette Counties where the formation is capable of yielding moderate to large amounts of fresh to slightly saline water. In Washington County, no water is being produced from the Sparta, but the aquifer is capable of yielding at least moderate quantities of slightly saline water in the northwestern part of the county.

Cook Mountain Formation

The Cook Mountain Formation consists predominately of fossiliferous shale containing lignite and thin lenses of limestone, glauconitic sandstone, and gypsum. The Spiller Sand Member of Stenzel (1938), which consists of about 50 to 75 feet of gray or brown sand, occurs near the middle of formation (Stenzel, 1940). The Cook Mountain averages about 500 feet in thickness in the county but has an observed maximum of about 570 feet. The unit is not known to contain fresh or slightly saline water in Washington County.

Yegua Formation

The Yegua Formation consists of alternating beds of sand and carbonaceous clay, sandy clay, and silt. Thin beds of lignite and volcanic ash are also present. Although a few persistent sand beds occur, most beds are not traceable over long distances. The Yegua ranges from 800 to 1,300 feet in thickness. It is not known to contain fresh or slightly saline water in Washington County.

Jackson Group

The Jackson Group is a series of predominantly terrestrial shales that conformably overlie the Yegua Formation. Some of the shale is lignitic and glauconitic and contains bentonitic clay, volcanic ash, and some interbedded lenses of limestone (Renick, 1936, p. 33-34).

The Jackson crops out in a 7-mile-wide band in southeastern Lee and northwestern Washington Counties. Electrical logs indicate that the Jackson has a maximum thickness of about 1,400 feet in the southeastern part of the county. The unit is capable of yielding small to moderate amounts of fresh to slightly saline water to wells on the outcrop and in areas a short distance downdip.

Catahoula Sandstone

The Catahoula Sandstone is a series of alternating beds of gray clay, tuff, and sandstone that unconformably overlie the Jackson Group. Sandstones in the lower part may be hard, white, and opaline.

The Catahoula crops out in a ½- to 4-mile-wide band in northern Washington County. Near the outcrop, the unit has a thickness of about 300 feet. In the southeastern part of the county, the thickness increases to a maximum of about 800 feet. The Catahoula is capable of yielding moderate amounts of fresh to slightly saline water to wells on the outcrop and in areas as much as 10 to 15 miles downdip.

Jasper Aquifer

The Jasper aquifer, which is equivalent to the lower part of the Fleming Formation of Miocene age (Table 2), is composed of alternating beds of sand and clay that unconformably overlie the Catahoula Sandstone. The unit includes massive, gray to brown, crossbedded sands interbedded with gray clay.

The Jasper crops out in the central part of the county (Figure 5). The thickness of the formation near the outcrop is about 800 feet, but it thickens rapidly down-dip and reaches a maximum thickness of about 1,300 feet near the Austin-Waller-Washington County line. The Jasper is capable of yielding moderate to large amounts of fresh to slightly saline water and is the most highly developed hydrologic unit in the county.

The approximate altitude of the base of the Jasper aquifer is shown on Figure 7. The dip averages about 80 feet a mile; but locally steepens to as much as 200 feet a mile.

Burkeville Aquiclude

The Burkeville aquiclude consists generally of a massive clay that overlies the Jasper and separates it from the Evangeline aquifer. In Washington County down-dip from the outcrop, it ranges in thickness from about 120 to 200 feet. Although basically a confining layer, the Burkeville contains some thin beds of sand which locally yield small amounts of fresh water.

Evangeline Aquifer

The Evangeline aquifer is a sequence of alternating clays and sands above the Burkeville aquiclude. In places, black chert grains in the whitish sands produce a salt and pepper effect. The Evangeline includes the upper part of the Fleming Formation of Miocene age and the alternating sands and clays of the Goliad Sand of Pliocene age. The Evangeline has a maximum thickness of approximately 550 feet in extreme southeastern Washington County, where the Evangeline yields moderate amounts of fresh water to wells. The approximate altitude of the base of the Evangeline is shown in Figure 6.

Alluvium of the Brazos River

Generally, the alluvial deposits are composed of red-brown to brown clay and silt, fine to coarse sand, and gravel. These sediments lense, interfinger, and grade laterally or vertically into finer or coarser materials. Normally, the finer grained materials predominate in the upper part of the alluvium; the coarser grained materials, such as gravel, occur in the lower part.

Alluvial deposits occur in Washington County as flood plain alluvium and terrace deposits (Cronin and Wilson, 1967). The terrace materials exist as remnants that cap hilltops or stand as isolated bodies above the flood plain. None of the terrace deposits are hydrologically significant in Washington County.

The flood plain alluvium, which consists of sand, gravel, silt, and clay, contains abundant fresh water. These deposits, which rest unconformably on the truncated surfaces of the older bedrock units, attain a maximum thickness of about 75 feet. In places, the alluvium contains extensive gravel beds that are 30 to 40 feet thick.

In addition to the alluvium deposited along the Brazos River, alluvium is also present along Yegua Creek, Jackson Creek, Red Gully, Caney Creek, and Mill Creek. The tributary stream alluvium is in hydrologic continuity with and thus is assigned to the alluvium of the Brazos River.

A more complete discussion of the alluvium of the Brazos River can be found in Cronin and Wilson (1967) and Cronin and others (1963).

GROUND-WATER HYDROLOGY

The general principles of ground-water hydrology as they apply to Washington County are discussed in this section of the report. For additional information, the reader is referred to: Baldwin and McGuinness (1963), Leopold and Langbein (1960), Meinzer (1923a, p. 2-142; 1923b), and Todd (1959, p. 14-114).

Source and Occurrence of Ground Water

Precipitation within the county and in adjoining areas to the north and northwest is the main source of groundwater in Washington County. Most precipitation runs off as streamflow; part is evaporated at the land surface, transpired by plants or retained by capillary

forces in the soil. Only a small amount migrates downward until it reaches the saturated zone, the upper surface of which is the water table.

Water-bearing units are of two types: Water-table, or unconfined aquifers; and artesian, or confined aquifers. Water-table conditions occur where the upper surface of the saturated zone is under atmospheric pressure, and the water is free to rise or fall in response to changes in the volume of water in storage. A well penetrating an aquifer under water-table conditions becomes filled with water only to the level of the water table. In Washington County, water-table conditions occur in the outcrops of the aquifers.

Artesian systems occur downdip from the outcrops where an aquifer is overlain by less permeable material. Here, water is confined at a pressure greater than atmospheric pressure. A well penetrating an aquifer under artesian conditions becomes filled with water to a level that is proportional to the hydrostatic pressure. If the pressure head is high enough, water may rise to an altitude greater than that of the land surface and the well will flow. Flowing wells are still common in Washington County, especially at lower elevations.

The level or surface to which water will rise in artesian wells is called the potentiometric surface. Although the term water table and potentiometric surface are synonymous in the outcrop areas, the term potentiometric surface as used in this report applies only in artesian areas. The altitude of the potentiometric surface for the Jasper aquifer is shown in Figure 8.

Recharge, Movement, and Discharge of Ground Water

Recharge is the addition of water to an aquifer by natural or artificial processes. Natural recharge in Washington County results mainly from infiltration of precipitation and to a lesser degree from streamflow on the outcrops of the aquifers. The amount of water being recharged to the Catahoula Sandstone and Jasper and Evangeline aquifers is estimated in the section of this report on "availability of ground water". Cronin and Wilson (1967, p. 35) indicate that recharge to the alluvium of the Brazos River is principally by precipitation on the flood plain but also occurs through infiltration from streams, underflow from the alluvium along tributary streams, and from flood waters. Cronin and Wilson (1967, p. 44) estimated the annual recharge to be about 5.3 inches in Burleson County; and Wilson (1967, p. 34) estimated the recharge to be approximately 2.3 inches a year in Austin and Waller Counties. Data were not available to calculate recharge to the alluvium in Washington County. However, it is probably about the same as in Austin and Waller Counties.

Ground water moves slowly through the aquifers under the force of gravity from areas of recharge to areas of discharge. The initial direction of movement is downward from the surface of the outcrop into the saturated zone; then water moves in a nearly horizontal direction down the hydraulic gradient.

Water moves at right angles to the water-level contours as shown, for example, on Figure 8. The rate of movement is partly dependent on the hydraulic gradient, which is indicated by the spacing of the contours. The contour interval (usually expressed in feet) divided by the distance between contours (usually expressed in miles) is the hydraulic gradient. If the interval is 10 feet and the contours are 1 mile apart, the hydraulic gradient is 10 feet per mile.

The altitude of water levels in wells screened in the Jasper aquifer is shown in Figure 8. Based on a gradient of 7 feet per mile, a coefficient of permeability of 175 gpd/ft² (gallons per day per square foot) and a porosity of 30 percent, water in the Jasper aquifer is moving south-southeast at an estimated average rate of about 90 feet per year. Locally, as along the Brazos River and Mill Creek, the regional direction of movement is interrupted by discharge from flowing wells. In these areas, the direction of movement is easterly toward the points of discharge.

Ground water is discharged artificially by flowing or pumped wells. It is discharged naturally by springs and seeps where the water table intersects the land surface and by evapotranspiration where the water table is near the land surface.

The natural discharge of ground water to streams in the outcrop area is considered as "rejected recharge". The recharge is "rejected" because the water table is at the level of the streambeds and because the recharge rate at the outcrop exceeds the capacity of the aquifers to transmit the water. Greater withdrawals from an aquifer by wells in and near the recharge area would lower water levels in the outcrop and therefore salvage some of the rejected recharge. All of the rejected recharge would be salvaged if the water table were lowered below the level of the streambeds. Greater withdrawals downdip, in the artesian part of the aquifer, would also lower the water level in the outcrop and salvage the rejected recharge because these withdrawals would increase the hydraulic gradient and therefore increase the transmission capacity of the aquifer.

Some information about the amount of rejected recharge issuing from the Evangeline and Jasper aquifers is available from measurements of base flow in Mill Creek. Mill Creek drains approximately 377 square miles of the outcrop area in Washington and Austin Counties. During the 1968 water year (October, 1967 through September, 1968), this stream had a base flow of about 14,000 acre-feet. This represents about 0.7 inch of infiltration. Based on an outcrop area of 500 square miles for the Catahoula, Evangeline, and Jasper aquifers, and a recharge rate of 0.7 inch per year, about 18,700 acre-feet of water is being rejected annually. This

amount is probably greater than average because 1968 was a year of exceptionally high rainfall.

Hydraulic Characteristics of the Hydrologic Units

Hydraulic Principles

As water is discharged from a well, the level of the potentiometric surface is lowered at and around the well, and a new hydraulic gradient is established. The potentiometric surface assumes the shape of an inverted cone, called a cone of depression. The lateral extent and depth of the cone of depression is dependent on the properties of the aquifer and the rate and period of discharge of the well. The properties of the aquifer that are most important are thickness, coefficient of permeability, and storage coefficient. The permeability and storage coefficient may be computed from relationships between time, change in water levels, and rate of discharge, which are determined by aquifer tests.

Aquifer Tests

Results of aquifer tests, made in 10 wells in Washington County, are summarized in Table 3. Data from these tests were analyzed by the Theis nonequilibrium method as modified by Cooper and Jacob (1946, p. 526-534) and the Theis recovery method (Wenzel, 1942, p. 94-97). Coefficients of transmissibility and permeability were computed for wells tapping the Jackson Group, the Catahoula Sandstone, and the Jasper aquifer. Permeability was computed by dividing the transmissibility by the sand thickness open to each well. Storage coefficients were determined by tests in three wells penetrating the Jasper aquifer at Brenham.

No tests were made in the other aquifers in Washington County. Thompson (1966, p. 36-41) shows that the Sparta Sand in Lee County has a transmissibility of about 14,000 gpd per foot and a storage coefficient of 0.0004.

Rogers (1967, p. 36) made tests in three wells in the Yegua in Fayette County and obtained values for transmissibility that range from 1,663 to 5,900 gpd per foot. Permeability ranged from 11 to 18 gpd per square foot.

In Washington County, the transmissibility of the Jackson Group screened by well YY-59-44-705 was 400 gpd per foot. The permeability, based on 10 feet of sand, was 40 gpd per square foot.

Transmissibility of the Catahoula Sandstone at well YY-59-51-607 was 4,500 gpd per foot; permeability was 225 gpd per square foot. The transmissibility is within the range (4,200 to 5,290 gpd per foot) that Rogers (1967) determined for the Catahoula Sandstone in Fayette County.

Transmissibilities of the Jasper aquifer ranged from 186 to 14,200 gpd per foot. The highest transmissibilities were determined in wells YY-59-53-901, 902, and 903. Although the sand thickness screened by these wells is not known, the permeability of the Jasper is probably more than 175 gpd per foot. The storage coefficient, based on interference tests, is about 0.001 near these three wells.

Because 1968 was the second wettest year on record, few irrigation wells were pumped; therefore, it was not practical to run tests in the alluvium of the Brazos River. However, Cronin and Wilson (1967) determined a storage coefficient of about 0.15 and an average transmissibility of about 42,000 gpd per foot for the alluvium. Transmissibilities ranged from 7,300 to 208,000 gpd per foot. Based on transmissibilities as calculated from 351 specific capacities, 21 percent of the values were below 20,000 gpd per foot; 18 percent were above 60,000; and the remaining 61 percent were between 20,000 and 60,000 gpd per foot.

The theoretical relationship between drawdown of water levels and the distance from the center of pumping for various transmissibilities is shown on Figure 9. These calculations, which are useful for predicting future drawdown caused by pumping, are based on the withdrawal of 1 mgd (million gallons per day) for 1 year from an aquifer with the transmissibilities and storage coefficients as shown. The relationship of drawdown to transmissibility is shown on Figure 9. For example, if the transmissibility and storage coefficient are 10,000 gpd per foot and 0.003, respectively, the drawdown will be about 40 feet at a distance of 5,000 feet from a well or group of wells discharging 1 mgd for 1 year. If the coefficient of transmissibility is decreased to 5,000 gpd per foot, the drawdown would be about 68 feet.

The relationship of drawdown to time and distance for distances up to 100,000 feet from a pumping well is shown on Figure 10. Construction of this graph is based upon a transmissibility of 10,000 gpd per foot, a storage coefficient of 0.0003, a pumping rate of 500 gpm and distance to the recharge area of 7 miles. Under these conditions, the drawdown would be about 33 feet at a point 1,000 feet from the pumping well after 30 days of continuous pumping. At this point, the maximum drawdown of approximately 48 feet would be reached after 10.5 years of continuous pumping. Beyond that, no additional drawdown will occur, providing adequate recharge is available.

Pumping from closely spaced wells would cause intersecting cones of depression; thereby causing additional lowering of the potentiometric surface. Intersecting cones of depression, or interference between wells, will result in lower pumping levels, increased

Table 3.-Hydraulic Properties From Aquifer Tests

AQUIFER AND WELL	DATE O	F TEST	COEFFICIENT OF TRANSMISSIBILITY (GPD PER FT.)	COEFFICIENT OF PERMEABILITY (GPD PER SQ. FT.)	STORAGE COEFFICIENT	REMARKS	SPECIFIC CAPACITY	THICKNESS OF SAND
Jackson Group YY-59-44-705	Nov.	20, 1968	400	40	-	Recovery	-	10
Catahoula Sandstone YY-59-51-607	Oct.	17, 1968	4,500	225	-	Recovery	-	20
Jasper Aquifer/Catahoula Sandstone YY-59-53-201	Nov. 3	21, 1964	20,900	104	-	Drawdown	-	200
Jasper Aquifer YY-59-46-802	Nov. 1	16, 1962	1,900	24	-	Recovery	-	83
YY-59-52-702	Oct.	17, 1968	7,900	168	-	Recovery	-	47
YY-59-53-901	Nov.	19, 1942	14,200 13,000	-	1.0 x 10 ⁻³ / 1.2 x 10 ⁻³ /	Drawdown Recovery	6.85¥	2
YY-59-53-902	Nov.	19, 1942	13,600	-	1.3 × 10 ⁻ 3/	Recovery	7.751/	
YY-59-53-903	Nov.	11, 1942	13,500	-	7.2 × 10 ⁻⁴ /	Recovery	9.151/	-
YY-59-53-916	April	1968	2,800	12	-	Recovery	3.742/	235
YY-59-54-902	July	1968	186	6	-	Recovery	.233/	30

1/ From 24-hour recovery, 2/ From 100-minute recovery, 3/ From 270-minute recovery.

Figure 9.-Relationship of Drawdown to Transmissibility

pumping costs, and may cause serious declines in well yields. If pumping continues and the pumping level is lowered below the top of the aquifer, that part of the aquifer will become dewatered. Consequently, the yield of the well will decrease in proportion to the reduction in thickness of the saturated part of the aquifer. Many of these problems can be alleviated by using aquifer tests to determine the proper spacing of wells to minimize interference.

Use of Ground Water

During the early settlement of Washington County, ground water was developed mainly for domestic supply and livestock use. Water was drawn from shallow dug wells, natural and developed springs and ponds, and from streams. In towns such as Brenham, rain water was collected from roof gutters and stored with ground water in cisterns (Hasskarl, 1958, p. 32). Several of the dug wells inventoried in this study date back to the ante-bellum period. One of these (well YY-59-47-802) has been in continuous use since 1850. Deussen (1914, p. 96) reported that each plantation along the Brazos River in Washington County had one or more flowing artesian wells.

Figure 10.- Relationship of Drawdown to Time and Distance

Brenham's first public water-supply system was built in 1884 and operated by a private corporation (Hasskarl, 1958, p. 32) until 1894, when it was sold to the city. The original "spring well reservoir" (spring YY-59-53-912), built in 1884, is still in use today. It is an oval-shaped, brick-lined pit about 28 feet deep, 40 feet wide, and 75 feet long. During the summer of 1968, the spring was used as an auxiliary water supply source.

The use of ground water for all purposes in Washington County in 1968 was approximately 3,200,000 gpd. About 327,000 gpd, used chiefly for stock and recreation, was discharged from flowing wells.

In 1968, there were 11 public suppliers in Washington County producing a total of about 970,000 gpd (Table 4). Brenham, the largest, supplied 913,000 gpd. Average daily per capita consumption of water in the city of Brenham has risen from 38 gallons in 1930 to 91 gallons in 1960. Per capita consumption in 1968 was about 100 gallons a day. Other public suppliers include: Burton Water Supply Corporation, Chappell Hill Water Supply Corporation, Oak Hill Acres, and Rocky Creek Manor.

Rural domestic and livestock consumption exceeded the combined total of all other uses (Table 5). In 1968, rural domestic and stock use was estimated to be 1,790,000 gpd; irrigation use about 310,000 gpd; and industrial use about 170,000 gpd.

Table 4.-Water Used for Public Supply, 1930-68

(Millions of Gallons Per Day)

	1930	1940	1950	1960	1965	1966	1967	1968
Brenham	0.230	0.351	0.607	0.702	0.976	1.017	1.012	0.913
Burton		-	-	-	-	.006	.010	.022
Chappell Hill	-	-	-	-	-	-	.001*	.005
Miscellaneous	-	-	-	-	-	.015*	.027*	.030*
Total	0.230	0.351	0.607	0.702	0.976	1.038	1.050	0.970
*Estimated								

Changes in Water Levels

Measurements of water levels to determine the effects of development were made in 217 wells during the course of the study. In addition, measurements made prior to the study were tabulated. Water-level data for wells are given in Tables 6 and 8 as follows: Four or more measurements, Table 8; less than four measurements, Table 6. In addition to the tabulations, hydrographs of selected wells were prepared to show changes in water levels. The hydrographs of wells tapping the Jasper and Evangeline aquifers are given in Figure 11. The hydrographs of wells tapping the alluvium of the Brazos River are given in Figure 12. The altitudes of water levels in wells screened in the Jasper aquifer, based on measurements made in late 1968 and early 1969, are shown on Figure 8.

Records show that water levels in wells at most places in Washington County have not changed greatly because only small amounts of water have been pumped. The largest water-level declines have occurred in the vicinity of Brenham where relatively large quantities of ground water have been produced. Records from well YY-59-53-921 (tapping the Jasper aquifer in the city of Brenham) show a water-level decline of about 33 feet from 1941 to 1968 (Table 6). Records from well YY-59-61-101 (Figure 11) about 6 miles southwest of Brenham, show a decline of about 39 feet from 1940 to 1968. These are the largest changes in water levels that have occurred in Washington County. The declines in these areas contrast with those in wells tapping the Brazos River alluvium where there has been practically no net decline during the period of record (Figure 12).

Table 5.-Estimated Ground-Water Usage, 1967-68

		1967		1968
USE	(MGD)	(ACRE-FEET)	(MGD)	(ACRE-FEET)
Industrial	0.16	179	0.17	191
Irrigation	.40	448	.31	348
Public supply	1.05	1,177	.97	1,087
Rural domestic and livestock	1.95	2,186	1.79	2,007
Total*	3.60	4,000	3.20	3,600

 Figures are approximate because some pumpage is estimated; totals are rounded to two significant figures.

Figure 11.-Water-Level Changes in Wells Tapping the Jasper and Evangeline Aquifers

Well Construction

Substantially more than half of all wells currently in use in Washington County are 4-inch-diameter drilled wells in which submersible pumps are installed. Normally, these are completed with a single screen placed at the bottom of the well. Sometimes a wire wrapped screen is used. More frequently, however, the last joint of pipe is slotted or perforated and gravel packed.

Dug wells were common in the county until about 1945 and in places they continue to be used. Generally, these are 24 inches or larger in diameter and are walled with rock or concrete. Larger capacity wells are used for irrigation, public supply, and industrial purposes. Usually these are drilled by the hydraulic-rotary or reverse-rotary method. First a test hole (about 6 inches in diameter) is drilled and logged for depth and thickness of sand intervals. Water samples and formation samples may be collected for use in determining water quality and aquifer characteristics. If the test-hole log and other data collected indicate that enough water-bearing sands are present, the test hole is then reamed out to make the well.

Construction practices for municipal or industrial wells usually differ from those used for irrigation wells. The upper part of the test hole of a municipal or industrial well is usually reamed out to 14 to 30 inches in diameter, and a slightly smaller surface casing is set and cemented in place to form the pump pit. The remaining part of the test hole is then reamed to a diameter slightly less than that of the surface casing. Next, the hole is under-reamed to approximately 30 to 36 inches in diameter in the sections to be screened. Eight- to 12-inch diameter wire-wrapped screens and blank casing are installed; the annular space between the screen or casing and the wall of the hole is filled with sorted gravel. This gravel pack stabilizes the hole and provides a transfer media for water moving from the sand beds into the well, thus increasing the effective diameter.

The test hole for an irrigation well is usually reamed the entire depth of the well, and a complete string of slotted casing and surface casing is installed. The space between the casing and the wall of the hole is filled with gravel from the bottom of the well to the surface. Casing used in the irrigation wells in the alluvium along the Brazos is slotted from the water level to the bottom of the well and enclosed in a gravel pack. After completion, the wells are developed and tested for several hours using large-capacity test pumps.

Large-capacity wells are usually fitted with deep-well turbine pumps powered by internal combustion engines or electric motors. Fawcett (1963, p. 16) discusses methods used for construction of such wells in the Houston area.

QUALITY OF GROUND WATER

Chemical-Quality Standards and Suitability for Use

The chemical constituents in ground water originate principally from the soil and rocks through which the water has passed. Consequently, the chemical character of the water reflects, in a general way, the nature of the geologic formations which have been in contact with the water. Usually ground water is free from contamination by organic matter, but the dissolved-mineral content increases with depth. General discussions relating to the quality of ground water are included in reports by Swenson and Baldwin (1965) and Hem (1959).

The suitability of a water supply depends partly upon the chemical quality of the water and the limitations imposed by the contemplated use. For many uses, the dissolved-solids content places a major limitation on the suitability of the water. A general classification of water, according to dissolved-solids content, is as follows (modified after Winslow and Kister, 1956, p. 5).

DESCRIPTION	(MILLIGRAMS PER LITER)
Fresh	Less than 1,000
Slightly saline	1,000 - 3,000
Moderately saline	3,000 - 10,000
Very saline	10,000 - 35,000
Brine	More than 35,000

Certain water-quality standards have been established or suggested for public, industrial, and irrigation supplies. Water for public use should be free of color, turbidity, and harmful micro-organisms and should have no unpleasant odor or taste.

The standards for evaluating water used on common carriers in interstate commerce have been published by the United States Public Health Service (U.S. Public Health Service, 1962, p. 7-8). The recommended limits for some constituents are:

SUBSTANCE	CONCENTRATION (MILLIGRAMS PER LITER						
Chloride (CI)	250						
Fluoride (F)	1.0 *						
Iron (Fe)	.3						
Manganese (Mn)	.05						
Nitrate (NO ₃)	45						
Sulfate (SO ₄)	250						
Dissolved solids	500						

* According to the U.S. Public Health Service (1962, p. 41), the optimum fluoride level for a given community depends upon climatic conditions because the amount of water (and consequently the amount of fluoride) ingested is primarily influenced by air temperature. Based on an annual average of maximum daily air temperature of 78.9° F (26° C) at Brenham, the optimum amount of fluoride is 0.8 mg/l; the upper limit is 1.0 mg/l. Consumption of fluoride in excess of the recommended amounts may cause mottling of teeth; while the consumption of fluoride in optimum amounts may reduce the rate of dental caries in children by 65 percent (Dean, Arnold, and Elvove, 1942, p. 1155-1179; Dean and others, 1941, p. 761-792). Although concentrations of chemical constituents exceeding the recommended limits are objectionable, these limits may be exceeded in areas where more suitable water is not available. Some of the more common constituents in drinking water are objectionable only when they are present in such high concentrations as to be noticeable to the taste. Chloride concentrations of less than 250 mg/l are usually not detectably salty by taste. However, water with a chloride content of about 400 mg/l tastes salty to most people (Lockhart, Tucker, and Merritt, 1955).

Excessive concentrations of iron and manganese in water cause reddish-brown and gray deposits that stain plumbing fixtures and laundry. Of the 43 water samples analyzed for iron in Washington County, 10 contained more than the 0.3 mg/l limit recommended by the U.S. Public Health Service. Of the 13 samples analyzed for manganese, only one contained more than the 0.05 mg/l limit.

A concentration of nitrate in excess of 45 mg/l in drinking water is potentially dangerous. Maxcy (1950, p. 271) correlated the consumption of high nitrate water with the incidence of infant cyanosis ("blue baby" disease), a form of asphyxia caused by a loss of oxygen in the blood. Of the 175 samples analyzed for nitrate, 23 samples, most of which were from shallow wells, exceeded the recommended limit of 45 mg/l. Well YY-59-52-302 had the highest nitrate concentration (443 mg/l). Another well YY-59-63-102 had a nitrate content of 386 mg/l.

Sulfate concentrations in excess of 250 mg/l may have a laxative effect on those persons unaccustomed to water high in sulfate. However, most individuals become acclimated to use of these waters in a short time. Only seven of the 215 samples exceeded the recommended limit of 250 mg/l sulfate.

Calcium and magnesium are the principal constituents causing hardness of water, which is objectionable because of increased soap consumption and the formation of scale. The following is a commonly used classification of water based on hardness:

HARDNESS RANGE (MG/L)	CLASSIFICATION					
60 or less	Soft					
61 - 120	Moderately hard					
121 - 180	Hard					
More than 180	Very hard					

Approximately 83 percent of the more than 200 samples analyzed for hardness in Washington County were very hard.

The quality requirements for industrial water supplies vary widely. For some uses, such as single-pass cooling, chemical quality is not particularly critical, but for other processes, such as the manufacture of high-grade paper, small concentrations of certain chemical constituents would seriously affect the quality of the product. Detailed information on industrial standards are contained in the report of the California State Water Quality Control Board (1963).

The suitability of water for many industrial applications depends on corrosiveness and scale-forming potential of the water. Large concentrations of dissolved solids, chloride, and sulfate; small concentrations of calcium; and either a low or high pH usually are conducive to corrosion. Based on these properties or constituents, the corrosive potential of most of the water samples collected from Washington County is not excessive.

Although some calcium hardness may be desirable for the prevention of corrosion, excessive hardness is objectionable for most industrial applications because it contributes to the formation of scale where water is heated, evaporated, or treated with alkaline materials. The accumulation of scale increases cost for fuel, repairs, and replacements, and lowers the quality of many wet-processed products. Ground water in most of Washington County is very hard and will require softening for some industrial applications.

The suitability of water for irrigation depends primarily upon the chemical quality of the water, type and permeability of the soil, rainfall, and type of crop. The most important chemical characteristics that determine the suitability of water for irrigation are: (1) The proportion of sodium to other cations (an index of the sodium hazard); (2) total concentration of soluble salts (an index of the salinity hazard); (3) RSC (residual sodium carbonate); and (4) the concentration of boron.

A system of judging the quality of water used for irrigation in a semiarid climate was proposed by the U.S. Salinity Laboratory Staff (1954, p. 69-82). This classification is based on the salinity hazard as measured by the electrical conductivity of water and the sodium hazard as measured by the SAR (sodium-adsorption ratio). Wilcox (1955, p. 15) states that the system of classification of irrigation waters proposed by the Salinity Laboratory Staff "... is not directly applicable to supplemental waters used in areas of relatively high rainfall". He indicates (p. 16) that water can be used safely for supplemental irrigation if the conductivity is as much as 2,250 micromhos per centimeter at 25°C and the SAR is below 14. Water having SAR greater than 14 can be used if the conductivity is less than 2,250 micromhos. Conductivity and SAR data for water from selected wells in Washington County (Figure 13) indicate that most of the water can be used safely for supplemental irrigation of most crops.

Water with excessive RSC (residual sodium carbonate) is strongly alkaline and will dissolve organic material from the soil. Soils deteriorated in this way may become grayish black and are referred to as "black alkali". Laboratory and field studies, according to Wilcox (1955, p. 11), show that water containing more than 2.5 me/I (milliequivalents per liter) RSC is not suitable for irrigation. Water containing from 1.25 to 2.5 me/I is marginal, and water containing less than 1.25 me/I is probably safe. Based on RSC data in Table 9, most of the ground water available in Washington County is suitable for irrigation.

An excessive boron content also renders water unsuitable for irrigation. Wilcox (1955, p. 11) indicates that a boron concentration of as much as 1.0 mg/l is permissible for irrigating sensitive crops, as much as 2.0 mg/l is permissible for semitolerant crops, and as much as 3.0 mg/l is permissible for tolerant crops. Analyses of 16 samples (Table 9) indicate that the boron content of ground water in Washington County usually is low; only one sample (from well YY-59-44-705) contained more than 1.0 mg/l.

To provide information on the presence of pesticidal contamination, pesticide analyses were made on five samples of ground water. The water was analyzed for nine insecticides and three herbicides recommended for monitoring by the Subcommittee on Pesticide Monitoring of the Federal Committee on Pest Control (Green and Love, 1967, p. 13-16). Samples were taken from three wells that ranged from 10 to 70 feet in depth. Two samples were collected from one spring used as an auxiliary public supply source by the city of Brenham.

Samples of water from the wells contained no insecticides or herbicides. Spring YY-59-53-912 when sampled in the rain on January 2, 1969 contained 0.14 μ g/l (micrograms per liter) Silvex; 0.25 μ g/l 2, 4-D; and 0.14 μ g/l 2, 4-5-T. The combined concentrations of these herbicides were well within the 100 μ g/l permissible limit for public water supplies (National Technical Advisory Committee to the Secretary of the Interior, 1968). No herbicides were found when the spring was resampled in dry weather on February 11, 1969.

Quality of the Water in the Hydrologic Units

The chemical quality of the ground water in Washington County is suitable for most types of uses or can be made suitable with a minimum of treatment. Less than 10 percent of the samples analyzed for dissolved solids contained more than 1,000 mg/l (Table 9). In general, the water is very hard (more than 180 mg/l of hardness) and is slightly alkaline (has a pH of more than 7). Some of the water contains excessive nitrate, sulfate, and iron. Excessive nitrate occurred in water from shallow wells; excessive sulfate in water from the Jackson Group. Excessive iron can occur of any particular hydrologic unit.

Figure 13.-Classification of Irrigation Water

A generalized portrayal of the chemical quality of ground water in Washington County is shown on Figure 14, which shows the concentrations of dissolved solids, chloride, sulfate, and hardness occurring in the water of selected wells and springs.

Jackson Group

Water from the Jackson Group varies widely in chemical content. The samples collected contain dissolved solids ranging from 66 to 4,998 mg/l. Seven of the 23 wells sampled yield water with a dissolved solids content in excess of 1,000 mg/l. Five wells produce water with a pH of less than 7. One of these, a dug well 45 feet deep (YY-59-44-704), yields water with a pH of 6.2. Although the concentrations of most dissolved constituents in the water from this well are low, (Table 9), the water has a bitter taste and locally is called "alum water".

Catahoula Sandstone

Water in the Catahoula Sandstone is generally of better quality than that from the Jackson, but not quite as good as water from the overlying Jasper aquifer. In Washington County, water in the Catahoula Sandstone ranges from moderately hard to very hard. Calcium is usually the predominate cation; either chloride or bicarbonate is the principal anion. In the outcrop and for four or five miles downdip, dissolved solids average about 500 mg/l.

Jasper and Evangeline Aquifers

Water from these aquifers is typically a calcium bicarbonate type. The concentration of dissolved solids usually ranges from about 300 to 500 mg/l. Characteristically, the water is very hard. The water usually has a pH greater than 7 and contains less sulfate than is found in the underlying aquifers. Iron and manganese may cause problems in the Jasper aquifer in Washington County. Iron content in the Jasper ranges from none to 4.5 mg/l, averaging 0.52 mg/l. Water from the Jasper and Evangeline aquifers usually is suitable for public supply and irrigation, and many types of industry.

Alluvium of the Brazos River

Samples from only three wells tapping the Brazos River alluvium exclusively were collected; many of the wells tap not only the alluvium but also underlying aquifers. The dissolved-solids content in the three samples ranged from 303 to 691 mg/l; the hardness ranged from 233 to 411 mg/l, and the chloride from 29 to 201 mg/l.

In adjacent Brazos and Burleson Counties, Cronin and Wilson (1967, p. 195-198) show analyses of water from 68 wells tapping the alluvium. Water from these wells is of a calcium bicarbonate type that has an average hardness of about 500 mg/l; and contains dissolved solids ranging from 208 to 2,217 mg/l. Iron exceeded the recommended limit of 0.3 mg/l in about 75 percent of the 54 samples analyzed. These analyses are probably representative of the quality of water in the alluvium in Washington County.

These data indicate that water from the alluvium of the Brazos River is suitable for irrigation of most crops. In Washington County it is used primarily for supplementary row-crop irrigation. Because water from the alluvium of the Brazos River is subject to contamination, it should be carefully checked before being considered for public supply or domestic use.

Protection of Ground Water

A potential source of contamination of ground water exists in the possible movement of brines from the underlying salt-water bearing formations through improperly cased oil wells or improperly plugged oil tests. In Washington County, however, no instances of such contamination have been reported. The Oil and Gas Division of the Texas Railroad Commission is responsible for protection of ground water. At their request, the Texas Water Development Board makes recommendations for the depth to which water-bearing formations are to be protected.

Field rules published by the Railroad Commission for Washington County show that ground water should be protected to a depth of 1,600 feet in the abandoned Arthur Harvey Wilcox field. The base of fresh water at the field (Figure 15) is about 700 feet below land surface. Field rules have not been established for the other fields in the county.

Another potential source of contamination is the infiltration of oilfield brine from disposal pits on the outcrops of the aquifers. In 1967, brine production in Washington County was 627,597 barrels, or 26,359,074 gallons. Of this, 624,012 barrels (26,208,504 gallons), were used for water flood injection into the Sparta Sand and Queen City Sand in Clay Creek oilfield. The remainder, about half of one percent or 3,585 barrels (150,570 gallons), was disposed of in unlined surface pits (Texas Water Development Board, 1967). There are no reported cases of contamination from pits in Washington County; however, because of the slow rate of ground-water movement, any contamination resulting from brine disposal may not be detected for years.

Contamination may also occur by the infiltration of industrial effluents and sewage in the shallow parts of the aquifers.

AVAILABILITY OF GROUND WATER

Fresh water in varying amounts and at varying depths is available throughout Washington County. The approximate altitude of the base of fresh water (less than 1,000 mg/l dissolved solids) as determined from

electrical logs of oil and gas tests and a study of chemical analyses is shown in Figure 15. The base of fresh water ranges from about sea level in the north-central part of the county to about 1,200 feet below sea level in the southeastern part. At a few places, there may be little or no fresh water. One of these places is in northwestern Washington County along the outcrop of the Jackson Group.

The approximate total thickness of sand containing fresh water is shown on Figure 16. Nearly all of the fresh water is in the Catahoula Sandstone and the Jasper and Evangeline aquifers. Thicknesses range from less than 100 feet in the northwestern part of the county to over 400 feet in the southeastern part. Figure 16 also shows the areas where more than 20 feet of saturated alluvium occurs.

Based on an average sand thickness of 175 feet and assuming a porosity of 30 percent, about 18 million acre-feet of fresh water is in storage in the Catahoula Sandstone, the Jasper aquifer, and Evangeline aquifer. However, only a small amount of this can be economically produced because of the depth at which most of the water occurs and because the sands cannot be completely drained. Based on an average sand thickness of 100 feet and a specific yield of 15 percent, about 5 million acre-feet of fresh water is available for development at a depth of less than 400 feet.

Based on a porosity of 30 percent, about 236,000 acre-feet of fresh water is stored in the alluvium of the Brazos River in Washington County. Cronin and Wilson (1967, p. 73) estimated that about 118,000 acre-feet of fresh water (one half the amount in storage) was available for development.

The millions of gallons of fresh ground water in Washington County is in transient storage-that is, it is moving through the aquifers in a southeasterly or easterly direction. Calculations of the amount of water moving through the aquifers are based on transmissibility, hydraulic gradient, and aquifer width. The transmissibility of the fresh water section is about 31,000 gpd per foot (permeability of 175 gpd per foot times the average sand thickness of 175 feet). On the basis of a hydraulic gradient in 1968 of 7 feet per mile and an aquifer width of 35 miles, fresh water was moving through the county at the rate of about 7.6 mgd, or 8,500 acre-feet per year. This is equivalent to about 0.3-inch of recharge from rainfall on the outcrops of the aquifers.

Water levels have declined only a small amount and the amount of water in storage has changed very little. Therefore, a good estimate of the amount of recharge that is occurring is the sum of the amount moving through the aquifer and the amount being withdrawn. Using this criterion, recharge in 1968 was about 12,000 acre-feet, or about 0.5 inch of recharge from rainfall on the outcrops of the aquifers. The maximum amount of water that could be pumped perennially would be the total recharge (including rejected recharge). In 1968, this was about 30,700 acre-feet (27.3 mgd) or about 1.2 inches of recharge from rainfall on the outcrops.

Another method of estimating ground-water availability is by determination of the transmission capacity for a particular gradient and to assume a set of discharge conditions. For example, it may be assumed that wells completely penetrating the fresh-water bearing section (not including the alluvium) are installed in a line trending east-northeasterly across the county through Brenham. It is assumed these wells are pumped so that water levels are lowered to 400 feet below land surface.

Recharge is assumed to occur along a line about 9 miles north-northwest of and parallel to the line of wells. It is further assumed that enough recharge is available on the outcrop to provide the water being pumped, that water levels along the outcrop remain at a constant level, and that the hydraulic gradient between the lines of recharge and discharge is a straight line. Under these conditions, about 67,000 acre-feet (60 mgd) would be transmitted to the line of wells. This is equivalent to about 2.5 inches of recharge. This greatly exceeds the estimated total recharge rate of 27 mgd. However, because of water in storage, a withdrawal rate much greater than 27 mgd could be maintained for many years before water levels would decline to as much as 400 feet below land surface.

Slightly saline water (1,000 to 3,000 mg/l dissolved solids) underlies the fresh water throughout Washington County. Much of this water is suitable for many purposes. The approximate altitude of the base of slightly saline water is shown in Figure 17. In the Clay Creek Oil Field area, the altitude of the base of slightly saline water rises to about sea level; elsewhere, it ranges from about 500 to 3,500 feet below sea level.

The thickness of sands containing slightly saline water is shown in Figure 18. The thickness ranges from about 45 to 200 feet.

About 5.9 million acre-feet of slightly saline water is in storage in Washington County. This quantity, however, is not significant so far as availability is concerned because of the great depth at which the water occurs.

RECOMMENDATIONS FOR FURTHER STUDIES

One of the important sources of water for the future in Washington County is the recharge that is being rejected into and which forms the base flow of streams. Additional surface water stream gaging stations should be established to gather quantitative data on this important water resource. A continuing program for the collection of hydrologic data should be established as further ground-water developments occur. Such a program should keep pace with development on a continuing basis. The program should include measuring water levels in wells tapping the artesian aquifers in addition to the current observation well program. It should also monitor water quality. Annual inventories of the amount of ground water pumped should be continued. As a part of the pumpage inventory, an inventory of new wells should be added. It is especially important to obtain records of the larger capacity wells as they are drilled. As feasible, additional aquifer tests should be made to determine the hydraulic properties of the aquifers.

- Baldwin, H. L., and McGuinness, C. L., 1963, A primer on ground water: Washington, U.S. Govt. Printing Office, 26 p.
- Bernard, H. A., and LeBlanc, R. J., 1965, Resume of the Quaternary geology of the northwestern Gulf of Mexico province, *in* Wright, H. E., Jr., and Frey, David, eds., The Quaternary of the United States: Princeton, N.J., Princeton Univ. Press, p. 137-185.
- California State Water Quality Control Board, 1963, Water-quality criteria: California State Water Quality Control Board Pub. 3-A.
- Cooper, H. H., and Jacob, C. E., 1946, A generalized graphic method for evaluating formation constants and summarizing well-field history: Am. Geophys. Union Trans., v. 27, no. 4, p. 526-534.
- Cronin, J. G., Follett, C. R., Shafer, G. H., and Rettman, P. L., 1963, Reconnaissance investigation of the ground-water resources of the Brazos River basin, Texas: Texas Water Comm. Bull. 6310, 152 p.
- Cronin, J. G., Wilson, C. W., 1967, Ground water in the floodplain alluvium of the Brazos River, Whitney Dam to vicinity of Richmond, Texas: Texas Water Devel. Board Rept. 41, 223 p., 28 figs.
- Darton, N. H., and others, 1937, Geologic map of Texas: U.S. Geol. Survey map.
- Dean, H. T., Arnold, F. A., and Elvove, Elias, 1942, Domestic water and dental caries: Public Health Repts., v. 57, p. 1155-1179.
- Dean, H. T., and others, 1941, Domestic water and dental caries: Public Health Repts., v. 56, p. 761-792.
- Deussen, Alexander, 1914, Geology and underground waters of the southeastern part of the Texas Coastal Plain: U.S. Geol. Survey Water-Supply Paper 335, 365 p.
- _____1924, Geology of the Coastal Plain of Texas west of Brazos River: U.S. Geol. Survey Prof. Paper 126, 139 p.
- Doering, John, 1935, Post-Fleming surface formations of coastal southeast Texas and south Louisiana: Am. Assoc. Petroleum Geologists Bull., v. 19, no. 5, p. 651-688.
- Ellisor, A. C., 1944, Anahuac Formation: Am. Assoc. Petrol. Geologists Bull., vol. 28, p. 1355-1375.
- Fawcett, A. E., 1963, Hydraulic gravel packing for deep water wells: Natl. Water Well Assoc. Jour., Ground Water, v. 1, p. 16.

- Follett, C. R., 1942, Ground water resources in the Brenham-Gay Hill area, Washington County, Texas: U.S. Geol. Survey open-file rept., 18 p., 1 illus.
- _____1943, Ground water resources of Washington County: Texas Board of Water Engineers mimeo. rept., 45 p., 1 illus.
- Green, R. S., and Love, S. K., 1967, Network to monitor hydrologic environment covers major drainage rivers: Pesticides Monitoring Jour., v. 1, no. 1, p. 13-16.
- Hanna, Marcus, 1958, Salt dome structures: Gulf Oil Corporation manual, 45 p., 34 figs.
- Hasskarl, Robert A., Jr., Brenham, Texas, 1844-1958, 1958: Banner-Press Pub. Co., 96 p., 11 illus.
- Hem, J. D., 1959, Study and interpretation of the chemical characteristics of natural water: U.S. Geol. Survey Water-Suppply Paper 1473, 269 p., 2 pls., 40 figs.
- Houston Geological Society, 1954, Stratigraphy of the Upper Gulf Coast of Texas, Strike and Dip Sections: 26 p., 3 figs., 10 illus.
- Kane, J. W., 1967, Monthly reservoir evaporation rates for Texas, 1940 through 1965: Texas Water Devel. Board Rept. 64, 111 p., 6 tbls.
- Leopold, L. B., and Langbein, W. B., 1960, A primer on water: Washington, D.C., U.S. Govt. Printing Office.
- Lockhart, E. E., Tucker, C. L., and Merritt, M. C., 1955, The effect of water impurities on the flavor of brewed coffee: Food Research 20, 598.
- Maxcy, K. F., 1950, Report on the relation of nitrate concentrations in well waters to the occurrence of methemoglobinemia: Natl. Research Council Bull. Sanitary Eng., p. 265-271, App. D.
- Meinzer, O. E., 1923a, The occurrence of ground water in the United States, with a discussion of principles: U.S. Geol. Survey Water-Supply Paper 489, 321 p.
- _____1923b, Outline of ground-water hydrology, with definitions: U.S. Geol. Survey Water-Supply Paper 494, 71 p.
- National Technical Advisory Committee to the Secretary of the Interior, 1968, Water Quality Criteria: Federal Water Pollution Control Adm., p. 20-83. [Name changed to Federal Water Quality Administration.]
- Orton, Robert B., 1969, Climates of the States, Texas: U.S. Department of Commerce, Environmental Science Services Administration, Environmental Data Service, No. 60-41, 46 p.

- Popkin, B., 1971, Ground-water resources of Montgomery County, Texas: Texas Water Devel. Board Rept. 136, 131 p., 29 illus.
- Renick, B. C., 1936, The Jackson Group and the Catahoula and Oakville Formations in a part of the Texas Gulf Coastal Plain: Univ. Texas Bull. 3619, 104 p.
- Rogers, 1967, Availability and quality of ground water in Fayette County, Texas: Texas Water Devel. Board Rept. 56, 115 p., 17 figs.
- Sandeen, W. M., 1968, Ground-water resources of San Jacinto County, Texas: Texas Water Devel. Board Rept. 80, 115 p., 16 figs.
- Sellards, E. H., Adkins, W. S., and Plummer, F. B., 1932, The geology of Texas, v. 1, Stratigraphy: Univ. Texas Bull. 3232, 1,007 p.
- Stenzel, H. B., 1938, The geology of Leon County, Texas: Univ. Texas Bull. 3818, 295 p.
- _____1940, New zone in Cook Mountain Formation, Crassatella Texalta Harris - Turritella cortezi Bowles zone: Am. Assoc. Petroleum Geologists Bull., v. 24, no. 9, p. 1663-1675.
- Sundstrom, R. W., Hastings, W. W., and Broadhurst, W. L., 1948, Public water supplies in eastern Texas: U.S. Geol. Survey Water-Supply Paper 1,047, 285 p.
- Swenson, H. A., and Baldwin, H. L., 1965, A primer on water quality: Washington, D.C., U.S. Govt. Printing Office, 27 p.
- Taylor, T. U., 1907, Underground waters of the Coastal Plain of Texas: U.S. Geol. Survey Water-Supply Paper 190, 73 p.
- Texas Almanac, 1859: Richardson and Co., Galveston, 226 p.
- Texas Almanac, 1860: Richardson and Co., Galveston, 228 p.

- Texas Water Development Board and Texas Water Pollution Control Board, 1967, A statistical analysis of data on oilfield brine production and disposal in Texas for the year 1967 from an inventory conducted by the Texas Railroad Commission: Summary vol., in manuscript.
- Thompson, G. L., 1966, Ground-water resources of Lee County, Texas: Texas Water Devel. Board Rept. 20, 131 p., 22 illus., 3 pls.
- Todd, D. K., 1959, Ground-water hydrology: New York, John Wiley and Sons, Inc., 336 p.
- U.S. Public Health Service, 1962, Public Health Service drinking water standards: Public Health Service Pub. 956, 61 p.
- U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. Agr. Handbook 60, 160 p.
- U.S. Geological Survey, 1967, Water resources data for Texas, Part 2: Water quality records: U.S. Geol. Survey duplicated rept.
- ____1968, Water-resources data for Texas, Part 1: Surface water records: U.S. Geol. Survey duplicated rept.
- Wenzel, L. K., 1942, Methods for determining permeability of water-bearing materials with specific reference to discharging well methods: U.S. Geol. Survey Water-Supply Paper 887, 192 p.
- Wilcox, L. B., 1955, Classification and use of irrigation waters: U.S. Dept. Agr. Circ. 969, 19 p.
- Wilson, Clyde A., 1967, Ground-water resources of Austin and Waller Counties, Texas: Texas Water Devel, Board Rept. 68, 231 p.
- Winslow, A. G., and Kister, L. R., Jr., 1956, Saline water resources of Texas: U.S. Geol. Survey Water-Supply Paper 1365, 105 p.

Table 6. -- Records of Wells, Springs, and Test Holes

All wells are drilled unless otherwise noted in remarks column.

Water level : Reported water levels given in feet; measured water levels given in feet and tenths. Method of lift and type of power: A, airlift; B, bucket; C, centrifugal; E, electric; G, gasoline; Ng, natural or LP gas; H, hand; J, jet; N, none; P, piston; S, submergible; T, turbine; W, windmill. Number indicates horsepower.

Use of water

Water-bearing unit

: D, domestic; Irr, irrigation; Ind, industrial; P, public supply; S, stock; U, unused. : Qal, alluvium of the Brazos River; Ev, Evangeline aquifer; B, Burkeville aquiclude; J, Jasper aquifer; Tcs, Catahoula Sandstone; Tj, Jackson Group; Ty, Yegua Formation.

WELL		OWNER	DRILLER	DATE COM- PLET- ED	DEPTH OF WELL (FT)	DIAM- ETER OF WELL (IN)	WATER- BEAR- ING UNIT	ALTI- TUDE OF LAND SURFACE (FT)	WATER LEVEL						
									BELOW LAND SUR- FACE DATUM (FT) .	DATE OF MEASURE- MENT			METHOD OF LIFT	USE OF WATER	REMARKS
	YY-59-39-805	Harry Moore			437	2	Tcs	200	+2.1	Nov.	26,	1968	Flows	U	Unused,
*	43-801	A. H. Kuehn	Walter E. Rinn	1932	125	4	тј	259					P,W	s	
	902	Nellie Taplin	L. D. Arrington	1962	265	4	Tj	286	43.3	Sept.	9,	1968		D	
	903	A. Eberhardt	do.	1951	170		Тј	302					P,E,3/4	U	
*	904	do.		1920	70	6	Tj	309					J,E,1/2	D	Bored well, concrete casing.
	905	C. Ferris Estate	McClemon	1904	15	30	Тј	278	5.2	Oct.	9,	1968	в,н	D	Dug well, concrete casing.
*	906	Arthur Wilson	G. Brinkman	1965	306	2	Тј	273	60			1965	J,E,1/2	D	Screen from 296 to 306 ft.
	907	Carroll	B & D Drilling Co.	1954	200	3	Тј	272					J,E,1/2	S	Casing slotted from 179 to 200 ft.
	44-601	Corps of Engineers	Pomykal Drilling Co.	1965	535	6	Tj	258	36.5	Aug.	22,	1968		U	Industrial well, used during construction of Somerville Reservoir. Slotted from 509 to 535 ft. 2/
*	602	Marineland Inc.	Beaumier Iron Works	1968	400	4	Tj	288	60.0		do.		S,E,5	P	Casing slotted from 385 to 400 ft. 2/
	603	Cedar Oaks Estate	Pomykal Drilling Co.	1968	184	4	Tj	285	53.4	Dec.	16,	1968	S,E,3/4	D	Casing slotted from 164 to 184 ft.
	604	Tom Robbin	do.	1965	201	4	Тј	268	42	Nov.		1965	S,E,1/3	D	Casing slotted from 170 to 201 ft. 2/
L									1					2.40	5001 434

See footnotes at end of table.

48 -
					DIAM-			WATE	R LEVEL			
WELL	OWNER	DRILLER	DATE COM- PLET- ED	DEPTH OF WELL (FT)	ETER OF WELL (IN)	WATER- BEAR- ING UNIT	ALTI- TUDE OF LAND SURFACE (FT)	BELOW LAND SUR- FACE DATUM (FT)	DATE OF MEASURE- MENT	METHOD OF LIFT	USE OF WATER	REMARKS
* 11-59-44-70	Deep Water Association	Pomykal Drilling Co.	1967	212	4	Тј	265	26.6	July 26, 1968	S,E,5	P	Test hole 812 ft; plugged back to 212 ft. Casing slotted from 191 to 212 ft. 2/
702	F. W. Broesche	G. Brinkman	1962	158	4	Tj	275	45.9	do.		D	
703	Harold Rabalais	Pomykal Drilling Co.	1968	635		тј	278			N	U	Test hole, abandoned. $2/$
* 702	Corps of Engineers		1900	45	32	Tj	269	4.1	Sept. 18, 1968	N	U	Dug well, brick curb; acid water, pH 6.2 at site of old plantation; abandoned after civil war.
* 705	Harold Rabalais	G. Brinkman	1968	453	4	Tj	270	39.2	Nov. 20, 1968	S,E,3	P	Measured discharge 39 gpm on Nov. 20, 1968. 2/
* 706	G. W. Fischer			101	8	Тј	305	45.6	Nov. 11, 1942		U	Bored well, tile curb. Old well.
* 801	Ralph Johnston	Pomykal Drilling Co.	1964	500	10	Tj	315	85	May 1964	T,E,10	P	Casing slotted from 238 to 290 ft; and from 445 to 500 ft. Reported drawdown 65 ft. at 700 gpm, March 1964. Ori- ginally drilled for ir- rigation well. 2/
802	Rocky Creek Park	do.	1967	330	6	Tj	275	40	Nov. 1968	S,E,5	D	Casing slotted from 267 to 330 ft.
* 803	J. T. Johnson Estate	Beaumier Iron Works	1955	315	4	Tj	328	81.8	July 26, 1968	S,E,3/4	D	Casing slotted from 305 to 315 ft.
* 804	Malke Estate			45	24	Tj	284	43.6	Nov. 11, 1942	N	U	Dug well; concrete casing. Unused. Old well.
805	R. Nienstedt	Siegert Water Wells	1963	208	4	Tj	322	66.3	Nov. 20, 1968	S,E,3	D	-

	Casing slotted from 296 to 316 ft. Old well re- ported "too lignitic". Old well drilled deeper.	Casing slotted from 521 to 547 ft.	Oil test. \underline{y}	Dug well, concrete curb. Unused.	Casing slotted from 303 to 328 ft.	Casing slotted from 313 to 335 ft. Pump set at 291 ft. 2/	Dug well, tile curb.	Dug Well, square concrete curb at top.		Dug well, rock curb. Unused.	Formerly used as public supply well, now only supplies office. Per- forated below 98 ft; exact interval unknown.		Perforated from 120 to 160 ft.
	Q	ŝ	1	n	P 4	Q	n	Q	D	D	A	n	Þ
	з's	S,E,1	ł	l	S,E,3	S,E,1	N	J,E,3/4	J,E,1/2	N	P, E	Ρ	Flows
	1968	1968		1942	1968	1967	1942	1968		1942		1968	1942
TENT	20,	16,	1	ш,		-		30,	.ob	2,	:	22,	13,
-	Nov.	Dec.		Nov.	Apr.	Sept.	Sept.	Dec.		July		Aug.	Nov.
(FT)	96.0	134.3	;	10.0	76	170	10	41.0	44.8	54.4	T	16.0	+2.0
SURFACE (FT)	360	358	393	335	339	485	398	260	264	438	290	255	212
UNIT	LT.	ŢĴ	:	τj	Ŧ	Tcs	Tcs	T.j	τı	Tcs	LT.	;	r
(NI)	4	4	1	34	4	4	24	48	в	60	Q	9	ŝ
(FT)	316	547	1,433	15	328	335	94	48	260	75	123	505	160
ED	1960	1968	1951	:	1968	1967	1880	1860	1961	1874	1936	1930	1937
	A. B. Conklin	Pomykal Drilling Co.	Roy Perkins	1	Pomykal Drilling Co.	do.	1	ı	Pomykal Drilling Co.	ł	Walter E. Rinn		Walter E. Rinn
	L. C. Landua	R. O. Leachman	Boerninghaus well 1	Charlesville School	W. S. Houston	J. Dahlmann	T. Pelkemeyer	Emil Nerienz	Elijah Ratliff	George Butler	Sun Oil Co.	.ob	do.
	YY -59-44 -806	* 807	106	* 902	903	904	* 905	45-402	403	* 502	605	606	* 607
	ED (FT) (IN) UNIT SURFACE (FT) MENT TI WIT SURFACE	XY-59-44-806 L. C. Landua A. B. Conklin 1960 316 4 TJ 360 96.0 Nov. 20, 1968 S,E D Casing slotted from 296 VY-59-44-806 L. C. Landua A. B. Conklin 1960 316 4 TJ 360 96.0 Nov. 20, 1968 S,E D casing slotted from 296 Old well re- ported "too lignitic". 01d well deeper. 01d well deeper. 01d well deeper.	XY-59-44-806 L. C. Landua A. B. Conklin 1960 316 4 TJ 360 96.0 Nov. 20, 1968 S,E D Casing slotted from 296 * 807 R. O. Leachman Pomykal Drilling 1968 547 4 TJ 358 134.3 Dec. 16, 1968 S,E,I D Casing slotted from 296 * 807 R. O. Leachman Pomykal Drilling 1968 547 4 TJ 358 134.3 Dec. 16, 1968 S,E,I S Casing slotted from 296 * 807 R. O. Leachman Pomykal Drilling 1968 547 4 TJ 358 134.3 Dec. 16, 1968 S,E,I S Casing slotted from 521	YY-59-44-806 L. C. Landua A. B. Conklin 1960 316 4 TJ SURFACE (FT) MENT TM MENT MENT	YY-59-44-806 L. C. Landua A. B. Conklin 1960 316 4 TJ SUFACE (FT) MENT TM TM TM * 807 L. C. Landua A. B. Conklin 1960 316 4 TJ 360 96.0 Nov. 20, 1968 S,E D casing slotted from 296 * 807 R. O. Leachman Pomykal Drilling 1968 547 4 TJ 358 134.3 Dec. 16, 1968 S,E,I S Casing slotted from 236 * 901 -Boerninghaus Roy Ferkins 1951 1,433 333 134.3 Dec. 16, 1968 S,E,I S Casing slotted from 521 * 901 -Boerninghaus Roy Ferkins 1951 1,433 0:1 test. 1 * 902 Charlesville 10.0 Nov. 11, 1942 0:1 test. 1	YY-59-44-806 L. G. Landua A. B. Conklin 1960 316 A T.J SUFAct (FT) MMT T.D. Matter T.D. MMT T.D. MT T.D. MT	XY-59-44-806 L. C. Landua A. B. Conklin [960 316 T. J. MEMT J. J. MEMT J. J. <	XY-59-44-806 L. G. Landua ED (FT) UNIT SUFAGE (FT) MEMT T.1 MEM	Image: Note of the state of the s	Kr-59-44+60 L. C. Landua A. B. Conklin E0 (T) UNIT Sugrate (FT) FT) MeV To <	With the stand of th	Tr:=59-44-606 L: C. Landua A. B. Conklin [360 [17] [10] [11] SUP-50 [20]	With the stand set of the stand s

			1			DIAM-			WATE	R LEVE	L				
	WELL	OWNER	DRILLER	DATE COM- PLET- ED	DEPTH OF WELL (FT)	ETER OF WELL (IN)	WATER- BEAR- ING UNIT	ALTI- TUDE OF LAND SURFACE (FT)	BELOW LAND SUR- FACE DATUM (FT)	DA MEA M	TE OF SURE- ENT	ME'	THOD OF IFT	USE OF WATER	REMARKS
YY	-59-45-608	Sun Oil Co.	Walter E. Rinn	1936	115	7	Tj	292	89.4	Nov.	13, 19	42	N	U	Reported poor well, never used.
	701	W. B. Whenthoff		1954	285	6	Tcs	402	99.8 99.2	Oct. Aug.	2, 19 30, 19	59 60	Г	P	Used two years for irrigation, used for recreation since 1957.
*	702	H. W. Wendt			180	8	Tcs	364				J ,)	Е,2	D	Formerly used by gin. Old well.
*	704	Mills Cox	Beaumier Iron Works	1963	505	4	Tcs	360	142.3	July	16, 19	68 S,	Е,2	D	Screen from 464 to 484 ft.
	705	do.	do.	1966	565	4	Tcs	360	155	July	19	66 S,1	E,2	D	Screen from 535 to 565 ft.
*	706	do.	do.	1967	560	4	Tcs	362	120	July	19	67 S,	E,2	D	Screen from 530 to 560 ft.
	707	R. M. Strange	Pomykal Drilling Co.	1964	352	6	Tcs	485	180	July	19	64 s,	E,25	S	Casing slotted from 332 to 352 ft. 2/
	708	do.	A. B. Conklin	1960	252	4	Tcs	470	180	July	19	63 J,	E,13	D	
	709	W. H. Hueske		1860	44	36	J	422	5.5	Dec.	16, 19	68 J,	E,1/2	D	Dug well, concrete curb.
*	710	do.		1910	10	30	J	400	2	Dec.	19	68 J,1	E,1	D	Dug well, rock curb.
	711	Calvin Sayles		1952	162	5	Tcs	405	80.1	Dec.	30, 19	68 P,1	E,1/2	U	
	801	Old Gay Hill Church			26	30	J	350	15.5	Aug.	12, 19	68 B	,н	D	Dug well, concrete curb.
*	802	F. S. Bryan	Seismic Crew	1939	83	3	J	325	+5.5	Sept.	11, 19	42 F1	ows	S	Seismic test hole.
*	803	Otto Janner		1840	24	42	J	440	12.8	July	2, 19	42 1	N	U	Dug well, rock walled, wooden curb on top.
*	804	Big Springs	-		Spring		L	311	+	Feb.	16, 19	42 F1	ows	U	Dug out spring; once supplied steam driven gin; in use from about 1840 to 1940.

					DIAM-			WATE	R LEVEL			
WELL	OWNER	DRILLER	DATE COM- PLET- ED	DEPTH OF WELL (FT)	ETER OF WELL (IN)	WATER- BEAR- ING UNIT	ALTI- TUDE OF LAND SURFACE (FT)	BELOW LAND SUR- FACE DATUM (FT)	DATE OF MEASURE- MENT	METHOD OF LIFT	USE OF WATER	REMARKS
YY -59-45-906	W. F. Schlottmann		1890	50	44	Tcs	390	32.4	Dec. 4, 1969	J,E,3/4	D	Dug well, concrete curb above; rock wall below.
907	Harold T. Ray, Jr.	Beaumier Iron Works	1967	203	4	Tcs	340	67.8	do.	S,E,1	D	Casing slotted from 186 to 196 ft. 2/
46-101	C. L. Vickers	Pomykal Drilling Co.	1967	97	4	Tcs	275	50	Jan. 1967	S,E,3	D	Casing slotted from 87 to 97 ft. 2/
* 201	Wm. Engel			37	24	Tcs	268	32.8	Nov. 16, 1942	N	U	Dug well, concrete curb. Old well.
* 304	F. C. Sommers	Bob Felder	1910	320	8	Tcs	387	169.6	Dec. 5, 1968	S,E,1	Ind	
* 305	0, G. Gindorf	(- - -	1892	175	3	Tcs	382	150	1942	N	U	Destroyed.
306	do.	Pomykal Drilling Co.	1947	517	4	Tj	382	250	1947	S,E,3/4	D	
307	0. C. Gindorf	Joe Pomykal	1942	317	6	Tcs	382	174.9	Dec. 5, 1968	N	U	
* 401	Dillon Anderson	Pomykal Drilling Co.	1963	150	8	Tcs	328	90.8	July 24, 1968	т,Е,30	Irr	Casing slotted from 107 to 147 ft. Measured discharge 322 gpm on Aug. 8, 1968. Temp. 23°C. 2/
402	Independence Smoke House	Pomykal Drilling Co.	1967	242	4	Tcs	380	96.6	Aug. 21, 1968	S,E,3/4	Ind	Casing slotted from 222 to 242 ft. 2/
* 403	Independence Baptist Church	do.	1966	179	4	Tcs	350	70	Oct. 1966	S,E,1/2	P	Casing slotted from 159 to 179 ft. 2/
404	do.	do.	1966	327	4	Tcs	385	142 142.2	Oct. 1966 Aug. 21, 1968	S,E,3/4	Irr	Casing slotted from 301 to 327 ft. 2/
405	Independence Cemetery	do.	1967	149	4	Tcs	320	84.4	Aug. 22, 1968	S,E,1/2	Irr	Casing slotted from 138 to 149 ft. 2/
406	Dillon Anderson	do.	1963	1,017			328			N	U	Test hole.
407	Edward Scheffer	do.	1967	162	4	J	352	58	Jan. 1967	S,E,1/2	D.	Casing slotted from 152 to 162 ft, 2/

Table 6.--Records of Wells, Springs, and Test Holes--Continued

See footnotes at end of table.

- 52 -

-		-												
	REMARKS	Steel casing. Old well.	Dug well, rock and wooden curb. Old well.	Casing slotted from 660 to 700 ft. 2/	Casing slotted from 190 to 206 ft. 2/	Casing slotted from 220 to 240 ft. 2/	Casing slotted from 267 to 290 ft. $\underline{2}/$	Screen from 310 to 330 ft.	Seismic test hole, con- verted to water well estimated flow 50 gpm, Dec. 4, 1968.	Well drilled inside 30 ft. Deep concrete lined well.	Not flowing on Dec. 4, 1968. Temp. 22°C.	Well drilled inside 30 ft. Deep rock lined well.	Slotted from 308 to 325 ft. Pump set at 84 ft. $\frac{2}{3}$	Slotted from 262 to 288 ft; 425 to 435 ft. Screen set at 2,400 ft. Length unknown
	USE OF WATER	Þ	Þ	D	D	۵	D	A	Þ	S	S	Irr	Q	D
	METHOD OF LIFT	N	z	s,E,<1	S,E,1/2	s,E,3/4	S,E	s,E, 1 1/2	Flows, N	J,E,1/2	J,E,1/2 Flows	J,E,1/2	S,E,3/4	И
VEI	DATE OF IEASURE - MENT	7. 16, 1942	<i>.</i> 17, 1942	Ę	. 1966	<i>ر</i> • 1965	1968	. 4, 1968	.ob	do.	. 21, 1942	do.	. 1966	: 2, 1959 ; 22, 1968
FR IF	Σ	Nov	Nov		Apr	Nov	May	Dec			Oct		Dec	Oc t Aug
WAT	BELOW LAND SUR- FACE DATUM (FT)	47.8	17.0		66	106	94	47.8	+	3.4	÷	14.9	38	102.0 96.2
	ALTI- TUDE OF LAND SURFACE (FT)	378	I	360	378	382	322	310	272	230	301	302	342	392
	WATER- BEAR- ING UNIT	ŋ	n	II	5	Tcs	ы	ъ	h	L,	دا »	'n	ъ	J,TJ
DIAM-	ETER OF WELL (IN)	9	42	4	4	4	4	9	4	9	9	m	4	10
	DEPTH OF WELL (FT)	57	27	101	206	240	290	330	06	222	222	222	325	2,728
	DATE COM- PLET- ED	1	Í	1958	1966	1965	1968	1955	1939	1925	1926	1918	1966	1957
	DRILLER	1	:	Pomykal Drilling Co.	do.	do.	Pomykal Drilling Co.	Dietz	Seismic Crew	Carl Booth	do.	do.	Pomykal Drilling Co.	L. Patterson Inc.
	OWNER	C. F. Toalson	E. F. Clay	Dillon Anderson	David Dahman	R. J. McAmis	G. T. Newman	H. V. Niemann	Washington County	M. H. Sommers Estate	.ob	do.	M. O. Miller	Hebert Gebert
	WELL	· YY-59-46-408	409	502	503	504	601	702	703	704	705	706	707	801
_		*	*	40	-	_		*	*	4	*	*		

- 53 -

Γ						DIAM-			WATE	R LEVE	L		1	1	
	WELL	OWNER	DRILLER	DATE COM- PLET- ED	DEPTH OF WELL (FT)	ETER OF WELL (IN)	WATER- BEAR- ING UNIT	ALTI- TUDE OF LAND SURFACE (FT)	BELOW LAND SUR- FACE DATUM (FT)	DA MEA M	TE OI SURE- ENT	-	METHOD OF LIFT	USE OF WATER	REMARKS
	YY-59-46-802	Herbert Gebert	Layne-Texas Co.	1962	457	12	L	340	119 90.8	Sept. Aug.	22,	1962 1968	T,E,50	Irr	Casing slotted from 243 to 446 ft. Reported 4 1/2 hours pumping level, 236 ft, Sept. 25, 1962. <u>2</u> /
*	803	do.	Pomykal Drilling Co.	1937	237	5	J	355	61.9	Oct.	21,	1942	P,E,2	D	Screen from 217 to 237 ft.
*	804	G. Ellerman	E. L. Gajeske	1955	136	4	J	240	+	Dec.	4,	1968	Flows, J,E	D	Measured flow 4 gpm on Dec. 4, 1968.
*	805	Buell Moore	Beaumier Iron Works	1967	204	4	J	245	+		do.		Flows, S,E, 7 1/2	Irr	Screen from 184 to 204 ft. Measured flow 22 gpm on Dec. 4, 1968. Irrigated 14 acres of coastal bermuda in 1968. <u>2</u> /
	901	T. G. Pittman	do.	1962	150	4	J	329	82.4	Dec.	5,	1968	S,E,3/4	D	
*	902	Dudley Briggs	Pomykal Drilling Co.	1967	400	4	J	302	89.0		do.		S,E,3/4	S	Casing slotted from 358 to 400 ft. Pump set at 147 ft. <u>2</u> /
	903	do.			93	6	J	305	54.2		do.		N	U	Old well.
*	47-101	St. Matthew Church		1909	20	40	Qal	350	12.5 7.9	Oct. Aug.	20, 12,	1942 1968	в,н	D	Dug well, rock curb.
*	102	W. H. Baugh		1962	560	4	Тj	361	60.9	Nov.	21,	1968	S,E, 1 1/2	D	Screen from 540 to 560 ft.
	103	Wells Estate			32	36	J	240	9.0	Dec.	17,	1968	J,E	D	Dug well, rock curb. Corrugated metal on top.
	201	T. J. Moore			209	4	Tcs	247	90.4	Nov.	26,	1968	P,E,1/2	S	
*	202	Harry Moore	Walter Rinn	1925	135	4	Tcs	302					P,E,1/2	S	
*	203	Mt, Fall School			40	30	Tcs	278		3			N	U	Dug well. Concrete curb to 20 ft; tile from 20 ft. to bottom. Old well.

See footnotes at end of table.

- 54 -

						DIAM-			WATE	R LEVE	Ľ				C
WELL		OWNER	DRILLER	DATE COM- PLET- ED	DEPTH OF WELL (FT)	ETER OF WELL (IN)	WATER- BEAR- ING UNIT	ALTI- TUDE OF LAND SURFACE (FT)	BELOW LAND SUR- FACE DATUM (FT)	DA MEA M	TE OF SURE- ENT		METHOD OF LIFT	USE OF WATER	REMARKS
* YY-59-47	-301	Moore Bros.		1890	245	3	J	192	4.5	Nov.	26,	1968	J,E,1/2	Ind	3/
*	302	do,	1.00	1936	340	4	J	192	1.1	May	22,	1961	N	U	Casing slotted from 320 to 340 ft. Temp. 23°C. <u>3/</u>
*	401	0. L. Sommers	2. 4.4 .1	ceen.	250	6	J	352					N	U	
	402	do.		(1 11)	50	24	J	352	38.7	Nov.	19,	1942	N	U	Dug well, tile curb. Old well.
*	502	L. F. Jensen	Pomykal Drilling Co.	1966	299	4	J	259	64.4	Dec.	17,	1968	S,E,1/2	Ind	Casing slotted from 289 to 299 ft. Pump set at 115 ft. Old well drilled deeper.
*	503	Mt. Zion School	A. D. Hafer	1940	130	4	J	325		k.	3434 (I		N	U	
*	504	Williams			40	24	Ev	327	33.7	July	1,	1942	N	υ	Dug well, tile and concrete casing. Old well.
	601	Mrs. W. F. Borgstedte	Dunn Water Well Drilling Co.	1953	50	18	Qal	185	33.6	Aug.	21,	1968	T,G,10	U	3/
*	604	State of Texas	Pomykal Drilling Co.	1965	385	4	J	220	23.4		do.		S,E, 1 1/2	P	Screen from 365 to 385 ft. Pump set at 130 ft. 2/
*	605	do.	Joe Pomykal	1935	412	6	J	220	+	July	1,	1942	T,E,2, Flows	υ	Perforated from 390 ft. to bottom.
	606	Willie Stolz	Falkenbury Dril- ling Co.	1966	105	4	B;J?	228	50	Nov.		1966	S,E,1/2	D	Screen from 95 to 105 ft. 2/
	607	State of Texas			310	4	J	190	11.6	July	1,	1942		U	
*	608	R. Dickschat	Pomykal Drilling Co.	1966	126	4	B;J?	201	37.2	Nov.	26,	1968	J,E,1	D	Screen from 115 to 126 ft. 2/
*	609	Mrs. W. F. Borgstedte		1920	80	3	В	268	1227		12121		P,W	S	1000
*	610	F. W. Wellman	Ed. Hoffer	1927	82	6	Ĵ.	281	49	Jan.	3	1927	N	U	

See footnotes at end of table.

- 55 -

.

ŝ

	REMARKS	Screen from 313 to 358 ft. 2/	Dug well, concrete curb.	Do.	Dug well, concrete curb. Old well.	Dug well, tile curb.	7.44	Dug well, concrete curb.	Screen from 170 to 180 ft.				Screen from 161 to 180 ft. Pump set at 136 ft. 2/			Measured flow 8.5 gpm, Nov. 29, 1968. Per- forated from 668 to 700 ft.	3/
	USE OF WATER	C4	D	Q	s	Q	a	s	Q	Q	n	A	Q	n	п	S	n
	METHOD OF LIFT	S,E,15	N	P, E, H	N	J,E,1/3	S,E,2	P,E,1/3	J,E,1	J,E	N	S,E,3/4	S,E,1	N	N	N, Flows	N
		1969	1968	1968	1942	1968		1968		1942		1942 1959 1968			1942	1968	1961
	SURE-		21,	29,	19,	29,	do.	29,	;	23,	.ob	22, 15, 7,	t	;	22,	29,	22,
R LEVE	MED	Jan.	Nov.	Nov.	Nov.	Nov.		Nov.		Oct.		Oct. Oct. Oct.			Oct.	Nov.	May
WATE	BELOW LAND SUR- FACE DATUM (FT)	33	65.6	33.0	1.0	26.3	108.8	35.4	ł	92.3	82.3	103.7 108.0 92.4	1	;	34.3	+10.3	29.1
	ALTI- TUDE OF LAND SURFACE (FT)	220	322	260	245	270	308	285	265	312	313	272	239	312	223	186	192
	WATER- BEAR- ING UNIT	٣	Ev	Qal	Ev	Ev	BjEv	Ev	Ev	Ev	'n	Ev	Ev	Ev?	Ev	Ċ	Qal
-MAI 0	DF OF WELL (IN)	9	30	32	30	26	4	36	4	9	9	9	4	9	9	4	9
	DEPTH OF WELL (FT)	358	80	30	80	36	250	42	180	125	705	124	180	160	43	700	85
	DATE COM- PLET- ED	1969	:	1900	1	1850	1959	1915	1955	1909	1940	:	1967	1918	1890	1954	1933
	DRILLER	Pomykal Drilling Co.	:	;	1	I	Pomykal Drilling Co.	1	A. B. Conklin	G. C. Booth	1	ı	Pomykal Drilling Co.	G. C. Booth	1	E. Gajeske	:
	OWNER	State of Texas	Antioch Church	Ward Dillard	George Butler	A. Stegemueher	Rosa Goeking	W. J. Lauter Estate	George Boenker	A. L. Bohne	do.	T. J. Moore	C. D. Dickschat	H. C. Buck	H. Wehmeyer	C. F. Holle	H. Wehmeyer
	NELL	YY-59-47-611	702	203	704	802	803	804	805	806	807	902	903	904	306	48-402	101

- 56 -

					DIAM-			WATE	R LEVEL			
WELL	OWNER	DRILLER	DATE COM- PLET- ED	DEPTH OF WELL (FT)	ETER OF WELL (IN)	WATER- BEAR- ING UNIT	ALTI- TUDE OF LAND SURFACE (FT)	BELOW LAND SUR- FACE DATUM (FT)	DATE OF MEASURE- MENT	METHOD OF LIFT	USE OF WATER	REMARKS
* YY-59-48-702	H. Wehmeyer		1933	700	4	J	192	+0.5	May 22, 1961	N, Flows	S	Screen from 680 to 700 ft. Measured flow 1/4 gpm on May 22, 1961. 3/
703	T. J. Moore			28		Qal	192	22.1	Aug. 21, 1964	в,н	D	Dug well, concrete curb. Old well.
704	J. F. Renn		1900	35	48	Ev	193	28.1	Aug. 20, 1964	J,E	D	Dug well, concrete curb.
* 705	Joe Baldridge		1920	700	3	J	185	+	Oct. 22, 1942	Flows, N	U	Measured flow 16 gpm on Nov. 22, 1942.
* 50-905	R. B. Fogle	Beaumier Iron Works	1968	362	4	Tj	470	162	Dec. 1968	S,E,2	D	Screen from 328 to 358 ft. <u>2</u> /
* 51-103	A. G. Loewe	Walter Rinn	1927	114	3	Тj	335			C,E,<1	D	Call-a
104	E. Lehmann	Charles Ressman	1965	150	4	Tj	316	41.0	Sept. 9, 1968	S,E,1/2	D	Open hole.
* 105	H. Schoenemann	Pomykal Drilling Co.	1951	63	4	Tj	319	42	Aug. 1968	J,E,1/2	S	
106	Kamins Ranch	L. D. Arrington	1964	298	6	Тj	292	38.8	Sept. 8, 1968	S,E,5	D	
* 202	Double D Farm		1929	105	3	Тj	352	50,6	Nov. 12, 1942	N	U	-
301	J. W. Link	Pomykal Drilling Co.	1967	172	4	Tcs	399	75	Apr. 1967	S,E,1/2	D	Screen from 160 to 172 ft. Pump set at 126 ft. 2/
302	R. Benford	Pomykal Drilling Co.	1967	126	4	Tj	349	50.3	Sept. 9, 1968	S,E,1/3	D	Casing slotted from 116 to 126 ft. Pump set at 94 ft. 2/
* 602	Mrs. Ed Kieke		1929	69	9	Tcs	450	45.8 49.5 47.7	Nov. 12, 1942 Oct. 16, 1959 Sept. 10, 1968	J,E,1/2	D	Bored well, tile curb.
* 603	K. L. Nixon		1900	60	8	Tcs	400	15.8	Sept. 10, 1968	J,E,1/3	D	Bored well, concrete curb.
* 605	T. R. Fincher	-75	1900	38	48	Tcs	545	2.6 3.0	Nov. 12, 1942 Sept. 10, 1968	в,н	U	Dug well, rock curb.

Table 6.--Records of Wells, Springs, and Test Holes--Continued

Г						DIAM-			WATE	R LEVEL			
	WELL	OWNER	DRILLER	DATE COM- PLET- ED	DEPTH OF WELL (FT)	ETER OF WELL (IN)	WATER- BEAR- ING UNIT	ALTI- TUDE OF LAND SURFACE (FT)	BELOW LAND SUR- FACE DATUM (FT)	DATE OF MEASURE- MENT	METHOD OF LIFT	USE OF WATER	REMARKS
	YY-59-51-606	Kerin Kieke		1923	66	26	Tcs	445	20.6	Sept. 10, 1968	N	U	Dug well, brick and concrete curb.
*	607	L. B. Davenport	Pomykal Drilling Co.	1967	155	4	Tcs	433	37.4	Oct. 8, 1968	S,E,5	Irr	Casing slotted from 135 to 155 ft. Measured flow 75 gpm on Oct. 8, 1968. Pump set at 126 ft. <u>2</u> /
*	703	Nolan Schmidt	Walter Rinn	1936	216	3	Tj	452	84 104.3	1957 Dec. 18, 1968	A,W	S	
*	805	R. Stiewert		1890	70	8	Tcs	452	46.6	Sept. 9, 1968	Р,₩,Н	D	Bored well, tile curb.
	901	E. H. Cutler	Pomykal Drilling Co.	1967	170	6	Tcs	492	82	May 1967	s,e	D	Screen from 133 to 170 ft. Pump set at 147 ft. 2/
*	902	Paul Kessler		1890	28	8	J	468			N	U	Bored well, tile curb.
	52-101	Fieldcrest Farm	Pomykal Drilling Co.	1968	390	4	Tcs	415	140.1	Sept. 9, 1968	S,E,2	S	Casing slotted from 350 to 390 ft.
*	102	Gardner Symonds			35	38	Tcs	376	21.1	Dec. 13, 1968	N	U	Dug well, concrete curb. Old well.
*	103	do.	Joe Pomykal	1948	280	4	Тj	376	74.6	do.	J,E,2	S	
	104	do.	Pomykal Drilling Co.	1967	303	4	Tcs	402	105.1	do.	S,E, 1 1/2	S	Casing slotted from 276 to 303 ft. Pump set at 168 ft. 2/
	105	do.	do.	1967	338	4	Tcs	382	76.4	do.	S,E,1	S	Casing slotted from 318 to 338 ft. Pump set at 126 ft. 2/
	106	do.	do.	1967	286	4	Tcs	376	75	Aug. 1967	S,E, 1 1/2	D	Casing slotted from 261 to 286 ft. Pump set at 147 ft. 2/
	201	Sydnor Oden	Swearingen	1955	800		Tj	412	-		N	U	Drilled to 3,200 ft; plugged back to about 800 ft.

See footnotes at end of table.

- 58 -

					DIAM-			WATE	R LEVEL			
WELL	OWNER	DRILLER	DATE COM- PLET- ED	DEPTH OF WELL (FT)	ETER OF WELL (IN)	WATER- BEAR- ING UNIT	ALTI- TUDE OF LAND SURFACE (FT)	BELOW LAND SUR- FACE DATUM (FT)	DATE OF MEASURE- MENT	METHOD OF LIFT	USE OF WATER	REMARKS
* YY-59-52-202	Rocky Creek Manor	Beaumier Iron Works	1968	292	4	Tcs	235	36.9	Sept. 18, 1968	S,E,2	P	Casing slotted from 268 to 288 ft. 2/
203	M. A. Weber	Walter Rinn	1925	320	3	Tcs	515	130.9	Dec. 12, 1968	S,E,1	D	
204	do.	(ALL CALLED ALL CALLED ALLED ALLE	1910	30	28	Tcs	515	4.5	do.	Ν	U	Dug well, concrete curb.
205	Sydnor Oden	Beaumier Iron Works	1962	258	4	Tcs	522	157.6	Dec. 13, 1968	S,E,2	S	Screen from 231 to 258 ft.
206	do.	Pomykal Drilling Co.	1965	417	4	Tcs	432	128	Aug. 1965	S,E,3/4	S	Casing slotted from 401 to 417 ft. Pump set at 168 ft. 2/
* 301	Gus Foerster	do.	1968	193	4	Tcs	445	33	July 1968	J,E,3/4	D	Casing slotted from 173 to 193 ft.
* 302	Louis Roehling		1918	35	48	J	522	8.1	Sept, 18, 1968	в,Н	D	Dug well, rock curb.
303	H. Glaesmann	John Booth	1915	165	6	J	475			J,E,1	D	
304	H. Winklemann	Seismic Crew	1942	70	5	Tcs	435	7.2	Nov. 13, 1942	N	U	Seismic test hole.
401	Burton Water Supply Corp.	Pomykal Drilling Co.	1966	775	8	Tj	452	150	Jan. 1966	S,E,20	P	Screen from 693 to 753 ft. Pump set at 351 ft. <u>2</u> /
402	A. Sommerfeld	Wagoner Bros.	1900	71	8	Tcs	522	49.1	Sept. 10, 1968	S,E,3/4	D	Bored well, tile casing
403	Fred De Laume	Pomykal Drilling Co.	1966	252	4	Tcs	455	88	Apr. 1966	S,E,3/4	D	Screen from 211 to 252 ft. 2/
* 404	Farmers National Bank	Joe Pomykal	1941	160	3	Tcs	495			N	U	
405	Kamins Ranch	Pomykal Drilling Co.	1967	491	4	Tcs	4 70	170	Jan. 1967	s,e,<1	S	Casing slotted from 468 to 491 ft. 2/
* 501	Kirby Lehrmann	Walter Rinn	1935	192	5	J	342	12.8	Dec. 31, 1968	J,E,1/2	S	Reported flowed Sept. 12, 1942; ceased flow- ing between 1942 and 1959. Casing slotted from 172-192 ft. 3/

						DIAM-			WATE	R LEVE	L	-			
	WELL	OWNER	DRILLER	DATE COM- PLET- ED	DEPTH OF WELL (FT)	ETER OF WELL (IN)	WATER- BEAR- ING UNIT	ALTI- TUDE OF LAND SURFACE (FT)	BELOW LAND SUR- FACE DATUM (FT)	DA MEA M	TE O SURE ENT	Ē	METHOD OF LIFT	USE OF WATER	REMARKS
	YY-59-52-502	Theo A. Ganske	Pomykal Drilling Co.	1964	150	4	J	435	69	Nov.		1964	N	D	Casing slotted from 139 to 150 ft. 2/
	503	Oscar Schultz	do.	1964	203	4	J	480	107.3	Dec.	13,	1968	S,E,1/2	D	Casing slotted from 180 to 203 ft. 2/
*	504	R. A. Fuchs			58	36	J	445	26.4 20.4	Nov. Dec.	20, 31,	1942 1968	P,E,1	D	Dug well, concrete curb. Old well.
*	505	do.			126	6	J	445	122				Ρ,₩	s	Old well.
*	603	Kirby Lehrmann	Will Homeyer	1912	200	6	J	398	16.1 62.5 5.4	July Oct. Dec.	23, 16, 31,	1942 1959 1968	N	U	Dug well, concrete curb from 30 to 74 ft; dril- led well from 74 ft. to 200 ft. Old well.
*	604	Edmond Schultz	G. Brinkman	1967	126	4	J	350	+13.0	Dec.	12,	1968	Flows, N	S	Casing slotted from 106 to 126 ft. Measured flow 1.6 gpm, Dec. 12, 1968.
*	605	do.	do.	1966	160	4	J	404	23.5	Dec.	12,	1968	S,E,3/4	Ind	
*	606	Texas Highway Dept.		1921	80	4	J	329	+14.1 +	Sept. Dec.	12, 31,	1942 1968	N Flows	U	Reported flowed around outside of casing Dec. 31, 1968. Measured flow 5 gpm, July 17, 1942.
*	607	K. Kraft		1922	150	6	J	340	+	July	7,	1942	P,E,3 Flows	D	Flowed July 17, 1942.
	608	I. Rosenbaum	Pomykal Drilling Co.	1965	157	4	J	357	30	Jan.		1965	S,E,1/2	D	Casing slotted from 137 to 157 ft. Pump set at 84 ft. 2/
	609	E. Ganske	do.	1964	126	4	J	335	20	Nov.		1964	S,E,1/2	D	Casing slotted from 116 to 126 ft. 2/
*	702	Max Zuehlke	do.	1967	2 75	6	J	460	77.9	Sept.	10,	1968	S,E,15	Ind	Casing slotted from 181 to 275 ft. Measured flow 181 gpm, Sept. 10, 1968. 2/
L					1.1				2						

See footnotes at end of table.

- 60 -

July 23, 1942; stopped flowing 1968. Perfor-ated casing from 107 to 117 ft. Casing slotted from 202 to 210 ft. Measured flow 33 gpm, Jan. 3, 1969. Measured temp. 22°C. Casing perforated from 150 to 170 ft. Not flowing July 23, 1942 and Dec. 31, 1968; flowing Oct. 16, 1959. Casing slotted from 200 to 212 ft. 2/ from 190 Casing slotted from 168 to 178 ft. Flowed until 1956. Casing slotted from 234 to 265 ft. 2/ curb. Measured flow 1.2 gpm, Dec. 31, 1968. Measured flow 0.5 gpm, Dug well, rock curb. Old well. 3/ Measured temp. 22°C. Dug well, concrete REMARKS Casing slotted to 208 ft. $\underline{2}/$ USE OF WATER A П S D Q A S A S A P Þ S,E,1/2 s,E,<1 P,E,1/2 Flows J,E,1/2, Flows J,E,1/2 J,E, 1/4 METHOD 0F LIFT S,E,1 Л,Е J,E S,E z N 1965 16, 1968 1967 31, 1968 1935 1942 1959 1968 23, 1942 3, 1969 31, 1968 31, 1968 1966 1965 1966 3, 1969 DATE OF MEASURE-MENT 23, 16, 31, WATER LEVEL Aug. Oct. Dec. Dec. July Jan. July Oct. Dec. July Dec. Mar. Jan. Jan. BELOW LAND SUR-FACE DATUM (FT) 45 43.7 104.6 +10.0 + .1 3.9 9.5 38.1 6.4 30 9 +12 100 23 +OF LAND SURFACE ALTI-TUDE 415 333 388 481 342 335 328 332 320 373 321 2.98 (FT) WATER-BEAR-ING UNIT 5 5 5 5 5 5 5 P 5 5 5 5 DIAM-ETER OF WELL (IN) 4 4 4 38 4 4 10 5 4 4 4 41 248 135 170 210 17 212 208 55 117 260 265 L78 DEPTH OF WELL (FT) 1917 1965 1961 1968 1917 1952 1935 1965 DATE COM-PLET-ED 1953 1952 1936 ł Pomykal Drilling Co. Pomykal Drilling Co. Pomykal Drilling Co. Pomykal Drilling Co. Henry Kramer DRILLER Joe Pomykal G. C. Booth John Franks do. E. Gajeske E. Gajeske Ē 705 Oliver Whitener L. D. Neutzler R. & H. Kramer Kramer Herman Peters Henry Kramer 0. A. Schawe 804 Walter Maass R. L. Landua G. Schwartz 904 P. Krivacka Estate OWNER do. Wendler н. * YY -59-52-703 801 802 704 803 106 902 903 905 MELL * * * * ×

- 61 -

						DIAM-			WATE	ER LEVEL	1		
	WELL	OWNER	DRILLER	DATE COM- PLET- ED	DEPTH OF WELL (FT)	ETER OF WELL (IN)	WATER- BEAR- ING UNIT	ALTI- TUDE OF LAND SURFACE (FT)	BELOW LAND SUR- FACE DATUM (FT)	DATE OF MEASURE- MENT	METHOD OF LIFT	USE OF WATER	REMARKS
*	YY-59-52-906	Charles Hodde	Frank Bros.	1915	161	6	J	340	+	July 23, 1942	J,E,1/2 Flows	D	Measured flow 0.4 gpm, July 23, 1942.
*	907	Mrs. R. Wendler	Bomill	1907	191	6	J	355	+	do.	E,<1 Flows	D	Flow small "trickle", July 23, 1942.
	908	Harold Wendler	C. Erickson	1955	198	4	J	333	+	Jan. 3, 1969	J,E, Flows	D	Estimated flow 4 gpm, Jan. 3, 1969.
*	53-101	Vernon Runge	Beaumier Iron Works	1964	356	4	J	455	124.4	Dec. 12, 1968	S,E,1	D	Casing slotted from 301 to 352 ft.
*	102	A. D. Spinn			22	48	J	400			N	U	Dug well, rock curb. Old well.
*	201	Yegua Develop- ment Co.	Layne-Texas Co.	1964	1,070	8 5/8	J,Tcs	350	76.8	July 26, 1968	T,E,20	P	Casing slotted from 470 to 500, 505 to 625, 775 to 795, 805 to 825, 930 to 950, 960 to 970, 985 to 990, and 1,025 to 1,060 ft. <u>2</u> /
*	202	C. Machemehl	Pomykal Drilling Co.	1965	320	2 1/2	J	255	+21.8	Nov. 19, 1968	N Flows	S	Open hole. Reported flow 10 gpm, Sept. 27, 1965. 2/
*	203	Richard Spinn	E. Gajeske	1940	175	4	J	2 70			J,E,1	D	Reported flowed until 1962.
	204	do.	Seismic Crew	1953	104	4	J	265	15.0	Nov. 19, 1968	N	U	Seismic test hole. Re- ported flowed until 1962.
*	205	Leo Arndt	E. Gajeske	1924	69	7	J	330	+	July 31, 1942	Flows,N	U	Estimated flow 10 gpm, July 31, 1942.
*	206	H. Hodde			130	6	J	342			N	U	
*	207	J. F. Presley	Seismic Crew	1940	123	3	J	2 78	+	July 24, 1942	Flows	U	Measured flow 6 gpm, July 24, 1942. Reported no longer flows, Oct. 16, 1959.
													1

See footnotes at end of table.

- 62 -

			DATE	DEPTH	DIAM-	WATER-	ALTI-	NATE RFI OU	R LEVEL				
OWNER DRILLER	DRILLER		COM- PLET- ED	OF VELL (FT)	OF WELL	BEAR- ING UNIT	DF LAND SURFACE (FT)	LAND SUR- FACE DATUM (FT)	DAT MEAS ME	TE OF SURE - ENT	METHOI OF LIFT	0 USE OF WATER	REMARKS
W. Freeman	1		ł	80	9	'n	261	5.0	Nov.	19, 19	88 N	D	Reported well may be caved. Old well.
do. Pomykal Drilling Co.	Pomykal Drilling Co.		1955	261	4	n	261	+9.2		do.	J,E,L Flows	/2 D	Measured flow 17 gpm, Nov. 19, 1968. Re- ported has sulphur odoi
. John's do. Church	do.		1965	312	4	'n	371	108	Jan.	19	55 S,E,<	1 D	Casing slotted from 172 to 202 ft. 2/
W. Freeman E. A. Holly Co.	E. A. Holly Co.		1955	229	00	r	255	10.5	Feb.	11, 19	59 S,E	9	Reported flowed when drilled, and for several years there- after.
C. Jeske Ed Hafer	Ed Hafer		1930	218	m	7	250	30		19	30 J,E	D	Measured flow 1.7 gpm, July 2, 1942. Reported no longer flowed in 1968.
bert Lange Alfred Conklin 1	Alfred Conklin 1	-	953	434	4	ŗ	422	1		;	J,E,3	Ь	
do., Pomykal Drilling 1 Co.	Pomykal Drilling 1 Co.	-	1961	436	4	ŗ	422	123.9	Oct.	17, 19	38 S,E,2	40	
uis Look E. Gajeske 1	E. Gajeske 1	-	930	89	4	r	405	52.0	Dec.	12, 19	58 S,E,1	/3 D	
L. Morris Pomykal Drilling 1 Co.	Pomykal Drilling 1 Co.	-	966	126	4	'n	380	45	Sept.	19	56 S,E,1	/2 D	Casing slotted from 11 to 126 ft. $\underline{2}$
e Old Brazos Beaumier Iron Forge Works	Beaumier Iron Works	127	1964	292	4	٦	. 355	150	Nov.	19	54 S,E,1	n	Casing slotted from 26 to 284 ft.
Jackson well 1 Shell Oil Co.	l Shell Oil Co.		1963	11,614	:	:	352	1		1	1	1	011 test. <u>1</u>
enham Bowling Pomykal Drilling Corp. Co.	Pomykal Drilling Co.		1959	420	4	'n	405	1		I.	S, E	Ind	
do.	do.		1964	480	4	'n	400	141	June	19	54 S,E, 1 1/	Ind	Casing slotted from 447 to 480 ft. 2/
win Draehn do.	do.		1965	167	4	r	392	112	May	19	55 S,E,<	1 D	Casing slotted from 158 to 167 ft. 2/

See footnotes at end of table.

-										_			-				
	REMARKS		Casing slotted from 125 to 135 ft. $\underline{2}$	Casing slotted from 475 to 495 ft.	Dug well, concrete curb. Dry, Oct. 17, 1968.	Dug well, concrete curb. Pesticide and herbicide analyses taken Oct. 17, 1968; results negative.	Reported not flowing in 1968.	Dug well, concrete curb.			Casing slotted from 149 to 168 ft. $\underline{2}/$	Casing slotted from 156 to 176 ft. $\underline{2}/$	Casing slotted from 50 to 63 ft. 2/	Casing slotted from 115 to 125 ft.		Dug well, tile curb.	Old well.
ICE	OF WATER	n	Irr	Ind	D	puI	а	Q	Q	Ω	۵	A	Q	ŝ	Q	p	n
METHOD	DF DF LIFT	N	J,E,I	s,E, 1 1/2	z	J,E,3/4	J,E,1/2 Flows	J,E,1/2	S, E, 1	P,E,1/2	S,E,1/2	S,E,1/2	S,E,1/2	J,E,1	J,E,1/2	N	N
E	ATE OF ASURE - 4ENT	1942	;	1969	1	22, 1942 17, 1968	1951	27, 1968	17, 1968	;	1967	1964	1967	1965	19, 1968	15, 1942	1942
ER LEVI	A D A	May		Feb.		July Oct.	June	Dec.	Oct.		Aug.	Apr.	Oct.		Dec.	July	July
BELOW	LAND SUR- FACE DATUM (FT)	32	ł	100	ł	23.2	+	22.8	127.1	1	105	120	48	40	59.3	31.7	67
ALTI-	TUDE OF LAND SURFACE (FT)	289	339	330	342	300	335	2.96	405	406	380	390	398	325	350	311	370
WATER-	BEAR- ING UNIT	29	8	'n	ŋ	r	r	В	ŗ	ŗ	B-J	п	8	B	В	В	в
DIAM- ETER	OF WELL (IN)	5	4	4	24	48	4	38	4	4	4	4	4	4	4	24	9
DEPTH	OF WELL (FT)	48	135	495	40	34	337	30	457	127	168	176	63	125	105	41	76
DATE	COM- PLET- ED	1942	1955	1957	1	1910	1951	1900	1965	1950	1967	1964	1967	1954	1962	1890	1
	DRILLER	1	A. B. Conkling	Beaumier Iron Works	1	ł	Pomykal Drilling Co.	J. W. Schwickert	J & S Drilling	A. B. Conklin	Pomykal Drilling Co.	.ob	.ob	A. B. Conklin	Preismeyer Bros.	;	1
	OWNER	Brenham Packing Co.	Robert Gascamp	F. C. Kugel	Mt. Pilgrim Church	W. Ludemann	Robert Lange	Travis Smith	V. Whitmarsh	.ob	W. Engelage	Leo Hinze	Calvin Borman	Wilfred Nordt	J. A. Boeker	Fred Weiss	Charles Hodde
	MELL	* YY-59-53-602	603	604	102	* 702	* 703	204	* 802	* 803	804	805	806	808	809	* 810	* 811

				1	DIAM-		1100 101100	WATE	R LEVI	EL				
WELL	OWNER	DRILLER	DATE COM- PLET- ED	DEPTH OF WELL (FT)	ETER OF WELL (IN)	WATER- BEAR- ING UNIT	ALTI- TUDE OF LAND SURFACE (FT)	BELOW LAND SUR- FACE DATUM (FT)	D/ ME/	ATE O ASURE MENT	F	METHOD OF LIFT	USE OF WATER	REMARKS
YY-59-53-90	City of Brenham well 1		1913	320	8	J	310	58.7 57.2	June Nov.	23, 20,	1942 1942	N	U	Abandoned in 1934; de- stroyed prior to 1959.
90	2 City of Brenham well 2		1913	185	12	J	320	59.5 56.6	June Nov.	23, 20,	1942 1942	N	U	Destroyed prior to 1959.
90	Gity of Brenham Well 3	G. C. Booth	1913	182	8	J	310	58.8	Nov.	20,	1942	N	U	
90	Gity of Brenham well 4	do.	1913	96	12	В	310	10.7	June	23,	1942	N	U	Destroyed prior to 1968.
* 90	Gity of Brenham Well 5	Layne-Texas Co.	1933	1,515	8	Tcs	310	35.5	Мау	22,	1961	N	U	Screen from 1,210-1,240, 1,298-1,320, and 1,432- 1,495 ft. 2/3/
* 90	Gity of Brenham well 6	J. W. Jackson	1935	143	10	J;B?	310	41.0	Feb.	13,	1969	Τ,Ε,5	P	Water level measured while water was cas- cading through hole in casing at around 30 ft. <u>2</u> /
* 90	City of Brenham well 7	do.	1934	198	10	J	310	67.2	May	22,	1961	N	U	3/
* 90	City of Brenham well 8		1944	200	6	J	310					N	U	
* 90	City of Brenham well 9	Layne-Texas Co.	1948	511	5	J	310	82.3 68.1	July Feb.	24, 11,	1968 1969	т,Е,40	P	Screen from 98-121, 129- 139, 169-190, 371-401, 424-434, and 479-512 ft.
* 910	City of Brenham well 10	do.	1948	500	10	J	310	70	Jan.		1949	T,E,40	P	Screen from 84-120, 139- 150, 188-211, 360-380, 438-449, and 468-490 ft. 2/
* 91	City of Brenham well 11	Texas Water Wells	1952	593	10	J	280	65	Aug.		195 2	Т,Е,60	P	Screen from 73-88, 95- 107, 122-142, 185-207, 298-308, 345-395, 465- 505, 518-525 ft. 2/
							-		. L.*					

Table 6.--Records of Wells, Springs, and Test Holes--Continued

	REMARKS	Spring, dug out and brick lined, used for "well reservoir". In use since about 1884, as auxiliary public supply source. Reported to flow continuously. Measured discharge 12 gpm, Jan. 2, 1969. Measured temp. 21°G.	Well never used. One of two wells numbered "9". Screen from 1,216-1,234, 1,257-1,303, 1,355- 1,396, and 1,452-1,501 ft. Reported yield 406 gpm. <u>2</u>		Casing: 12-in. to 415 ft; 10-in. from 415 to 820 ft. Screen from 75- 86, 120-143, 350-414, 468-518, and 750-810 ft. <u>2</u> /	Casing: 12-in. to 520 ft; 10-in. from 520- 1,000 ft. Screen from 120 to 135, 395 to 470, 520 to 595, 835 to 885, and 970 to 990 ft.	Casing slotted from 464 to 542 ft.	Casing slotted from 349 to 577 ft.	Screen from 494 to 535 ft. <u>2</u> /
	USE OF WATER	п.	D	Ь	Ь	<u>م</u>	Ind	Ind	Ind
	METHOD OF LIFT	Flows	Z	Τ,Ε,10	Т,Е,75	Τ,Ε,100	S,E,5	S,E,5	Т,Е,5
LEVEL	DATE OF MEASURE- MENT	Jan. 2, 1969	1	;	Dec. 1963	Apr. 1958	1963	July 30, 1968	:
WATER	BELOW LAND SUR- FACE DATUM (FT)	+	:	ł	42	200	11	96.6	I
	ALTI- TUDE OF LAND SURFACE (FT)	305	310	336	267	315	310	310	310
	WATER- BEAR- ING UNIT	г ц	Tcs	ŗ	5	'n	5	7	'n
DIAM-	ETER OF WELL (IN)	:	16	12	12	12	4	4	80
	DEPTH OF WELL (FT)	Spring	1,504	785	820	1,000	660	598	535
	DATE COM- PLET- ED	1884	1930	1907	1963	1968	1963	:	1962
	DRILLER	1	Layne Texas Co. and John Booth	Layne-Texas Co.	Texas Water Wells	do.	Beaumier Iron Works	do.	Pomykal Drilling Co.
	OWNER	City of Brenham	City of Brenham well 9	Travis Voelkel	Gity of Brenham well 12	City of Brenham well 13	Brenham Cotton Mills well 1	Brenham Cotton Mills well 2	Brenham Cotton Mills well 3
	VELL	* YY-59-53-912	913	* 914	* 915	* 916	617	* 918	919

· 66 ·

1						DIAM-			WATE	R LEVEL			
	WELL	OWNER	DRILLER	DATE COM- PLET- ED	DEPTH OF WELL (FT)	ETER OF WELL (IN)	WATER- BEAR- ING UNIT	ALTI- TUDE OF LAND SURFACE (FT)	BELOW LAND SUR- FACE DATUM (FT)	DATE OF MEASURE- MENT	METHOD OF LIFT	USE OF WATER	REMARKS
*	¥¥-59-53-920	Brenham Cotton Mills well 4	Beaumier Iron Works	1967	587	6	L	270			T,E,40	Ind	Screen from 294 to 416 ft. Reported pumping level 250 ft.
*	921	Brenham Cotton Mills	do.	1903	200	10 3/4	J	310	40 73.3	July 1941 July 30, 1968	N	U	
*	922	Brenham Bottling Co.	E. Gajeske	1955	168	4	J	335	40	1955	S,E, 1 1/2	Ind	Screen from 163 to 168 ft.
*	923	Blue Bell Creameries	do.	1923	180	6	J	315	79.0	Aug. 23, 1968	S,E,5	Ind	Screen from 160 to 180 ft. Used for cooling and washing.
*	924	M. C. Morris	A. B. Conklin	1960	212	4	Ev	372	132.9	Nov. 22, 1968	S,E,3/4	D	Screen from 198 to 212 ft.
*	925	Louise Stone	Posey	1895	700	5	L	3 75			N	U	Drilled before 1906 by Heberstone. At 1,500 ft. water rose to within 40 ft. of the surface, but the well did not flow.
*	926	Albert Kramer	Walter Rinn	1930	102	3	Εv	370	-8		N	U	
*	54-101	W. Schomburg	B & P Drilling Co.	1956	433	4	J	260	1.1	Sept. 16, 1968	S,E	D	Casing slotted from 412 to 433 ft.
	102	City of Brenham Airport	Beaumier Iron Works	1967	210	6	J	240	•6	do.	S,E,3	P	Casing slotted from 168 to 210 ft. Test hole 343 ft.
	103	B. R. Wellman	Pomykal Drilling Co.	1965	114	4	J	308	83	Apr. 1965	S,E,1/2	D	Casing slotted from 104 to 114 ft. Pump set at 105 ft. <u>2</u> /
*	104	Mrs. P. Schulte	do.	1958	360	4	J	342	43.4	Aug. 16, 1968	S,E,3/4	D	
	105	Henry Wellman	do.	1963	115	4	J	285	+	Jan. 29, 1963	Flows, N	D	Casing slotted from 103 to 115 ft. 2/
	201	F. Fulberg	Mount Selman	1941	4,762			283		-	7.7		0il test. <u>1</u> /

Table 6.--Records of Wells, Springs, and Test Holes--Continued

See footnotes at end of table.

- 67 -

					DIAM-			WATE	R LEVEL			
WELL	OWNER	DRILLER	DATE COM- PLET- ED	DEPTH OF WELL (FT)	ETER OF WELL (IN)	WATER- BEAR- ING UNIT	ALTI- TUDE OF LAND SURFACE (FT)	BELOW LAND SUR- FACE DATUM (FT)	DATE OF MEASURE- MENT	METHOD OF LIFT	USE OF WATER	REMARKS
* YY-59-54-20	2 Arnold Lammert	Seismic Crew	1940	95	3	Ev?	201	+6.0 +2.0	Oct. 21, 1942 Oct. 2, 1959	N, Flows	U	Seismic test hole. Destroyed.
* 20	3 Henry Wellman	Sun Seismic Crew	1932	200	3	Ev?	190	+3.3	July 1, 1942	N, Flows	υ	
204	J. L. Murphy	Alfred Conklin	1960	187	4	Ev?	251			J,E,3/4	D	
30	Cecil Burch	Pomykal Drilling Co.	1965	128	4	Ev	248	55	Aug, 1965	S,E,1/2	D	Casing slotted from 115 to 128 ft. 2/
30	2 H. Wellman	do.	1966	126	4	Ev	205	13.2	Dec. 17, 1968	S,E,1/2	S	Casing slotted from 110 to 126 ft. 2/
30.	do.	H. Wellman	1956	24	28	Ev	205	16.6	do.	N	U	Dug well, concrete curb.
* 40	Zeiss & Kuecker	Alfred Conklin	1957	135	8	В	198	+7.2	Sept. 12, 1968	T,E,20 Flows	Irr	Casing slotted from 105 to 135 ft.
403	Brenham Country Club	Pomykal Drilling Co.	1967	218	4	B?	275	85 85.3	Mar. 1967 Aug. 23, 1968	S,E,1/2	Irr	Casing slotted from 193 to 218 ft. Pump set at 164 ft. 2/
40:	do.	Beaumier Iron Works	1952	420	4	J	235	15.0	Aug. 23, 1968	S,E,2	Irr	
* 404	• Owen Zeiss	Alfred Conklin	1956	86	4	J	212	7.3	Sept. 12, 1968	J,E	D	Casing slotted from 76 to 86 ft.
* 40	Ed Dever		1930	52	30	Ev	298			J,E,1/3	D	Dug well, concrete curb.
400	Arnold Thim	Pomykal Drilling Co.	1967	75	4	В	219	15	June 1967	J,E,1/2	D	Casing slotted from 50 to 75 ft. 2/
* 40	F. W. Sultan	Alfred Conklin	1959	617	4	J	322	60 76.2	1959 Dec. 17, 1968	S,E, 1 1/2	S	Casing slotted from 587 to 617 ft.
503	Lowell S. Fink		1890	49	24	Ev	228	34.6	Sept. 12, 1968	J,E,1/3	D	Dug well, concrete curb.
* 502	0. Tomachefsky	Pomykal Drilling Co.	1967	88	4	Ev	240	32.3	Oct. 7, 1968	S,E,1/2	D	Casing slotted from 67 to 88 ft. 2/
503	M. C. Goessler	do.	1968	2 74	4	В	325	115.0	do.	S,E,3/4	D	Casing slotted from 232 to 274 ft. 2/

See footnotes at end of table.

- 68 -

					DIAM-			WATE	R LEVEL			
WELL	OWNER	DRILLER	DATE COM- PLET- ED	DEPTH OF WELL (FT)	ETER OF WELL (IN)	WATER- BEAR- ING UNIT	ALTI- TUDE OF LAND SURFACE (FT)	BELOW LAND SUR- FACE DATUM (FT)	DATE OF MEASURE- MENT	METHOD OF LIFT	USE OF WATER	REMARKS
¥¥ -5 9-54-504	F. W. Sultan	Alfred Conklin	1960	250	6	B?	275	65.3	Dec. 17, 1968	S,E,1/2	S	Casing: 6-in. to about 63 ft, 4-in. from about 63 ft. to bottom.
601	0. M. Brown	Pomykal Drilling Co.	1966	202	2	Ev	289	113	June 1966	S,E,3/4	D	Casing slotted from 188 to 202 ft. $\underline{2}/$
603	Clarann Ranch	Beaumier Iron Works	1965	396	4	Εv	287			S,E,3	Irr	
604	do.	do.	1963	396	4	Ev	2 73	90.5	Sept. 12, 1968	S,E,3	Irr	Casing slotted from 354 to 396 ft.
* 605	Frank Gurka	David Ohlman	1966	147	4	Ev	200	20.0	Sept. 16, 1968	J,E,3/4	D	Casing slotted from 141 to 147 ft.
* 701	E. Nordt		1906	40	24	Ev	342	26.7	June 30, 1942	N	U	Dug well, tile curb.
702	Gun & Rod Club	E. Gajeske	1958	290	4	В	245	103	Feb. 1963	T,E, 7 1/2	Irr	Casing slotted from 268 to 290 ft.
* 703	do.			Spring		Ev	245	+	Sept. 16, 1968	Flows	Р	Spring with dugout re- servoir, estimated flow 30 gpm, Sept. 16, 1968.
704	Jack Mehrens	Pomykal Drilling Co.	1963	168	4	Ev	342	104	Mar. 1963	S,E, 1 1/2	D	Casing slotted from 135 to 168 ft.
705	W. Kuretsch	do.	1967	200	4	Ev	314	87	Jan. 1967	J,E,3/4	D	Casing slotted from 185 to 200 ft. 2/
707	Bill Fischer	do.	1968	345	4	В?	338	123	July 1968	S,E,3/4	D	Casing slotted from 325 to 425 ft.
* 801	Pulawski School			21	24	Ev	240	9.3	Nov. 17, 1942	N	U	Dug well, concrete curb.
802	T. J. Mabry	Pomykal Drilling Co.	1959	407	4	Ev	322		-	S,E,3	D	Casing slotted from 379 to 407 ft. 2/
803	A. Schwettmann	do.	1967	245	4	Ev	350	140	May 1967	S,E,3/4	D	Casing slotted from 233 to 245 ft. 2/
					_							

						DIAM-			WATE	R LEVE	L				
w	ELL	OWNER	DRILLER	DATE COM- PLET- ED	DEPTH OF WELL (FT)	ETER OF WELL (IN)	WATER- BEAR- ING UNIT	ALTI- TUDE OF LAND SURFACE (FT)	BELOW LAND SUR- FACE DATUM (FT)	DA MEA M	TE O SURE ENT	F -	METHOD OF LIFT	USE OF WATER	REMARKS
* YY-	59-54-901	E. A. Kelley			190	6	Ev	285	82.3 87.1 102.2	Nov. Oct. Dec.	17, 12, 16,	1942 1959 1968	P,W	U	
*	902	Chappell Hill Water Supply Corp.	Key Drilling Co.	1967	778	8	J	310	116.0	July	29,	1968	S,E,10	Р	Screen from 738 to 768 ft. Measured pumping level 279.6 ft. while pumping 32 gpm, July 29, 1968. Measured temp. 26°C. <u>2</u> /
*	903	Matthew Bros.	W. W. Browning	1858	27	24	Ev	311	18.8	July	29,	1968	J,E,1/3	S	Dug well, concrete curb.
	904	H. R. Matthews	J & S Well Service	1962	198	4	Ev	290	110			1962	S,E,3	Irr	Screen from 192 to 198 ft.
*	905	R. L. Felder	Falkenbury Drilling Co.	1951	292	7	Εv	330	149.5	Aug.	15,	1968	S,E,5	D	Measured discharge 50 gpm, Aug. 15, 1968, from 272 to 292 ft.
*	906	L. M. Davis			31	24	Ev	312	25.2	Nov.	17,	1942	N	U	Dug well, concrete curb. Old well.
	907	do.		1956	192	4	Ev	312	121.3	Sept.	12,	1968	S,E	D	Casing slotted from 152 to 192 ft.
*	908	Abe Sampson			190	4	Ev	290	98.1	Nov.	17,	1942	N	U	
*	909	C. A. Polk	Pomykal Drilling Co.	1968	446	4	B?	294	108.4	Sept.	12,	1968	S,E,3	Irr	Casing slotted from 404 to 446 ft.
*	910	John Sheessley	J. C. Bland	1942	211	6	Ev	290	96.9 105.1	Nov. Sept.	17, 18,	1942 1968	т,Е,З	D	Screen from 191 to 211 ft.
	911	Atkinson Cemetery Assn.			249	3	Ev	332	132.3	Oct.	28,	1968	S,E	Irr	
	912	Routt & Schaer	G. C. Booth		101	6	Ev	298	20,1	July	13,	1942		U	Old well.
*	55-101	John Somers			138	4	Ev	302	90			1942	N	U	
*	102	do.	Pomykal Drilling Co.	1958	150	4	Ev	302	93.6	Oct.	7,	1968	J,E,3/4	D	Screen from 125 to 150 ft.
*	102	do.	Pomykal Drilling Co.	1958	150	4	Ev	302	93.6	Oct.	7,	1968	J,E,3/4	D	Screen from 125 to 150 ft.

See footnotes at end of table.

- 70 -

-		1012										_			_		
	REMARKS	Casing slotted from 162 to 174 ft. 2/	Dug well, concrete curb		Casing slotted from 40 to 66 ft. 2/	Dug well. Wooden curb. Old well.		Measured discharge 51 gpm. Screen from 1,020 to 1,040 ft.		Screen from 428 to 438 ft.	Casing slotted from 46 to 65 ft.	Dug well, wooden curb.	37	Reported never used. 3/	Do. <u>3</u> /	Screen from 350 to 374 ft. 2/	2/ 3/
	USE OF WATER	S	n	D	Q	p	ы	ŝ	S	Q	р	р	Irr	p	n	S	D
	METHOD OF LIFT	S,E,3/4	N	N	J,E, <i< td=""><td>N</td><td>S,E,3/4</td><td>N, Flows</td><td>N, Flows</td><td>s,E, 1 1/2</td><td>Z</td><td>N</td><td>T,E,20</td><td>N</td><td>N</td><td>Flows</td><td>T,G,40</td></i<>	N	S,E,3/4	N, Flows	N, Flows	s,E, 1 1/2	Z	N	T,E,20	N	N	Flows	T,G,40
	E OF JRE- VT	1967	21, 1968	lo.	9, 1968	22, 1942	8, 1968	io.	lo.	10, 1968	1939	22, 1942	7, 1969	16, 1968	16, 1968	1, 1959	1968
LEVEL	DATI MEASI MER	Nov.	Nov.		Aug.	Oct.	Oct.			Aug.		Oct. 2	Apr.	Aug.	Aug.	Oct.	Aug.
WATER	BELOW LAND SUR- FACE DATUM (FT)	84	11.4	31.0	9.4	26.3	11.8	+29.2	+24.0	47.2	53	43.6	14.5	17.0	14.5	+	21.8
	ALTI- TUDE OF LAND SURFACE (FT)	287	185	215	178	202	202	180	175	232	272	230	164	163	163	166	166
	WATER- BEAR- ING UNIT	Ev	Ev	Ev	Ev	Ev	Εv	ŗ	r	Ev	Εv	Ev	Qal,Ev	Qal,Ev	Qal,Ev	Ev	Qal,Ev
DIAM-	ETER OF WELL (IN)	4	28	9	4	36	4	5	4	Q	9	36	18	16	13	7	18
	DEPTH OF WELL (FT)	194	17	50	66	28	26	1,049	1,059	438	65	46	100		ł	374	119
	DATE COM- PLET- ED	1967	1	1944	1967	ł	1944	1953	1949	1960	1939	1940	1952	1956	1956	1947	1955
	DRILLER	Pomykal Drilling Co.	1	Ę	Pomykal Drilling Co.	ł	A. B. Conklin(?)	Falkenbury Drilling Co.	do.	do.	E. Gajeske	1	C. H. Alexander	do.	do.	Falkenbury Drilling Co.	Dunn Water Well Drilling Co.
	OWNER	S. L. Whiting	Henry Hughes	do.	T. S. Jackson	Brenham I.S.D.	do.	Mrs. W. Nazrd	do.	do.	T. Borgstedte	Brown's College	C. H. Alexander Estate	do.	do.	D. G. Austin	R. L. Felder
	MELL	YY -59 -55 -103	104	105	201	202	203	301	302	303	304	305	501	502	503	504	505
					*	*	*	*			*	*					

WELL	OWNER	DRILLER	DATE COM- PLET- ED	DEPTH OF WELL (FT)	DIAM- ETER OF WELL (IN)	WATER- BEAR- ING UNIT	ALTI- TUDE OF LAND SURFACE (FT)	WATE BELOW LAND SUR- FACE DATUM (FT)	R LEVE DA MEA M	L TE OF SURE- IENT		METHOD OF LIFT	USE OF WATER	REMARKS
* YY-59-55-50	R. Schaer			21	6	Ev	169	11.7	Nov.	10,	1942	N	U	
510	Unknown			30		Ev	185	20.5	Aug.	21,	1964	N	U	Dug well.
* 511	J. B. Schaer	J & S Well Service	1965	352	2	Ev	162	+	Aug.	9,	1968	Flows N	S	Reported flows 10 gpm. Casing slotted from 332 to 352 ft. 21
* 512	C. H. Alexander Estate			400	4	Ev	164	+ 8,9	July	23,	1968	Flows, N	S	Measured flow 216 gpm. Old well.
513	R. L. Felder	Falkenbury Drilling Co.	1943	367	3	Ev	164	+ 3.8	Aug.	15,	1968	S,E,3/4, Flows	S	Screen from 347 to 367 ft.
514	do.		1935	65	6	Qal	166	25.1		do.		J,E,1/2	S	
515	Mrs. E. O. Routt Estate		1943	365	2	Ev	166	+		do.		Flows, N	S	Reported flows 0.3 gpm
606	E. O. Routt Estate			105	6	Qal	150	32.4		do.		N	U	
701	C. H. Alexander Estate	C. H. Alexander	1952	90	20	Qa1	160	25.5	Apr.	7,	1969	T,Ng,50	Irr	3/
w 703	E. D. Butcher	Falkenbury Drilling Co.	1957	70	18	Ev	163	26.2	June	5,	1964	T,Ng,25	Irr	Casing slotted from 50 to 70 ft. Pumping level 28.3 ft. while pumping 168 gpm on Aug. 15, 1963.
k 704	San Antonio Loan & Trust Co.			65	6	Qal	235					N	U	Old well.
801	C. H. Alexander Estate	C. H. Alexander	1956	163	20	Qal,Ev	159	23.3	Aug.	9,	1968	T,Ng,70	Irr	3/
802	do.	do.	1956	100	12	Qal	162	22.4		do.		T,Ng,70	Irr	3/
804	đo.	do.	1952	105	10	Qal	159	18.9 24.3	Oct. Aug.	21, 15,	1959 1963	N	U	
805	R. L. Felder	.Falkenbury Drilling Co.	1947	340	4	Ev	165	+ 1.5	Aug.	15,	1968	Flows, N	S	Measured flow 1 gpm, Aug. 18, 1968. 2/

- 72 -

-				_	_						
	REMARKS	Estimated flow 11 gpm, July 13, 1942; flowing from around outside of casing, 1968.	Casing slotted from 395 to 416 ft. Measured flow 2.4 gpm, Aug. 15, 1968. Measured temp. 20°C. <u>2</u> /		2J 3J	Measured flow 9 gpm through discharge pipe, plus some additional unconfined flow Nov. 10, 1942. Gasing raised to about 95 ft. See well YY-59-55-914.	Casing slotted from 402 to 425 ft. Measured flow 2 gpm. Measured temp. 23°C. 2/	Screen from 358 to 378 ft. Measured flow 6 gpm. Measured temp. 24°C. <u>2</u>	Shallow portion of well YY-59-55-907.	Oil test. y .	Pumping level 51.4 ft. while pumping 165 gpm on Aug. 21, 1964.
	USE OF WATER	л	ß	n	Irr	п	23	s	D	ł	Itr
	METHOD OF LIFT	Flows, N	z	z	T,G,40	Z	N, Flows	N, Flows	z	1	T,G,30
		1968	1968	1915	1968	1942	1968				1968
_	NTE OF SURE-	13,	15,		15,	10, 1,	15,	do.	do.	ł	1,
R LEVE	MEZ	Aug.	Aug.	July	Aug.	Nov. Oct.	Aug.				Oct.
WATER	BELOW LAND SUR- FACE DATUM (FT)	+	11.7	72	27.4	+2.1 6.3	46.6	14.0	22.1	L	35.3
	ALTI- TUDE OF LAND SURFACE (FT)	151	154	252	166	165	155	161	165	210	174
	WATER- BEAR- ING UNIT	r	Ev	E	Qal	Ev	Ev	Ev	Qal	3	Qal, Ev
DI AM-	OF OF WELL (IN)	9	en .	8	18	6	4	3	3	ł	16
	DEPTH OF WELL (FT)	1,674	416	87	138	400	428	378	93	11,009	11
	DATE COM- PLET- ED	1925	1955	1915	1955	1909	1949	1964	1909	1952	1964
	DRILLER	G. C. Booth	Falkenbury Drilling Co.	G. C. Booth	Dunn Water Well Drilling Co.	ł	Falkenbury Drilling Co.	J & S Well Service	1	David C. Bintliff	Siegert Water Wells
	OWNER	Texas Highway Dept.	R. L. Felder	Tom Stolarski	R. L. Felder	do.	do.	do.	do.	James well 1	T. J. Moore
	MELL	* YY-59-55-806	808	* 809	906	*	912	913	914	56-101	105

_													_			-
	REMARKS		Estimated flow 3 gpm.	Measured flow 10 gpm.		Screen from 152 to 162 ft.	Measured flow 3 gpm, Nov. 15, 1942; 0.2 gpm, Oct. 16, 1959.	Casing slotted from 179 to 208 ft. 2/	Dug well, rock curb.	Screen from 185 to 205 ft. Reported flowed when drilled, stopped flowing about 1963.	Reported flowed "trickle", July 24, 1942.	Measured flow 6 gpm, Dec. 27, 1968.	Measured flow 9 gpm, Dec. 27, 1968.		Measured flow 3 gpm, July 20, 1942.	
	USE OF WATER	Irr	ŝ	ŝ	Irr	s	D	D	n	Q	Q	Q	S	D	D	
	METHOD OF LIFT	z	N, Flows	N, Flows	T,G,30	P,E,3/4	N, Flows	S,E,3/4	N	J,E,1/2	J,E,<1 Flows	J,E,1/2 Flows	N Flows	N	Flows, N	
	TE OF SURE- ENT	8, 1968	do.	do.	do.	18, 1968	15, 1942	1966	;	27, 1968	20, 1942	1948 28, 1968	27, 1968	ł	20, 1942	
R LEVE	MEA	Oct.				Dec.	Oct.	May		Dec.	July	Dec.	Dec.		July	
WATE	BELOW LAND SUR- FACE DATUM (FT)	35.2	+	+	34.7	76.6	6.9+	41	;	3.6	+0.5	+18 +10.0	+12.7	;	+	
	ALTI- TUDE OF LAND SURFACE (FT)	174	177	173	174	644	350	419	363	363	372	340	332	400	358	
	WATER- BEAR- ING UNIT	Qal,Ev	L,	'n	Qal	'n	'n	Ŀ	'n	'n	ŗ	'n	ŗ	ŋ	'n	
DIAM-	ETER OF WELL (1N)	16	4	4	16	4	9	4	36	4	;	e	4	e	e	
	DEPTH OF WELL (FT)	71	006	006	85	162	165	208	36	205	210	182	170	151	180	
	DATE COM- PLET- ED	1964	1960	1967	1961	1962	1932	1966	1870	1953	1910	1948	1963	1900	1925	
	DRILLER	Siegart Water Wells	Falkenbury Drilling Co.	Siegart Water Wells	I	A. B. Conklin	Walter Rinn	Powykal Drilling Co.	;	C. Erickson	I	Dunn Water Well Drilling Co.	Pomykal Drilling Co.	1	Walter Rinn	
	OWNER	T. J. Moore	.ob	.ob	.ob	0. A. Bergmann	Mrs. E. Menn	D. J. Kieke	Fritz Steenken	do.	Helen Neumann	R. Elverson	H. F. Hansel	Seldel Bros.	Hugo Krause	
	MELL	* YY-59-56-106	108	109	110	303	101-09	102	103	104	105	106	107	108	109	
		15		14		*	*		*		*			*	*	

Γ		2	ę.	00					-		-		-					-
	REMARKS	Casing slotted from 21 to 233 ft. 2/	Dug well, concrete cun	Casing slotted from 34 to 383 ft. 2/	Dug well, concrete cun	Old dug well, concretu curb.	Gasing slotted from 4. to 497 ft. Pump set at 168 ft. 2/			Dug well, tile curb.			Screen from 240 to 244 and 369 to 380 ft. 3/	Casing perforated from 378 to 420 ft. 2/		Screen from 177 to 18; ft.	Dug well, tile curb.	
	USE OF WATER	S	n	D	n	٩	ŝ	D	D	Q	D	D	ŝ	S	ŝ	Q	Q	Q
	METHOD OF LIFT	S,E,1/2	N	S,E,1	z	J,E,1/3	S,E,1/2	P,E,3/4	J,E,1	Ν,Ν	N	N	s,E, 1 1/2	s,E, 1 1/2	S,E,5	S,E	P,W	S,E,1/2
		1966		1968		1968	1967	1953		1968		1942	1968	1967	1961	1965 1968	1965	1968
_	LTE OF SURE-		ł	27,	ł	19,			1	19,	ł	16,	19,		19,	30, 23,	30, 23,	19,
R LEVE	MEP	May		Dec.		Dec.	Nov.			Dec.		July	Dec.	Sept.	Dec.	Nov.	Nov.	Dec.
WATE	BELOW LAND SUR- FACE DATUM (FT)	75	;	106.5	;	41.7	93	130	1	29.7	ł	7.0	48.7	£	60 64.3	61.7 61.5	30.3	62.6
	ALTI- TUDE OF LAND SURFACE (FT)	432	439	439	422	403	398	412	395	380	388	325	298	252	340	291	285	303
	WATER- BEAR- ING UNIT	5	ŗ	Ъ	B	B	'n	r	Г	Ev	ſ	r	מ	r	5	B	Ev	B
DIAM-	ETER OF WELL (IN)	4	30	4	32	30	4	e	S	30	Э	4	4	4	4	4	26	4
	DEPTH OF WELL (FT)	233	40	383	32	45	497	204	71	44	100	140	394	420	400	187	38	110
	DATE COM- PLET- ED	1966	1	1963	1897	1910	1961	1953	1890	1880	1961	1940	1940	1967	1961	1955	1968	1.94.7
	DRILLER	Pomykal Drilling Co.	1	Pomykal Drilling Co.	1	O. E. Weiss	Pomykal Drilling Co.	Charles Ressman	0. Waggoner	1	Joe Pomykal	A. B. Conklin	Joe Pomykal	Charlie J. Loehr	Beaumier Iron Works	A. B. Conklin	F	E. Gajeske
	OWNER	Henry Lehrmann	John Eckert	do.	Emil Drew	Granville Weiss	Albert Weiss	M. B. Eckerman	E. and L. Heins	Bruno Muske	H. Nitsche	F. Pomykal	Davis Bros.	.ob	R. E. Brooks	H. F. Hueske	do.	Thelma Roberts
	NELL	YY -59-60-110	202	203	204	302	303	404	505	603	604	605	61-101	102	103	201	202	203
			*		*	*			*	*	*	*	*					

					DI AM-			WATE	R LEVEL			
WELL	OWNER	DRILLER	DATE COM- PLET- ED	DEPTH OF WELL (FT)	ETER OF WELL (IN)	WATER- BEAR- ING UNIT	ALTI- TUDE OF LAND SURFACE (FT)	BELOW LAND SUR- FACE DATUM (FT)	DATE OF MEASURE- MENT	METHOD OF LIFT	USE OF WATER	REMARKS
* YY-59-61-204	E. C. McGraw		1941	63	30	В	342	57.0 55.0	July 21, 1942 Dec. 19, 1968	N	U	Dug well, concrete curb.
205	Arthur Hueske	Pomykal Drilling Co.	1967	369	4	J	275	90	Oct. 1967	S,E,3/4	D	Casing slotted from 350 to 369 ft. 2/
* 206	E. Sommerfeld		1916	54	30	В	328	41.2	July 15, 1942	N	U	Dug well, concrete curb.
301	E. W. Pieper well 1	Hunt	1948	9,501		1.44	355					0il test. <u>1</u> /
* 304	A. W. Winkelmann	-		80	30	Ev	301	74	1940	J,E,<1	D	Dug well, concrete curb. Old well.
* 409	Pomykal Estate	A. B. Conklin	1940	125	4	В	352	56.4	July 16, 1942	N	U	
* 410	A. S. Kramer	Brenham Salt Dome Oil Co.	1931	155	10	В	315	36.4	July 15, 1942	N	U	
* 503	H. Lehmann			Spring		B?	270	+	do.	Flows	S	Estimated flow 5 gpm.
62-101	William Bosse		1938	17	24	Ev	395			N	U	Dug well, concrete curb.
102	F. C. Love		1924	80	36	Ev	362	61.7	Oct. 28, 1968	Ρ,₩	D	Do.
103	Jack Mueller	A. B. Conklin	1957	99	4	Eν	370	75.3	do.	J,E,1	D	
104	W. F. Tegler	Beaumier Iron Works	1953	187	4		355	137.9	do.	S,E	D	
* 105	do.		1870	6	60	Ev	315	1.7	do.	B,H	s	Dug well, concrete curb.
106	R. R. Ross	Pomykal Drilling Co.	1967	126	4	Ev	330	67	June 1967	S,E,3/4	D	Casing slotted from 80 to 126 ft. Pump set at 119 ft. <u>2</u> /
107	B. C. Crawford	do.	1963	140	4	Ev	407	103.0	Oct. 28, 1968	S,E,1/2	α	Casing slotted from 128 to 140 ft. Pump set at 116 ft. 2/
* 108	J. L. Zientek	G. C. Booth	1920	100	6	Ev	380			N	U	
* 201	Barnett	Max Zettner	1919	148	3	Ev	315			P,E,<1	D	

See footnotes at end of table.

- 76 -

						DIAM-			WATE	R LEVE	L			
	WELL	OWNER	DRILLER	DATE COM- PLET- ED	DEPTH OF WELL (FT)	ETER OF WELL (IN)	WATER- BEAR- ING UNIT	ALTI- TUDE OF LAND SURFACE (FT)	BELOW LAND SUR- FACE DATUM (FT)	DA MEA M	TE OF SURE- IENT	METHOD OF LIFT	USE OF WATER	REMARKS
*	YY-59-62-202	Willie Bilski			95	3	Ev	320	82	June	1940	N	U	Old well.
×	203	Wiesner Estate		1909	75	30	Ev	285	60.6	June	30, 1942	P,W	D	Dug well, concrete curb.
*	204	B. Rogers		1928	100	4	Ev	330	-			N	U	
*	302	Bar D Ranch			174	4	Ev	244	50.6	Aug.	7, 1968	S,E,2	D	
*	303	do.		-	253	7	Ev	285	104.9		do.	S,E,5	D	
	304	do.			161	4	Εv	187	+2.0	Aug.	7, 1968	N Flows	U	
	305	do.		<u>u</u>	262	4	Ev	275	85.5	Aug.	9, 1968	S,E, 1 1/2	S	
	306	do.			237	6	Ev	300	119.9	Aug.	7, 1968	S,E,1	S	
*	307	M. Wardowski		1922	40	24	Ev	233	23.7 22.7	July Oct.	14, 1942 15, 1959	N	U	Dug well, concrete curb.
*	308	Bar D Ranch			18	24	Ev	311	10.5	July	14, 1942	N	U	Old well.
*	63-102	Roosevelt Leaks	Roosevelt Leaks	1964	18	24	Eν	235	7.2	Aug.	13, 1968	в,н	D	Dug well, concrete curb.
*	104	L. Cummings		-	Spring	-	Ev	220	+	July	14, 1942	Flows	S	Estimated flow 10 gpm, July 14, 1942.
*	105	Abbot Hill		1905	85	6	Ev	239	40.7		do.	N	U	
*	106	Grant Bellvine	Pomykal Drilling Co.	1967	211	4	Ev	250	84.1	Aug.	13, 1968	S,E,1/2	D	Casing slotted from 195 to 211 ft. 2/
	501	Bud Adams			70	24	Qa1	153	27.8	Apr.	10, 1964	P,W	S	Dug well, concrete curb.
*	502	do.			45	4	Qal	155	24.1		do.	P,W	S	Do.

Table 6.--Records of Wells, Springs, and Test Holes--Continued

* For chemical analyses of water from wells and springs in Washington County see Table 9.
1/ Electric log in file of U.S. Geological Survey or Texas Water Development Board.
2/ For drillers logs of wells in Washington County see Table 7.
3/ See Table 8 for water levels in wells.

145

155

THICKNESS	DEPTH		THICKNESS	DEPTH
(FEET)	(FEET)		(FEET)	(FEET)
Well YY-59-44-601		Well YY-	59-44-701	
Owner: Corps of Engineers Driller: Pomykal Drilling Co.		Owner: Dee Driller: Pomyl	o Water Assn. kal Drilling Co.	
5	5	Sand	70	70
10	15	Sandy, shale and lignite	10	80
130	145	Sand	132	212
5	150			
109	259	Well YY-	59-44-703	
18	277	Owner: Har Driller: Pomyl	old Rabalais al Drilling Co.	
3	280	Clay	20	20
125	405	Lignite and shale	25	45
62	467	Shale, green	135	180
38	505	Shale and lignite, hard	13	193
25	530	Shale, green	107	300
5	535	Shale, black, sandy; lignite	335	635
Well VV 50 44 602				

Well YY-59-44-602

Owner: Marineland, Inc. Driller: Beaumier Iron Works

Shale	153
Sand	22
Sand and shale	22
Shale	109
Sand	31
Shale	38
Sand	25

Sand

Rock

Sand

Shale

Shale

Sand

Rock, hard

Shale and lignite

Rock and shale Shale, sandy

Rock and Shale

Shale, sandy

Well YY-59-44-604

Owner: Tom Robbin Driller: Pomykal Drilling Co.

Rock	з
Shale	57
Shale, sandy	10
Shale	60
Sandy	15
Shale	10
Rock, hard	20
Sand	3
Sandy, hard	14
Sandy	4
Sand and shale	5

Well YY-59-44-705

Owner: Harold Rabalais Driller: G. Brinkman

Soil, surface	3		3
Clay	17		20
Clay and coal	30		50
Shale, blue	100		150
Shale, mushy; sand, fine	15		165
Shale, blue	68		233
Shale, mushy; sand, fine	5		238
Shale, blue	89	ţ.	327
Shale, mushy	11		338
Shale, hard	65		403
Sand	10		413
Shale	37		450
No Record	3		453

Well YY-59-44-801

Owner: Ralph Johnson Driller: Pomykal Drilling Co.

Rock	4	4
Shale, sandy, hard	56	60
Sand	27	87
Shale	. 25	112

IESS T)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)	
d			Well YY-59-44-904-Continued		
	125	Rock and sand	68	80	
	165	Shale	233	313	
	190	Sand	5	318	
	235	Rock, sand, hard	17	335	
	290		W-1 VV F0 45 707		
	315		Well YY-59-45-707		
	445		Owner: R. M. Strange Driller: Pomykal Drilling Co.		
	495	Clay	10	10	
	530	Rock, clay, sand	30	40	
	678	Shale	285	325	
	685	Sand	2	327	
	720	Shale, sandy	5	332	
	813	Sand, course	13	345	
		Rock, hard	5	350	
		Shale	2	352	
	15		Well YY-59-45-907		
	50		Owner: Harold T. Ray, Jr. Driller: Beaumier Iron Works		
	293	Shale	45	45	
	303	Shale and rock	65	110	
	328	Shale	43	153	
	332	Shale and rock	25	178	
	338	Sand	25	203	
	463				
	515		Well YY-59-46-101		
	525		Owner: C. L. Vickers Driller: Pomykal Drilling Co.		
	565	Clay	10	10	
	575	Shale, green	65	75	
	783	Sand	22	97	
	793				
	827		Well YY-59-46-401		
			Owner: Dillon Anderson Driller: Pomykal Drilling Co.		
		Clay	75	75	
		Shale, blue	5	80	
	2	Shale	27	107	
	8	Sand	43	150	
	12				

THICKN (FEE

Well YY-59-44-801-Continue

Sand, silt	13	
Shale	40	
Sand, silt	25	
Shale	45	
Sand	55	
Shale	25	
Shale, sandy	130	
Sand	50	
Shale, hard	35	
Shale, soft	148	
Sand, fine	7	
Shale, sandy	35	
Shale, sandy, fine	93	

Well YY-59-44-802

	Owner: Rocky Creek Driller: Pomykal Drill	Park ing Co.
Clay		15
Rock and sand		35
Shale		243
Sandy		10
Sand		25
Rock		4
Shale, green		6
Shale		125
Lignite		52
Sand, fine		10
Shale		40
Sandy		10
Shale		208
Sand, fine		10
Shale		34

Well YY-59-44-904

Owner: John Dahlmann Driller: Pomykal Drilling Co.

2
6
4

Table 7.-Drillers' Logs of Wells-Continued

40

> 3 25

163

228

232

327

5 6 40

100

102

125

149

4

95

THICKNESS DEPTH (FEET) (FEET)

THICKNESS DEPTH (FEET) (FEET)

Well YY-59-46-402

Owner: Independence Smoke House Driller: Pomykal Drilling Co.

Rock	40	40
Shale	90	130
Sand	1	131
Shale	13	144
Sand	4	148
Shale	10	158
Rock	7	165
Shale	12	177
Sandy	6	183
Shale	38	221
Sand	21	242

Well YY-59-46-403

Owner: Independence Baptist Church Driller: Pomykal Drilling Co.

Rock and sand	5
Clay	55
Shale, blue	100
Sand	19

Well YY-59-46-404

Owner: Independence Baptist Church Driller: Pomykal Drilling Co. Soil, surface 3 Rock and sand, hard 22 Shale 138 Shale, sandy 65

Shale

Sand

Well YY-59-46-405

Owner Drill	r: Independence Cemetery er: Pomykal Drilling Co.
Clay	5
Shale	1
Shale	34
Shale, blue	60
Rock	2
Shale, blue	23
Sand	24

Well YY-59-46-407

Owner: Edward Scheffer Driller: Pomykal Drilling Co.

Clay	40	40
Rock and shale	10	50
Shale, blue	25	75
Rock, hard	15	90
Rock, soft	22	112
Shale, blue	40	152
Sand	8	160
Shale	2	162

Well YY-59-46-502

Owner: Dillon Anderson Driller: Pomykal Drilling Co.

	370	370
Shale, sandy	10	380
Shale	120	500
Rock	10	510
Shale, soft	140	650
Sand	51	701

Well YY-59-46-503

Owner: David Dahman Driller: Pomykal Drilling Co.

Clay	5	5
Sand	13	18
Rock	22	40
Shale	35	75
Rock	25	100
Shale	27	127
Rock	8	135
Shale, sandy	10	145
Sandy, hard	15	160
Shale	30	190
Sand	15	205
Shale	1	206

Well YY-59-46-504

Owner: R. A. McAmis Driller: Pomykal Drilling Co.

15

15

Shale

DEPTH

(FEET)

THICKNESS (FEET)

DEPTH

(FEET)

Well YY-59-46-802 Owner: Herbert Gebert

Driller: Layne Texas Co.

Rock	10	25	
Rock and shale, hard	35	60	
			Soil, surface
Shale	70	130	La companya de la
1200 SC 1011		212127	Clay
Sandy	5	135	920 contesta
2	25	170	Sand
Sandy	35	170	-
Chala	50	220	Clay
Shale	50	220	Clay candy
Sand	20	240	Ciay, salidy
Suno	20	240	

Well YY-59-46-504-Continued

THICKNESS

(FEET)

Well YY-59-46-601

	Owner: G. T. Newman Driller: Pomykal Drilling Co.	
Shale	10	
Rock, sand	43	
Rock, hard	8	
Rock, sand	23	
Shale	10	
Rock, hard	30	
Shale	34	
Shale, sandy	12	
Shale	27	
Rock	8	
Rock, shale	14	
Sand	2	
Shale, sandy	47	
Sand	17	
Shale sandy	5	

Clay	4	8
Sand	5	13
Clay	55	68
Clay, sandy	26	94
Sand	27	121
Clay	14	135
Rock and sand	9	144
Clay	40	184
Shale, sandy	12	196
Shale and shale, sandy	44	240
Shale, sandy hard	26	266
Sand	17	283
Shale and shale, sandy	18	301
Shale	19	320
Shale, sandy; sand streaks	35	355
Shale	7	362
Sand	14	376
Shale, sandy	9	385
Shale	10	395
Shale, sandy	5	400
Shale	12	412
Sand	9	421
Shale	4	425
Sand	15	440
Shale	17	457

Well YY-59-46-805

Owner: B Driller: Beaun	uell Moore nier Iron Works	
Shale, surface	20	20
Shale	144	164
Shale, sandy	20	184
Sand and rock	21	205
Shale	41	246
Sand and shale	61	307
Sand	33	340

Well YY-59-46-707

Owner: M.	D. Miller
Driller: Pomyka	Drilling Co.

Clay and sand	10
Shale	155
Rock and shale, sandy	15
Shale	5
Rock	30
Shale	95
Sand	5
Sand	10

Table 7.-Drillers' Logs of Wells-Continued

DEPTH (FEET)

Well YY-59-46-902

THICKNESS

(FEET)

Owner: Dudley Briggs Driller: Pomykal Drilling Co.

Sand, rock and shale	50	50
Shale	59	109
Sand	9	118
Shale	4	122
Sandy	11	133
Rock	7	140
Shale	125	265
Rock	10	275
Shale, sandy	25	300
Shale	30	330
Rock	17	347
Shale	33	380
Sand	19	399
Shale	1	400

Well YY-59-47-604

Owner: Sta Driller: Pomy	ate of Texas kal Drilling Co.	
Clay, red	10	10
Sand	5	15
Shale	10	25
Sand	5	30
Shale	30	60
Rock	3	63
Sandy	17	80
Shale	5	85
Sand	15	100
Sand	7	107
Sand, hard	13	120
Sand, hard	10	130
Shale	20	150
Shale	66	216
Rock, hard	29	245
Shale	45	290
Rock and shale, sandy	25	315
Rock and sand	23	338

Wall VV 59.47.604-Continued

THICKNESS

(FEET)

DEPTH

(FEET)

400

5

Weil 11-59-4	-ou4-Continued	
Sand	42	380
No record	5	385
Well VY	59.47.606	
	00 47 000	
Owner: Driller: Falker	Willie Stolz bury Drilling Co.	
Sand and clay	10	10
Sand, broken	35	45
Clay and rock	37	82
Sand and rock	28	110
Well YY	-59-47-608	
Owner: F Driller: Pomy	R. Dickschat /kal Drilling Co.	
Sand and gravel	20	20
Sand and rock	25	45
Sand and shale	37	82
Shale, sandy	15	97
Sand	28	125
Shale	1	126
Well YY	-59-47-611	
Owner: Si Driller: Pomy	ate of Texas kal Drilling Co.	
Clay	6	6
Sand and gravel	14	20
Shale	5	25
Sand	10	35
Shale	40	75
Sand	45	120
Shale	120	240
Rock and shale	20	260
Shale	52	312
Rock	13	325
Shale, hard	25	350
Rock	6	356
Shale, sandy	9	365
Sand	30	395

Sand

	2	THICKNESS (FEET)	DEPTH (FEET)			THICKNESS (FEET)	DEPTH (FEET)
	Well YY-59-4	7-903			Well YY-59-51-60	07–Continued	
	Owner: C. Dic	kschat		Shale		3	43
Clav	Driner: Pomykai L	20	20	Rock and sand		7	50
Sand and rock		45	65	Shale		74	124
Shala		55	120	Sandy		5	129
Bock and sandy		10	130	Shale, sandy		6	135
Shale		10	140	Sand		20	155
Shale		20	160		Well YY-59	-51-901	
Sand		20	180		Owner: E	4 Cutler	
7.78.1821					Driller: Pomyka	Drilling Co.	
	Well YY-59-5	0-905		Clay		10	10
	Owner: R. B. Driller: Beaumier I	Fogle ron Works		Sand, rock		110	120
Posk	Dimer: Beaumer i	132	132	Shale		15	135
Shale and sand h	alua	97	219	Sand		33	168
Book and shale	blue	21	210	Shale		2	170
Rock and shale, blue 21		300		Well YY-59	-52-104		
Shale, blue		40	362		Owner: Gardne	er Symonds	
Sand, blue		40	502	21	Driller: Pomykal	Drilling Co.	10
	Well YY-59-5	1-301		Clay		10	10
	Owner: J. W.	Link		Sandrock		25	35
	Driller: Pomykal D	brilling Co.	77 . - 1	Shale, gray		175	210
Soil surface		4	4	Shale, blue		10	220
Shale, brown		126	130	Shale, sandy		10	230
Shale		30	160	Shale		45	275
Sand		12	172	Sand		27	302
	Well YY-59-5	1-302		Shale		1	303
	Owner: R. Be	nford Srilling Co			Well YY-59	-52-105	
Sand	Dimer. Fornykar L	32	32		Owner: Gardne Driller: Pomykal	er Symonds Drilling Co.	
Shale and lignite		14	46	Clay	2	10	10
Sand		21	67	Rock		20	30
Shale		23	90	Shale, gray		185	215
Sand		36	126	Shale, blue		101	316
				Sand		22	338
	Well YY-59-5	1-607				50 400	
	Owner: L. B. Da Driller: Pomykal D	venport Irilling Co.			Well YY-59	-52-106	
Clay		33	33		Owner: Gardne Driller: Pomyka	r Symonds I Drilling Co.	
Sand		7	40	Sand and shale		30	30

Table 7.-Drillers' Logs of Wells-Continued

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
Well YY-59-52-106-Continued			Well YY-59-52-401-Continued		
Shale	175	205	Shale, soft	20	215
Sand	5	210	Shale, sandy	22	237
Rock and shale, sandy	40	250	Sand	3	240
Sand	35	285	Shale, sandy	15	255
Rock	1	286	Sand	5	260
	W V/V FO FO FO 000		Shale, sandy	17	277
vv	ell Y Y-59-52-202		Sand	3	280
Owner Driller:	: Rocky Creek Manor Beaumier Iron Works		Shale, sandy	15	295
Shale and rock	23	23	Sandy, very	5	300
Shale	109	132	Sand, hard	9	309
Shale and rock	43	175	Shale, sandy	6	315
Shale	87	262	Rock and sand, hard	5	320
Sand	30	292	Shale	140	460
			Sandy, fine	15	475
w	ell YY-59-52-206		Shale	75	550
Ow Driller:	ner: Sydnor Oden Pomykal Drilling Co.		Shale, blue, soft	105	655
Surface, soil	5	5	Rock, soft	5	660
Shale	99	104	Shale	20	680
Sand	3	107	Rock	10	690
Shale	148	255	Sand	55	745
Shale, sandy	10	265	Shale, soft	55	800
Shale	10	275	Rock, hard	5	805
Shale, sandy	5	280	Sand	9	814
Shale	18	298	Shale, sandy	16	830
Sandy	7	305	Sand	25	855
Shale	50	355	Shale	19	874
Sandy	45	400	MI-11	VV 50 52 402	
Sand	15	415	vven	Y Y-59-52-403	
Shale	2	417	Owner Driller: Po	mykal Drilling Co.	
5			Rock	15	15
vv	ell Y Y-59-52-401		Shale	30	45
Owner: Bi Driller	Pomykal Drilling Corp.		Rock and shale, hard	15	60
Clay	5	5	Shale	75	135
Sand and rock	85	90	Shale, sandy	75	210
Rock and shale, sandy	15	105	Sand	10	220
Shale and boulders	90	195	Shale, sandy	6	226
			Shale, sandy	21	247

Sand

252
		THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
	Well YY-59-	52-405			Well YY-59-52-608	
	Owner: Kami Driller: Pomykal	ins Ranch I Drilling Co.		D	Owner: I. Rosenbaum Priller: Pomykal Drilling Co.	
Clay		10	10	Clay	10	10
Rock and shale		40	50	Rock	10	20
Shale, sandv		10	60	Shale	50	70
Shale, gray		130	190	Rock	20	90
Shale, sandy		3	193	Shale	46	136
Shale		7	200	Shale, sandy	14	150
Shale, sandy		2	202	Sand	7	157
Shale, gray		68	270			
Rock		15	285		Well YY-59-52-609	
Shale, gray		20	305	D	Owner: Erwin Ganske riller: Pomykal Drilling Co.	
Rock		5	310	Clay	5	5
Shale, blue		80	390	Rock	5	10
Shale, sandy		20	410	Shale	50	60
Shale		10	420	Rock	25	85
Rock		10	430	Shale	30	115
Shale		30	460	Sand	10	125
Sand		31	491	Shale	1	126
	Well VV-50	52.502			W II VV 50 50 500	
	Weil 11-55	-52-502			Well YY-59-52-702	
	Driller: Pomykal	Drilling Co.		D	Owner: Max Zuehlke riller: Pomykal Drilling Co.	
Rock and clay		20	20	Clay	21	21
Shale		20	40	Shale and rock	29	50
Rock		60	100	Shale	56	106
Shale		30	130	Sand	2	108
Sand		20	150	Shale, blue	47	155
	WHI VY FO	52 502		Sand	5	160
	Wen TT-59	-52-503		Rock, hard (flint)	20	180
	Driller: Pomykal	Drilling Co.		Rock	11	191
Clay		60	60	Shale	9	200
Rock		40	100	Sand	5	205
Shale		25	125	Shale	13	218
Rock		10	135	Sand	14	232
Shale		45	180	Shale	15	247
Sand		23	203	Sand	23	270
				Sand	5	275

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
	Well YY-59-52-703		Well YY-59-53-2	201-Continued	
	Owner: L. D. Neutzler Driller: Pomykal Drilling Co.		Shale and lime	18	473
-	Drinker Fornykar Drinking Co.	10	Sand, fine	24	497
Clay	10	10	Shale	19	516
Rock	25	35	Shale, sandy	12	528
Shale	165	200	Shale, streaks of shale, sandy	199	727
Sand	10	210	Shale candy	14	741
Shale	2	212	Chalo	22	774
			Shale	33	774
	Well YY-59-52-704		Sand	22	796
	Owner: G. Schwartz		Shale	9	805
	Driffer, Fortykar Driffing Co.		Sand, streaks of shale	19	824
Rock and sand	15	15	Shale, sandy; streaks of sand	46	870
Shale	174	189	Shale, streaks of shale, sandy	58	928
Shale, sandy	1	190	Sand, shale, streaks of sand	23	951
Sand	18	208	Shale and shale, sandy	11	962
	Well YY-59-52-902		Shale, sandy; streaks of sand	33	995
	Owner: Herman Paters		Shale	10	1,005
	Driller: Pomykal Drilling Co.		Shale	17	1,022
Clay	25	25	Sand	19	1,041
Sand	7	32	Shale, sandy, hard	92	1,133
Shale	111	143	Sand	11	1,144
Sandy	7	150	Shale	10	1,154
Shale	70	220			
Rock and shale,	sandy 15	235	Well YY-5	9-53-202	
Rock, sandy	30	265	Owner: C. M Driller: Pomyk	Aachemehl al Drilling Co.	
	Well YY-59-53-201		Surface, soil	5	5
	Owner: Verus Development Corp		Rock and sand	20	25
	Driller: Layne Texas Co.		Shale	20	45
Surface, soil	2	2	Rock	25	70
Clay	152	154	Shale	15	85
Sand, red and b	rown 20	174	Sand	15	100
Shale	73	247	Shale	10	110
Shale, sandy	10	257	Sand	19	128

Sand, gray

Shale

Shale and lime

Shale, gravel and lime

Shale, lime and shale, sandy

Sand

Shale

Sand

Shale

Sand

THICKNESS	DEPTH
(FEET)	(FEET)

THICKNESS DEPTH (FEET) (FEET)

Well YY-59-53-304

Owner: St. Joh	n's Church
Driller: Pomykal	Drilling Co.

Clay	10
Sand and rock	12
Shale, sandy, fine	10
Rock	1
Shale, sandy, fine	10
Rock	2
Shale, sandy, fine	10
Shale	90
Rock and shale, sandy	30
Rock	25
Shale	85
Sand, blue	15
Shale blue soft	12

Well YY-59-53-405

Owner: G. L. Morris Driller: Pomykal Drilling Co.

Clay		5
Sand		10
Shale		40
Rock		23
Shale		22
Sand and rock sof	t	26

Well YY-59-53-504

Owner: Brenh Driller: Pomyka	er: Brenham Bowling : Pomykal Drilling Co.			
Clay	10			
Sand	8			
Shale	62			
Rock and shale, sandy	45			
Sand	35			
Shale	25			
Sand	15			
Shale	80			
Rock	60			
Shale and rock	105			

Well YY-5	9-53-504-Continued	
Sand	20	465
Sand	15	480
Well	YY-59-53-505	
Owner Driller: Po	: Edwin Draehn omykal Drilling Co.	
Sand	5	5
Clay	23	28
Sandy, hard	17	45
Sand	20	65
Sand and rock	5	70
Shale	42	112
Sand	17	129
Rock	3	132
Shale	26	158
Sand	9	167

Well YY-59-53-603

Owner: Robert Gascamp Driller: A, B. Conklin

Shale	65	65
Sand and rock	19	84
Shale	11	95
Shale, hard	30	125
Sand	10	135

Well YY-59-53-804

Owner: W. Engelage Driller: Pomykal Drilling Co.

Sand	10	10
Shale	40	50
Sand and shale	35	85
Shale	40	125
Sand	35	160
Shale	8	168

Well YY-59-53-805

	Owner: Leo Hinze	
Drille	r: Pomykal Drilling Co.	
Clay	15	15
Sand	20	35

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
Well 59-53-805-	Continued		Well YY-59-	53-905-Continued	
Rock	2	37	Shale and lime	89	818
Shale	37	74	Sand and shale	15	833
Sand	13	87	Shale	63	896
Rock and shale	15	102	Shale, sticky	30	926
Sandy	10	112	Shale	290	1,216
Shale	42	154	Sand	10	1,226
Sand	21	175	Shale, hard, green	34	1,260
Shale, sandy	1	176	Shale, hard	40	1,300
			Sand	6	1,306
Well YY-59	9-53-806		Shale, tough	68	1,374
Owner: Calvi Driller: Pomyka	n Borman I Drilling Co.		Shale, hard	65	1,439
Sand and clay	40	40	Sand and shale	15	1,454
Rock and shale	10	50	Sand	39	1,493
Sand	13	63	Shale, hard	117	1,610
			Shale	66	1,676
Well YY-59	-53-905		Shale, sandy	20	1,696
Owner: City of B Driller: Layne	renham No. 5 Texas Co.		Shale	299	1,995
Soil, surface	11	11	Shale, black	115	2,110
Sand	10	21	Lignite and shale	82	2,192
Sand, clay and boulders	92	113	Well Y	V 50 52 006	
Clay, yellow	30	143			
Sand, hard	11	154	Driller:	J. W. Jackson	
Clay, sandy	27	181	Soil surface	15	15
Sand, hard	15	196	Sand and lime	12	27
Clay, sandy, hard	40	236	Lime, rock	16	43
Clay, sandy	80	316	Lime and clay	15	58
Lime, sandy	25	341	Sand, coarse grained	5	63
Clay	17	358	Clay, tough	19	82
Lime, hard	18	376	Sand, coarse grained	26	108
Lime	5	381	Lime, rock	4	112
Shale, brown and gray	105	486	Sand, coarse grained	16	128
Sand	15	501	Clay, tough	57	185
Shale	53	554	Clay, sandy	15	200
Sand	32	586	101-11-14	V E0 E2 010	
Shale	73	659	VVEII Y	1-09-03-910	
Sand, broken; shale and lime	40	699	Owner: City Driller: L	or Brenham No. 10 ayne Texas Co.	
Shale	30	729	Top soil and clay	13	13

DEPTH

(FEET)

THICKNESS DEPTH (FEET) (FEET)

Well YY-59-53-910-Continued

THICKNESS

(FEET)

Sand	3	
Sand, hard; layers of rock	10	
Shale	50	
Sand	46	
Shale	11	
Sand	17	
Shale	30	
Sand and lime, sandy	22	
Shale	115	
Shale, hard and lime	24	
Lime, hard, sandy; streaks of shale	44	
Shale	47	
Shale, hard and lime	20	
Shale	15	
Sand	24	
Shale	25	

Well YY-59-53-911

No record	773	773
Shale and lime	52	825
Sand	12	837
Shale	389	1,226
Sand	10	1,236
Gumbo	14	1,250
Shale and sand	58	1,308
Shale, tough	57	1,365
Shale and sand	15	1,380
Gumbo, tough	8	1,388
Sand	15	1,403
Gumbo, tough	34	1,437
Gumbo	17	1,454
Sand and shale	50	1,504

Well YY-59-53-913

Owner: City of Brenham No. 9 (one of 2 No. 9) Driller: Layne Texas Co. and John Booth

Well YY-59-53-915

Owner: City of Brenham No. 12

Owner: City of I	Brenham No. 11		Driller, Texas	Water Wens
Driller: Texas	s Water Wells		Rock	5
Soil, surface	6	6	Clay, red and yellow	65
Clay	13	19	Rock	3
Sand	8	27	Sand	23
Clay	46	73	Clay, yellow	40
Sand and shale	69	142	Sand	13
Shale	18	160	Shale	29
Shale, sandy	25	185	Sand	28
Sand, streaks of shale	24	209	Shale	81
Shale	89	298	Shale, hard; lime streaks	70
Lime	10	308	Lime and sand, cemented	59
Shale	33	341	Shale	147
Lime, streaks of shale	55	396	Lime and sand, cemented	8
Shale, streaks of rock	68	464	Shale	67
Sand	42	506	Rock	5
Shale	10	516	Shale, sandy	56
Sand	12	528	Shale	49
Shale, streaks of lime	65	593	Sand, soft	65
			Shale	125

(NESS ET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
ued			Well YY-59-54-105-Continued	
25	963	Sand	35	55
37	1,000	Shale	49	104
		Sand	10	114
		Shale	1.	115
No. 3 o.			W-II VV 50 54 201	
87	87		Well Y Y-59-54-301	
10	97		Owner: Cecil Burch Driller: Pomykal Drilling Co.	
43	140	Sand and shale	22	22
15	155	Shale	42	64
4	159	Rock	1	65
3	162	Sand	25	90
7	169	Shale	13	103
10	179	Sand, fine	5	108
14	193	Shale	7	115
7	200	Sand	13	128
30	230			
50	280		Well YY-59-54-302	
5	285		Owner: Henry Wellman Driller: Pomykal Drilling Co.	
38	323	Clay	8	8
7	330	Sand	12	20
59	389	Shale	38	58
4	393	Sand	27	85
7	400	Sand and shale	20	105
70	470	Sand	21	126
30	500			
70	570		Well YY-59-54-402	
			Owner: Brenham Country Club Driller: Pomykal Drilling Co.	
		Shale	125	125
		Sand	46	171
75	75	Sand, fine	34	205
10	85	Sand, coarse	13	218
15	100			
14	114		Well YY-59-54-406	
			Owner: Arnold Thim Driller: Pomykal Drilling Co.	
		Clay	50	50
20		Sand	25	75
20	20			
20	20			

THICKNESS	DEPTI
(FEET)	(FEET

Well YY-59-53-915-Continued

Sand	25	90
Shale	37	1,00
Well YY-5	9-53-919	
Owner: Brenham C Driller: Pomyka	otton Mills No. 3 al Drilling Co.	
No record	87	1
Sand	10	5
Shale	43	14
Sand	15	1
Rock	4	1
Sand	• 3	10
Shale and rock	7	10
Shale, sandy, hard	10	1
Rock and shale, sandy	14	19
Shale	7	2
Shale, sandy, blue	30	2
Shale, pink	50	2
Rock	5	2
Shale, hard	38	3
Rock	7	3
Shale, soft	59	3
Shale, sandy	4	3
Rock	7	4
Shale, sandy	70	4
Sand, hard, fine	30	5
Sand and shale	70	5

Well YY-59-54-103

Owner: B. F	. Wellman
Driller: Pomyka	al Drilling Co.

Shale	75
Sand	10
Shale	15
Sand	14

Well YY-59-54-105

Owner: Henry Wellman Driller: Pomykal Drilling Co.

Clay

- 90 -

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
Well YY-59-	54-502		Well Y	Y-59-54-705	
Owner: O. Tom Driller: Pomykal	achefsky Drilling Co.		Owner: Driller: Pom	W. Kuretsch Nykal Drilling Co.	
Clay, sandy	60	60	Clay	10	10
Sand	27	87	Rock and shale	25	35
Sand	1	88	Sand and rock	45	80
			Shale	7	87
Well YY-59-5	54-503		Sand and rock	13	100
Owner: M, C. (Driller: Pomykal [Goessler Drilling Co.		Rock and shale, sandy	10	110
Rock, shale and sand	80	80	Shale	75	185
Shale	49	129	Sand	13	198
Shale, sandy	11	140	Shale	2	200
Shale	64	204			
Rock and shale, sandy	49	253	Well YY	Y-59-54-802	
Sand, hard	21	274	Owner: Driller: Pom	T. J. Mabry ykal Drilling Co.	
			Стау	10	10
Well YY-59-5	4-601		Shale, yellow	32	42
Owner: O. M. Driller: Pomykal F	Brown Drilling Co		Rock, sand	8	50
Rock and sand	15	15	Shale, yellow	67	117
Shale	117	132	Sand and rock	16	133
Sand	3	135	Shale	7	140
Beck	2	137	Sand	24	164
Sandy	13	150	Rock	4	168
Shale	37	187	Sand	8	176
Sand	15	202	Rock	2	178
		LUL	Shale	8	186
Well YY-59-5	4-702		Sand and rock	19	205
Owner: Gun and	Rod Club		Shale	60	265
Sand and rock	es	CE.	Rock	5	270
Sand and FOCK	65	65	Sand	5	275
Sand	5	70	Rock and sand	8	283
Rock and sand	5	75	Shale and rock	52	335
Sandy	10	85	Rock and sand	13	348
Shale	65	150	Shale	27	375
Snate, sandy	35	185	Rock and sand	4	379
Sandy	10	195	Sand	23	402
Snale	73	268	Shale	3	405
Sand, hard	22	290	Sand	2	407

.

THICKNESS DEPTH (FEET) (FEET)

Well YY-59-54-803

Owner: A. Schwettmann Driller: Pomykal Drilling Co.

Soil, surface	2	2
Sand	28	30
Shale	60	90
Rock, soft	10	100
Shale	8	108
Sand	2	110
Shale	10	120
Sand	3	123
Rock	2	125
Shale	20	145
Sand, hard, fine	5	150
Shale	83	233
Sand	12	245

Well YY-59-54-902

Owner: Chappell Hill Water Supply Corp. Driller: Key Drilling Co.

Soil, surface and clay	10	10
Sand	12	22
Shale	176	198
Sand	40	238
Shale	148	386
Shale, sandy	36	422
Shale	20	442
Sand	108	550
Shale	96	646
Sand	45	691
Shale	44	735
Sand	33	768
Shale	12	780
Sand	32	812
Shale	74	886

Well YY-59-55-103

	Owner: S. L. Whiting
	Driller: Pomykal Drilling Co.
Clay	51
Sand, rock	31

Shale	16	98
Shale, sandy	42	140
Shale, sandy	16	156
Rock	5	161
Sandy	12	173
Sand	21	194

Well YY-59-55-103-Continued

THICKNESS

(FEET)

DEPTH

(FEET)

Well YY-59-55-201

Owner: T. S. Jackson Driller: Pomykal Drilling Co.

Clay, top	5	5
Sand	7	12
Shale	28	40
Sand	18	58
Shale	8	66

Well YY-59-55-504

Owner: D. G. Austin Driller: Falkenbury Drilling Co.

Soil, surface and clay	35	35
Sand and gravel	28	63
Rock and clay, broken	28	91
Clay	22	113
Sand	5	118
Clay	39	157
Sand	38	195
Rock and clay	8	203
Clay	112	315
Sand	59	374

Well YY-59-55-505

Own Driller: Dunn	er: R. L. Felder Water Well Drilling Co.	
No record	37	37
Sand	20	57
Gravel	3	60
Chalk	24	84
Sand	18	102

7

10

109

119

51

82

Sand, hard

Chalk

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
Well YY-59	-55-511		Well YY	/-59-55-808	
Owner: J. E Driller: J & S V	3. Schaer Vell Service		Owner: Driller: Falke	R. L. Felder nbury Drilling Co.	
Surface	10	10	Clay	20	20
Sand, red	10	20	Sand and gravel	40	60
Clay, red	45	65	Clay	30	90
Gravel	7	72	СІау	30	120
Clay, White	33	105	Clay	70	190
Sand and rock, broken	56	161	Sand and rock	26	216
Clay	127	288	Rock and clay, broken	54	270
Rock, broken	5	293	Clay	86	356
Clay	34	327	Sand, broken	7	363
Sand and rock, broken	25	352	Clay	9	372
			Rock and sand, broken	11	383
Well YY-59	-55-805		Clay	5	388
Owner: R. L Driller: Falkenbur	Felder y Drilling Co.		Sand and rock 28		416
Top soil, clay and sand, broken	48	48	W-11 VV F0 FF 000		
Gravel	17	65	Wen T		
Clay	46	111	Driller: Dun	H. L. Felder n Water Well Drilling Co.	
Sand	11	122	No record	36	36
Clay	65	187	Sand	21	57
Sand	10	197	Gravel	12	69
Clay and sand, broken	14	211	Chalk	29	98
Clay	129	340	Sand, broken	40	138
Rock	3	343			
Sand	13	356	Well YY	(-59-55-912	
Clay and rock	14	370	Owner: Driller: Falker	R. L. Felder nbury Drilling Co.	
Sand	15	385	Soil, surface and clay	23	23
Clay	23	408	Sand, fine	21	44
Sand	20	428	Sand and gravel, fine	21	65

Clay

Sand

Clay

Clay

Sand

Sand, red

Clay and shale

Sand, rock and clay, broken

Clay

Sand

Clay and rock

Rock and clay

Sand and rock

Sand and rock, clay, broken

THICKNESS DEPTH

(FEET)

(FEET)

THICKNESS DEPTH (FEET) (FEET)

Well YY-59-55-912-Continued

Rock	10	394
Sand	29	423
Rock	5	428
Well YY	-59-55-913	
Owner: F Driller: J &	R. L. Felder S Well Service	
Surface	33	33
Sand and gravel	34	67
Clay	23	90
Sand	36	126
Clay and rock, broken	95	221
Sand	19	240
Clay and rock, broken	57	297
Clay	43	340
Sand and rock	38	378

Well YY-59-60-102

Owner: D. J. Kieke Driller: Pomykal Drilling Co.

Top soil	3	3
Sand and rock	7	10
Shale	105	115
Shale, sandy	13	128
Sandy	12	140
Shale	35	175
Shale, sandy	10	185
Sand	15	200
Sandy	8	208

Well YY-59-60-110

Owner: H Driller: Pom	enry Lehrman ykal Drilling Co.	
Clay	107	107
Shale, sandy	5	112
Shale	36	148
Shale, sandy	2	150
Shale	58	208
Shale, sandy; sand, hard	22	230
Shale	3	233

Well YY-59-60-203

Owner: John Eckert

Dril	ler:	Pomy	kal D	Drilli	ng Co
------	------	------	-------	--------	-------

Clay	15	15
Sand	5	20
Shale	47	67
Sand, fine	3	70
Shale	290	360
Sand	20	380
Shale	3	383

Well YY-59-60-303

Owner: Albert Weiss Driller: Pomykal Drilling Co.

Clay	60	60
Sand	6	66
Clay	37	103
Sand, rock and shale	17	120
Sand	з	123
Shale, rock	37	160
Shale and rock	61	221
Rock and shale	19	240
Shale	229	469
Sand	28	497

Well YY-59-61-102

Owner: Davis Bros. Driller: C. J. Loehr

Sand	20	20
Shale and clay, white	60	80
Limestone	240	320
Sand and shale	60	380
Shale, sandy, hard	20	400
Sand	20	420
Shale, sandy	20	440

Well YY-59-61-205

Owner: Arthur Hueske Driller: Pomykal Drilling Co.

Clay	50	50
Sand	5	55

1

3

190

200

265

300

335

350

369

20 80 126 Sandy, hard

Sand

THICKNESS	DEPTH
(FEET)	(FEET)

26

14

126

140

THICKNESS DEPTH (FEET) (FEET)

Well YY-59-61-205-Continued

Shale	135
Shale, sandy	10
Shale	65
Rock	35
Shale	35
Rock	15
Sand and rock, soft	19

Sand, rock215Shale3550Rock555Shale3085Rock and shale, sandy15100

Well YY-59-62-107-Continued

Well YY-59-62-106

Owner: R. R. Ross Driller: Pomykal Drilling Co.

20
60
46

Well YY-59-62-107

Owner: B. C. Crawford Driller: Pomykal Drilling Co.

13

Clay

13

Well YY-59-63-106

Owner: Grant Bellvine Driller: Pomykal Drilling Co.

Sandy	10	10
Shale	40	50
Sandy, rock	30	80
Shale	15	195
Sand	16	211

Table 8.-Water Levels in Wells

WATER LEVEL

Well YY-59-47-301

DATE

Owner: Moore Bros.

July	1, 1942	F₫∕
Oct.	2, 1959	1.71
Aug.	30, 1960	1.89
Мау	22, 1961	2.01
Nov.	26, 1968	4.49

Well YY-59-47-302

Owner: Moore Bros.

Sept.	12, 1942	+10.6
Oct.	2, 1959	1.85
Sept.	30, 1960	1.96
May	22, 1961	1.13

Well YY-59-47-601

Owne	r: Mrs. W. F. Bo	rgstedte
Oct.	2, 1959	35.98
Oct.	26	35.72
Apr.	1,1960	33.95
Aug.	30	35.01
May	22, 1961	29.16
Aug.	21, 1968	33.64

Well YY-59-48-701

Owner:	Henry	Wehmeyer
	na nexase en m	

Oct.	22, 1942	28.72
Oct.	2, 1959	35.26
Aug.	30, 1960	33.88
May	22, 1961	29.10

Well YY-59-48-702

Owner: Henry Wehmeyer

Oct.	22, 1942	+ 3.0
Oct.	2, 1959	11.879/
Aug.	30, 1960	11.08b/
May	22, 1961	+ 0.50
a/Flo b/Wel pu c/Car	wed, head unkr II has pump; ass Imped down ried as 20.93 or	nown ume well n State records,

records

WATER LEVEL

Well YY-59-52-501

DATE

Owner: Kirby Lehrmann

Sept.	12, 1942	+ 3.7
Oct.	16, 1959	14.51
Aug.	30, 1960	12.74
May	22, 1961	11.83
Dec.	31, 1968	12.75

Well YY-59-52-801

	Owner: H. Kram	er
July	23, 1942	11.39
Oct,	16, 1959	15.80
Aug.	30, 1960	12.44
May	22, 1961	8.24
Dec.	31, 1968	6.44

Well YY-59-53-905

Owner	: City of Brenha	m No. 5
Sept.	30, 1959	35.50
Oct.	14	35.19
Aug.	30, 1960	35.42
May	22, 1961	35.49

Well YY-59-53-907

Owner	: City of Brenha	m No. 7
Sept.	30, 1959	64.62
Oct.	14	66.17
Aug.	30, 1960	62.07
May	22, 1961	67.15

Well YY-59-55-501

Owner	: C. H. Alexande	er Estate
Oct.	21, 1959	17.06
Apr.	22, 1960	17.37
May	22, 1961	14.29
Jan.	22, 1963	17.93
Mar.	25	18.15
Aug.	15	21.32
Oct.	2	20.45

- 96 -

DATE

Well YY-59-55-501-Continued

WATER

LEVEL

Dec.	13, 1963	21.10
Apr.	6, 1964	20.63
June	26	20.959
Oct.	5	22.89
Apr.	27, 1965	20.00
May	12, 1966	14.83
Apr.	24, 1967	19.60
Mar.	1, 1968	22.04
Aug.	16	16.80
Apr.	7, 1969	14.50

Well YY-59-55-502

Owner	: C. H. Alexande	er Estate
Oct.	21, 1959	18.34
Sept.	22, 1960	16.86
Aug.	15, 1963	20.16
Aug.	16, 1968	17.00

Well YY-59-55-503

Owner	Owner: C. H. Alexande								
Oct.	21, 1959	16.35							
Sept.	22, 1960	14.63							
Aug.	15, 1963	17.92							
Aug.	16, 1968	14.48							

Well YY-59-55-505

	Owner:	R. L.	Felder	
Oct.	1,	1959		24.77
Sept.	22,	1960		22.78
May	22,	1961		18.00
Aug.	15,	1963		27.10
June	5,	1964		28.08
Aug.	15,	1968		21.85

Well YY-59-55-701

Owner	: C. H. Alexand	er Estate
Oct.	1, 1959	24.48
Oct.	21	19.85

Table 8.-Water Levels in Wells-Continued

		WATER			WATER			WATER
	DATE	LEVEL		DATE	LEVEL	D	ATE	LEVEL
Well Y	Y-59-55-701-C	ontinued	1	Well YY-59-55-8	801	We	ell YY-59-55-9	06
Sept.	ept. 22, 1960 24.59		Owner	r: C. H. Alexand	er Estate	Ow	vner: R. L. Fel	der
Мау	22, 1961	21.71	Oct.	1, 1959	24.04	Oct.	1, 1959	31.76
Jan.	22, 1963	25.00	Oct.	21	19.79	Sept.	22, 1960	30.51
Mar.	25	25.46	Sept.	22, 1960	23.90	Мау	22, 1961	26.52
Aug.	15	24.95	May	22, 1961	23.94	Aug.	15, 1963	33.3
Oct.	2	23.42	Aug.	15, 1963	25.04	Aug.	15, 1968	27.38
Dec.	13	26.44	Aug.	9, 1968	23.26			
Apr.	5, 1964	26.06				We	ell YY-59-61-1	01
Luna	26	26.70		Well YY-59-55-8	802	Ov	wner: Davis Br	os.
June	26	20.79	Owner	r: C. H. Alexand	er Estate	Reported	1940	10
Oct.	5	27.17						
Apr.	27, 1965	26.08	Oct.	21, 1959	21.73	do.	1942	12
May	12, 1966	15.78	Sept.	22, 1960	23.61	do.	1950	13
Apr.	24, 1967	19.96	May	25, 1961	22.74	do.	1956	34
Apr.	1, 1968	24.81	Sept.	15, 1963	27.48	Dec.	19, 1968	48.70
Aug.	9	25.05	Aug.	9, 1968	22.45			
Apr.	7, 1969	25.53						

Table 9.**Chemical Analyses of Water From Wells and Springs

(Analyses are in milligrams par liter, except percent sodium-adsorption ratio, residual sodium carbonate, and p()

When no potassium (K) is reported, sodium and potassium are valculated and reported as sodium (Na). Bicarbonate (NO_3) includes any carbonate (NO_3) present.

Tree 1000 richular 1. Taar m: EV. Evangeling aguifer: B. Bu Water-bearing unit: Oal, Brazos River allu

TEMPER -	2	:	;	:	:	:	:	27	:	;	:	:	:	:	:	:	:	25	;	:	;	:	;	;	22	:	;	:	:	:
PF.		:	7.0	2.3	7.3	6.9	6.2	7.5	1	7.1	7.3	;	7.8	:	;	:	;	8.3	1	:	7.9	8.0	7.7	1	7.3	:	:	1	1	7.6
SPECIFIC CONDUCTANCE (MLCROMHOS	AT 25° C)	:	1,610	2,120	1,650	17/	98	2,460	:	450	398	;	1,490	;	;	;	;	1,080	1	;	1,030	210	9634	1	575	t	:	t	1	627
RESIDUAL SODIUM CARBONATE	(BSC)	:	0.00	1.35	5.37	76.	00*	1.90	1	1.25	1.26	1	2.35	1	;	:	;	£1.4	;	+	00.	2.48	00*	;	00"	;	;	;	;	1.34
SODIUM ADSORP- TION	RATIO (SAR)	:	:	1	11	5.0	1.	16	:	4.8	4.5	:	:	1	ţ	:	I	:	;	:	2.2	;	;	I	:	:	;	ł	1	:
PERCENT SODIUM		:	:	:	81	11	35	85	:	15	41	:	:	:	÷	:	:	:	:	;	37	:	;	;	;	;	:	ţ	:	4
HARD- NESS AS	CaCO ₃	288	419	157	133	83	16	167	2,673	44	44	259	138	16	377	:	125	110	68	423	111	140	290	292	278	401	177	448	219	220
DIS+	SOLIDS	1,135	996 E	1,370 E	972	488	90	1,530	4,998	338	315	1,297	874 E	66	704	f	705	;	2,036	306	692	Ē	1	430	ł	965	456	935	444	Т
BORON (B)		;	1	1	1	;	1	2.3	;	.14	1	:	1	1	1	;	ŧ	ł	ţ	;	t	1	:	ł	ţ	:	:	4	1	4
NITMATE (SO3)		:	:	:	6.9	0.	4.5	1.2	:	ŗ	9 .	0.	0.	٩,	0.	94	0.	3.9	;	0.	۰.	;	45	43	ţ	101	0.0	14	0,	1
FLUO-	6	;	:	;	0.5	·2	5	ç.	1.4	7		~	:	1.	:	:		:		77	۰.	1	:	**	ŧ	Ţ	ņ	1	~	1
CHLO- RIDE	(CI)	287	258	332	292	124	10	005	\$55,	55	39	207	184	18	127	38	136	106	825	147	114	15	16	21	BI	42	144	295	26	22
SUL-	(504)	340	280	;	3.0	70	7.6	380	,504	46	34	519	777	11	60	25	85	;	01	10	66	;	22	6.4	Ĭ	33	17	23	14	t
ICAR- MATE	(^E oo)	214	166	274	065	124	24	320	543 1	130	130	238	312	24	496	305	362	386	781	344	332	322	314	310	308	421	232	488	350	350
M = B	×	3	;	;	20	8.2	4.1	13	;	8.2	1.5	:	:	;	:	:	£	t	:	4	17	:	;	:	;	:	:	:	3	1
SODIU AND POTASS	Na	263	t	;	102	507	9.2	-65	66	44	68	154	:	19	125	;	208	;	800	36	16	ī.	t	15	:	52	601	186	35	1
- HUL	22	1	:	;		2.0	1.7	1.8	111	4	2	5.8	:	1.0	3.9	:	2.4	1.2	9.4	4.5	2.2	1.	:	1.4	2.2	2.7	3.9	9.4	3.5	;
CAL-	(Ca)	66	150	;	52	30	9.8	94	887	11	11	76	t	4.9	144	:	46	42	20	162	121	55	;	110	105	158	79	172	82	1
IRON (Fe)		:	1	1	1	f	1	10.0	:	:	.76	t	1	1	1	1	:	i	;	1	1	1	1	1	1	1	:	:	:	1
ILLICA S102)		1	1	;	2	88	31	42	:	83	84	:	:	;	:	:	:	:	:	;	84	:	;	;	;	:	;	;	:	:
s S	+	942	968	896	968	968	968	968	342	968		94.2	996	942	942	94.2		968	942	942	968	968	968	94.2	968	942		942	942	968
E OF		11, 1	9, 1	9, 1	22, 1	26, 1	18, 1	20, 1	11, 1	26, 1	do.	11, 1	16, 1	'n,	14, 1	2,1	do.	22, 3	13, 1	15, 1	18, 1	14, 1	16, 1	24, 1	14, 1	2, 1	do.	16, 1	14, 1	5.
DAT		iov.	sept.	Det.	· Sui	fuly	sept.	tov.	iov.	July		vov.	Dec.	iov.	sept.	July		vug.	vov.	sept.	July	· Sul	. sad	July	· 8ny	July		.vov.	sept.	Dec.
ATER -	IINO	LT.	do.	do.	do.	do.	do.	do.	40°	do.	do.	do.	do.	do.	Tcs	do.	11	do.	-	Tcs	do.	do.	7	do.	do.	do.	do.	Tcs	do.	do.
PRODUCING INTERVAL OR WELL	(FT)	125	70	306	400	212	45	453	101	500	315	45	247	15	94	75	123	123	160	180	505	560	10	63	83	24	Spring	37	320	320
NELL		108-54-65-Y	906	906	44-602	101	704	705	706	801	803	804	807	902	905	45-502	605	609	209	702	704	706	710	802	802	803	804	46-201	304	304
		*	বা			_																	31							

See footnotes at end of table.

WELL.	PRODUCING INTERVAL OR WELL DEPTH (FT)	WATER - BEARING UNIT	DATE OF COLLECTION	SILICA (SiO ₂)	IRON (Fe)	CAL- CIUM (C4)	MAGNE - SIUM (Mg)	SOD A POTA Na	IUM * ND SSIUM K	BICAR- BONATE (HCO ₃)	SUL- FATE (SO ₄)	CHLO- RIDE (C1)	FLUO- RIDE (F)	NITRATE (NO3)	BORON (B)	DIS- SOLVED SOLIDS	HARD- NESS AS CaCO ₃	PERCENT	SODIUM ADSORP- TION RATIO (SAR)	RESIDUAL SODIUM CARBONATE (RSC)	SPECIFIC CONDUCTANCE (MICROMHOS AT 25° C)	рН	TEMPER - ATURE °C
YY-59-46-305	175	Tcs	Sept. 14, 1942			85	2.4	54	-	332	30	25	- 2411	0.0		359	222	्यम्					(122)
401	150	do.	July 30, 1964	47	0.06	64	3.0	67	9.3	350	21	18	0.3	-2	0.23	402	172	44	2.2	2.30	619	7.1	23
401	150	Tes	Aug. 22, 1968	-	3 44 3	51	.5	- 24		300		23	Ser			22/1	129	22211	3227	2.34	567	7.6	24
403	179	do.	Aug. 21, 1968	77		90	2.3	44	7.8	352	26	18	.1	.0	722	438	234	28	1.2	1.09	624	7.5	23 A
408	57	J	Nov. 16, 1942		1/2/22/2	129	3.4	32		268	32	40	.1	120	34	489	337	57711	857	27.5	5 55 13		55 I.
409	27	do.	do.	••	**	227	3.4	46	37.7	323	90	118	.1	195		839	582		2003		(199))		an II
502	701	Тj	July 20, 1964	50	+03	11	.1	225	जन्म	352	59	117	.8	.2		636	28	95	18	5.21	1,030	7.3	201
702	330	J	Dec. 4, 1968	्र	2.7		375	39 I	-			1866-01	••			1.000					332		
703	90	do.	do.	1000	**		**		**	280	26	21			-	319 E	232	**	••	.00	532	7.4	~
704	222	do.	Oct. 21, 1942		5570	97	11	32	5731	336	25	38	.8	.5	1.00	369	287		1.77	855	1775	7.7 %	
705	222	do.	do.			98	8.3	32	-	323	29	39		.0		365	280		(Re t)			**	22
706	222	do.	do.	1997	3 33 5		3.5		201	311	24	40		.0			- 201					***	22
706	222	do.	Dec. 5, 1968				••	•••		426	16	47			l line	890)	64	3841 I	(1 44)	5.70	808	7.9	9911
<u>1</u> / 803	237	do,	June 1, 1956	-	3.0	106.6	3.8	23	-	329	15.6	32		144	:00	580	272	322	2223	122		7.8	3211
803	237	do.	Aug. 22, 1968	-	.20	105	4.5	**		326	12	27	- 62	122	822	22)	280	22	2227		601	7.5	
804	136	do.	Dec. 4, 1968	1.1421	5222		(* 344 F		2211	348	- 22	37	- 52				300			.00	682	7.4	
805	204	do.	do.	44	0220	90	5.7	61		356	32	39	.2	.0	.05	447	248	35	1.7	.87	712	7.6	ि तत्वा
902	400	do.	Dec. 5, 1968		1990) 1990)	-	ă.	-	55	364	30	66	- 7 91	0.00	144	445 E	250			.97	775	8.0	
47-10	20	Qal	Oct, 20, 1942	9491	2943	91	3.4	21	122	275	8	29	- 221	16	225	303	242	••	••	386	••	••	
10	20	do.	Aug. 12, 1968	1.000	8223	142	1.5	152	223	332	1	85	••	333	••	100	360	্যমত	(77.7.)	•00	888	7.7	23
10:	560	Tj	Nov. 21, 1968	56	**	22	1.0	306		694	.0	109	1.2	.1	- 22	836	59	92	1999	10.2	1,300	7.5	24
202	135	Tcs	Oct. 20, 1942	577	195231	80	5.8	13	572	293	8	10	.2	-0		266	224			1994			
202	135	do.	Nov. 26, 1968	177	1978	57.5°.		्यत	-	274		8.2		(***			248			.00	470	8.2	
203	40	do.	Oct. 20, 1942	100	27773	256	5.8	4.6		336	3	276	.2	8		719	664			1922			
301	245	L	July 1, 1942		1000	102	1.5	:53		366	26	34	0	1	2 22	398	261			122	144		22
30)	245	do.	Nov. 26, 1968				••			340	(44)	33	-	1221		241	164	122	122	2.29	652	7.6	22.91
302	340	do.	July 1, 1942		16611	70	4.5	88	-	364	25	42	.2	.0		459	193	726			••	-	
401	250	do.	Nov. 19, 1942		064201	86	5.8	61		354	3	55	.1	0		385	239		8770	675	199	1.55	
502	299	do.	Dec. 17, 1968	115441	192231		222		120	346	(7223)	44			-	551	224	355	S 77 (1.19	703	8.0	
50:	130	do.	Oct. 20, 1942	12227	62250	85	3.4	23	••	287	3	23	175	7.0	200	285	227				();; ;;		÷*.
504	40	Εv	July 1, 1942	G++	8 88 6	90	1.5	55	25	366	9	10	100	33	8 83 1	379	231				(***)	-	**
604	385	J	Aug. 21, 1968	45	.07	55	3.3	96	12	378	24	26	.1	-5		448	150	56	3.4	3.19	683	7.4	
60	412	do.	July 1, 1942		•••	43	3.2	125		392	22	34	.2	0		497	120						

Table 9. -- Chemical Analyses of Water From Wells and Springs -- Continued

See footnotes at end of table.

- 99 -

			-	-		5	÷	-	-	-	-	-		-	-				-	-			-	-	-	-		-					
TEMPEI ATURU		;	22	ł	1	3	3	1	;	:	22	:	26	;	24	1	1	;	1	1	;	4	1	:	1	23	1	1	:	1	1	1	1
Fd		2.5	ŧ	t.	;	7.4	7.6	1	†	7.2	:	:	8.0	1	3	6.8	ł	6.7	6.8	:	ł	8.0	6.7	ţ	7.7	7.1	7.8	:	7.1	t	;	7.7	7.6
SPECIFIC CONDUCTANCE (MICRONHOS AT 25° C)		627	I.	ł	1	862	512	3	1	814	Ł	1	702	3	1	513	r	1,910	1,280	1	3	724	1,730	;	651	652	932	;	4,940	t	1	608	692
RESIDUAL SODIUM CARBONATE (BSC)		0.00	;	;	1	00*	.07	:	:	1.25	ł	;	5.45	;	1	.71	:	.00	00*	1	:	.00	00.	:	.00	00*	00*	:	00'	ł	1	1.37	34
SODIUM ADSORP- TION RATIO	(SAR)	;	;	;	;	1	;	;	;	;	:	;	1	;	;	4.3	i	ŧ	ł	1	3	;	t	R	:	æ.	1.6	:	;	;	;	2.0	1.2
PERCENT SODIUM		:	:	:	;	ł	1	ł	ţ	:	÷	:	:	;	1	22	1	t	ľ	1	4	1	t	1	1	19	31	:	1	1	Ð	42	26
HARD- NESS AS CaOD		316	231	306	142	420	262	262	188	288	192	329	62	89	67	72	415	383	358	497	149	302	458	241	324	286	336	628	2,120	1,339	293	192	276
DIS+		:	334	543	157	:	:	442	357	:	271	769	;	388	643	381	1,228	1,150 E	768 E	1,038	387	;	1,040 E	364	:	447	573	958	2,980 E	1,475	510	426	464
BORON (B)		ŧ	:	:	:	÷	:	1	1	;	1	:	:	ł	:	:	:	:	1	:	:	:	:	:	1	1	:	:	;	:	:	:	.06
NITRATE (NO ₃)		į.	2.0	14	24	158	;	17	5.0	;	1.0	32	:	;	0	0.	1.0	:	;	;	0	:	1	3.0	:	.2	1.4	1.0	;	:	8.0	0.	0.
FLUO- RIDE (F)		1	;	;	:	:	1	0.2	t	1	:	:	;	1.4	÷	4.	4	:	;	1	1	1	1	:	;		4	1	1		1	ŗ	-
GHLO- KIDE (CI)		22	29	72	3.0	47.	10	136	59	51	15	281	25	56	-15	58	292	295	151	173	46	;	365	25	36	34	117	354	1,440	622	22	28	70
SUL- FATE (SO _A)		7.8	8	21	5	82	4.4	18	10	1	•	25	16	3	5	62	997	1	157	458	4	69	130	229	;	16	30	61	1	172	16	28	28
ALCAR- SONATE BODATE	2	368	329	415	97t	252	324	214	293	428	293	287	408	299	415	131	110	96	376	128	372	350	202	336	298	348	354	378	328	305	427	318	358
× WI	*	1	1	;	1	;	;	;	:	:	1	:	:	I	1	1	1	4	;	;	;	8	1	:	ŧ	:	ī	;	1	:	:	1	4.4
POTASS	Na	;	14	88	1.6	;	:	63	68	;	34	163	:	126	169	84	264	4	:	152	104	:	i.	17	:	31	69	113	:	;	86	63	45
MAGNE- SIUM (Mg)		:	1.5	1.5	3.4	:	:	3.4	9.4	1	9.4	1.1	:	7.1	5.8	9.9	54	16	10	п	14	3.6	18	2.2	1.8	5.8	11	11	49	7.0	4.6	4.3	2.9
CAL- CIUN (Ca)		1	90	120	31	ŧ	ī	66	68	a	11	120	;	24	10	16	127	127	127	181	36	115	154	93	127	105	107	230	170	524	110	20	106
IRON (Ye)		E0.0	:	ı.	:	ŗ	£	;	3	1	1	ß	ĸ	1	:	;	;		7.4	E	£	ì	50.	ß	ť	ł	;	4	1	1	Ŧ	;	10.
SILICA (\$102)	T	;	;	:	:	:	:	:	;	:	:	:	:	;	:	88	:	1	÷	:	:	:	î	:	t	82	57	:	1	:	:	36	19
SC 108	T	1968	1942		1942	1968		1942	1942	1968	1942	1942	1968	1942		1968	1942	1968		1942		1968		1942	1968	1968	1968	1942	1968	1942	1942	1968	1968
DATE		v. 26	1. 1	op	v. 19	v. 29.	do	1. 23	. 22	1	. 23,	. 22	. 29,	. 22	do.	28	. 12,	bt. 9,	do	. 12,	op	AL 10,	do	. 12,	at. 10,		. 18,	. 12,	at. 9,	r. 12,	11,	. 13,	te. 18,
180		No	'n	-	Nor	Nov		001	Oct	0c1	00	001	Nox	061		Dec	NON	Se		Nov		Set		Nov	Sep	Oct	Dec	Nov	Sep	Nov	Nov	Dec	Sep
WATE BEAR UNT		1,B	ш	•	Ev	do	do	do	do	do	Ev	Ev		do.	do.	Ē	do.	do.	op	do.	TCs	do.	do.	do.	do.	do.	I	TC	do.	5	Ics	F	TCS
NUTLENAL NO DEPTH	(11)	126	80	82	**	36	180	125	124	124	160	64	200	700	7007	362	114	711	63	105	69	69	60	38	38	155	216	2	70	28	35	280	292
WELL		Y-59-47-608	609	610	104	802	805	806	206	902	706	506	48-402	702	202	506-05	101-15	103	105	202	602	602	603	605	605	607	703	808	805	902	52-102	103	202
		- XX																															

- 100 -

TEMPER- ATURE °C		23		:	ļ	3		1	R	22	22	23	1	ġ	8	1	23	l	22	ł	23	22	3	E	£	29	3	ł	21	ī	21	8
Hd	3 5	7.3		1	Ţ	液	3	7.5	7.9	l	ł	7.9	7.9	1	7.5	1	B	- P	7,8	Ĩ	1	3	à	4	7.31	7.5	1.1	6.9	1	1	;	6.9
SPECIFIC CONDUCTANCE (MLCROMHOS AT 25° C)	163	2,080	;	1	1	4	ų	165	583	E	ł	581	769	1	767	22	3	E	907	ī	1	1	556	Ŧ	658	562	629	617	ł	I)	1	670
RESIDUAL SODIUM CARBONATE (RSC)	0.31	00*	I	I	ķ	f	A.	-22	.12	3	Ę	.61	.13	ł	10.	3	3	1	00.	F	ŗ	;	1	;	9	1.18	.77	-24	3	ß	£	.83
SODIUM ADSORF- TION RATIO	(NADE)	Ì	1		1	Ĩ	i	0.6	a	ġ	1	ß	1.2	ł	3	ą	ġ	3		ß	Ķ	Į.	ł	įł	3	1.6	4	R.	1	1	ŧ	I.
PERCENT SODIUM	1	į	1	ţ	Î	Ĩ	ï	ង	8	3	ł	ł	26	1	3	đ	3	i i	1	2015	ł.	8	Ĩ	3	3	36	1	Ę	3	1	ß	£
HARD- NESS AS CaCO3	255	818	239	226	182	264	ţ	276	284	3	276	252	262	F	314	ł	3	8	288	ł	222	264	F	248	212	178	250	265	284	1	267	250
bIS- SOLVED	:	1,250	315	401	379	369	ł	384	Ţ	9	408	8	442	E	Ŧ	1	1	8	3	.t	416	415	I	262	586	372	a	370 E	400	9	418	402 E
ORON (B)	1	Ē	ł	Ŧ	ĩ	ī	r	;	ì	3	0	1	Ĕ,	ĩ	ł	ï	Ĩ	1	à	1	ß	1	;	1	1	70.	3	4	3	3		
ITRATE 5 (NO3)		643	0.9	9	27	a	165	0.	1	0	0.	1	4.	5.0	2.7	0	a	0	3	0	°.	0	8	7.0	3	۲.	1	1	0.	g	0	1
(T)	1	8	0.3	ę	1	9.	ţ	4.	;	;	ŝ	1	4	F	ŧ	;	00	0	3	0	7	ŗ.	Ł	D	1	?	·-	ņ	?	3	.2	'n
CHLO- F RIDE R (CL)	01	228	14	32	39	34	62	21	14	220	29	24	51	65	38	27	37	106	811	416	39	70	Ē	3	35	29	18	27	26	40	35	35
SUL- FATE (SO4)	4.0	200	3	14	17	17	σ	8.4	1	10	12	6.2	15	26	í	п	26	27	1	38	10	12	Ē	9	11	23	20	14	8.9	14	19	15
ICAR- ONATE HCO ₃)	330	192	342	345	305	354	268	350	354	281	342	344	335	329	384	293	336	366	336	360	349	342	Ŗ	299	343	290	352	338	363	293	347	356
K N K	1 3			а		- P	E	r	2	1	4	2		₁ 0	Е	E	T	1	a di	9			6	e	!	4	ä		1	3	9	
SODIU AND POTASS Na	1	;	32	54	75	42	é	23	ĩ	1	28	1	-	Ê	ř	ř	ĩ	ï	ä	1	. 09	. 65	Ē	5.1	63	6.9	4	:	28	1	40	1
MAGNE - STUM (Ng)	2.0	7.7	6.3	9* 7	2.2	5.8	E	5.2	I	ł	4.5	2.3	4.5	I.	6	1	1	:	3	1	5.0	6.3	ţ,	5.6	н	1.6	3	3	3.4	3	£.4	3
-TYO CAL-	66	315	58	83	69	96	ĥ	102	R	;	103	67	100	1	i.	I.	Ē	ł	3	1	81	95	35	66	83	69	ĩ	ï	108	:	100	1
IRON (Fe)	ä	3	ĩ	ä	3	9	£	Į(Ē	ĩ	1	1	90.	t	d:	į	ř	ï	1	1	ł	a.	•03	Ē	•00	.00	ĩ	.93	i	;	1	i
ILICA SIO2)	a	9	3	î	ą	â	4	52	Ê	ĩ	ī	ï	62	9	1	Ē	ï	1	1	i	;	3	1	ē.	42	48	66	38	£	ħ	1	47
DATE OF COLLECTION	ept. 18, 1968	do.	uly 17, 1942	uly 23, 1942	ov. 20, 1942	do.	uly 23, 1942	sc. 12, 1968	-op	uly 17, 1942	do.	ept. 10, 1968	ct. 16, 1968	uly 23, 1942	ac. 31, 1968	ıly 23, 1942	-op	do.	an. 3, 1969	uly 23, 1942	do.	do.	sc. 12, 1968	ov. 13, 1942	ct. 21, 1964	ily 26, 1968	ov. 19, 1968		ily 31, 1942	do.	ily 24, 1942	ov. 19, 1968
ATER - SEARING UNIT	Tcs	2	Tcs J	7 7	do. N	do.	do. J	do. D	do.	do J	do.	do.	do. 0	do. J	do. D	do. J	do.	do.	do. J	do. J	do.	do.	do. D	do.	,Tcs 0	do. J	N F	.ob	do. J	do.	do. J	do. N
PRODUCING INTERVAL OR WELL DEPTH (FT)	193	35	160	192	58	126	200	126	160	80	150	275	212	55	55	117	170	260	260	17	161	191	356	22	1,070 J	1,070	320	175	69	130	123	261
717 329	YY-59-52-301	302	404	501	504	505	603	604	605	606	607	702	EOL	108	801	802	804	106	106	905	906	206	53-101	102	2) 201	201	202	203	205	206	207	203

Table 9. -- Chemical Analyses of Water From Wells and Springs -- Continued

- 101 -

See footnotes at end of table.

			_		_	_					_			_	_							_				_	_		_				_
TEMTR - ATURE *C	:	23	:	1	+	t	£	r	;	:	:	:	:	33	:	22	:	:	t	:	22	1	23	:	23	:	21	18	28	;	:	25	:
hq	;	:	1	7.0	7.6	7.0	t	t,	7.1	6.9	;	:	1	;	1	;	6.9	£	6.9	6.8	6.7	7.3	7.2	7.4	7.1	7.4	:	:	;	:	2.9	7.4	7.4
SPECIFIC CONDUCTANCE (MICROMHOS AT 25° C)	883	;	618	613	599	598	ŀ	£	669	616	I	I	;	;	1	4	806	ŧ	663	862	839	542	626	526	616	556	:	67/	1	9	679	500	557
KESTDUAL SODIUM CARBONATE (RSC)		4	:	0.34	.13	.66	;	;	£9*	.25	;	;	;	;	;	;	;	;	;	;	;	;	1	•00		00*	ł	1	:	:	1.36	.19	1.80
SODIUM ADSORP- TION RATIO (SAR)	;	3	1	0.7	10	ł	;	;	:	:	;	;	1	;	1	£	;	;	;	;	••	:	1	Ŀ	:	9.	:	:	:	;	÷	3Q	1.8
PERCENT SODIUM	;	:	;	18	19	1	;	;	1	;	t	1	;	,	;	r	;	1	;	1	12	ł	i.	18	:	16	1	;	:	:	:	20	07
HARD- MESS AS CacO ₃	;	237	271	270	259	272	358	230	244	272	;	1	:	87	343	346	395	334	315	\$05	382	212	280	220	280	248	350	:	225	222	216	210	166
DIS- SOLVED SOLIDS	;	430	371	381	379	:	408	112	401	÷	:	:	:	425	447	473	484	999	400	517	669	;	376	318	370	343	519	1	471	476	:	325	376
BOROE (B)	1	;	1	t	0.06	;	:	;	;	:	:	;	;	1	4	t	:	:	;	:	.08	1	t	.02	Ť	£0."	:	:	:	:	:	.05	.20
(LOS)	:	0.0	;	ņ	4	0.	12	92	;	;	;	3.0	66	0.	18	31	55	-00	18.8	7	5.6	:	3.5	ส	5.3	7.9	69	55	.2	0	4	1.3	4.
(F)	;	0.3	.2	r;	ŗ.		1	;	;	:	;	1	;	ť.	:	2	•2	2	.2	.2	.2	;	24	-2	*2	е.	1.	:	.2	ç.	1	ņ	2
T -online T -online (C1D)	:	66	22	12	29	21	24	187	39	22	;	170	19	18	46	42	47	67	23	86	76	68	35	39	31	29	2	36	26	26	38	23	44
SUL- FATE (SO4)	21	20	10	11	16	16	2	22	51	14	t	30	24	51	12	20	42	•	18	90	8.2	10	10	11	6	10	11	;	21	22	4	10	11
CAR- NATE 1003)	ł	312	351	350	324	340	421	397	336	34.7	t	366	342	358	366	361	332	360	35	399	38.7	182	336	236	332	288	316	:	348	326	348	268	212
* NU X				+	0.		÷	1			,		4						,		.2			5	i	1.	,	1	1	4	1	1.7	9.6
SODIUP AND POTASS1 Ka	;	. 19	26	27	28 3	:	18		:	1	;	;	:			25	20	19	. 52	23	24 3	1	2	23	20	22 2	12	1	22	67	:	25	54
AGNE- TUM Mg)	1	3.5	1	4.4	1.4	:	5.1	7.5	;	;	:	;	;	1.1	~	3.5	10	3.4	1.0	9	3,1	3.0		2.6	9	2.8	2.7	:	3.8	2.9	:	2.5	1.4
CAL- M CIUN S CIUN S (Ca) (;	86	96	101	26	ŧ	135	224	:	1	;	÷	;	13	129	133	145	128	125	151	148	80	102	78	102	95	136	:	84	97	;	80	64
(Fe)	0.13	į	90*	8	00.	.37	1	;	5.4	ł	1.9	;	;	4	1	ţ	.02	1	90.	.02	-05	à	.02	00.	70.	00.	:	i	:	4	1	00.	00.
(² 0)	;	:	;	44	42	:	1	:	;	;	;	;	4	3	;	1	1	;	;	1	30	4	1	28	÷	32	1	ł	ł	1	1	45	6.3
at at a state of the state of t	1969	1942	1961	1968	1968	1968	1942	1942	1968			1942	1942	1942	1939	1942	1956	1942	1957	1958	1959	1968	1958	1968	1958	1968	1942	1969	1942	1942	1969	1968	
DATE	, п,	y 2,	e 19,	. 17,	y 29,	. 18,	y 24,	y 22,	. 17,	do.	do.	y 15,	y 21,	e 23,	. 23,	e 23,	. 25,	e 23,	. 15,	. 25,	. 14,	y 24,	. 28,	y 24,	. 28	y 24	ie 23,	. 11,	ie 23,	. II,	. 13,	y 24,	do
. 9	Feb	Jul	Jun	Oct	Int	Oct	Jul	Int	Oct	-	-	Jul	Int	Jun	40 H	Jun	Apr	Jun	Jan	Apr	06.1	Jul	Apt	Jul	Apr	Jul	Jur	Fet	Jur	Nov	Feb	Int	
NATER BEART UNIT	7	do.	do.	do.	do.	do.	8	5	do.	do.	do.	đ	32	Tcs	1,8?	do.	.ob		do.	do.	do.	do.	do.	do.	do.	do.	113	do.	-	2	do.	do.	do.
INTERVAL OR DEFTH (PT)	229	218	434	436	292	480	87	34	337	457	127	41	76	1,515	143	143	143	198	200	115	115	511	500	500	593	593	Spring	Spring	785	785	785	820	1.000
VELL	201-52-52-27	306	401	402	301	504	602	702	203	802	803	810	811	\$06	906	906	906	206	908	606	906	606	016	910	116	116	912	912	914	914	716	915	916
		_	Ph.					-11					_		mi		ñ		ē	ē.	_			ě		m	31						

- 102 -

See footnotes at end of table.

Table 9.---Chemical Analyses of Water From Wells and Springs--Continued

TEMPER- ATURE °C	а	8			•	9	1	â	a		i.	1	1	22	1	t	I	ł	ł	1	ï	i	1	1	26	1	6	ł	1	3	3			
Ħ	7.6	1 1		0.7	: ;	2.5	6.4	; ;	3	7.2	7.6	1	!	7.4	7.6	t	8.1	7.4	7.0	9"2	ł	7.2	ŧ	ġ	1.7	7.0	7.5	t	ł	7.5	1	7.7	T	
SPECIFIC CONDUCTANCE (MICROMHOS AT 25° C)	583	150	1	717	I	688	553	} ;	3	624	661	9	:	601	613	F	522	671	589	603	Ę	491	1	,	593	1,880	516	1	Ē	654	Į.	548	1	
RESIDUAL SODIUM CARBONATE (RSC)	01.0	u.	1	8		001	44	;	4	.62	.55	4	2	00.	.00	t	.07	1.45	-00	00*	l	00*	a		1.77	00.	.30	ł	1	÷95	я	.30	a	
SODIUM SODIUM ADSORP- TION RATIO (SAR)	0.6	e.	1	9	÷ ۱	1	9*)	1	3	1	3	3	.q	Ē	Ũ	ł	1.9	1	â	Ē	9	1	3	1.9	30	4	ł	ł	ł	;	4	4	
PERCENT SODIUM	16	36	3	13	1	:	15	1	ŝ	ä	ł	8	1	15	ţ	ł	1	38	ţ	1	8	90	1	a,	13	38		P	E	E	X	;	3	
HARD- NESS AS CaCO ₃	257	242	323	337	240	t	260	1	ł	238	258	261	260	274	273	212	246	226	280	2.74	E	241	189	173	182	598	214	262	264	231	278	270	231	
DIS- SOLUED SOLIDS	368	356	450	429	333	328	333	ž	1	374 E	k	386	382	371	3	276	ŝ	438	;	362 E	£	295	233	289	363	1,130	8	422	365	Ē	347	:	281	
BORON (B)	3	3	3	1	1	Ì	ť	ł	ā	a	ĩ	ł	1	.02	ä	J	I.	I.	Ē	ŧ	Ŗ	ß	ķ	Ţ	11.	1	1	đ	1	Ę	Ę	Ŧ	;	
NITRATE (NO ₃)	1.0	o.	25	2.0	17	£	0.	ï	20	;	r	ŝ	.2	0	a	27	1	0.	Ē	į.	58	13	जर्र	ş	12	5.8	1	41	0	ß		£	6.0	
FLUO- RIDE (F)	0.3	e.	7	.2	2	l	Ņ	ŋ	ł	1	ţ	4.	e	-5	3	9	ţ	•3	Ę	Ę	j:	4	-2	्म	2	6*	1		3	1	Ą	;	ł	
CHLO- RIDE (C1)	27	26	26	42	26	36	14	37	69	25	37	26	34	30	34	٩	14	31	2.9	28	35	18	п	17	27	332	î	42	35	41	38	12	12	
SUL- FATE (SO4)	13	12	9*6	9.2	6.3	æ	3.2	2	13	33	18	3.4	4.6	-14	12	4	ä	24	8	15	12	9.8	4	્લ્ય	14	183	28	6	24	14	'n	Ę	2	
SICAR- SONATE (HCO ₃)	320	316	354	382	268	376	344	299	323	328	348	371	350	324	324	2.75	304	364	304	330	262	261	256	311	330	360	280	348	372	340	342	348	305	
MU * MI	3.7	3.6	;	1.4	1	1	1	ſ	Ĭ,	k	1	P		3.2	;	;	3	3	1	E	9	1.6	1	E	7.3	1.3	;	;	1	4	3	;	6	
SODI AN POTAS: Na	23	22	I6	24	17	3	21	H	Ē	Ë	۹ł	39	37	22	ŧ	22	ä	65		1	1	10	19	50	60	170	£.	57	43	9	28	1	20	
MAGNE - SIUM (Mg)	2.4	2.6	3.3	3.0	3.3	3.9	6.8	4	8	3.9	5.0	4.5	4.5	8. 4	4.5	3.4	1.4	7.7	3	5.2	3	1.6	5.8	4.6	6.1	12	3.7	3.4	5.8	æ	9.4	2.6	2.2	
CAL- CIUM (Ca)	66	93	124	130	16	125	63	1	đ.	89	56	79	16	102	102	62	96	78	1	101	ł	96	66	62	63	220	80	66	96	16	104	104	68	
IRON (Fe)	1	ţ	ļ.	l	:	.12	8		t	Ë	ļ,	3	1	Ē	.08	Ĩ	Ť	ã	ij	ä	ł	.20	1		.02	Ē.	Ľ	ł	į	Ĭ	Ĩ	1	3	
(S102)	43	42	ß	29	ł	ī	26	a	0	18	3	ä	1	36	Ē	ĩ	į.	53	3	1	ī	19	ġ.	:	23	25	ų,	8	ŧ	1	3	3	3	
OF CT ION	0, 1968	10	4, 1942	3, 1968	, 1942	3, 1968	2, 1968	7, 1942	, 1942	, 1968		, 1942	, 1942	, 1968	, 1968	, 1942	, 1968	, 1968	, 1968	, 1968	, 1942	, 1968	, 1942		, 1968		, 1968	, 1942	2	, 1968	, 1942	, 1968	, 1942	
DATE	aly 30	p	ine 24	3. 2.	the 24	·8 23	vv. 22	dy 17	ily 16	pt. 16	qo	t. 21	1, 1	8. 12	pt. 12	v. 17	pt. 12	c. 17	3	pc. 16	ne 30	pt. 16	v. 17	op	1y 29	op	B- 15	v. 17	op	pt. 12	v. 17	pt. 18	t. 20	
R- INC	5		5	A.	Ĵ.	At.	NG	ĥ	ñ	Se		00	2	Au	Se	No	Se	De	õ	Se	J.u	S.	No		R.		Au	No		Se	No	Se	8	
MATE	0	do.	do.	do.	do,	do.	Εv	2	Ę	n	.ob	Ev	ę,	A		Ev	do.	n	Εv	do.	do.	do.	do.	do.	5	n E v	do.	Ĕ	do.	B?	Ev	do.	do.	ble.
PRODUCING INTERVAL OR WELL DEPTH (FT)	598	587	200	168	180	180	212	700	102	433	360	95	2002	135	86	52	52	617	88	14.7	40	Spring	21	190	778	27	292	31	190	977	211	211	138	end of ta
TTIM	YY -59-53-918	920	921	922	923	923	924	925	926	54-101	104	202	203	401	505	405	405	407	502	605	701	203	801	106	902	506	306	906	806	606	910	016	25-101	See footnotes at

Table 9.--Chemical Analyses of Water From Weils and Springs--Continued

- 103 -

TEMPLE -	9.°	;	;	1	;	24	;	;	:	23	23	23	;	27	1	1	1	26	Ð	22	;	3	22	:	3	;	1	:	1	;	1	22	:
Hd		7.3	E.7	:	7.3	8.0	ŧ	1	;	7.7	7.5	6.8	1	0°L	:	1	ê.8	7.6	ľ	1	:	1	1	1	:	1	7.6	1	:	1	1	ł	;
SPECIFIC CONDUCTANCE (M1CROM405	AT 25° C)	502	963	1	539	154		I	I	480	630	617	;		1	1	918	976	677	ŧ	1	i	1	1	ł	i	1,830	1	2,490	1	1	I	:
RESIDUAL SODIUM CARBONATE	(RSC)	0.00	00*	;	*0*	5.62	:	:	;	66.	1.89	.17	;	:	:	;	52.	7.42	1	t	;	1	3	;	1	ł	00*	;	:	,	;	;	:
SODIUM ADSORP - TION	RATIO (SAR)	:	1.2	:	:	8.9	:	:	:	:	:	10	:	:	:	:	1.4	÷	ŧ	;	;	đ	ä	;	1	ł	ł	:	;	;	:	1	1
PERCENT SOUTUM		:	24	1	:	85	:	:	:	1	ı	18	1	1	1	1	27	r	ł	t	1	1	1	t	1	ł	:	;	r.	1	;	3	;
NARD- NESS AS	caco ₃	240	374	269	244	63	284	418	324	153	200	280	233	30	238	192	367	60	:	2.78	382	:	1	286	:	289	576	282	:	;	;	:	:
D15 -	solutes	:	549	342	:	489	361	564	398	;	378 E	378	336	377	368	365	560	:	:	572	677	;	:	511	ŧ	380	1,100	645	1,490	:	:	:	:
BORON (B)		:	1	:	:	;	:	:	:	:	:	0.04	:	ł	:	:	90.	;	:	;	;	;	;	;	:	:	1	;	:	;	;	:	;
NITRATE (NO ₃)		ŧ	1.1	1	0.	.2	15	80	29	:	:	7	ц	0.	19	0	;	1	1	0,	207	3.0	2.70	0.	318	15	13	165	348	39	22	0	0
FLUO-	(E)	4	0.3	73	;	4.	;	.1	t	;	:	9.	;	1.6	:	.2	5	;	;	.1	:	5	;		:	4.	:	:	:		.2	:	8.
CHLO- RIDE	((1)	12	115	48	22	34	30	169	182	28	52	33	35	55	69	20	25	65	;	106	19	63	63	08	181	32	378	99	415	65	15	86	38
SUL-	(304)	14	19	4	:	22	•	11	32	13	71	5.2	s	£.	10	12	54 .	:	;	18	18	33	21	22	92	17	67	52	;	18	4	4	17
AICAR-	HC0 ₃)	288	384	317	300	420	354	336	500	244	360	352	220	306	268	384	663	526	;	368	336	305	305	364	220	348	424	293	ŧ	220	299	317	250
# WILL	×	;	1.7	;	:	;	;	:	:	:	1	;	1	:	:	:	2.0	:	:	:	4	1	:	:	:	:	:	î.	:	4	:	;	:
SODIU AND POTASS	Na	3	54	30	:	162	29	52	184	:	:	29	22	139	4 B	75	62	ŧ	;	88	76	;	:	69	;	33	:	111	;	;	t	:	;
NGNE -	(34)	;	4.2	7.1	;	2.6	5.3	13	1.1	10	8.8	5.1	1.4	1.3	5.1	12	17	ż	:		6.6	;	1	7.6	£	6.3	;	11	E	;	;	:	:
CAL-	3	:	143	96	:	21	104	146	118	45	99	104	98	10	87	57	119	:	:	100	146	:	:	102	ŕ	105	:	z	r	:	1	ŧ	1
IRON (Fe)		4	1	t	Ŀ	:	;	;	1	;	1	10*0	;	-07	3	ŧ	3.1	:	£9°	;	3	;	a	t.	1	I.	1	E	i.	3	1	1	;
ILICA Si02)		;	22	:	:	40	:	:	:	:	:	28	3	13	1	:	24	t.	:	:	;	;	:	:	t	;	;	;	:	;	4	;	:
P S	1	1968	1968	1942	1968	1968	1942		1942	1968	1968	1963	1942	194.2		1942	1964	1968	1968	1942	-	-			1942	-	1968	1942	1968	1942	-	1942	1942
DATE O		1.	. 9,	. 22,	1.	. 8,	. 22,	do.	. 10,	. 9,	23,	15,	10,	13,	do.	10,	21,	ŵ	18,	20,	do.	do.	do.	do.	21,	do.	19,	20,	27,	21,	do.	16,	24,
.0	_	Oct	Aug	Oct	Oct	Oct	Oct		Nov	Aug	Jul	Aug	Nov.	lut		Nov.	Aug	Oct.	Dec	Jul			_		July	_	Dec.	July	Dec.	July	_	July	June
WATER- BEARIN	TTNO	Ev	do.	do.	do.	7	P	do.	do.	do.	do.	do.	Qal	-	Ev	do.	Qal, Ev	2	do.	do.	do.	do.	do.	do.	do.	B	do.	**	do.	Ev	٦	do.	do.
UNTERVAL OR WELL	(11)	150	99	28	16	1,049	65	46	21	352	007	20	65	1,674	87	400	tz	006	162	165	36	210	151	180	40	32	45	11	11	44	100	140	394
NELL		YY-59-55-102	201	202	203	100	304	305	507	511	215	203	704	806	808	106	56-106	109.	29-303	60-101	103	105	108	109.	202	204	302	505	505	603	604	605	101-19

- 104 -

From Wells and Springs -- Continued

-	
1.00	
1.00	
1.00	
- 22	
-	
- 54	
-	
-	
1	
-	
_	
-	
44	
- 61	
15	
1.00	
- 22	
- 49	
10	
- 64	

TEMPER- ATURE	2		3	;	1	ŧ	;	:	3	:	;	:	:	;	ī	1	;	1	;	1	â	:	;	23
Ħ.		7.4	3	t	ŧ	:	ł	1	1	7.1	1	;	1	;	;	7.4	7.6	1	4	7.5	1	;	7.5	7.7
SPECTFIC CONDUCTANCE (MICROMIOS	(D _ 67 IV	TIL I	;	1	:	:	ł	:	:	729	:	:	;	1	;	591	674	1	;	1,360	;	;	623	1,240
RESIDUAL SODIUM CARHONATE	(RSC)	0.09	1	:	;	;	;	ł	:	.00	;	;	;	;	;	00*	*0*	;	1	00'	;	;	00'	00*
SODIUM ADSORP- TION	(SAR)	1	:	ł	1	1	;	1	;	1	;	;	1	;	t	0.5	:	:	;	:	;	:	:	2.2
PERCENT SODIUM		1	3	1	:	ł	1	ł	:	328	3	1	1	;	ł	14	:	;	1	1	:	:	;	35
HARD- NESS AS	caco ₃	192	;	;	;	;	ţ	;	171	;	;	227	222	200	;	270	286	;	;	454	:	:	278	411
DIS-	SULLINS	427 E	1	:	;	:	ł	Ē	233	:	;	338	288	536	t	356	;	1	;	816 E	;	1	1	169
BORON (E)		1	4	:	:	;	ŧ	ţ	ŧ	:	;	;	;	1	1	1	1	!	;	3	:	;	1	1
NITEATE 1 (SO ₃)		:	0	1.9	72	0	1	64	12	ŧ	39	1	1	50	1	9.	:	0	÷	386	12	30	;	0.
FLUO- KIDE	6	;	;	;	;	0.2	;	;	;	1.0	,	;	:	1	7	7	:	:	:	;	.2	:	1	4
CHLO-	(11)	106	84	16	112	59	40	57	4	23	31	27	19	123	430	28	45	500	28	14.7	18	21	39	201
SUL- FATE	(hne)	;	~	9	14	37		30	17	22	ę	4	0	3	68	5.6	7.8	100	59	18	14	12	:	37
BICAR - BONATE	(Conu)	240	607	250	256	342	275	378	220	383	268	348	299	293	232	328	352	458	256	109	153	293	336	365
* WILLS	×	:	;	;	;	;	4	;	;	;	;	:	;	:	;	2.0	:	;	:	:	;	;	:	:
SODI AN POTAS	Na	1	;	;	:	;	1	ţ	21	:	;	94	27	125	:	20	1	;	:	:	;	;	:	103
MAGNE -	1911	;	1	;	1	;	;	;	1.5	;	;	2.7	3.9	2.5	;	3.3	4.1	:	;	23	;	;	7.0	38
CAL-	1001	:	1	1	:	:	:	:	99	;	1	98	82	89	;	103	108	r	;	144	;	1	100	102
IRON (Fe)		;	1	;	ł	:	:	:	1	ŧ	:	;	:	;	;	:	:	I.	:	;	1	;	;	0,16
ILLICA S102)		;	:	;	:	:	:	;	:	14	:	;	:	:	;	32	;	;	;	;	:	1	:	15
S NO		1968	1942	1942	1942		1942		1942	1968	1942	1942		1942	1942	1968		1942		1968	1942		1968	1964
NTE OF		19,	21,	15,	16,	do.	15,	do.	З,	28,	13,	30,	do.	20,	30,	12	do.	14,	do.	13,	14,	do.	13,	10,
- 8		Dec.	July	July	July		July	_	July	Oct.	July	June	_	June	June	Aug.		July	_	Aug.+	July		Aug.	Apr.
WATER - BEARING	1100	2	ю	do.	Ev	-	40 *	37	Ev	do.	40.	do.	do.	.05	do.	do.	do.	do.	do.	do.	do.	do.	do.	qal
TRTERVAL. OR WELL	(11)	366	63	34	80	125	155	Spring	17	9	100	148	35	75	100	174	253	40	18	18	Spring	85	211	45
TTI M		101-19-65-1X	204	206	304	404	410	503	62-101	105	108	201	202	203	204	302	202	101	306	63-102	104	105	106	502

,