TEXAS WATER DEVELOPMENT BOARD

REPORT 158

ground water in dickens And kent

COUNTIES, TEXAS

By
James G. Cronin
United States Geological Survey

This report was prepared by the U.S. Geological Survey under cooperative agreement with the

Texas Water Development Board

TEXAS WATER DEVELOPMENT BOARD

W. E. Tinsley, Chairman
Robert B. Gilmore
Marvin Shurbet, Vice Chairman John H. McCoy
Milton T. Potts
Carl Illig

Harry P. Burleigh, Executive Director

Authorization for use or reproduction of any original material contained in this publication, i.e., not obtained from other sources, is freely granted. The Board would appreciate acknowledgement.

Published and distributed
by the
Texas Water Development Board
Post Office Box 13087
Austin, Texas 78711

TABLE OF CONTENTS

Page
ABSTRACT 1
INTRODUCTION 3
Location and Economy of the Area 3
Purpose and Scope of the Investigation 3
Climate, Physiography, and Drainage 4
Well-Numbering System 4
Acknowledgments 5
GEOLOGIC UNITS AND THEIR WATER-BEARING CHARACTERISTICS 5
Permian System 5
Triassic System 5
Cretaceous System 9
Ogallala Formation 9
Quaternary Alluvium 10
RECHARGE, MOVEMENT, AND DISCHARGE OF GROUND WATER 15
STREAMFLOW 15
CHEMICAL QUALITY OF GROUND WATER 15
Relationship of Water Quality to Use 19
Chemical Quality of Water in the Geologic Units 22
Analyses for Pesticides 23
PRODUCTION AND DISPOSAL OF OIL-FIELD BRINE 24
NEED FOR ADDITIONAL STUDIES 24
SELECTED REFERENCES 26
TABLES

1. Geologic Units and Their Water-Bearing Properties 6
2. Pumpage for Public Supply, Industry, Irrigation, and Acres Irrigated, From the Ogallala and Quaternary Alluvium Aquifers 11

TABLE OF CONTENTS (Cont'd.)

Page
3. Water-Level Changes in Wells 12
4. Source and Significance of Dissolved-Mineral Constituents and Properties of Water 20
5. Production and Disposal of Oil-Field Brine, 1961 24
6. Records of Wells and Springs 28
7. Drillers' Logs of Selected Wells in the Alluvium 71
8. Chemical Analyses of Water From Wells and Springs in Dickens and Kent Counties 74
FIGURES

1. Index Map Showing Location of Dickens and Kent Counties 3
2. Geologic Map 7
3. Hydrographs of Three Wells in the Quaternary Alluvium and One Well in the Ogallala Formation 10
4. Map Showing Approximate Altitude of the Water Table in Parts of Dickens and Kent Counties 17
5. Diagram Showing the Classification of Water Used for Irrigation 21
6. Map Showing Locations of Major Wells, Springs, and Oil Fields 81

GROUND WATER IN DICKENS AND KENT
 COUNTIES, TEXAS

By
James G. Cronin
United States Geological Survey

Abstract

Dickens and Kent Counties are in the northwestern part of Texas, south of the Panhandle area. About 50 square miles in northwestern Dickens County is in the High Plains section of the Great Plains physiographic province. The remainder of the area is in the Osage Plains section of the Central Lowlands province.

Rocks of Permian, Triassic, Cretaceous, Tertiary, and Quaternary age are exposed in the two-county area. These rocks, except those of Cretaceous age, contain the aquifers that yield small to moderate quantities of water for irrigation, industrial use, public supply, domestic supply, and livestock use. The principal aquifer in most of the report area is the Quaternary alluvium. In the High Plains part of the area, the Ogallala Formation of Tertiary age is the major aquifer.

In 1964 an estimated 15,500 acre-feet of water was withdrawn from the Quaternary alluvium for public supply, irrigation, and industrial use, of which 437 acre-feet and 13,000 acre-feet were for public supply and irrigation, respectively. Since 1966, the water supply for the city of Spur has consisted entirely of surface water obtained from the White River Municipal Water District; consequently, the amount of water withdrawn from the Quaternary alluvium for public supply, which was 121 acre-feet in 1968, has been reduced. The Ogallala Formation supplied an estimated 800 acre-feet of water for irrigation in 1964 and probably less in 1968.

Water in the various aquifers ranges from fresh to very saline. Variations in the chemical quality of the water in some aquifers are minor. In others, the variations are of considerable magnitude.

The data collected during this investigation are inadequate for an accurate appraisal of the potential of the aquifers; however, the data available indicate that the aquifers are not capable of furnishing additional large quantities of water for future development.

GROUND WATER IN DICKENS AND KENT COUNTIES, TEXAS

INTRODUCTION

Location and Economy of the Area

Dickens and Kent Counties are in the northwestern part of Texas, south of the Panhandle area (Figure 1). Dickens County has an area of 930 square miles and a population of 4,963 (1960 census). The town of Dickens, the county seat, and Spur, the principal commercial center, had respective populations of 302 and 2,300 according to the 1960 census.

Figure 1.-Location of Dickens and Kent Counties

Kent County, which adjoins Dickens County on the south, has an area of 901 square miles and a population of 1,727 (1960 census). Jayton, the county seat and commercial center, had a population of 659 according to the 1960 census.

The economy of Dickens County is based on farming and ranching; the economy of Kent County is based on farming, ranching, and oil production. Much of
the land in the two counties is rangeland or pasture used for raising beef cattle. However, the income from crops is probably greater than the income from livestock. The income from the production of oil is an important part of the economy in Kent County, but of minor importance in Dickens County where only a small quantity of oil is produced from a few wells. According to the Texas Almanac, about $146,000,000$ barrels of oil have been produced in Kent County, since 1946 (Dallas Morning News, 1969, p. 302).

Purpose and Scope of the Investigation

In May 1967, the U.S. Geological Survey, in cooperation with the Texas Water Development Board, began a study to appraise the ground-water resources of Dickens and Kent Counties. The purpose of the study was to obtain basic data on the occurrence, location, and quality of ground water in the two-county area. Particular emphasis was placed on the evaluation of the aquifers providing water for municipal supply, irrigation, and industrial use and of other aquifers from which additional supplies of water for these uses might be obtained.

The major part of the basic data for this report was obtained from a field inventory of irrigation, municipal, and industrial wells; from an inventory of springs; from the analyses of water samples collected during the well inventory; and from field studies of the geology and topography as related to the occurrence of ground water.

Preliminary topographic maps on a scale of $1: 24,000$ with a contour interval of 10 feet were available for all of the report area except the southern half of Kent County. The altitudes of the wells were determined from these maps. In southern Kent County, the altitudes of the wells were estimated from topographic maps published by the U.S. Geological Survey on a scale of $1: 250,000$ with a contour interval of 50 feet.

Other information was compiled from the records and reports of the U.S. Geological Survey, the Texas Water Development Board, and other State and Federal agencies.

Records of wells and springs are given in Table 6, and the locations of wells are shown on Figure 6. Wells and springs from which water samples were collected for chemical analyses are identified on Figure 6 by a bar over the well number. The results of the chemical analyses of the water samples are given in Table 8.

Where relative well yields are discussed in this report, small yields are less than 100 gpm (gallons per minute), moderate yields are 100 to 500 gpm , and large yields are more than 500 gpm .

Detailed studies of the ground-water resources of Dickens and Kent Counties have not been made, but at various times information regarding ground water in these counties has been collected for special purposes or as part of a regional study (Cronin and others, 1963; Baker and others, 1963; Stevens and Hardt, 1965). Since 1959, the Texas Water Development Board has made water-level measurements annually in 21 observation wells in Dickens County. Several publications that contain some information about the ground water in Dickens and Kent Counties are included in the list of references given at the end of this report.

Climate, Physiography, and Drainage

The climate of Dickens and Kent Counties is mild and semiarid. Humidity is low and evaporation is high. According to records of the U.S. Weather Bureau, the normal annual temperature at Spur is $62.5^{\circ} \mathrm{F}$., the normal annual precipitation is 20.24 inches, and the average annual evaporation is 63.45 inches. Annual precipitation at Jayton in east-central Kent County and at Polar in southwestern Kent County averages 17.97 and 19.19 inches, respectively.

The winter season is cool with occasional severe cold spells, usually of short duration. High winds accompanied by dust storms occur often in the spring. The summers are hot and temperatures often exceed $100^{\circ} \mathrm{F}$.

Approximately 75 percent of the annual precipitation occurs during the growing season, which averages about 215 days.

The two-county area includes parts of two physiographic sections. In the northwestern part of Dickens County, an area of about 50 square miles is in the High Plains section of the Great Plains province. The rest of the report area is in the Osage Plains section of the Central Lowlands province.

The High Plains section is separated from the Osage Plains section by an escarpment which generally trends northeastward across the northwestern part of Dickens County. The escarpment is 300 or more feet high, is precipitous in places, but slopes gradually in other places. A band of rough broken country, referred
to as the "breaks of the plains," extends along the base of the escarpment.

The Osage Plains section in Dickens and Kent Counties is a part of an essentially eastward sloping plain characterized by rough broken land along the entrenched streams and level to undulating land on the interstream divides. The altitude of the land surface ranges from about 2,500 feet above mean sea level in the vicinity of Afton in northern Dickens County to about 1,900 feet along Croton Creek in northeastern Kent County.

Approximately the northern third of Dickens County is drained by tributaries of the Red River system. The remainder of the two-county area is drained by the Salt Fork and Double Mountain Fork Brazos River and their tributaries.

Croton Creek, a deeply entrenched tributary of the Salt Fork Brazos River drains much of the eastern part of Dickens County and the northeastern part of Kent Country. The area drained by this stream is heavily dissected and is referred to as the "Croton breaks." Salt flats, so named because they occur at places where salt water is discharged from the surrounding rocks, are present along two tributaries of Croton Creek in northeastern Kent County. Duck Creek originates in northwestern Dickens County and flows southward to join the Salt Fork Brazos River in Kent County. The area along Duck Creek, especially north of Spur, is the most heavily irrigated part of the report area.

Streamflow in the area is small, except after heavy rains. The larger streams, such as the Salt Fork and Double Mountain Fork Brazos River, have wide, flat, sandy beds. Ordinarily the water flows in a narrow channel or is ponded in pools scattered along the stream channels. Some of the creeks receive discharge from springs, part of which is lost to evaporation or percolates into the sandy streambeds.

Well-Numbering System

The well-numbering system used in this report is the one adopted by the Texas Water Development Board for use throughout the State. Under this system, each 1 -degree quadrangle in the State is given a number consisting of two digits. These are the first two digits in the well number. Each 1-degree quadrangle is divided into $71 / 2$-minute quadrangles which are given two digit numbers from 01 to 64 . These are the third and fourth digits of the well number. Each $71 / 2$-minute quadrangle is subdivided into $21 / 2$-minute quadrangles and given a single digit number from 1 to 9 . This is the fifth digit of the well number. Finally, each well within a $2 \frac{1}{2}$-minute quadrangle is given a 2 -digit number in the order in which it is inventoried, starting with 01. These are the last two digits of the well number. Only the last three digits of the well numbers are shown next to the well
symbols on the well-location maps (Figure 6); the $71 / 2$-minute quadrangles are numbered in the northwest corners, and 1 -degree quadrangles are shown by large bold numbers. In addition to the 7 -digit well number, a 2-letter prefix is used to identify the county. The prefix for Dickens County is HY; the prefix for Kent County is RH.

Acknowledgments

The author is indebted to the many well owners who supplied information about their wells and granted permission to make water-level measurements in the wells. The cooperation and assistance given by personnel of Federal, State, county, and municipal agencies and departments are gratefully acknowledged. Appreciation is extended to the well drillers who furnished data on wells they had drilled, and to the Dickens County Electric Cooperative, Inc. for data concerning the use of electric power by irrigation wells.

GEOLOGIC UNITS AND THEIR WATER-BEARING CHARACTERISTICS

The rocks that crop out in Dickens and Kent Counties range in age from Paleozoic to Cenozoic, and include rocks belonging to the Permian, Triassic, Cretaceous, Tertiary, and Quaternary Systems (Figure 2). Rocks ranging in age from Precambrian to Paleozoic are present in the subsurface. The geologic history of Dickens and Kent Counties that is pertinent to this report begins with the Permian; therefore, discussion of the older rocks in the subsurface is omitted. The geologic and water-bearing properties of the exposed formations are summarized in Table 1.

Permian System

Rocks of Permian age underlie all of Dickens and Kent Counties and are exposed over a large part of the two-county area. The Permian rocks that crop out in the report area belong to the Whitehorse Group and the Quartermaster Formation. The rocks of the Whitehorse Group overlie older Permian rocks in the subsurface and are overlain by rocks of the Quartermaster Formation. The exposed Permian rocks are about 1,000 feet thick and dip westward at an average rate of about 25 feet per mile.

The Quartermaster Formation consists of interbedded shale, sandstone, gypsum, and anhydrite, mostly in various shades of red. The Whitehorse Group consists of sand, sandstone, shale, gypsum, dolomite, and salt. The redbed strata that crop out in northeastern Kent County consist of poorly consolidated, very fine red sand and silt, and locally poorly cemented sandstone and siltstone interbedded with gypsum. Salt beds ranging in thickness from 4 to 75 feet are present in the
subsurface (McMillion, 1958, p. 14). These give rise to salt springs which contaminate surface water supplies.

Ground water in the Permian rocks in Dickens and Kent Counties occurs under complex hydrologic conditions, involving both confined and unconfined aquifers. In general, ground water at shallow depths, about 200-250 feet, occurs under water table conditions.

Very little information is available concerning the hydrologic properties of the Permian rocks. The yields of wells tapping these rocks are usually small, suggesting that the permeabilities of the rocks are low. Some irrigation wells in Kent County are bottomed in a fine red sand of probable Permian age. The yields of these wells are small and operating difficulties have been experienced because of the amount of sand being pumped from the wells. Small yields are also obtained from wells pumping from zones in which solution channels or cavities have developed in the Permian rocks.

The amount of ground water being pumped from aquifers in the Permian rocks is not known, but probably is small. The limited amount of information available indicates that the aquifers in the Permian rocks do not have the potential to supply large quantities of water for irrigation or public supply. Furthermore, the quality of the water probably is undesirable for public supply, unsuitable for many industrial uses, and limited to irrigation of certain types of crops on land having good drainage.

Triassic System

Rocks of the Dockum Group of Late Triassic age underlie all of the High Plains in northwestern Dickens County and are continuous with those that underlie the Southern High Plains in Texas and New Mexico. The Triassic rocks are exposed along the escarpment of the High Plains, in the "breaks of the plains," and in outcrops of small areal extent in both Dickens and Kent Counties. The rocks of the Dockum Group unconformably overlie rocks of Permian age and dip to the southeast. The thickness of the Triassic rocks in the report area is estimated to be about 400 feet.

The Dockum Group in the report area consists mainly of shale, sandy shale, sandstone, and conglomerate. In places, the rocks consist chiefly of sandstone and conglomerate. Because the predominant color of the Triassic rocks is red, they are commonly referred to as "red beds."

Ground water is obtained from the Triassic rocks for rural domestic supply and livestock by wells and from springs along the escarpment of the High Plains and in the "breaks of the plains." The water supply for the town of Dickens was formerly obtained from wells in the Triassic rocks. The yields of these public-supply wells ranged from 10 to 50 gpm in 1946 (Broadhurst,
Table 1.-Geologic Units and Their Water-Bearing Properties

ERA	SYSTEM	SERIES OR GROUP	FORMATION OR UNIT	THICKNESS (FEET)	LITHOLOGY	WATER-BEARING PROPERTIES
Cenozoic	Quaternary	Holocene and Pleistocene Series undifferentiated	Alluvium (includes river alluvium, ter races, and sand dunes.)	$0.140 \pm$	Windblown sand and silt, sand, clay, and gravel.	Yields small to moderate quantities of water for irrigation, public supply, industrial, and domestic and livestock supply.
	Tertiary	Pliocene Series	Ogallala Formation	0-400 \pm	Fine to coarse sand and gravel, clay, silt, and caliche.	Yields small to moderate quantities of water in Dickens County for irrigation, public supply, and domestic and livestock supply.
Mesozoic	Cretaceous	Fredericksburg Group	Edwards Limestone Comanche Peak Limestone Walnut Clay	0-100	Sand, sandstone, conglomerate, limestone shale.	Occurs as small isolated remnants; not important as a source of water.
		Trinity Group	$\begin{aligned} & \text { Antlers Sand of Hill } \\ & (1894) \end{aligned}$			
	Triassic	Dockum Group	-	0.400士	Clay, shale, and sandy shale, cross-bedded sandstone, conglomerate.	Yields small quantities of water for domestic and livestock purposes. FormerIy source of water supply for town of Dickens.
Paleozoic	Permian	-	Quartermaster Formation	1,000	Sand, sandstone shale, gypsum anhydrite, dolomite and salt.	Yields meager to small quantities of water, generally of poor chemical quality, for rural domestic, livestock watering, and a few irrigation wells.
		Whitehorse Group	-			

Sundstrom, and Weaver, 1951, p. 44-45), but the wells are unused or have been destroyed since the town developed a new source of water supply from wells drilled in the Quaternary alluvium. The amount of ground water presently obtained from the Triassic rocks is not known but probably is very small.

Very little information is available concerning the hydrologic properties of the Triassic rocks in the report area. The fact that the wells yield only small quantities of water suggests that permeabilities of rocks are low. Because of this and because of the limited area extent of the Triassic rocks in Dickens and Kent Counties, the Dockum Group is not considered as a source of large supplies of ground water for future development.

Cretaceous System

Rocks of Cretaceous age consisting of the Antlers Sand of Hill (1894) (Trinity Group), Edwards Limestone, Comanche Peak Limestone, and Walnut Clay crop out in several small areas on topographic high points in southwestern Kent County. The Cretaceous rocks overlie the Dockum Group and have a thickness of about 100 feet or less.

Although the amount of water, if any, produced from the rocks of Cretaceous age in the report area is unknown, they are not considered an important source of water supply. Moreover, because the areal extent of the Cretaceous rocks in the report area is very smail (Figure 2), they should not be considered as a source of a large supply of water for the future.

The rocks of Cretaceous age are not considered to be important to the hydrology of the report area and will not be discussed further in this report.

Ogallala Formation

The Ogallala Formation of Pliocene age, which crops out along the face of the High Plains Escarpment, underlies all of the High Plains part of Dickens County. It is a part of and continuous with the Ogallala Formation that underlies the Southern High Plains of Texas and New Mexico.

The Ogallala Formation consists of red and yellow clay, silt, fine to coarse gray and buff sand, gravel, and caliche. The sand, gravel, and silt deposits are cemented in places, chiefly by calcium carbonate. The cementation occurs irregularly throughout the formation, and the degree of cementation ranges from well cemented to loosely cemented. Because it is resistant to erosion, the caliche forms the "caprock" of the High Plains Escarpment.

The individual beds or lenses of silt, sand, and gravel are not continuous over wide areas, but generally
pinch out or grade both laterally and vertically into finer or coarser material.

The thickness of the Ogallala Formation, which reaches a maximum of 350 to 400 feet in Dickens County, varies greatly because of the irregularity of the surface on which it was deposited. Because of the contrast between the Ogallala and the underlying Triassic "redbeds" the contact is readily recognized in most places in the High Plains of Texas. However, in some of the drillers' logs for wells drilled in the Ogallala in Dickens County, the contact of the Ogallala and the underlying Triassic rocks cannot be readily identified. Some of the wells probably have been drilled into solution cavities, and some of the wells assumed to be drilled in the Ogallala may actually penetrate the Triassic rocks. The drillers' logs of three wells (HY-22-09-401, HY-23-16-915, and HY-23-24-603) in Dickens County are given in Table 7.

The Ogallala Formation in Dickens County furnishes water for irrigation, public supply, rural domestic supply, and livestock. Ground water in the formation generally occurs under water table conditions, but locally a slight artesian pressure may exist where the water is confined beneath lenticular bodies of clay.

The hydrologic properties of the Ogallala Formation in Dickens County have not been determined. Tests made of the Ogallala in other parts of the Southern High Plains of Texas indicate that the coefficient of storage is about 15 percent (Cronin, 1969, p. 7).

The yields of 44 wells in the Ogallala Formation in Dickens County range from small to moderate. The amount of water pumped for irrigation in 1959 by 26 wells tapping the Ogallala Formation in Dickens County was about 600 acre-feet. The estimated pumpage for irrigation in 1964 was 800 acre-feet. The quantity of water pumped in 1968 is not known, but it probably was considerably less than the 800 acre-feet pumped in 1964, because of the distribution of rainfall before and during the growing season. The estimated amount of water pumped from the Ogallala Formation for irrigation and public supply during various years is given in Table 2.

The quantity of water in storage that would be available to wells in the Ogallala Formation cannot be accurately determined with the information available. As indicated previously, some of the wells assumed to be completed in the Ogallala may penetrate the underlying Triassic rocks. In such wells, the saturated zone may be in either the Ogallala, the Triassic rocks, or both.

The thickness of the saturated zone in the Ogallala Formation ranges from zero to about 50 feet (Cronin, 1969, p. 7, sheet 4). An approximation of the quantity of water in storage that would be available to wells can be made on the basis of the following assumptions:
(1) That the average thickness of the saturated zone is 25 feet, the midpoint of the zero to 50 feet increment; (2) that the area in which the thickness of the saturated zone is 25 feet is about 32,000 acres; and (3) that the storage coefficient is 15 percent. The quantity of water in storage that would be available to wells would be equal to the product of the area (in acres) and the thickness of the saturated zone (in feet) multiplied by the storage coefficient; the estimated quantity, therefore, is about 120,000 acre-feet. This estimate is provisional, but is an indication of the order of magnitude of the amount of water in storage.

If the estimated amount of water in storage is of the proper order of magnitude and the quantity of water pumped does not increase greatly, water would be available from the Ogallala for a long period of time. However, the area occupied by the Ogallala is small when compared to the combined area of Dickens and Kent Counties. Therefore, the water in the Ogallala Formation, although important as a source of water supply for use on the High Plains of Dickens County, is relatively unimportant as a source of water supply for other parts of the two-county area.

Since 1959, the Texas Water Development Board has made water-level measurements annually in three observation wells in the Ogallala Formation in Dickens County. The results of these measurements are given in Table 3 and the hydrograph of well HY-23-16-601 is shown on Figure 3. The records show that the water level declined almost 23 feet in well HY-23-16-901 but only 4.8 feet and 6.30 feet in wells HY-23-16-601 and HY-23-24-301, respectively. Well HY-23-16-901 has been destroyed, probably because it was not an effective production well, and the declines in the other two observation wells probably are more representative of the decline of the water table in the Ogallala Formation in Dickens County during the period of 1959-68.

Quaternary Alluvium

The Quaternary alluvium in Dickens and Kent Counties occurs as terrace and flood-plain deposits along the principal streams and their tributaries and as accumulations of windblown sand. The alluvium is underlain by Permian and Triassic rocks, except in a small area in northern Dickens County where the sediments, mainly windblown sand, may be underlain by the Ogallala Formation.

The Quaternary alluvium consists of fine to coarse sand, clay, silt, and gravel. The composition of the sediments varies from place to place. The beds are not continuous over wide areas, but tend to grade laterally into beds of finer or coarser materials. The windblown deposits consist of sand and silt. The thickness of the alluvium ranges from zero to about 150 feet in the vicinity of Afton. The location and areal extent of the deposits is shown on Figure 2. The drillers' logs of 10 wells drilled in the alluvium are given in Table 7.

Figure 3.-Hydrographs of Three Wells in the Quaternary Alluvium and One Well in the Ogallala Formation

The Quaternary alluvium is the principal source of water for irrigation, public supply, and industrial use in Dickens and Kent Counties. The aquifer also supplies water for domestic supply and livestock.

Some of the deposits are unimportant hydrologically, except as a source of meager quantities of water for domestic supply and livestock. In other

Table 2.-Pumpage For Public Supply, Industry, Irrigation, and Acres Irrigated, From the Ogallala and Quaternary Alluvium Aquifers/

PUBLIC SUPPLY							IRRIGATION				INDUSTRY7/
YEAR	DICKENS	SPUR	JAYTON	McADOO	QUATERNARY ALLUVIUM	OGALLALA FORMATION	DICKENS	KENT	QUATERNARY ALLUVIUM	OGALLALA FORMATION	QUATERNARY ALLUVIUM
	ACRE-FEET				ACRE-FEET		ACRE-IRRIGATED		ACRE-FEET3/		ACRE-FEET
1953											3008/
1954							3,0433/	110			
1955	43	365	61		469						
1956	52	438	64		554						2,100
1957	61	346	64		471						
1958	44	353	132		529		10,5044/	1,800	11,7045/	600	
1959	50	389	132		571		9,8863/	1,466	9,8206/	6006/	2,600
1960	31	404	62		497				8,9386/		2,900
1961	28	360	63		451						
1962	20	313	65		398						
1963	22	337	70		429						
1964	27	340	70		437		11,9944/	1,400	13,0615/	800	2,000
1965	27	1312/	81		239						1,900
1966	27	2	95		124						
1967	21	0	92	16	113	16					
1968	18	0	103	18	121	18					

1/Shown only for years for which data was available.
2/ Started using surface water from the White River Municipal Water District.
3) Acres irrigated in 1954 and 1959 from 1959 Census of Agricuture, vol. 1, part 37, Bureau of the Census, U.S. Department of Commerce.

4/ Acres irrigated, and acre-feet of water pumped for irrigation in 1958 and 1964 from Gillett, P. T., and Janca, I. G., 1965, p. 109 and 182
5/ Estimate from Gillett, P. T., and Janca, I. G., 1965, p. 109 and 182, apportioned to the Ogallala Formation and the Quaternary alluvium.
6 Estimated by Paul Rettman (written communication) on basis of power consumption, operating time and yield of wells.
7 / Pumpage for industrial use in Kent County; no pumpage for industrial use in Dickens County. Amount of pumpage estimated from meager
mount of data and therefore subject to error.
8/ Estimated to be first year that a significant amount of water was pumped for industrial use in Kent County.

Table 3.-Water Levels in Wells (In Feet Below Land Surface)

WELL NUMBER	DATE OF MEASUREMENT	$\begin{aligned} & \text { DEPTH } \\ & \text { TO } \\ & \text { WATER } \end{aligned}$	WELL NUMBER	DATE OF MEASUREMENT	$\begin{aligned} & \text { DEPTH } \\ & \text { TO } \\ & \text { WATER } \end{aligned}$	WELL NUMBER	DATE OF MEASUREMENT	$\begin{aligned} & \text { DEPTH } \\ & \text { TO } \\ & \text { WATER } \end{aligned}$
HY-22-10-501	12-18-59	9.10	HY-22-11-702	12-18-59	42.60	HY-22-25-602 Continued	12-27-60	23.41
	12-27-60	4.84		12-27-60	39.02		2-25-62	24.28
	2-27-62	8.05		2-27-62	36.54		1-05-63	23.27
	1-05-63	4.41		1-05-63	38.43		1-08-64	23.11
	1-08-65	12.30		1-08-64	40.50		1.08 .65	23.32
	1-17-66	13.75		1-08-65	41.48		1-18-66	25.22
	1-22-67	13.60		1-17-66	45.62		1-22-67	26.33
	1-18-68	12.70		1-23-67	45.54		1-17-68	25.78
HY-22-10-701	12-18-59	63.30		1-17-68	45.90		1.25-68	25.40
	12-27-60	62.82		9-09-68	39.84	HY-22-26-401	12-23-59	20.60
	2-27-62	61.78	HY-22-18-301	12-14-59	26.90		12-28-60	18.06
	1-05-63	62.76		12-27-60	25.19		2-25-62	13.08
	1-08-64	65.96		2-27-62	23.18		1.05-63	12.99
	1-08-65	64.13		1.05-63	24.43		1-08-64	12.42
	1-17-66	65.53		1-08-64	26.31		1-08-65	12.83
	1-22-67	66.02		1.08-65	25.92		1-18-66	15.96
	1-18-68	65.60		1-17-66	28.19		1-22-67	23.15
HY-22-10-702	12-15-59	36.20		1-23-67	25.20		1-17-68	16.80
	12-27-60	35.10		1.17-68	25.90	HY-22-26-702	12-24-59	23.50
	2-27-62	34.58	HY-22-25-304	12-23-59	28.20		12-28-60	22.41
	1-05-63	35.26		12-28-60	30.46		1-05-63	22.11
	1-08-64	36.21		2-25-62	30.21		1-08-64	22.07
	1-08-65	37.06		1-05-63	32.26		1-08-65	24.02
	1-17-66	38.45		1-08-64	32.97		1-18-66	26.73
	1-22-67	42.17		1-18-66	37.20		1-22-67	24.33
	9-28-67	41.85		1-22-67	37.39		1-17-68	24.90
	1-18-68	38.54		1-17-68	36.9		1-25-68	25.0
	5-23-68	38.40	HY-22-25-402	12-10-59	19.0	HY-22-27-2013/	12-16-59	28.80
HY-22-11-701	12-18-59	66.10		12-27-60	18.32		12-27-60	26.79
	12-27-60	64.40		2-25-62	18.19		1-05-63	25.31
	2-27-62	61.45		1-05-63	18.58		1-08-64	27.32
	1-05-63	62.98		1-08-64	19.62		1-08-65	29.63
	1-08-64	62.87		1-08-65	20.71		1-18-66	31.15
	1-08-65	63.61		1-18-66	22.06		1-23-67	28.83
	1-17-66	65.12		1-22-67	22.51		1-17-68	27.70
	1-23-67	66.31		1-17-68	22.18	HY-22-33-501	1-10-58	75.00
	1-17-68	67.37		10-22-68	20.4		1-10-59	75.50
	9-05-68	60.30	HY-22-25-602	12-24-59	23.10		12-23-59	76.08

Table 3.-Water Levels in Wells (In Feet Below Land Surface)-Continued

places where the deposits are thick and cover large areas, they are capable of storing and yielding small to moderate quantities of water.

The main deposits of Quaternary alluvium, from which small to moderate quantities of water for irrigation and public supply are obtained, are in the vicinity of Afton in northern Dickens County and along Duck Creek in Dickens and Kent Counties. The locations of other areas where a few wells in the alluvium supply water for irrigation are shown on Figure 6.

Water for industrial use is obtained from the Quaternary alluvium along the Salt Fork of the Brazos River and its tributary the White River, and along the Double Mountain Fork of the Brazos River (Figure 6).

Ground water in the Quaternary alluvium in the report area generally occurs under water table conditions, but locally, a slight artesian pressure may exist where the water is confined under lenticular bodies of clay.

Very few irrigation wells were in operation during 1968, and it was not possible to arrange for pumping tests to determine the hydrologic properties of the Quaternary alluvium. The coefficient of storage of the Quaternary alluvium in Haskell and Knox Counties was estimated by Ogilbee and Osborne (1962, p. 31) to be about 14 percent. The coefficient of storage of the alluvium in Dickens and Kent Counties is probably of the same order of magnitude.

The amount of ground water pumped from the Quaternary alluvium for public supply, irrigation, and industrial use in Dickens and Kent Counties in 1964 was about 15,500 acre-feet. The amount of water pumped for these purposes during various years is shown in Table 2. The amount of water pumped for public supply was obtained from the records of the Texas Water Development Board. Other sources of information are given in the footnotes at the end of the table.

Information shown in Table 2, taken from Gillett and Janca (1965, p. 109 and 182), indicates that the duty of water and therefore, in general, the amount of water pumped, is about one acre-foot of water per acre irrigated. A general indication of the amount of water pumped for irrigation also can be obtained from records of the amount of electrical power used to operate the irrigation wells.

Information furnished by the Dickens County Electric Cooperative, Inc., shows that 3,550,041 kwh (kilowatt-hours) were used to operate 364 wells in 1965; 2,806,803 kwh for 399 wells in 1966; 2,538,947 kwh for 395 wells in 1967; and 1,095,709 kwh for 391 wells in 1968. A comparison of the number of kilowatt hours used in 1965 and 1968 suggests that the pumpage during 1968 was about one-third of the pumpage in 1965, which was probably about the same as in 1964. Because of favorable soil moisture conditions, many irrigation wells were not operated during the 1968 irrigation season, and many were operated for only short periods of time.

Ground water withdrawn from the Quaternary alluvium in the report area for industrial purposes is used mainly for oilfield repressuring in Kent County. No water is known to be pumped for industrial use in Dickens County. Because the estimates of water pumped for industrial use (Table 2) are based on very meager information, they should be used with caution.

Since 1959 the Texas Water Development Board has made water-level measurements annually in 17 observation wells drilled in the Quaternary alluvium in Dickens County. The results of these measurements are given in Table 3 and the hydrographs of three wells in the alluvium are shown on Figure 3. The hydrographs show that from 1959 to 1968 there was a general decline in water levels. From 1959 to 1962 the water level rose in the wells. The water level in all of the wells declined during 1962 to 1966 or 1967, at which time the water
level in the wells started to rise. At the beginning of 1968, the water levels in the three wells were still below the levels of 1962.

The deposits of Quaternary alluvium in Dickens and Kent Counties are scattered (Figure 2), and the thickness of the saturated zone in these deposits varies. An accurate estimate of the amount of ground water in storage would require detailed geologic mapping and the collection of a considerable amount of hydrologic data.

The principal areas from which ground water is withdrawn from the Quaternary alluvium, including the sand dune areas, in the two counties are along Cottonwood Creek in the vicinity of Afton in the northern part of Dickens County and along Duck Creek in both Dickens and Kent Counties (Figure 2). An approximation of the amount of ground water in storage in each of these areas can be made by assuming that the storage coefficient is 14 percent and that the saturated zone has a uniform thickness equal to the average thickness of the saturated zone in each of the areas.

Based on these assumptions, the amount of ground water in storage was estimated for an area which, in general, coincides with the area in which irrigation wells have been drilled in the vicinity of Cottonwood Creek (Figure 6). The thickness of the saturated zone in this area of about 21,000 acres ranges from about 15 feet to slightly more than 90 feet and averages about 50 feet. The quantity of water theoretically available to wells is about 147,000 acre-feet.

The same method was used to estimate the amount of ground water in storage in the Quaternary alluvium in the area of Duck Creek in Dickens and Kent Counties. The area included in this estimate extends from about the headwaters of Duck Creek in Dickens County to the junction of Duck Creek with the Salt Fork of the Brazos River in Kent County, and in general coincides with the area in which irrigation wells have been drilled (Figure 6). Separate estimates have been made for each of the two counties, and in Dickens County the estimate includes the area along Dockum Creek, a tributary of Duck Creek.

The thickness of the saturated zone in an area of about 32,000 acres along Duck Creek in Dickens County averages about 30 feet. The quantity of water in storage in the Quaternary alluvium in this area that theoretically would be available to wells is estimated to be about 134,000 acre-feet. In Kent County the average thickness of the saturated zone is about 50 feet in an area of about 7,500 acres along Duck Creek. About 53,000 acre-feet of water that theoretically would be available to wells is estimated to be in storage in the Quaternary alluvium in this area.

These estimates of the quantity of water in storage in the Quaternary alluvium that would be available to wells should be considered only as an
indication of the order of magnitude of the water in storage.

The Quaternary alluvium in some places could supply some additional water but in general should not be considered as a source of additional quantities of water for future development.

RECHARGE, MOVEMENT, AND DISCHARGE OF GROUND WATER

The principal source of recharge to the aquifers in Dickens and Kent Counties is precipitation within the two-county area. Additional recharge is derived from streamflow and ground-water underflow.

The Triassic rocks and the Ogallala Formation receive recharge from precipitation and from ground-water underflow from the west. The major part of the recharge to the Quaternary alluvium is from precipitation on the outcrop. The flood plains and terraces receive some recharge from streamflow, especially after heavy rainfall when the streams are in flood. Data are not available to estimate the amount of recharge received annually by each of the aquifers.

The approximate altitude of the water level in the various aquifers is shown on Figure 4. The movement of water is in the direction of decreasing altitude and at right angles to the contours.

Ground water in the Ogallala Formation, in the High Plains part of Dickens County, moves to the east, northeast, and southeast towards the High Plains Escarpment. Ground water in the Triassic rocks moves in the same direction as in the Ogallala Formation. In the vicinity of Afton in northern Dickens County, ground water in the Quaternary alluvium moves to the northeast. Along Duck Creek in Dickens and Kent Counties, ground water in the alluvium moves to the southeast, generally parallel to the drainageway.

In the vicinity of the Dickens-Kent County line, the contours on the water table in the Permian rocks and the Quaternary alluvium indicate the presence of a ground-water divide. From the divide, ground water moves to the east towards Croton Creek and to the west towards Duck Creek. West of the ground-water divide, along Duck Creek, the upgradient flexure of the contours indicates that ground water is being discharged into the stream.

Ground water in Dickens and Kent Counties is discharged both naturally and artificially. Natural discharge is by springs and seeps and by evapotranspiration. Artificial discharge is by pumping from wells.

STREAMFLOW

The U.S. Geological Survey in cooperation with the Texas Water Development Board has operated a stream-gaging station on Duck Creek near Girard in Kent County (Figure 6) since September 1964. Runoff from an area of 294 square miles, of which 17.3 square miles is noncontributing, is recorded at this station.

Records of the U.S. Geological Survey (1967a) show that during the 1967 water year (Oct. 1966 through Sept. 1967), the mean daily discharge was 2.38 cfs (cubic feet per second) or 1,720 acre-feet. The uniformity of the daily-discharge records, except during periods of heavy precipitation, indicates that the streamflow is maintained by ground water being discharged into the stream. The decrease in the daily discharge during the months of May through September, except during periods of heavy precipitation, is probably due to withdrawals of ground water for irrigation.

Croton Creek drains a large part of eastern Dickens County and northeastern Kent County. Records of streamflow have been collected at a stream-gaging station 8.6 miles northwest of Jayton in Stonewall County since August 1959. The drainage area above the gaging station is 302 square miles. Records of the U.S. Geological Survey (1967a) show that for the 8 -year (water year) period of 1959 through 1967, the average discharge was 19.0 cfs or 13,760 acre-feet per year. Except during periods of heavy precipitation, ground water discharged from springs and seeps is the principal source of streamflow.

The chemical quality of the water in Croton Creek has been determined from samples collected at the gaging station. The results of the analyses (U.S. Geological Survey, 1967b), show that during the 1967 water year, the concentrations of dissolved solids ranged from a maximum of $33,900 \mathrm{mg} / 1$ (milligrams per liter) during the period January $1-31$, to a minimum of 4,280 mg / l during the period April 13-14. The hardness ranged from a maximum of $5,370 \mathrm{mg} / 1$ during the period March $1 \cdot 9,20$, to a minimum of $1,760 \mathrm{mg} / \mathrm{l}$ during the period June 26-30.

CHEMICAL QUALITY OF GROUND WATER

The results of the chemical analyses of 175 samples of water collected during the present and previous investigations in Dickens and Kent Counties are given in Table 8.

The results of the chemical analyses show that the quality of water varies between the aquifers and from place to place within the aquifers. In some aquifers, the variations are minor; in others the variations are of considerable magnitude.

Relationship of Water Quality to Use

The standards used for measuring the suitability of a water supply depend upon the proposed use. Various water-quality criteria, including bacterial content, physical characteristics, and chemical constituents, have been developed. This report is concerned only with the chemical quality of the water.

The source and significance of dissolved-mineral constituents (adapted after Doll and others, 1963) are summarized in Table 4. A general classification of water based on dissolved-solids content is as follows (Winslow and Kister, 1956, p. 5).

	DISSOLVED-SOLIDS CONTENT (MG/L)
DESCRIPTION	
Fresh Less than 1,000	
Slightly saline	1,000 to 3,000
Moderately saline	3,000 to 10,000
Very saline	10,000 to 35,000
Brine	More than 35,000

The only nationwide standards pertaining to potable water are those prescribed by the U.S. Public Health Service (1962). These standards, which apply specifically to water used for culinary and drinking purposes on common carriers engaged in interstate commerce, have been endorsed by the American Water Works Association as minimum standards for all public water supplies.

The standards are rather conservative for an area such as Dickens and Kent Counties where much of the ground water is mineralized. Recognition of the fact that the quality of the water available may not always meet the standards is given by the U.S. Public Health Service (1962, p. 7) as follows: "The following chemical substances should not be present in a water supply in excess of the listed concentrations where, in the judgment of the reporting agency and the certifying authority, other more suitable supplies are or can be made available." The standards pertaining to chemical constituents are, in part, as follows:

CONSTITUENT	SUGGESTED MAXIMUM CONCENTRATION (MG/L)
Chloride	250
Fluoride	0.8 to 1.0
Iron	0.3
Manganese	0.05
Nitrate	45
Sulfate	250
Dissolved solids	500

[^0]According to the U.S. Public Health Service (1962, p. 41) the optimum fluoride concentration in water depends upon climatic conditions because the amount of water (and consequently the amount of fluoride) ingested is influenced primarily by air temperature. The optimum value of $0.8 \mathrm{mg} / 1$ and the upper limit of 1.0 $\mathrm{mg} / 1$ is based on the assumption that the annual average of maximum daily air temperature of $78.9^{\circ} \mathrm{F}$ at Spur (U.S. Weather Bureau, 1951-60) is representative of the entire area of Dickens and Kent Counties.

The suitability of water for irrigation depends primarily on its chemical quality and to a lesser degree on such factors as soil texture and composition, types of crops, irrigation practices, climate, and economics.

The most important chemical characteristics pertinent to the evaluation of water for irrigation are the proportion of sodium to total cations, an index of the sodium hazard; total concentration of soluble salts, an index of the salinity hazard; residual sodium carbonate (RSC) ; and boron content.

The U.S. Salinity Laboratory Staff (1954, p. 79-81) has developed a rating diagram (Figure 5) for classifying irrigation waters in terms of salinity and sodium (alkali) hazards. The sodium adsorption ratio (SAR) is used to indicate the sodium or alkali hazard. A high percentage of sodium commonly causes clay particles in soil to disperse and thereby reduces the permeability of the soil. The specific conductance is used to indicate the salinity hazard. In this classification of irrigation waters, it is assumed that the water will be used under average conditions with respect to soil texture, infiltration rate, drainage, quantity of water used, climate, and salt tolerance of crops.

Bicarbonate concentrations greatly in excess of calcium and magnesium concentrations in irrigation water may result in residual sodium carbonate in the soil, thereby causing the soil to obtain a high pH and to become gray or black due to the solution of organic matter. Such a soil condition is known as "black alkali." Wilcox (1955, p. 11) states that, according to laboratory and field studies, water containing more than $2.5 \mathrm{me} / \mathrm{l}$ (milliequivalents per liter) RSC is not suitable for irrigation. Water containing 1.25 to $2.5 \mathrm{me} / \mathrm{l}$ is marginal, while water containing less than $1.25 \mathrm{me} / \mathrm{I}$ RSC probably is safe. However, good irrigation practices and the use of proper soil amendments may permit the use of marginal water for irrigation. Furthermore, the degree of leaching will modify the permissible limits to some extent (Wilcox, Blair, and Bower, 1954, p. 265).

Boron, one of the most critical elements in irrigation water, is essential for proper plant growth in small amounts, but may be toxic to some plants in concentrations only slightly above the needed amounts. Because of this sensitivity, the boron-tolerance of the crop to which water is applied is considered in evaluating the suitability of water for irrigation. Scofield (1936,

Table 4.-Source and Significance of Dissolved-Mineral Constituents and Properties of Water

CONSTITUENT OR PROPERTY	SOURCE OR CAUSE
Silica (SiO_{2})	Dissolved from practically al rocks and soils, commonly less than $30 \mathrm{mg} / \mathrm{l}$. High concentrations, as much as $100 \mathrm{mg} / 1$, penerally occur in highly alkaline waters.
Iron (Fe)	Dissolved from practically all rocks and soils. May also be derived from iron plpes, pumps, and other equipment. More than 1 or $2 \mathrm{mg} / \mathrm{l}$ of iron in surface waters generally indicates acid wastes from mine drainage or other sources.
Calcium (Ca) and magnesium (Mg)	Dissolved from practically all soils and rocks, but especially from limestone, dolornite, and gypsum. Calcium and magnesium are found in large quantities in some brines. Magnesium is present in large quantities in sea water.
Sodium (Na) and potassium (K)	Dissolved from practically all rocks and soils. Found also in ancient brines, sea water, industrial brines, and sewage.
Bicarbonate $\left(\mathrm{HCO}_{3}\right)$ and carbonate $\left(\mathrm{CO}_{3}\right)$	Action of carbon dioxide in water on carbonate rocks such as limestone and dolomite.
Sulfate (SO_{4})	Dissolved from rocks and soils containing gypsum, iron sulfides, and other sulfur compounds, Commonly present in mine waters and in some industrial wastes.
Chloride (CI)	Dissolved from rocks and solls. Present in sewage and found in large amounts in ancient brines, sea water, and industrial brines.
Fluoride (F)	Dissolved in small to minute quantities from most rocks and soils. Added to many waters by fluoridation of municipal supplies.
Nitrate (NO_{3})	Decaying organic matter, sewage, fertilizers, and nitrates in soil.
Dissolved solids	Chiefly mineral constituents dissolved from rocks and soils. Includes some water of crystallization.
Hardness as CaCO_{3}	In most waters nearly all the hardness is due to calcium and magnesium. All the metallic cations other than the alkali metals also cause hardness.
Specific conductance (micromhos at $25^{\circ} \mathrm{C}$)	Mineral content of the water,
Hydrogen ion concentration (pH)	Acids, acid-generating salts, and free carbon dioxide lower the pH . Carbonates, bicarbonates, hydroxides, and phosphates, silicates, and borates raise the pH .

SIGNIFICANCE

Forms hard scale in pipes and boilers. Carried over in steam of high pressure boilers to form deposits on blades of turbines. Inhibits deterioration of zeolite-type water softeners.

On exposure to air, iron in ground water oxidizes to reddishbrown precipitate. More than about $0.3 \mathrm{mg} / 1$ stains laundry and utensils reddish-brown. Objectionable for food processing, texprocesses. U.S. Public Health Service (1962) drinking-water standards state that iron should not exceed $0.3 \mathrm{mg} / /$. Larger quantities cause unpleasant taste and favor growth of iron bacteria.
Cause most of the hardness and scale-forming properties of water; soap consuming (see hardness). Waters low in calcium and magnesium desired in electroplating, tanning, dyeing, and in textile manufacturing.

Large amounts, in combination with chloride, give a salty taste. Large amounts, in combination with chloride, give a salty taste,
Moderate quantities have little effect on the usefulness of water for most purposes. Sodium salts may cause foaming in stear boilers and a high sodium content may limit the use of water for irrigation.

Bicarbonate and carbonate produce alkalinity. Bicarbonates of calcium and magnesium decompose in steam boilers and hot water facilities to form scale and release corrosive carbon dioxide gas. In combination with calcium and magnesium, cause carbonate hardness.
Sulfate in water containing calcium forms hard scale in steam boilers. In large amounts, sulfate in combination with other ions gives bitter taste to water. Some calcium sulfate is considered beneficial in the brewing process. U.S. Public Health Service (1962) drinking-water standards recommend that the sulfate
content should not exceed $250 \mathrm{mg} / \mathrm{l}$.

In large amounts in combination with sodium, gives salty taste to drinking water. In large quantities, increases the corrosiveness of water. U.S. Public Heslth Service (1962) drinking-water stan $250 \mathrm{mg} / \mathrm{l}$.

Fluoride in drinking water reduces the incidence of tooth decay when the water is consumed during the period of enamel depending on the concentration of fluoride, the age of the child arnount of drinking water consumed, and susceptbility of the individual, (Maier, 1950)

Concentration much greater than the local average may sugges pollution. U.S. Public Health Service (1962) drinking-water standards suggest a limit of $45 \mathrm{mg} / \mathrm{l}$. Waters of high nitrate content have been reported to be the cause of methemoglo binemia (an often fatal disease in infants) and therefore should helpful in reducing inter-crystalline cracking of boiler steel it encourages growth of algae and other organisms which produce undesirable tastes and odors.
U.S. Public Health Service (1962) drinking-water standards recommend that waters containing more than $500 \mathrm{mg} / 1$ dissolved solids not be used if other less mineralized supplies are available. Waters containing more than $1000 \mathrm{mg} / 1$ dissolved solids are unsuitable for many purposes.

Consumes soap before a lather will form. Deposits soap curd on bathtubs. Hard water forms scale in boilers, water heaters, and pipes. Hardness equivalent to the bicarbonate and carbonate is called carbonate hardness. Any hardness in excess of this is alled non-carbonate hardness. Waters of hardness as much as 60 ppm are considered soft; 61 to $120 \mathrm{mg} / \mathrm{l}$, moderately hard: 121 to $180 \mathrm{mg} / 1$, hard; more than $180 \mathrm{mg} / 1$, very hard.
Indicates degree of mineralization. Specific conductance is a measure of the capacity of the water to conduct an electric current. Varies with concentration and degree of ionization of the constituents.

A pH of 7.0 indicates neutrality of a solution. Values higher than 7.0 denote increasing alkalinity; values lower than 7.0 indicate ncreasing acidity. pH is a measure of the activity of the decreasing pH . However, excessively alkaline waters may also attack metals.

Figure 5
Classification of Water Used For Irrigation
p. 286) indicated that boron concentrations of as much as $1 \mathrm{mg} / \mathrm{l}$ are usually permissible for irrigating boron-sensitive crops, and concentrations of as much as $3 \mathrm{mg} / \mathrm{l}$ are permissible for the more boron-tolerant crops.

The following table shows a classification of water according to boron content.

CLASSES OF WATER		SENSITIVE CROPS (MG/L)
RATING	GRADE	Less than 0.33 1
2	Excellent	0.33 to 0.67
3	Good	.67 to 1.00
4	Dormissible	1.00 to 1.25
5	Unsuitable	More than 1.25

Chemical Quality of Water in the Geologic Units

The results of the chemical analyses of 17 samples of water from aquifers in the Permian rocks (Table 8) show that the water ranges from slightly saline to very saline and is very hard. The concentrations of dissolved solids were above the $500 \mathrm{mg} / \mathrm{l}$ limit recommended for public supply by the U.S. Public Health Service in all of the samples. The sulfate content was below the $250 \mathrm{mg} / \mathrm{l}$ recommended limit in only one of the samples, and the chloride content was below the $250 \mathrm{mg} / \mathrm{l}$ limit in eight of the samples. The nitrate content was above $45 \mathrm{mg} / \mathrm{l}$ in three samples, and the fluoride content was above the recommended limit of $1.0 \mathrm{mg} / 1 \mathrm{in}$ three samples.

The results of chemical analyses of 17 samples of water from the Triassic rocks are given in Table 8. The concentrations of dissolved solids in samples collected from springs and wells in the Triassic rocks in Dickens County ranged from less than $300 \mathrm{mg} / \mathrm{l}$ to more than $1,000 \mathrm{mg} / \mathrm{l}$. More than half the samples contained less than $500 \mathrm{mg} / \mathrm{I}$. Calcium was the principal cation in most of the samples, but in a few samples, sodium exceeded calcium. Bicarbonate, the principal anion, averaged about $300 \mathrm{mg} / \mathrm{l}$. The concentrations of sulphate and chloride were generally low; only two samples contained more than $250 \mathrm{mg} / \mathrm{l}$. The nitrate content was less than $45 \mathrm{mg} / \mathrm{l}$ in all of the samples; however, three samples contained $30 \mathrm{mg} / \mathrm{l}$ or more of nitrate. The water is very hard, and in four samples the fluoride content exceeded the $1.0 \mathrm{mg} / \mathrm{l}$ limit recommended by the U.S. Public Health Service.

The results of the chemical analyses of 27 samples of water from the Ogallala Formation (Table 8) indicate that the water has a fairly low mineral content. The concentration of dissolved solids ranged from $312 \mathrm{mg} / \mathrm{l}$ to $979 \mathrm{mg} / \mathrm{l}$; only three samples contained more than

Water-quality limits for livestock depends principally on the kind of animal. According to Heller (1933, p. 22), the total amount of soluble salts in the drinking water, more so than the kind of salt, is the important factor. Heller also suggests that as a safe rule, $15,000 \mathrm{mg} / 1$ dissolved-solids should be considered the upper limit for most of the more common stock animals.

SEMITOLERANT CROPS (MG/L)	TOLERANT CROPS (MG/L)
Less than 0.67	
0.67 to 1.33	Less than 1.00
1.33 to 2.00	1.00 to 2.00
2.00 to 2.50	2.00 to 3.00
More than 2.50	3.00 to 3.75

$500 \mathrm{mg} / \mathrm{I}$. None of the samples contained more than 250 mg / l chloride, $250 \mathrm{mg} / \mathrm{l}$ sulfate, or $45 \mathrm{mg} / \mathrm{l}$ nitrate. The fluoride content of all except one sample was above the 1.0 mg / l limit recommended by the U.S. Public Health Service. Ground water from the Ogallala Formation in most areas is characteristically very hard; however, the hardness in all samples from the report area ranged from moderately hard to very hard.

Calcium is commonly the principal cation in ground water in the Ogallala Formation; however, in 10 of the samples collected from wells supposedly tapping the Ogallala Formation in Dickens County, the sodium content exceeded the calcium. The wells from which these samples were collected are generally south of the town of McAdoo and are drilled to depths of about 400 feet or more. The analyses of water samples from these wells show that the hardness of the water ranged from moderately hard to very hard and that the values for RSC were high. On the drillers' logs, the contact between the Ogallala Formation and the underlying Triassic rocks could not be identified readily, so some of these wells may be withdrawing water from aquifers in the Triassic rocks.

Ground water from the Ogallala Formation has been used successfully for irrigation for many years throughout the Southern High Plains of Texas. The values for SAR and specific conductance shown in Table 8 for wells pumping from the Ogallala Formation were plotted on the diagram (Figure 5) used for classifying irrigation water. One sample plotted in the division indicating that the water has a high salinity hazard and a medium sodium hazard. The remainder of the samples plotted in the division indicating a medium salinity hazard and low sodium hazard.

The boron content was less than $1.0 \mathrm{mg} / \mathrm{l}$ in all of the samples from the Ogallala Formation. The value for

RSC was below $1.25 \mathrm{me} / \mathrm{l}$ in 13 of the samples, between 1.25 and $2.5 \mathrm{me} / \mathrm{l}$ in five of the samples, and more than $2.5 \mathrm{me} / \mathrm{l}$ in four samples. The samples having the higher values for RSC were those collected from wells south of McAdoo.

The chemical quality of the ground water in the Quaternary alluvium in Dickens and Kent Counties varies (Table 8), probably because the alluvium is derived from the weathering and subsequent deposition of several types of rocks.

The ground water in the Quaternary alluvium is highly mineralized in some places. The dissolved-solids content was less than $500 \mathrm{mg} / \mathrm{l}$ in about 11 percent of the samples analyzed, between 500 and $1,000 \mathrm{mg} / \mathrm{l}$ in about 16 percent of the samples, and more than 1,000 mg / l in about 73 percent of the samples. The analyses also show other variations in the chemical characteristics of the water. Calcium was the principal cation in about half of the samples; in the other samples the sodium content exceeded the calcium content. Sulfate was the principal anion in about half of the samples; in the other samples, either the bicarbonate or chloride content was greater than the sulfate.

About 72 percent of the samples of water from the Quaternary alluvium contained more than $250 \mathrm{mg} / \mathrm{l}$ chloride; about 44 percent contained more than 250 mg / l sulfate. The nitrate content exceeded $45 \mathrm{mg} / \mathrm{l}$ in about 36 percent of the samples, and about one-third of the samples had a fluoride content in excess of $1.0 \mathrm{mg} / \mathrm{l}$. The water is uniformly very hard. These data indicate that in some places the water in the Quaternary alluvium is not suitable for public supply or domestic use. However, in some places the water meets the chemical-quality standards for public supply or is acceptable for such use where water of a better quality is not available.

The town of Dickens obtains its water supply from two wells drilled in the Quaternary alluvium on the bank of Duck Creek, near the headwaters area of Duck Creek. Water from these wells, HY-22-25-301 and 302, meets the standards recommended by the U.S. Public Health Service for water used for public supply, except that the dissolved-solids content is slightly more than $500 \mathrm{mg} / \mathrm{l}$ (Table 8). Water of good quality is also available from other wells in the alluvium near the town of Dickens.

Samples of water were collected in 1960 and 1969 from well RH-22-52-104, a public supply well owned by the city of Jayton in Kent County. The results of the analyses of these samples (Table 8) show that the concentrations of dissolved solids increased from 356 mg / l in 1960 to $929 \mathrm{mg} / \mathrm{l}$ in 1969; the sulfate and chloride content increased from 86 to $357 \mathrm{mg} / \mathrm{l}$ and from 5.2 to $112 \mathrm{mg} / \mathrm{l}$, respectively. The hardness increased from 276 to 620 , and the concentration of other constituents such as calcium, magnesium, and sodium also increased. The change in the chemical
quality of the water may have resulted from the movement of more highly mineralized water from the surrounding Permian rocks into the Quaternary alluvium. If this assumption is correct, continued withdrawal of large quantities of water from the well may result in further changes in the chemical quality of the water in the Quaternary alluvium in this area.

The concentrations of sulfate and chloride are also high in samples collected from wells RH-22-50-201 and RH-22-50-203, both of which produce water from the Quaternary alluvium in Kent County. Stevens (1970) has reported that the high concentration of chlorides and other minerals in the Quaternary alluvium in this area is due to the discharge of highly mineralized water from the surrounding Permian rocks into the Quaternary alluvium.

In general, the water from the Quaternary alluvium in the report area has a high or very high salinity hazard (Table 8); however, the sodium hazard is low in more than 50 percent of the samples.

Of the samples of water from the Quaternary alluvium that were analyzed for boron, five had concentrations in excess of $1.0 \mathrm{mg} / \mathrm{l}$; in four of these samples, boron ranged from 1.2 to $1.9 \mathrm{mg} / \mathrm{l}$. One sample contained $6.3 \mathrm{mg} / \mathrm{l}$.

The RSC value was determined for six of the samples of water collected from the Quaternary alluvium. In three of the samples, the RSC was less than $1.25 \mathrm{me} / \mathrm{l}$, and the other three samples had values ranging from 1.42 to $1.96 \mathrm{me} / \mathrm{l}$.

Analyses for Pesticides

As a part of this investigation of the ground water in Dickens and Kent Counties, three samples of ground water were collected from wells and analyzed for nine insecticides and three herbicides.

One sample was collected from well HY-23-24-305, an irrigation well drilled to a depth of about 400 feet in the Ogallala Formation in Dickens County. The depth to water below land surface in this well was estimated to be about 250 feet. Another sample was collected from well HY-22-25-301, a public supply well owned by the town of Dickens. This well, drilled to a depth of 73 feet in the Quaternary alluvium, is on the east bank of Duck Creek in Dickens County. The depth to water below land surface in this well was estimated to be about 40 feet. The third sample was collected from well RH-22-52-106, a public supply well owned by the city of Jayton. This well was drilled to a depth of about 65 feet in the Quaternary alluvium and is located near Little Duck Creek in Kent County. The depth to water below land surface was estimated to be between 30 and 40 feet.

All of these wells are on or near cultivated land on which some insecticides or herbicides are probably used, but the analyses indicated that no insecticides or herbicides were present in the water samples collected from these three wells.

PRODUCTION AND DISPOSAL OF OIL-FIELD BRINE

Brine is a common by-product in the production of oil. The method of disposing of the brine is important because if improperly disposed of, it may contaminate both surface-water and ground-water supplies.

One method of disposing of the brine is to discharge it into evaporation pits at or near the well sites. These pits are usually unlined; consequently, the brine can move downward to contaminate the ground water. The Texas Railroad Commission, which has supervision over the production of oil and associated activities, issued a Statewide order effective January 1, 1969, banning the use of evaporation pits to dispose of oil-field brines. In 1961, of the 3.3 million barrels of produced brine, slightly less than 8 percent was disposed of through pits. Oil-field brine is also disposed of by injection under pressure, into permeable zones in the subsurface. The amount of brine produced in Dickens and Kent Counties, and the methods of disposal are shown in Table 5 (Texas Water Commission and Texas Water Pollution Control Board, 1963).

Table 5.-Production and Disposal of Oil-Field Brine, 19611/

Because of the presence of highly mineralized water in some of the aquifers in the report area, it is difficult to determine whether a particular sample shows the effect of brine contamination, or if the chemical characteristics are due to natural actions within the hydrologic system. The chemical characteristics of the water may suggest the possibility of brine pollution, but are not necessarily conclusive evidence.

NEED FOR ADDITIONAL STUDIES

The basic data collected in Dickens and Kent Counties during this investigation provide current information on the occurrence, development, use, and chemical quality of the ground water in the two-county area. The data, while insufficient for an accurate appraisal of the ground-water resources, will provide a
foundation for a future detailed study which is necessary for an adequate appraisal of the ground-water resources of the area.

A detailed study should include: (1) Detailed geologic mapping with particular emphasis on the lithology, thickness, and configuration of the base of the water-bearing units; (2) determination of the hydrologic properties of the aquifers by field and laboratory tests; (3) determination of the source and rate of natural recharge and discharge; (4) determination of the hydrologic relationship between aquifers; (5) determination of the quantity of water in storage that would be available to wells; (6) determination of changes in chemical quality which may be the result of pumping or of natural functions.

Detailed studies of the availability of ground water from aquifers in the Permian rocks should be planned
after careful consideration is given to information collected during studies made to determine the source of salt water in the Brazos River. (See list of references). The effect, if any, on the ground water in the Quaternary alluvium or other aquifers due to the construction of dams at the headwaters of Duck Creek and several of its tributaries should be considered in both detailed studies and long-term observation programs.

The collection of basic data such as the observation of water levels, inventory of pumpage, and the collection of water samples for chemical analyses would be essential parts of a detailed investigation of the ground-water resources of Dickens and Kent Counties. The collection of such basic data should be continued after the investigation is completed.

SELECTED REFERENCES

Baker, E. T., Long, A. T., Reeves, R. D., and Wood, L. A., 1963, Reconnaissance investigation of the ground-water resources of the Red River, Sulphur River, and Cypress Creek basins, Texas: Texas Water Comm. Bull. 6306, 127 p., 18 figs., 22 pls.

Baker, R. C., Hughes, L. S., and Yost, I. D., 1964, Natural sources of salinity in the Brazos River, Texas: U.S. Geol. Survey Water-Supply Paper 1669-CC, 78 p., 4 pls., 11 figs.

Blank, H. R., 1956, Salt flats of Kent and Stonewall Counties, Texas: Texas Jour. Sci., v. 8, no. 1, p. 25-32.

Boardhurst, W. L., Sundstrom, R. W., and Weaver, D. E., 1951, Public water supplies in western Texas: U.S. Geol. Survey Water-Supply Paper 1106, 168 p.

Cronin, J. G., 1969, Ground water in the Ogallala Formation in the Southern High Plains of Texas and New Mexico: U.S. Geol. Survey Hydrol. Inv. Atlas 330, 9 p., 4 figs.

Cronin, J. G., Follett, C. R., Shafer, G. H., and Rettman, P. L., 1963, Reconnaissance investigation of the ground-water resources of the Brazos River basin, Texas: Texas Water Comm. Bull. 6310, 152 p., 24 figs., 11pls.

Dallas Morning News, 1969, Texas Almanac and State Industrial Guide, 1970-71: A. H. Belo Corp., Dallas, Tex., 704 p.

Doll, W. L., Meyer, G., and Archer, R. J., 1963, Water resources of West Virginia: West Virginia Dept. of Natural Resources, 134 p., 58 figs.

Eaton, F. M., 1950, Significance of carbonates in irrigation waters: Soil Sci., v. 59, p. 123-133.

Fenneman, N. M., 1931, Physiography of western United States: New York, McGraw-Hill Book Co., 534 p., 171 figs., 1 pl.

Gillett, P. T., and Janca, I. G., 1965, Inventory of Texas irrigation, 1958 and 1964: Texas Water Comm. Bull. 6515,317 p., 6 figs.

Heller, V. G., 1933, The effect of saline and alkaline waters on domestic animals: Oklahoma Agr. and Mech. Coll. Expt. Sta. Bull. 217, 23 p.

Hill, R. T., 1894, Geology of parts of Texas, Indian Territory and Arkansas adjacent to Red River region: Geol. Soc. America Bull., v. 5, p. 297-338.

Maier, F. J., 1950, Fluoridation of public water supplies: Journal Am. Water Works Assoc., v. 41, pt. 1, p. 1120-1132.

McMillion, L. G., 1958, Ground-water geology in the vicinity of Dove and Croton Creeks, Stonewall, Kent, Dickens, and King Counties, Texas, with special reference to salt-water seepage: Texas Board Water Engineers Bull. 5801, 53 p., 11 figs., 2 pls.

Ogilbee, William, and Osborne, F. L., Jr., 1962, Ground-water resources of Haskell and Knox Counties, Texas: Texas Water Comm. Bull. 6209, 185 p., 6 figs.

Scofield, T. S., 1936, The salinity of irrigation water: Smithsonian Inst. Annual Rept. 1935, p. 275-287.

Stevens, P. R. and Hardt, W. F., 1965, Preliminary report on the investigation of salt springs and seeps in a portion of the Permian basin in Texas: U.S. Geol. Survey open-file rept., 19 p.

Texas Water Commission and Texas Water Pollution Control Board, 1963, A statistical analysis of data on oil-field brine production and disposal in Texas for the year 1961 from an inventory conducted by the Texas Railroad Commission: Railroad Comm. of Texas, Dist. 8, v. 1 and 2.
U.S. Census of Agriculture, 1959, v. 1, pt. 37: U.S. Dept. of Commerce, Bureau of the Census, 567 p .

1964, Preliminary report, Kent County, Texas: U.S. Dept. of Commerce, Bureau of the Census, 6 p.
_1964,Preliminary report, Dickens County, Texas: U.S. Dept. of Commerce, Bureau of the Census, 6 p.

UU.S. Geological Survey, 1937, Geologic map of Texas.

1967a, Water resources data for Texas, part 1, surface-water records, 1967: Austin, Tex., U.S. Geological Survey.
_1967b, Water resources data for Texas, part 2, water-quality records, 1967: Austin, Tex., U.S. Geological Survey.
U.S. Public Health Service, 1962, Public Health Service drinking water standards: Public Health Service Pub. 956, 61 p.
U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. Agr. Handbook 60, 160 p., 32 figs.
U.S. Weather Bureau-Decennial: U.S. Weather Bureau 1951-60.

University of Texas, Bureau of Economic Geology, 1967, Geologic atlas of Texas, Lubbock Sheet.

White, W. N., Broadhurst, W. L., and Lang, J. W., 1940, Ground water in the High Plains of Texas: Texas Board Water Engineers Rept., 56 p., 12 figs.

Wilcox, L. V., Blair, G. Y., and Bower, C. A., 1954, Effect of bicarbonate on suitability of water for irrigation: Soil Science, v. 77, no. 4, p. 259-266.

Wilcox, L. V., 1955, Classification and use of irrigation waters: U.S. Dept. Agr. Circ. 969, 19 p., 4 figs.

Winslow, A. G., and Kister, L. R., Jr., 1956, The saline water resources of Texas: U.S. Geol. Survey Water-supply Paper 1365,105 p., 12 figs, 9 pls.

Wyatt, A. Wayne, 1970, Water-level data from observation wells in the Southern High Plains of Texas, 1965-1970: Texas Water Development Board Report 121, 361 p., 32 maps, 23 charts.
Table 6. - Records of Wells and Springs in Dickens and Kent Counties, Texas
All wells drilled unless otherwise noted in remarks column.
Water level
: Reported water levels given
: Reported water levels given in feet; measured, water levels given in feet and tenths.
Method of lift and type of pump: C, cylinder; Cf, centrifugal; E, electric; G, butane gasoline, or diesel engine; J, jet; N, none; N.G., natural Use of water $\quad: \mathrm{D}$, domestic; Ind, industrial; Irr, irrigation; N , none; P , public supply; ; S, livestock.

WELL.	OWNER	DATE COMPLETED	$\begin{aligned} & \text { DEPTH } \\ & \text { OF } \\ & \text { WELL } \\ & \text { (FT) } \end{aligned}$	DIAM- ETER OF WELL (IN)	WATER bear INGUNIT	ALTITUDE OF LAND SURFACE (FT)	WATER LEVEL		$\begin{aligned} & \text { METHOD } \\ & \text { OF } \\ & \text { LIFT } \end{aligned}$	$\begin{gathered} \text { USE } \\ \text { OF } \\ \text { WATER } \end{gathered}$	REMARKS
							BELOW LAND- SURFACE DATUM (FT)	$\begin{gathered} \text { DATE OF } \\ \text { MEASUREMENT } \end{gathered}$			

[^1]Table 6,--Records of Wells and Springs in Dickens and Kent Counties, Texas--Continued

WELL	OWNER	$\begin{gathered} \text { DATE } \\ \text { COM- } \\ \text { PLETED } \end{gathered}$	DEPTH of WELL (FT)	DIAM- ETER of WELL (IN)	$\begin{aligned} & \text { WATER } \\ & \text { BEAR- } \\ & \text { ING } \\ & \text { UNIT } \end{aligned}$	Altitude OF LAND SURFACE (FT)	WATER Level		$\begin{aligned} & \text { METHOD } \\ & \text { OF } \\ & \text { LIFT } \end{aligned}$	$\begin{aligned} & \text { USE } \\ & \text { of } \\ & \text { WATER } \end{aligned}$	REMARKS
							BELOW LAND- SURFACE DATUM (FT)	DATE OF MEASUREMENT			

Dickens County											
HY-22-10-701	Dumont Bridge	1958	93	8	Qal	2,624	$\begin{aligned} & 63.3 \\ & 65.6 \end{aligned}$	$\begin{array}{lll} \text { Dec. } & 18, & 1959 \\ \text { Jan. } & 18, & 1968 \end{array}$	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 10 \end{aligned}$	Irr	Red bed reported at 93 ft . Reported yield of 139 gpm on Aug. 15, 1960 with pumping level at 79.6 ft. 2/
* 702	Byron Haney	1959	100	12	do.	2,612	$\begin{aligned} & 36.2 \\ & 38.4 \end{aligned}$	$\begin{array}{lll} \text { Dec. } & 15, & 1959 \\ \text { May } & 23, & 1968 \end{array}$	T, E	Irr	Red bed reported at 100 ft . Reported yield 288 gpm on Aug. 15, 1960 with pumping level at 53.8 ft . 2]
703	M. Kelly	1963	125	14	do.	2,650	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 20 \end{aligned}$	Irr	
704	Mrs. L. Clements	1958	132	12	do.	2,635	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 10 \end{aligned}$	Irr	
705	do.	1958	140	12	do.	2,632	64.8	June 5, 1968	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 10 \end{aligned}$	Irr	
706	Tom Yates	1957	25	14	do.	2,612	10.4	June 4, 1968	T, G	Irr	
707	do.	1956	25	12	do.	2,612	--	--	ef, -	Irr	
708	do.	1956	25	12	do.	2,612	--	--	ef, -	Irr	
709	do.	1956	25	12	do.	2,612	--	--	cf, -	Irr	
710	Byron Haney	1957	100	14	do.	2,618	41.6	May 23, 1968	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 20 \end{aligned}$	Irr	
711	do.	1956	85	16	do.	2,632	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 20 \end{aligned}$	Irr	
712	do.	1956	75	16	do.	2,635	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 15 \end{aligned}$	Irr	
713	v. Ford	--	109?	10	do.	2,644	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 30 \end{aligned}$	Irr	
714	Miss Eva Collier	--	--	12	do.	2,560	18.6	Mar. 5, 1969	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 71 / 2 \end{aligned}$	N	Well apparently unused.
801	A. Brawley	--	Spring	--	--	--	+	--	Spring	Irr	Springs No. 6 and 7 combined yield 20-25 gpm on Sept. 19, 1938. Springs are now covered by water in man made lake from which water is pumped for irrigation. Not used in past two years. a/
802	F. McCarty	1957	58	12	do.	2,571	$\begin{aligned} & 24.4 \\ & 23.5 \\ & 27.5 \end{aligned}$	$\begin{array}{lrl} \text { Dec. } & 15, & 1959 \\ \text { Dec. } & 27, & 1960 \\ \text { Sept. } & 5, & 1968 \end{array}$	T, G	Irr	Reported yield 53 gpm . Red bed reported at 56 ft .

See footnotes at end of table.
Table 6, --Records of Wells and Springs in Dickens and Kent Counties, Texas --Continued

WELL	OWNER	$\begin{gathered} \text { DATE } \\ \text { COM- } \\ \text { PLETED } \end{gathered}$	$\begin{array}{\|l} \hline \text { DEPTH } \\ \text { OF } \\ \text { WELL } \\ \text { (FT) } \end{array}$	DIAM- ETER OF WELL (IN)	$\begin{aligned} & \text { WATER } \\ & \text { BEAR- } \\ & \text { ING } \\ & \text { UNIT } \end{aligned}$	ALTITUDE OF LAND SURFACE (FT)	Water level		$\begin{aligned} & \text { METHOD } \\ & \text { OF } \\ & \text { LIFT } \end{aligned}$	$\begin{aligned} & \text { USE } \\ & \text { of } \\ & \text { WATER } \end{aligned}$	REMARKS
							BELOW LAND- SURFACE DATUM (FT)	DATE OF MEASUREMENT			
Dickens County											
HY-22-10-803	Dumont Bridge	1957	87	--	--	2,578	--	--	N	N	Test hole approximately 50 ft . south of well 22-10-811. Red bed reported at 84 ft . 1/
804	do.	1962	80	14	Qal	2,592	--	--	T, E	Irr	
805	do.	1962	80	14	do.	2,598	44.9	June 8, 1968	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 20 \end{aligned}$	Irr	
806	do.	1965	80	14	do.	2,578	--	--	T, G	Irr	
807	F. Ragland	1960	100	--	do.	2,587	40.9	June 9, 1968	$\begin{gathered} \mathrm{T}, \mathrm{E} \end{gathered}$	Irr	Pump set at 95 ft .
808	do.	1962	95	12	do,	2,595	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 15 \end{aligned}$	Irr	Pump set at 90 ft .
809	do.	1961	95	14	do.	2,578	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 15 \end{aligned}$	Irr	Do.
810	do.	1961	95	14	do.	2,577	-*	--	${ }_{15}^{\text {T, }} \mathrm{E}$	Irr	Do.
811	Dumont Bridge	1959	72	14	do.	2,578	44.2	Sept. 4, 1968	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 15 \end{aligned}$	Irr	Pump set at 70 ft .
812	do.	1960	70	12	do.	2,569	--	--	T, E	Irr	Pump set at 65 ft .
813	do.	1960	62	12	do.	2,574	43.3	Sept. 4, 1968	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 7 \mathrm{I} / 2 \end{aligned}$	Irr	Pump set at 60 ft .
814	do.	1959	50	12	do.	2,568	24.3	do.	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 10 \end{aligned}$	Irr	Pump set at 47 ft .
815	J. Perryman	1966	35	14	do.	2,509	--	--	$\begin{aligned} & \mathrm{cf}, \mathrm{E} \\ & 11 / 2 \end{aligned}$	Irr	
816	do.	1963	35	12	do.	2,488	--	--	$\begin{gathered} \mathrm{T}, \mathrm{E} \\ 7 \mathrm{l} / 2 \end{gathered}$	Irr	
817	do.	1958	30	--	do.	2,506	9.7	Sept. 6, 1968	Cf, E	Irr	Manifold system consisting of 4 wells connected with 3 inch pipe. Wells are in circular pit approximately 3 ft . below the general land surface.
818	do.	1958	44	14	do.	2,485	25.2	do.	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 15 \end{aligned}$	Irr	Pump set at 44 ft .
819	P. Hext	1962	45	14	do.	2,520	14.8	do.	$\begin{gathered} \mathrm{T}, \mathrm{E} \\ 15 \end{gathered}$	Irr	

See footnotes at end of table.
Table 6,--Records of Wells and Springa in Dickens and Kent Counties, Texas--Continued

WELL	OWNER	DATE COMPLETED	DEPTH or WELL (FT)	DIAM- ETER of WELL (IN)	$\begin{aligned} & \text { WATER } \\ & \text { BEAR- } \\ & \text { ING } \\ & \text { UNIT } \end{aligned}$	ALTITUDE of LAND surface (FT)	WATER LEvEl		$\begin{gathered} \text { METHOD } \\ \text { OF } \\ \text { LIFT } \end{gathered}$	$\begin{aligned} & \text { USE } \\ & \text { of } \\ & \text { WTER } \end{aligned}$	REMARKS
							$\begin{gathered} \hline \text { BELOW } \\ \text { LAND- } \\ \text { SURFACE } \\ \text { DATUM } \\ (\mathrm{FT}) \end{gathered}$	DATE OF MEASUREMENT			

[^2]Table 6, --Records of Weile and Springs in Dickens and Kent Counties, Texas--Continued

WELL	OWNER	$\begin{aligned} & \text { DATE } \\ & \text { COM- } \\ & \text { PLETED } \end{aligned}$	DEPTH OF WELL (FT)	DIAM- ETER OF WELL (IN)	$\begin{aligned} & \text { WATER } \\ & \text { BEAR- } \\ & \text { ING } \\ & \text { UNIT } \end{aligned}$	Alt Itude OF LAND SURFACE (FT)	Water level		$\begin{aligned} & \text { METHOD } \\ & \text { OF } \\ & \text { LIFT } \end{aligned}$	$\begin{aligned} & \text { USE } \\ & \text { OF } \\ & \text { WTER } \end{aligned}$	REMARKS
							BELOW LAND- SURFACE DATUM (FT)	DATE OF MEASUREMENT			

Dickens County											
HY-22-10-906	Paul Braddock	--	407	--	Qal	2,391	--	--	T, E	Irr	Depth of well reported between 40 and 60 ft . Well adjacent to pond on Cottonwood Creek.
907	do.	1940	40?	14	do.	2,388	5.1	Sept. 9, 1968	$\begin{aligned} & \text { T,E } \\ & 20 \end{aligned}$	Irr	Depth of well reported between $40-60 \mathrm{ft}$. We11 adjacent to pond on Cottonwood Creek.
908	do.	1940	40?	14	do.	2,398	--	-	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 10 \end{aligned}$	Irr	Depth of well reported between $40-60 \mathrm{ft}$.
909	--Jones	1965 ?	--	12	do.	--	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 20 \end{aligned}$	Irr	Land surface caved around casing.
910	D. Blas ingame	1967	120	14	do.	2,451	25.8	June 7, 1968	T, G	Irr	
911	P. Braddock	--	165	12	do.	2,445	--	--	T,G	Irr	
* 912	H. H. Bland	1965	105	8	do.	2,459	--	--	$\begin{gathered} \mathrm{S}, \mathrm{~B} \\ 1 \mathrm{l} / 2 \end{gathered}$	S	Water supply for chicken hatchery, Red bed reported at 105 ft .
913	R. F. Varnell	--	92	--	do.	2,503	53.1	Mar. 19, 1969	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 20 \end{aligned}$	Irr	Pump set at 87 ft .
914	do.	1960	62	12	do.	2,483	--	--	T, G	Irr	Pump set at 58 ft .
915	do.	1963	53?	12	do.	2,477	--	--	T, G	Irr	Pump intake set 4 ft . above bottom of well.
* 916	D. R. Hale	1954 ?	50	--	do.	2,435	--	--	S, E	D, S	Formerly used for irrigation. Pump set at 20 ft . Supplies water for domestic use and chicken hatchery.
917	do.	1958	50	12	do.	2,435	9.4	Mar. 22, 1969	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 20 \end{aligned}$	Irr	
918	do.	1958	50	--	do.	2,435	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 15 \end{aligned}$	Irr	
919	G. Jackson	1955	110	14	do.	2,455	28.3	Mar. 20, 1969	T, G	Irr	
920	do.	1956	110	14	do.	2,460	34.2	Mar. 20, 1969	T,G	Irr	
921	G. S1aton	1963?	80	12	do.	2,448	15	1963 ?	T, G	Irr	Red bed reported at 80 ft . Pump set at 75 ft .
922	--Thompson	--	50?	12	do.	2,431	--	--	${ }_{15}^{\mathrm{T}, \mathrm{E}}$	Irr	
923	G. Slaton	1969	146	6	do.	--	30	1969	S, E	D	Reported drilled 1 or 2 ft . into red bed.

[^3]Table 6．－－Records of Wells and Springs in Dickens and Kent Counties，Texas－－Continued

WELL	OWNER	$\begin{gathered} \text { DATE } \\ \text { COM- } \\ \text { PLETED } \end{gathered}$	DEPTH OF WELL （FT）	DIAM－ ETER OF WELL （IN）	WATER bear－ ING UNIT	altitude OF LAND SURFACE （FT）	Water level		$\begin{gathered} \text { METHOD } \\ \text { OF } \\ \text { LIFT } \end{gathered}$	$\begin{aligned} & \text { USE } \\ & \text { OF } \\ & \text { WATER } \end{aligned}$	REMARKS
							BELOW LAND－ SURFACE DATUM （FT）	$\begin{gathered} \text { DATE OF } \\ \text { MEASUREMENT } \end{gathered}$			

$\begin{aligned} & \dot{4} \\ & \text { ü } \\ & \text { on } \\ & \vdots \end{aligned}$													$\begin{aligned} & \dot{4} \\ & \stackrel{0}{0} \\ & \ddot{~} \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \dot{u} \\ & \Xi \\ & \exists \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & \text { I } \end{aligned}$	$\dot{\square}$		
	占	出	㞻	岃		号	出	号	号	号		号	H	5，	岃	$\stackrel{4}{4}$	号
	${ }_{\text {No }}$	z	$\xrightarrow{0}$	Hion		H゙ッ	$\stackrel{\sim}{*}$	H゙		－		Hoㅇ	－10	${ }^{\circ}$	式品	Fin	Sin
$\begin{array}{\|l} \infty \\ 0 \\ 0 \\ \alpha \\ \dot{\circ} \\ \dot{a} \\ \dot{0} \\ \hline \end{array}$	：	$\begin{aligned} & \text { Ò } \\ & \text { ì } \\ & \dot{\sim} \\ & \dot{4} \end{aligned}$					；	；	$\begin{aligned} & \infty \\ & \stackrel{\circ}{\sim} \\ & \sigma \\ & \dot{\circ} \\ & \stackrel{\Delta}{\circ} \end{aligned}$	；			\％	\％	；	；	$\begin{aligned} & \ddot{\circ} \\ & \stackrel{\circ}{0} \\ & \stackrel{0}{0} \\ & \dot{\ddot{a}} \\ & \dot{\omega} \end{aligned}$
$\stackrel{\sim}{\sim}$	，	～	ペへे	？		－ّ̛	；		$\stackrel{\square}{\text { ¢ }}$	；		$\stackrel{\square}{5}$	$\hat{\mathrm{m}}$	\vec{j}	；	；	$\stackrel{\text { ¢ }}{ }$
$\stackrel{\sim}{\sim}$	～	$\underset{\sim}{\underset{\sim}{*}}$	N	$\stackrel{0}{\sim}$		べ	－	\sim	$\stackrel{\omega}{\sim}$	$\stackrel{\sim}{\sim}$		$\stackrel{\circ}{4}$	$\underset{\sim}{\vec{~}}$	～	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\text { ̃ }}{\sim}$
J	：	；	a	$\dot{\circ}$		\％	\bigcirc	：	：	\bigcirc		\％	：	：	\％	：	\bigcirc
\pm	！	\simeq	\cong	∞		\pm	\bullet	\simeq	\simeq	$コ$		$\underset{\sim}{1}$	\simeq	\simeq	テ	\pm	\simeq
\bigcirc	요	；	in	2		\rightrightarrows	\cong	¢	8	\％		\％	$\stackrel{\square}{7}$	$\widetilde{\square}$	$\underset{\sim}{ }$	$\stackrel{\sim}{2}$	9
$\stackrel{\circ}{\circ}$	呆	；	$\stackrel{8}{\square}$			ล	号	\％	¢	\％		$\hat{3}$	$\stackrel{\rightharpoonup}{\square}$	㞻	合	$\stackrel{\sim}{2}$	ก
$\begin{aligned} & \text { a } \\ & \text { H } \\ & \stackrel{0}{\alpha} \\ & \dot{~} \\ & \text { i } \\ & \hline \end{aligned}$	\％	$\begin{aligned} & \stackrel{\text { a }}{\stackrel{0}{0}} \\ & \stackrel{\rightharpoonup}{⿹ 丁 口 ⿹ 丁 口 ㇒ ~} \\ & \text { it } \end{aligned}$					$\begin{aligned} & \text { 亳 } \\ & \text { 膏 } \\ & \text { a } \\ & \text { ב } \\ & \hline \end{aligned}$	－					\％	$\begin{aligned} & \text { 暑 } \\ & \text { H } \\ & i \end{aligned}$	\div	\％	$\begin{aligned} & \text { 薄 } \\ & \text { 芯 } \\ & \dot{H} \\ & \hline \end{aligned}$
	สั		$\begin{aligned} & \text { I } \\ & \underset{7}{7} \end{aligned}$	¢		̃	$\stackrel{\square}{2}$	\％	冗ั	$\stackrel{\square}{\circ}$		¢	$\stackrel{\text { ² }}{ }$	잇	$\stackrel{1}{2}$	$\overrightarrow{\#}$	～

See footnotes at end of table．
Table 6.--Records of Wells and Springs in Dickens and Kent Counties, Texas --Continued

WELL	OWNER	$\begin{aligned} & \text { DATE } \\ & \text { COM- } \\ & \text { PLETED } \end{aligned}$	DEPTH or WELL (FT)	DIAM- ETER OF WELL (IN)	$\begin{aligned} & \text { WATER } \\ & \text { BEAR- } \\ & \text { ING } \\ & \text { UNIT } \end{aligned}$	ALTITUDE OF LAND SURFACE (FT)	Water level		$\begin{gathered} \text { METHOD } \\ \text { OF } \\ \text { LIFT } \end{gathered}$	$\begin{aligned} & \text { USE } \\ & \text { OF } \\ & \text { WATER } \end{aligned}$	REMARKS
							BELOW LAND- SURFACE DATUM $(F T)$	$\begin{gathered} \text { DATE OF } \\ \text { MEASUREMENT } \end{gathered}$			

	HY-22-10-713	T. Roberts	1966	125	12	Qal	2,420	41.6	Sept. 10, 1968	$\begin{aligned} & \text { T,G } \\ & 56 \end{aligned}$	Irr	
	714	do.	1962	110	12	do.	2,425	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 10 \end{aligned}$	Irr	Pump set at 105 ft .
*	12-501	S. M. Swens on	--	120	6	P	--	76.6	Feb. 21, 1967	P, W	S	
*	701	--	--	55	6	Qal	2,377	47.8	Sept. 19, 1967	P, W	S	
	904	Floyd Forrest	1959	180	6	P	2,132	$\begin{array}{r} 101.1 \\ 92.0 \end{array}$	$\begin{array}{lll} \text { Dec. } & 18, & 1959 \\ \text { Dec. } & 27, & 1960 \end{array}$	P, W	S	
*	17-101	Weldon Cypert	1964	409	10	To	2,990	245.2	Feb. 27, 1969	${ }_{25}^{\mathrm{T}, \mathrm{E}}$	Irr	Pump set at 390 ft .
*	401	R. Eldredge	1957	476	16	To	2,968	--	--	$\begin{aligned} & \mathrm{S}, \mathrm{E} \\ & 15 \end{aligned}$	Irr	Pump set at 450 ft .
	402	do.	1964	450	12	To	2,969	--	--	$\begin{aligned} & \mathrm{S}, \mathrm{E} \\ & 15 \end{aligned}$	Irr	Pump set at 450 ft .
*	403	do.	1957	500	16	To	2,963	--	--	$\begin{aligned} & \mathrm{S}, \mathrm{E} \\ & 10 \end{aligned}$	Irr	Pump set at 450 ft .
*	404	Earl Van Meter	1965	450	14	To?	2,973	--	--	$\begin{aligned} & \mathrm{S}, \mathrm{E} \\ & 15 \end{aligned}$	Irr	Pump set at 420 ft .
	405	do.	1953	438	16	To	2,971	--	--	$\begin{aligned} & \mathrm{S}, \mathrm{E} \\ & 20 \end{aligned}$	Irr	Pump set at 420 ft .
*	406	do.	1965	430?	--	To?	--	--	--	P, W	D, S	Pump set at about 350 ft .
*	501	--Goen	--	Spring	--	Trd	2,660?	+	--	Spring	S	Spring No. 14. Estimated yield $1 / 4 \mathrm{gpm}$ on Sept. 22, 1938 from fracture in conglomerate (Triassic).a/
	901	M. Booth	1955	50	12	Qal	2,488	$\begin{aligned} & 30.6 \\ & 31.6 \\ & 36.0 \end{aligned}$	$\begin{array}{lll} \text { Dec. } & 23, & 1959 \\ \text { Dec. } & 27, & 1960 \\ \text { Dec. } & 13, & 1968 \end{array}$	$\begin{gathered} \mathrm{T}, \mathrm{E} \\ 3 \end{gathered}$	Irr	
	902	Edith Blackwell	old	49	20	Trd	2,572	$\begin{aligned} & 45.0 \\ & 47.6 \end{aligned}$	$\begin{array}{lll} \text { Feb. } & 20, & 1946 \\ \text { Sept. } & 16, & 1967 \end{array}$	P, W	N	Water-level measurement in 1946 from well at this location, possibly same well.
	903	City of Dickens	1967	64	12	Qal	2,500	$\begin{aligned} & 44.6 \\ & 40.4 \end{aligned}$	Sept. 16, 1967 Dec. 13, 1968	N	N	Drilled for future use as public supply well.
	904	M. Booth	--	--	12	do.	2,486	35.0	Dec. 13, 1968	$\underset{5}{\mathrm{~T}, \mathrm{E}}$	Irr	

[^4]Table 6.--Records of Wells and Springs in Dickens and Kent Counties, Texas --Continued

WELL	OWNER	$\begin{aligned} & \text { DATE } \\ & \text { COM- } \\ & \text { PLETED } \end{aligned}$	DEPTH or WELL (FT)	$\begin{aligned} & \text { DIAM- } \\ & \text { ETER } \\ & \text { OF } \\ & \text { WELL } \\ & \text { (IN) } \end{aligned}$	$\begin{aligned} & \text { WATER } \\ & \text { BEAR- } \\ & \text { ING } \\ & \text { UNIT } \end{aligned}$	altitude OF LAND SURFACE (FT)	WATER Level		$\begin{gathered} \text { METHOD } \\ \text { OF } \\ \text { LIFT } \end{gathered}$	$\begin{aligned} & \text { USE } \\ & \text { OF } \\ & \text { WATER } \end{aligned}$	REMARKS
							BELOW LAND- SURFACE DATUM (FT)	DATE OF MEASUREMENT			

HY-22-17-905	M. Booth	1960?	--	12	Qa1	2,491	39.6	Dec. 13, 1968	$\underset{5}{\mathrm{~T}, \mathrm{E}}$	Irr	
906	c. D. Cash	1966	60	10	do.	2,485	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 10 \end{aligned}$	Irr	
907	do.	--	60	12	do.	2,491	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 10 \end{aligned}$	Irr	
* 908	S. M. Swens on \& Sons	--	Spring	--	Trd	2,538	+	--	Spring	--	Spring No. 16. Estimated yield of $10-20 \mathrm{gpm}$ on Sept. 22, 1938 from many seeps at contact of red clay and sandstone and conglomerate. aj
18-101	--	--	--	9	Qal?	2,631	33.3	Mar. 19, 1969	T, E 5	N	Elec, meter removed. Unused $10^{\prime \prime}$ casing approximately 500 ft . east of this well.
* 102	J. W. McSpaddon	1969	81	6	Qal?	2,655	--	--	$\begin{aligned} & \mathrm{S}, \mathrm{E} \\ & 1 / 2 \end{aligned}$	D	Another well drilled in 1969 about $1,000 \mathrm{ft}$, east of this well is not in use yet.
201	E. G. McInroe	1957	74	12	Qal	2,530	$\begin{aligned} & 24.1 \\ & 22.4 \end{aligned}$	$\begin{array}{lll} \text { Dec. } & 15, & 1959 \\ \text { Dec. } & 27, & 1960 \end{array}$	T, ${ }_{5}$	Irr	
* 202	R. W. Howard	$1957 ?$	28	--	do.	2,540	--	--	J, ${ }^{-}$	D, S	Red bed reported at 28 ft . For domestic use and supplying water for chicken hatchery.
203	W. J. Bridge	--	--	14	do.	2,480	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 10 \end{aligned}$	Irr	
204	R. Bennett	--	402	--	do.	2,558	--	--	T-	Irr	
205	P. A. Willmon	1969	60	6	do.	2,558	23	Jan. 1969	N	N	Drilled for domestic use. Pump not installed.
* 301	J. W. Vickrey	1953	92	16	do.	2,441	$\begin{aligned} & 26.9 \\ & 25.9 \end{aligned}$	$\begin{array}{lll} \text { Dec. } & 14, & 1959 \\ \text { Jan. } & 17, & 1968 \end{array}$	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 71 / 2 \end{aligned}$	Irr	Red bed reported at 91 ft . Reported yield 132 gpm on Aug. 15, 1960 with pumping level at $52.3 \mathrm{ft} .2 /$
302	J. H. McAllister	--	66	12	do.	2,485	--	--	N	N	
303	J. W. Vickrey	--	90	14	do.	2,442	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 71 / 2 \end{aligned}$	Irr	Red bed reported at 90 ft .
304	do.	--	90	14	do.	2,440	--	--	T, G	Irr	Do.
305	G. Jackson	1958?	85	14	do.	2,442	24.9	Mar. 21, 1969	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 10 \end{aligned}$	Irr	Red bed reported at 85 ft .
306	do.	do.	120	14	do.	2,440	23.5	do.	T, G	Irr	Red bed reported at 120 ft .

See footnotes at end of table.
Table 6. --Records of Wells and Springs in Dickens and Kent Counties, Texas --Continued

See footnotes at end of table.

HY-22-19-103	C. B. Roberts	1962	123	16	Qal	2,427	--	--	T, G	Irr	Pump set at about 119 ft .
104	Mrs. L. Goodwin	--	50?	14	do.	2,430	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 7 \mathrm{l} / 2 \end{aligned}$	Irr	Not used for 3 years.
105	--Harvey	1953?	101	12	do.	2,431	23.3	Mar. 25, 1969	T, E	Irr	Red bed reported at 101 ft .
106	do.	1953?	90	12	do.	2,431	23.9	Mar. 25, 1969	T, E	Irr	Red bed reported at 90 ft .
107	W. B. Carothers	1957	85	14	do.	2,419	28.4	Mar. 26, 1969	T, G	Irr	1)
108	Mrs . L. Goodwin	--	807	--	do.	2,421	27.0	May 23, 1968	T, G	Irr	
109	do.	--	70?	--	do.	2,422	30.5	May 23, 1968	T, G	Irr	
110	--	--	--	12	Qal?	2,448	56.1	June 6, 1968	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 10 \end{aligned}$	Irr	
* 111	C. B. Roberts	1969	112	6	Qal	2,451	52	Jan. 1969	P, W	s	
112	do.	1966	104 ?	--	do.	2,441?	--	--	T, G	Irr	
* 113	F. Byars	1969	96	6	do.	--	--	--	$\begin{aligned} & \mathrm{S}, \mathrm{E} \\ & 1 / 2 \end{aligned}$	D	Pump set at 84 ft .
114	do.	1958?	$110 ?$	12	do.	2,440	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 20 \end{aligned}$	Irr	
115	do.	1960?	$100 ?$	12	do.	2,426	34.0	Mar. 26, 1969	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 15 \end{aligned}$	Irr	Unused well about 200 ft . east of this well.
116	do.	1959?	907	--	do.	2,425	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 10 \end{aligned}$	Irr	
117	--Laws on	--	--	--	Qal?	2,421	28.7	Mar. 25, 1969	T, G	Irr	
* 118	C. B. Roberts	1969	101	6	Qal	2,424	40	Jan. 24, 1969	$\begin{aligned} & \mathrm{S}, \mathrm{E} \\ & 1 / 2 \end{aligned}$	D	Casing perforated from 85-100 ft. Pump set at 84 ft . Cased to 101 ft .
119	Ira Sullivan	1966	155	12	do.	2,430	56	July 1, 1966	T, E	Irr	Cased to 152 ft . Casing perforated from 117 to 150 ft . Pump set at 140 ft . 1
120	F. Ragland	1964	$100 ?$	10	do.	2,442	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 10 \end{aligned}$	Irr	

Table 6.--Records of Wells and Springs in Dickens and Kent Counties, Texas--Continued

WELL	OWNER	$\begin{gathered} \text { DATE } \\ \text { COM- } \\ \text { PLETED } \end{gathered}$	DEPTH of WELL (FT)	DIAM- ETER of WELL (IN)	$\begin{aligned} & \text { WATER } \\ & \text { BEAR- } \\ & \text { ING } \\ & \text { UNIT } \end{aligned}$	altitude OF LAND SURFACE (FT)	WATER LEVEL		$\begin{gathered} \text { METHOD } \\ \text { OF } \\ \text { LIFT } \end{gathered}$	$\begin{aligned} & \text { USE } \\ & \text { OF } \\ & \text { WATER } \end{aligned}$	REMARKS
							BELOW LAND- SURFACE DATUM (FT)	$\begin{gathered} \text { DATE OF } \\ \text { MEASUREMENT } \end{gathered}$			

See footnotes at end of table.
Table 6．－－Records of Wells and Springs in Dickens and Kent Counties，Texas－－Continued

WELL	OWNER	DATE COM－ PLETED	DEPTH OF WELL （FT）	DIAM－ ETER OF WELL （IN）	WATER BEAR－ ING UNIT	altitude OF LAND SURFACE （FT）	Water level		$\begin{aligned} & \text { METHOD } \\ & \text { OF } \\ & \text { LIFT } \end{aligned}$	$\begin{gathered} \text { USE } \\ \text { OF } \\ \text { WATER } \end{gathered}$	REMARKS
							BELOW LAND－ SURFACE DATUM （FT）	$\begin{gathered} \text { DATE OF } \\ \text { MEASUREMENT } \end{gathered}$			

					$\dot{\circ}$										
号	∞	$\stackrel{\sim}{0}$	∞	a	A	$\stackrel{H}{H}$	H	－	z	$\stackrel{H}{H}$	䓂	宮	㟥	z	亗
$\stackrel{\text { No }}{\text { NiO }}$	3		$\frac{\infty}{\stackrel{y}{4}}$	N－9	$\stackrel{\text { ar }}{\text { N－9 }}$	$\stackrel{\text { Han }}{\text { Hin }}$	$\stackrel{\infty}{*}$	N－	3	＋i¢	＊゙ッ	＋19	$\stackrel{+1}{*-1 / 2}$	\dot{H}	
；	$$	；	；	；	＇		ぶヵ ल゙ラ 送号	；	$\begin{aligned} & \hat{\circ} \\ & \stackrel{1}{2} \\ & \stackrel{0}{0} \\ & \dot{0} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{0}{\sim} \\ & \stackrel{y}{n} \\ & \text { N } \end{aligned}$	$\stackrel{\circ}{0}$	；	$\stackrel{\infty}{\circ}$ \sim त्ड	\div	；
；		$+$	$+$	i	！		$\begin{aligned} & \text { yo } \\ & \infty \\ & \text { No } \end{aligned}$	I	$\stackrel{\rightharpoonup}{i}$	$\dot{ल}$	$\dot{\tilde{m}}$	：	$\stackrel{\sim}{\infty}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	＇
$\begin{gathered} \stackrel{\pi}{2} \\ \text { N } \end{gathered}$	，	$\begin{aligned} & \sim \\ & \stackrel{\sim}{\infty} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{\sim}{\infty} \\ & \sim \end{aligned}$	$$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\underset{\sim}{\text { N }}$	$\underset{\sim}{\mathrm{N}}$	；	$\underset{\sim}{\sim}$	N゙	Nิ	$\stackrel{\text { N }}{\text { N }}$	$\stackrel{\text { Ñ }}{\text { N }}$	$\stackrel{\sim}{\sim}$	N
$\underset{\sim}{\sigma}$	A	J	－	3	$\stackrel{\circ}{0}$	$\stackrel{\circ}{0}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{0}$	\bigcirc	$\stackrel{\circ}{0}$	\cdots	$\stackrel{\circ}{\square}$	$\stackrel{\circ}{\square}$	\bigcirc	\div
：	\bigcirc	；	！	$\stackrel{\sim}{\sim}$	\bullet	$\underset{\sim}{\sim}$	$\stackrel{\sim}{2}$	1	∞	\pm	！	\simeq	\pm	\pm	；
；	$\stackrel{\square}{\square}$	$\frac{\mathscr{Q}}{\frac{2}{L}}$	$\begin{aligned} & \text { 苃 } \\ & \stackrel{4}{0} \end{aligned}$	Σ	\％	¢	$\stackrel{\infty}{\sim}$	${ }_{\infty}^{\infty}$	－	\cdots	$\stackrel{\square}{\square}$	N	！	i	＇
；	；	；	i	윽	合	；	岕	会	！	！	へ	；	；	！	；
			\％	$\begin{aligned} & \text { g } \\ & \text { g } \\ & \text { u } \\ & \text { a } \\ & \stackrel{\rightharpoonup}{0} \\ & \text { त } \end{aligned}$	$\dot{\circ}$	$\begin{aligned} & \text { H } \\ & \text { x } \\ & \square \\ & 0 \\ & 0 \\ & y y y \end{aligned}$	$\begin{aligned} & 5 \\ & \frac{5}{0} \\ & 0 \\ & 5 \\ & 5 \\ & 4 \\ & 5 \\ & > \end{aligned}$	$\begin{aligned} & \text { ㄷ } \\ & \text { Ẅ } \\ & \stackrel{0}{\circ} \\ & \dot{\Delta} \end{aligned}$	$!$	$\begin{aligned} & 5 \\ & \stackrel{5}{4} \\ & 00 \\ & \text { 5 } \\ & \text { 4 } \\ & \text { 5 } \end{aligned}$	ت゙ U U 3	$\begin{aligned} & \text { ü } \\ & \text { y } \\ & \text { 鹿 } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \stackrel{5}{5} \\ & \text { 荡 } \\ & \stackrel{5}{4} \\ & \stackrel{5}{c} \end{aligned}$	$\stackrel{\circ}{\square}$	$\stackrel{\circ}{\square}$
	D 只 d	$\stackrel{\rightharpoonup}{0}$ N゙ Nे	$\underset{\sim}{\sim}$	ö	O్ల	o్ల	\％	م్ల	¢	مे户⿵	:	ిop	$\stackrel{\rightharpoonup}{\mathrm{m}}$	च̈	ल̈

See footnotes at end of table．
Table 6. - Records of Wells and Spring in Dickens and Kent Counties, Texas --Continued

See footnotes at end of table.
Table $6, \cdots$-Records of Wells and Springs in Dickens and Kent Counties, Texas --Continued

WELL	OWNER	$\begin{aligned} & \text { DATE } \\ & \text { COM- } \\ & \text { PLETED } \end{aligned}$	DEPTH or WELL (FT)	DIAM- ETER of WELL (IN)	WATER BEARING UNIT	ALTITUDE OF LAND SURFACE (FT)	WATER LEvEL		$\begin{gathered} \text { METHOD } \\ \text { OF } \\ \text { LIFT } \end{gathered}$	$\begin{aligned} & \text { USE } \\ & \text { of } \\ & \text { WATER } \end{aligned}$	REMARKS
							BELOW LAND- SURFACE DATUM (FT)	DATE OF MEASUREMENT			

See footnotes at end of table.
Table 6.--Records of Wells and Springs in Dickens and Kent Counties, Texas--Continued

WELL	OWNER	$\begin{gathered} \text { DATE } \\ \text { COM- } \\ \text { PLETED } \end{gathered}$	DEPTH 0 F WELL (FT)	DIAM- ETER of WELL (IN)	$\begin{aligned} & \text { WATER } \\ & \text { BEAR- } \\ & \text { ING } \\ & \text { UNIT } \end{aligned}$	ALTITUDE OF LAND SURFACE (FT)	WATER LEVEL		$\begin{aligned} & \text { METHOD } \\ & \text { OF } \\ & \text { LIFT } \end{aligned}$	$\begin{gathered} \text { USE } \\ \text { OF } \\ \text { WATER } \end{gathered}$	REMARKS
							BELOW LAND- SURFACE DATUM (FT)	DATE OF MEASUREMENT			

[^5]Table 6.--Records of Wells and Springa in Dickens and Kent Counties, Texas --Continued

WELL	OWNER	$\begin{gathered} \text { DATE } \\ \text { cOM- } \\ \text { PLETED } \end{gathered}$	$\begin{aligned} & \text { DEPTH } \\ & \text { OF } \\ & \text { WELL } \\ & \text { (FI) } \end{aligned}$	$\begin{aligned} & \text { DIMM- } \\ & \text { ETTR } \\ & \text { or } \\ & \text { WELL } \\ & \text { (IN) } \end{aligned}$	$\begin{aligned} & \text { WATER } \\ & \text { BERR- } \\ & \text { ING } \\ & \text { UNIT } \end{aligned}$	altitude OF LAND SURFACE (FT)	WATER LEVEL		$\begin{gathered} \text { METHOD } \\ \text { OF } \\ \text { LIFT } \end{gathered}$	$\begin{gathered} \text { USE } \\ \text { OF } \\ \text { WATER } \end{gathered}$	REMMRS
							BELDOW LADD- SURACE DATUM (FT)	DATE OF MEASUREMEN			
Dickens County											
HY-22-25-512	W. E. Armstrong	--	59	12	Qal	2,410	33.2	Apr. 5, 1968	s, E	Irr	
513	do.	--	403	12	do.	2,408	--	--	S, E	Irr	
514	do.	--	407	12	do.	2,402	--	--	s, N	N	
515	do.	--	40?	12	do.	2,402	--	--	N	N	
516	do.	--	40?	12	do.	2,402	--	--	s, N	N	
517	do.	1962 ?	$40 ?$	12	do.	2,395	--	--	S, N	N	
518	do.	1962?	40?	12	do.	2,396	--	--	N	N	
519	do.	1962 ?	33	12	do.	2,396	19.5	Apr. 3, 1968	s, N	N	
520	do.	1962 ?	38	12	do.	2,396	19.2	do.	S,N	N	
521	do.	1962 ?	407	12	do.	2,396	--	--	N	N	Water from wells 512-521 was conveyed through underground pipe to an earthen tank from which water for irrigation was pumped.
601	W. A. Harris	1956	75	14	do.	2,395	$\begin{aligned} & 22.8 \\ & 22.3 \\ & 28.0 \end{aligned}$	$\begin{array}{lll} \text { Dec. } & 23, & 1959 \\ \text { Dec. } & 28, & 1960 \\ \text { Apr. } & 27, & 1968 \end{array}$	T, E	Irr	Reported yield of 94 gpm on Aug. 16, 1960 with pumping level at 39 ft .
602	L. Foreman	1957	47	12	--	2,400	$\begin{aligned} & 23.1 \\ & 25.4 \end{aligned}$	$\begin{array}{lll} \text { Dec. } & 24, & 1959 \\ \text { Jan. } & 25, & 1968 \end{array}$	$\begin{gathered} \mathrm{T}, \mathrm{E} \\ 5 \end{gathered}$	Irr	Red bed reported at 147 ft . Reported yield of 110 gpm on Aug. 16, 1960. 2]
* 603	W. E. Armstrong	1967	607	12	do.	2,415	29.0	Apr. 4, 1968	$\stackrel{\mathrm{T}, \mathrm{E}}{5}$	Irr	
* 604	do.	1967	$60 ?$	12	do.	2,420	27.3	do.	$\stackrel{T, \mathrm{E}}{5}$	Irr	
605	do.	1967	602	12	do.	2,423	26.5	do.	$\stackrel{\text { T,E }}{5}$	Irr	
* 606	H. Lemley	--	--	12	Qal?	2,403	--	--	T, E	Irr	
* 607	do.	$1965 ?$	54	12	Qal	2,403	28.1	Apr. 8, 1968	T, ${ }_{3}$	Irr	Reported drilled to red bed.
608	do.	1965 ?	49	12	do.	2,403	--	--	$\underset{3}{\mathrm{~T}, \mathrm{E}}$	Irr	D.

See footnotes at end of table.
Table 6. - -Records of Wells and Springs in Dickens and Kent Counties, Texas--Continued

wElL	OWNER	$\begin{gathered} \text { DATE } \\ \text { COM- } \\ \text { CLETED } \end{gathered}$	$\begin{aligned} & \text { DEPTH } \\ & \text { OF } \\ & \text { WELL } \\ & \text { (FT) } \end{aligned}$	$\begin{aligned} & \text { DIMM- } \\ & \text { ETRE } \\ & \text { ORLL } \\ & \text { WELL } \\ & \text { (IN) } \end{aligned}$	WATER bearING UNIT	altitude OF LAND SURFACE (PT)	WATER LEVEL		$\begin{gathered} \text { METHOD } \\ \text { OF } \\ \text { LIFT } \end{gathered}$	$\begin{gathered} \text { USE } \\ \text { OF } \\ \text { WATER } \end{gathered}$	REmarks
							BELOW LAND- SURPACB DATVM (FT)	$\begin{gathered} \text { DATE OF } \\ \text { MEASUREMENT } \end{gathered}$			
Dickens County											
* HY-22-25-609	R. B. Walsworth	--	100?	--	Qa1	2,394	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{R} \\ & 10 \end{aligned}$	Irr	
* 610	do.	--	$100 ?$	--	do.	2,395	24.2	May 23, 1968	${ }_{10}{ }_{10}$	Irr	
611	--	--	--	6	Qa1?	2,407	27.0	Apr. 25, 1968	$\underset{2}{\text { T,E }}$	s	
612	v. Harris	--	$69 ?$	12	Qal	2,406	--	--	T	Irr	
613	do.	--	603	12	do.	2,407	26.0	Apr. 25, 1968	${ }_{10}^{T, E}$	Irr	
614	do.	--	53	12	do.	2,398	29.3	do.	s	N	Depth to red bed reported to be 45 ft . in unused well about 500 ft . north of we11 614 .
615	do.	--	627	12	do.	2,397	28.0	do.	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 10 \end{aligned}$	Irr	
616	R. Waddell	--	105	12	do.	2,386	--	--	T, G	Irr	
* 617	do.	--	96	12	do.	2,384	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 10 \end{aligned}$	Irr	
618	--	--	--	12	Qa1?	2,366	20.2	Apr. 29, 1968	T, E	N	Electric power disconnected. Appears to have been unused for sometime.
619	O. Halle	--	$50 ?$	14	Qal	2,405	27.8	May 1, 1968	T, ${ }_{5}$	N	Electric power disconnected. Reported unused for 1 year.
620	--Morgan	1957	60?	12	do.	2,407	29.4	do.	T, E 10	Irr	
621	--Shugart	1957	93	--	do.	2,401	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 15 \end{aligned}$	Irr	Pump set at 85 ft .
622	do.	1957	55	12	do.	2,403	25.3	Apr. 26, 1968	T, E	Irr	Pump set at 47 ft .
623	do.	1960	85	12	do.	2,396	25.8	do.	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 10 \end{aligned}$	Irr	Pump set at 77 ft .
624	do.	1957	85	12	do.	2,396	26.4	do.	$\begin{aligned} & \mathrm{T}, \mathrm{R} \\ & 10 \end{aligned}$	Irr	Do.
625	W. A. Harris	--	--	14	Qa1?	2,390	--	--	$\xrightarrow{T, \mathrm{E}}$	Irr	

See footnotes at end of table.
Table 6, --Records of Wells and Springs in Dickens and Kent Counties, Texas--Continued

WELL	OWNER	DATE COMPLETED		DIAM- ETER or WELL (IN)	$\begin{aligned} & \text { WATER } \\ & \text { BEAR- } \\ & \text { ING } \\ & \text { UNTT } \end{aligned}$	ALTITUDE OF LAND SURFACE (FT)	WATER Level		$\begin{gathered} \text { METHOD } \\ \text { OF } \\ \text { LIFT } \end{gathered}$	$\begin{aligned} & \text { USE } \\ & \text { OF } \\ & \text { WATER } \end{aligned}$	REMARKS
							BELOW LAND- SURFACE DATUM (FT)	$\begin{gathered} \text { DATE OF } \\ \text { MEASUREMENT } \end{gathered}$			

HY-22-25-626	W. A. Harris	--	--	14	Qa1?	2,381	23.3	Apr. 27, 1968	$\underset{5}{\mathrm{~T}, \mathrm{E}}$	Irr	
627	do.	--	36	12	Qal	2,393	28.2	Apr. 29, 1968	T, G	N	Not used for several years.
628	Hubert Karr	--	44	16	do.	2,401	31.2	do.	$\underset{2}{\mathrm{~T}, \mathrm{E}}$	Irr	
629	Harold Karr	1955 ?	407	14	do.	2,391	--	--	T, E	Irr	
630	do.	1955?	403	12	do.	2,386	--	--	$\underset{5}{\mathrm{~T}, \mathrm{E}}$	Irr	
* 631	J. Aston	1954	42	14	do.	2,354	$\begin{aligned} & 18.3 \\ & 17.9 \\ & 18.4 \end{aligned}$	$\begin{array}{lll} \text { Dec. } & 23, & 1959 \\ \text { Dec. } & 28, & 1960 \\ \text { Apr. } & 11, & 1968 \end{array}$	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 7 \mathrm{l} / 2 \end{aligned}$	Irr	Reported yield of 84 gpm on Aug. 16, 1960 with pumping level at 40 ft .
632	R. Waddell	--	62 ?	12	do.	2,391	22.5	Dec. 10, 1968	$\stackrel{\mathrm{T}, \mathrm{E}}{5}$	Irr	
633	L. Foreman	--	47	12	do.	2,388	18.7	May 22, 1968	$\underset{5}{T, E}$	Irr	
634	do.	--	44	14	do.	2,392	23.8	do.	$\begin{gathered} \mathrm{T}, \mathrm{E} \\ 3 \end{gathered}$	Irr	
* 635	v. Wilson	1957?	90	12	do.	2,382	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 15 \end{aligned}$	Irr	
801	A. L. Powell	--	26	12	do.	2,375	--	--	Cf, G	Irr	Red bed reported at 24 ft .
802	H. M. Costolow	--	50	14	do.	2,364	25.3	Apr. 2, 1968	$\stackrel{\mathrm{T}, \mathrm{E}}{5}$	Irr	1/
803	B. L. Pickens	--	28	--	do.	--	--	--	T, E	N	Red bed reported at 27.5 ft . Unable to locate this well in 1968.
804	G. H. Snider	--	--	10	Qal?	2,328	20.5	Mar. 5, 1968	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 71 / 2 \end{aligned}$	Irr	
805	D. Wright	1960?	68	14	Qal	2,336	--	--	$\underset{5}{\mathrm{~T}, \mathrm{E}}$	Irr	Well furnishes water to irrigate about 15 acres.
806	do.	1962?	48?	--	do.	2,331	24.9	Mar. 25, 1968	$\underset{3}{T, E}$	Irr	Do.

See footnotes at end of table.

WELL	OWNER	$\begin{gathered} \text { DATE } \\ \text { COM- } \\ \text { CLETED } \end{gathered}$	$\begin{aligned} & \text { DEPTH } \\ & \text { op } \\ & \text { WELL } \\ & \text { (FT) } \end{aligned}$	$\begin{aligned} & \text { DINM- } \\ & \text { ETER } \\ & \text { OREL } \\ & \text { WELL } \\ & \text { (IN) } \end{aligned}$	$\begin{aligned} & \text { WATER } \\ & \text { BER- } \\ & \text { ING } \\ & \text { UNIT } \end{aligned}$	Altitude SURFACE (FT)	WATER Level		$\begin{gathered} \text { METHOD } \\ \text { OF } \\ \text { LIFT } \end{gathered}$	$\begin{gathered} \text { USE } \\ \text { OF } \\ \text { WATER } \end{gathered}$	REMMRKS
								$\begin{gathered} \text { DATE OF } \\ \text { MEASUREMENT } \end{gathered}$			

Dickens County											
HY-22-25-807	D. Wright	1962?	$48 ?$	14	Qal	2,333	--	--	${ }_{3}^{\text {T,E }}$	Irr	Well furnishes water to irrigate about 15 acres.
808	L. Hindman	--	--	10	do?	2,333	--	--	${ }_{5}^{T, 2}$	Irr	
809	--Wade	--	--	--	do?	2,338	24.7	Mar. 26, 1968	${ }_{\text {T, }}^{3}$	Irr	
810	do.	--	--	12	do?	2,337	--	--	${ }_{5}^{\text {T, }}$ 5	Irr	
* 811	--B1lberry	1956	46	14	do.	2,349	23.0	Mar. 26, 1968	T, ${ }_{5}^{\text {E }}$	Irr	Pump set at 45 ft . tries to irrigate 30 acres but has to be very economical in applying water.
812	L. Hindman	1965 ?	--	12	do?	2,352	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 71 / 2 \end{aligned}$	Irr	
813	do.	--	--	14	do.	2,353	15.2	Mar. 27, 1968	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 71 / 2 \end{aligned}$	Irr	
814	H. M. Costolow	--	--	14	do.	2,362	24.7	Apr. 2, 1968	T, E 5	Irr	
815	B. Ballard	--	--	12	do.	2,348	16.4	Oct. 29, 1968	T, ${ }_{3}$	Irr	
816	do.	--	--	12	do.	2,348	18.3	do.	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 71 / 2 \end{aligned}$	Irr	
817	G. H. Snider	1959	37	16	do.	2,323	--	--	${ }_{3}^{\mathrm{T}, \mathrm{E}}$	Irr	Red bed reported at 35 ft .
* 902	L. Hindman	1958	63	16	do.	2,353	$\begin{aligned} & 28.8 \\ & 29.9 \\ & 31.7 \end{aligned}$	Dec. 23, 1959 Dec. 28, 1990 Jan. 25, 1968	T, E	Irr	Red bed reported at 63 ft . Estimated yield of 65 gpm on Aug. 16, 1960 with pumping level at 48 ft .
903	do.	1955	36	12	do.	2,330	$\begin{aligned} & 20.5 \\ & 19.3 \\ & 19.7 \end{aligned}$	Dec. 24, 1959 Dec. 28, 1960 Jan. 24, 1968	N	N	Reported unused for several years. Red bed reported at 36 ft . Estimated yield of 16 gpm on Aug. 16, 1960 with pumping level at 30.5 ft .
904	F. Albin	1958	45	12	do.	2,325	$\begin{aligned} & 22.3 \\ & 22.4 \\ & 28.4 \end{aligned}$	Dec. 23,1959 Dec. 28,1960 Feb. 9,1968	${ }_{3}^{\mathrm{T}, \mathrm{E}}$	Irr	Reported yield of 39 gpm on Aug. 16, 1960 with pumping level at 35.6 ft .
906	B. Bingham	--	42	12	do.	2,318	26.1	Jan. 24, 1968	$\begin{gathered} \mathrm{T}, \mathrm{E} \end{gathered}$	Irr	

See footnotes at end of table.
Table 6,--Records of Wells and Springs in Dickens and Kent Counties, Texas--Continued

WELL	OWNER	$\begin{gathered} \text { DATE } \\ \text { COM- } \\ \text { PLETED } \end{gathered}$	DEPTHOFWELL(FT)	$\begin{aligned} & \text { DIMM- } \\ & \text { ETER } \\ & \text { or } \\ & \text { WELL } \\ & \text { (IN) } \end{aligned}$	$\begin{aligned} & \text { WATER } \\ & \text { BERR- } \\ & \text { ING } \end{aligned}$	Altitude SURPACE (FT)	Water level		$\begin{gathered} \text { METHOD } \\ \text { OP } \\ \text { LIFT } \end{gathered}$	$\begin{gathered} \text { USE } \\ \text { OR } \\ \text { WATER } \end{gathered}$	REMARKS
							BELDN LAND- SURFACE DATUM (FT)	$\begin{aligned} & \text { DATE OF } \\ & \text { MEASUREMENT } \end{aligned}$			

Dickens County											
* HY-22-25-907	P. Hale	--	507	12	Qal	2,326	26.9	Feb. 9, 1968	${ }_{5}^{T, E}$	Irr	
908	do.	--	507	12	do.	2,324	26.7	Mar. 4, 1968	T, E	Irr	
909	do.	--	502	12	do.	2,325	25.9	do.	$\underset{5}{\text { T, } 2}$	Irr	
910	do.	--	$50 ?$	12	do.	2,327	27.4	Peb. 9, 1968	$\underset{\substack{T, E \\ 3}}{ }$	Irr	
911	do.	--	507	12	do.	2,325	26.4	do.	T, E	Irr	
912	do.	--	507	8	do.	2,324	--	--	$\stackrel{\text { T,E }}{5}$	Irr	
913	--	--	--	14	Qa1?	2,338	16.0	Mar. 28, 1968	N	N	Water-level observation only.
914	Hubert Karr	--	$70 ?$	14	Qal	2,353	33.0	do.	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 71 / 2 \end{aligned}$	Irr	
915	L. Hindman	--	--	--	Qa1?	2,351	28.9	do.	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 10 \end{aligned}$	Irr	
916	do.	--	--	7	do.	--	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 11 / 2 \end{aligned}$	s	
917	--	--	--	14	do.	2,336	18.3	Mar. 28, 1968	T, E 5	$\underset{\mathrm{s}}{\mathrm{Irr}}$	
* 918	John Aston	--	--	--	do.	2,350	--	--	т, ${ }^{\text {c }}$	Irr	
919	--	--	--	12	do.	2,322	--	--	$\stackrel{\text { T,E }}{5}$	Irr	
* 920	--Garcia \& Sons	--	--	12	do.	--	--	--	T, ${ }_{5}$	Irr	
921	do.	--	$60 ?$	12	Qal	2,308	--	--	T	N	Not used in 1968. Electric power disconnected.
922	v. Harris	--	--	12	do.	2,302	21.3	May 20, 1968	${ }_{5}^{\text {T,E }}$	Irr	
* 923	D. Young	1957	56	12	do.	2,305	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & \mathrm{~T} 1 / 2 \end{aligned}$	Irr	Unused well about 200 ft , east and about 50 ft . south of this well.
* 26-101	City of Dickens	1935	110	$10^{\prime \prime}-8{ }^{\prime \prime}$	Trd	2,5602	88.3	Sept. 16, 1947	T, E 3	N	Reported yield of 50 gpm in 1946. Unused. Well No. 4 in USGS WSP 1106

See footnotes at end of table.
Table 6,--Records of Wells and Springs in Dickens and Kent Counties, Texas--Continued

WELL	OWNER	DATE COM- PLETED	DEPTH OF WELL (FT)	DIAM- ETER OF WELL (IN)	$\begin{aligned} & \text { WATER } \\ & \text { BEAR- } \\ & \text { ING } \\ & \text { UNIT } \end{aligned}$	altitude OF LAND SURFACE (FT)	WATER LEVEL		$\begin{gathered} \text { METHOD } \\ \text { OF } \\ \text { LIFT } \end{gathered}$	$\begin{aligned} & \text { USE } \\ & \text { OF } \\ & \text { WATER } \end{aligned}$	REMARKS
							$\begin{gathered} \hline \text { BELOW } \\ \text { LAND- } \\ \text { SURFACE } \\ \text { DATUM } \\ \text { (FT) } \end{gathered}$	DATE OF MEASUREMENT			

Dickens County											
* HY-22-26-102	City of Dickens	1936	90	6	Trd	2,550?	77	1936	N	N	Reported yield of 10 gpm in 1946. Destroyed. Well No. 1 in USGS WSP 1106.
103	do.	1960?	$66 ?$	12	Qal?	2,528	--	--	$\stackrel{\mathrm{T}, \mathrm{E}}{5}$	Irr	Owner reported well drilled into cavity in bed rock. After pumping 7-9 hours on Dec. 5, 1967, water level was 61 ft . below land surface in open casing 10 ft . from well 103.
* 104	Double "L" Motel	1962	90?	8	Trd	2,561	61.1	Sept. 20, 1967	$\begin{aligned} & S, E \\ & 1 / 2 \end{aligned}$	$\begin{gathered} \mathrm{Irr} \\ \mathrm{P} \end{gathered}$	Pump set at 80 ft .
105	R. G. Long	--	85?	12	Trd?	2,534	56.9	Dec. 6, 1967	$\underset{3}{\mathrm{~S}, \mathrm{E}}$	Irr	
106	5. Kidd	1967	52	10	Qal	2,528	--	--	T, E	Irr	Red bed reported at 52 ft .
107	o. Hafle	1953?	53	16	do.	2,410	28.9	Apr. 30, 1968	$\begin{gathered} \mathrm{T}, \mathrm{E} \\ \hline \end{gathered}$	N	Not used for 2-3 years.
108	do.	1953?	50?	12	do.	2,410	--	--	$\underset{5}{\mathrm{~T}, \mathrm{E}}$	N	Do.
* 201	City of Dickens	1936	156	6	Trd	2,575?	76	1936	$\underset{3}{\mathrm{~T}, \mathrm{E}}$	N	Reported yield of 18 gpm in 1946 . Unused. Well No. 2 in USGS WSP 1106.
* 202	do.	1945	150	6	do.	2,575?	--	--	N	N	Reported yield of 30 gpm in 1946. Destroyed. Well No. 3 in USGS WSP 1106.
401	A. J. Harvey	1958	56	12	Qal	2,376	$\begin{aligned} & 20.6 \\ & 16.8 \end{aligned}$	$\begin{array}{lll} \text { Dec. } & 23, & 1959 \\ \text { Jan. } & 17, & 1968 \end{array}$	$\begin{gathered} \mathrm{T}, \mathrm{E} \\ 3 \end{gathered}$	Irr	Red bed reported at 56 ft . Reported yield of 37 gpm on Aug. 16, 1960. 2]
402	0. Holly	--	27	14	do.	2,353	$\begin{aligned} & 11.9 \\ & 11.5 \end{aligned}$	Dec. 15, 1959 Dec. 28, 1960	Cf, E	N	Electrical connection removed.
403	L. Garner	--	47	--	do.	2,362	--	--	T, E	Irr	
404	--Shugart	1957?	65	12	do.	2,397	23.4	Apr. 26, 1968	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 10 \end{aligned}$	Irr	Pump set at 57 ft . Reported well not used much because of poor quality of water.
405	W. Key	1965	60	12	do.	2,378	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{G} \\ & 40 \end{aligned}$	Irr	Pump set at 55 ft .
406	do.	1965	60	10	do.	2,378	--	--	$\begin{aligned} & \text { T,G } \\ & 40 \end{aligned}$	Irr	Do.
407	do.	1966	55	12	do.	2,378	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{G} \end{aligned}$	Irr	Pump set at 50 ft .

[^6]Table 6.--Records of Wells and Springs in Dickens and Kent Counties, Texas --Continued

WELL	OWNER	$\begin{gathered} \text { DATE } \\ \text { COM- } \\ \text { CIETED } \end{gathered}$	DEPTHOFWELL(FT)		$\begin{aligned} & \text { WATER } \\ & \text { BERR- } \\ & \text { ING } \\ & \text { UNIT } \end{aligned}$	altitude SURFACE (FT)	Water level		$\begin{gathered} \text { METHOD } \\ \text { OF } \\ \text { LIFT } \end{gathered}$		REMMRKS
								$\begin{gathered} \text { DATE OF } \\ \text { MEASUREMENT } \end{gathered}$		$\begin{gathered} \text { USE } \\ \text { OF } \\ \text { WATER } \end{gathered}$	

HY-22-26-408	A. Harvey	1962	64	13	Qal	2,376	--		--	N	N	
409	do.	1966	28	13	do.	2,376	15.2	May	21, 1968	T, E	Irr	Pump set at 25 ft .
410	Lem Parsons	1956	50	14	do.	2,373	23.3	May	22, 1968	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & \mathrm{~T}_{1 / 2} \end{aligned}$	Irr	Pump set at 45 ft .
411	do.	1956	50	14	do.	2,366	--		--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 15 \end{aligned}$	Irr	Do.
412	do.	1956	50	14	do.	2,366	--		--	$\stackrel{\mathrm{T}, \mathrm{E}}{5}$	Irr	Do.
413	R. Bostic	1955	53	14	do.	2,364	29.9	May	22, 1968	T, E	Irr	
414	do.	1956	56	14	do.	2,362	--		--	T, E	Irr	
501	D. Lehew	1966	56	10	do.	2,402	--		--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 71 / 2 \end{aligned}$	Irr	Pump set at 54 ft .
502	do.	1965	54	10	do.	2,402	28.1	May	21, 1968	${ }_{\text {T, }}^{\substack{\text { \% }}}$	Irr	Pump set at 52 ft .
701	E. McGee	1953	50	12	do.	2,305	$\begin{aligned} & 13.6 \\ & 12.2 \\ & 13.3 \end{aligned}$	Dec. Dec. May	$\begin{array}{ll} 22, & 1959 \\ 28, & 1960 \\ 20, & 1968 \end{array}$	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 10 \end{aligned}$	Irr	Red bed reported at 50 ft . Reported yield of 111 gpm on Aug. 16, 1960 with pumping level at 33 ft .
702	J. c. Hindman	1958	48	12	do.	2,294	$\begin{aligned} & 23.5 \\ & 25.0 \end{aligned}$	$\begin{aligned} & \text { Dec. } \\ & \text { Jan } \end{aligned}$	$\begin{aligned} & 24,1959 \\ & 25,1968 \end{aligned}$	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 10 \end{aligned}$	Irr	Reported yield of 163 gpm on Aug. 16, 1960. 3/
703	B. Ballard	1956	50	12	do.	2,288	$\begin{aligned} & 27.4 \\ & 27.1 \\ & 23.0 \end{aligned}$	Dec. Dec. May	$\begin{array}{ll} 22, & 1959 \\ 28,1960 \\ 17, & 1968 \end{array}$	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 71 / 2 \end{aligned}$	Irr	Reported yield 103 gpm on Aug. 16, 1960 with pumping level at 41 ft .
704	--	--	--	--	Qal?	2,293	24.3	Jan.	24, 1968	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & \mathrm{~T} / \mathrm{L} / 2 \end{aligned}$	Irr	
705	J. McDaniel	1962 ?	26	6	Qal	2,298	11.2	May	20, 1968	$\begin{aligned} & \mathrm{s}, \mathrm{E} \\ & 11 / 2 \end{aligned}$	Irr	East well of three. (Well adjacent to small pond.)
706	do.	$1962 ?$	23	12	do.	2,298	10.5		do.	$\begin{aligned} & \mathrm{s}, \mathrm{E} \\ & 11 / 2 \end{aligned}$	Irr	Middle well of three. (Well adjacent to small pond.)
707	do.	1962?	26	6	do.	2,298	9.9		do.	$\begin{aligned} & \mathrm{s}, \mathrm{E} \\ & 11 / 2 \end{aligned}$	Irr	West well of three. (Well adjacent to small pond.)

See footnotes at end of table.
Table 6．－－Records of Wells and Springs in Dickens and Kent Counties，Texas－－Continued

			 荘苛	ஃ	$\dot{8}$																	\％
		岇	－	号	出	号	号		出		号	号	$\stackrel{y}{4}$	上	H	号	H	号	出	z	号	岃
别噳			m	出	岕	岂	$\stackrel{\square}{3}$					¢in	－			N	バッ	N゙へ	バッ	z		
	弐	－		；	；	；	；	$\begin{aligned} & \text { Q } \\ & \text { O } \\ & \text { f } \\ & \dot{甘} \end{aligned}$	；		$\begin{aligned} & \stackrel{\infty}{\stackrel{ }{2}} \\ & \stackrel{i}{\circ} \\ & \stackrel{y}{\circ} \end{aligned}$	$\dot{\circ}$	¢	；	，	；	；		；	$\begin{aligned} & \stackrel{\infty}{\circ} \\ & \stackrel{2}{2} \\ & \vdots \\ & \text { S. } \end{aligned}$		；
	$\left.\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \frac{0}{4} \end{aligned} \right\rvert\,$	$\stackrel{\square}{\square}$			：	；		$\stackrel{\square}{ \pm}$	；		\％	$\stackrel{\varrho}{\leftrightharpoons}$	$\ddot{\Perp}$			：	；	$\overrightarrow{\text { m }}$	；	$\stackrel{\square}{\text { ® }}$	；	；
		च		$\stackrel{\sim}{\sim}$	$\stackrel{\text { a }}{\sim}$	$\stackrel{\text { ت}}{\sim}$	$\stackrel{\sim}{\sim}$		～ี		$\stackrel{\sim}{\sim}$	$\stackrel{\underset{\sim}{\sim}}{\stackrel{2}{2}}$	$\underset{\sim}{N}$			$\underset{\sim}{\underset{\sim}{c}}$	$\begin{aligned} & \underset{\sim}{m} \\ & \stackrel{n}{2} \end{aligned}$	$\begin{aligned} & \text { ion } \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { ìn } \\ & \sim \end{aligned}$	＋	$\stackrel{\text { ~̃ }}{\underset{\sim}{2}}$	$\stackrel{\text { a }}{\sim}$
		岩	，	$\stackrel{\circ}{\circ}$	\bigcirc	$\stackrel{\circ}{\circ}$	$\dot{\circ}$	：	；		\div	$\dot{\square}$	\bigcirc	\％	\％	\div	\％	$\stackrel{\circ}{\circ}$	웅	$\dot{\square}$	$\stackrel{\circ}{\circ}$	웅
		∞		\pm	∞	\pm	\simeq	9	；		\simeq	\pm	\pm	\approx	\％	\simeq	\simeq	\simeq	～	\pm	\pm	\pm
		\％	\％	\％	\％	\％	\％	\％	\％		\％	\％	$\stackrel{\square}{7}$	O̧	＋	\％	8	9	9	i	in	in
		；		：	；	；	；	；	；		；	；	：	；	；	！	怘	®ั	込	च	苂	ज
碞									$\dot{\circ}$:	－	\div	¢	:	$\begin{aligned} & \stackrel{\ddot{U}}{2} \\ & \hline \end{aligned}$	\div	$\dot{\square}$	：	$\dot{8}$	\div
管		号	\％						\ddagger		\cong	$\stackrel{\sim}{2}$	$\hat{\#}$	$\stackrel{\infty}{\sim}$	＋	$\stackrel{\text { 2 }}{ }$	긏	ミ	สี	え	む	\approx

See footnotes at end of table．

WELL	OWNER	$\begin{gathered} \text { DATE } \\ \text { COM- } \\ \text { PLETED } \end{gathered}$	DEPTH OF WELL (FT)	$\begin{aligned} & \text { DIMM- } \\ & \text { ETER } \\ & \text { OF } \\ & \text { OELL } \\ & \text { (IN) } \end{aligned}$	$\begin{aligned} & \text { WATER } \\ & \text { BERR- } \\ & \text { ING } \\ & \text { UNIT } \end{aligned}$	ALTITUDE OF LAND SURACE (FT)	WATER LEVEL		$\begin{gathered} \text { нетнод } \\ \text { оF } \\ \text { LIFT } \end{gathered}$	$\begin{gathered} \text { USE } \\ \text { or } \\ \text { WATER } \end{gathered}$	REMLRKS
							BELDW LADD- SURPACE DATVM (FT)	$\begin{gathered} \text { DATE OF } \\ \text { MEASUREMENT } \end{gathered}$			
Dickens County											
HY-22-26-726	G. Goen	1951	50	14	Qa1	2,294	--	--	T, E	Irr	Pump set at 48 ft .
727	John Green	1964	36	12	do.	2,294	17.7	May 16, 1968	$\stackrel{\text { T, } \mathrm{E}}{5}$	Irr	
728	do.	1953	32	13	do.	2,293	--	--	${ }_{10}^{\text {T, } \mathrm{E}}$	Irr	
729	do.	1965	39	12	do.	2,291	--	--	$\begin{aligned} & 7,6 \\ & 30 \end{aligned}$	Irr	
730	do.	1965	40	6	do.	2,290?	--	--	N	N	
731	B. Pickens	1960	45	14	do.	2,295	23.9	May 20, 1968	$\begin{gathered} \mathrm{T}, \mathrm{E} \\ 71 / 2 \end{gathered}$	Irr	
732	B. Ballard	1954	48	13	do.	2,288	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 71 / 2 \end{aligned}$	Irr	Pump set at 46 ft .
733	W. Williams	1956	47	12	do.	2,292	--	--	${ }_{20}^{\text {T,E }}$	Irr	
734	do.	1954	47	14	do.	2,292	24.3	May 16, 1968	${ }_{10}{ }^{\text {T, }}$ E	Irr	
735	do.	1956	47	13	do.	2,288	--	--	T, E 5	Irr	
736	D. W. Pritchett	1957	55	--	do.	2,335	--	--	${ }_{10} \mathrm{~T}, \mathrm{E}$	Irr	Red bed reported at 55 ft .
737	do.	1955	50	--	do.	2,334	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 71 / 2 \end{aligned}$	Irr	Red bed reported at 50 ft .
27-201	--Pferce	1958	50	12	do.	2,201	$\begin{aligned} & 28.8 \\ & 27.7 \end{aligned}$	$\begin{array}{lll} \text { Dec. } & 16, & 1959 \\ \text { Jan. } & 17, & 1968 \end{array}$	т, E	Irr	Red bed reported at 50 ft . Reported yield of 54 gpm on Aug. 15, 1960 with pumping level at 40.5 ft . Previously numbered HY-22-19-801. 2]
* 28-302	Pitchfork Land and Cattle Co.	--	70	--	P	--	44	1967	P, E	s	
* 501	do.	--	165	4	do.	--	160	1967	P, W	s	
33-301	*"	--	--	--	P	2,337	$\begin{aligned} & 95.5 \\ & 87.2 \end{aligned}$	$\begin{array}{rrr} \text { Feb. } & 22, & 1965 \\ \text { Apr. } & 6, & 1968 \end{array}$	P, W	s	
302	Martin Pope	19587	307	--	Qal	2,285	--	--	T, E	Irr	Well drilled to red bed.

See footnotes at end of table.
Table 6.--Records of Wells and Springs in Dickens and Kent Counties, Texas--Continued

See footnotes at end of table.
Table 6. - Records of Welle and Springs in Dickens and Kent Counties, Texas --Continued

WELI.	OWNER	$\begin{gathered} \text { DATE } \\ \text { COM- } \\ \text { CLETED } \end{gathered}$		$\begin{aligned} & \text { DJMM- } \\ & \text { ETTER } \\ & \text { or } \\ & \text { WELL } \\ & \text { (IN) } \end{aligned}$	WATER bearING UNIT	ALTITUDE surface (FT)	WATER LEVEL		$\begin{gathered} \text { METHOD } \\ \text { OF } \\ \text { LIFT } \end{gathered}$	$\begin{gathered} \text { USE } \\ \text { oF } \\ \text { WATER } \end{gathered}$	remarks
								$\begin{gathered} \text { DATE OF } \\ \text { MEASUREMENT } \end{gathered}$			

Dickens County											
HY-22-34-106	city of Spur	1959	54	12	Qal	2,268	18.9	Peb. 12, 1960	N	N	City well No. 12. Well may have been pumped prior to water-1evel measurement on Feb. 12, 1960. Reported yield 137 gpm . Bottom 26 ft . of casing slotted. Gravel wall around casing. Pump removed and well sealed.
107	do.	1945	49	18	do.	2,267	$\begin{aligned} & 15.3 \\ & 16.9 \end{aligned}$	$\begin{aligned} & \text { Yeb. } \\ & \text { Peb. } \\ & \text { Pe, } \\ & \hline 12,1946 \\ & 1960 \end{aligned}$	T, E	P	City well No. 3. Well No. 3 in USGS WSP 1106, p. 46. Reported 200 gpm yield in 1946.
108	Vernon Harris	--	40	12	do.	2,279	--	--	N	N	Red bed reported at 38 ft .
* 109	W. Williams	--	55	12	do.	2,287	26.5	May 16, 1968	$\stackrel{\text { T, }}{5}$	Irr	Red bed reported at 47 ft .
110	T. B. Watson	--	487	12	do.	2,284	--	--	$\stackrel{\text { T, } \mathrm{S}}{5}$	Irr	
111	do.	--	487	12	do.	2,284	26.3	Jan. 25, 1968	$\underset{5}{\text { T, } \mathrm{E}}$	Irr	
112	--	--	--	12	Qal?	2,284	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{~B} \\ & 10 \end{aligned}$	Irr	
113	Martin Pope	1958?	$30 ?$	--	Qal	2,287	--	--	cf, E	Irr	Manifold system - 3 wells reported to yield about 150 gpm . Not used much in recent years.
114	City of Spur	--	--	--	do.	2,275	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 15 \end{aligned}$	P	See remarks for well 102.
115	do.	--	--	--	do.	2,275	26.1	Jan. 25, 1968	T, E	P	Do.
* 116	J. C. Reese	1967	53	10	do.	2,279	24.0	Mar. 5, 1968	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 10 \end{aligned}$	Irr	
117	T. B. Watson	1955?	64 ?	14	do.	2,284	28.9	May 17, 1968	$\begin{aligned} & \mathrm{T}, \mathrm{~B} \\ & 10 \end{aligned}$	Irr	Pump set at bottom. Reported drilled to red bed.
118	do.	1953	527	12	do.	2,283	29.2	do.	$\begin{gathered} \mathrm{T}, \mathrm{E} \\ 5 \end{gathered}$	Irr	Do.
* 119	R. G. Beadle	--	57?	12	do.	2,284	27.0	do.	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & \mathrm{~T} 1 / 2 \end{aligned}$	Irr	Reported drilled to red bed.
* 120	L. D. Gannon	--	457	--	do.	2,285	--	--	cf, E	Irr	Reported yield $45-50 \mathrm{gpm}$. Pump set at bottom of dug pit about 25 ft . below land surface. About 20 ft . of suction pipe inside casing set in hole drilled from bottom of pit.

See footnotes at end of table.

See footnotes at end of table.

C

C

C
f
Table 6.--Records of Wells and Springs in Dickens and Kent Counties, Texas--Continued

See footnotes at end of table.
Table 6.--Records of Wells and Springs in Dickens and Kent Counties, Texas --Continued

WBLL	OWNER	$\begin{gathered} \text { DATE } \\ \text { com- } \\ \text { PLETED } \end{gathered}$		$\begin{aligned} & \text { DIAM- } \\ & \text { ETER } \\ & \text { OF } \\ & \text { WELL } \\ & \text { (IN) } \end{aligned}$	$\begin{aligned} & \text { WATER } \\ & \text { BEAR- } \\ & \text { ING } \\ & \text { UNIT } \end{aligned}$	altitude OF LAND SURFACE (FT)	WATER LEVEL		$\begin{gathered} \text { METHOD } \\ \text { op } \\ \text { LIFT } \end{gathered}$	$\begin{gathered} \text { USE } \\ \text { OR } \\ \text { WATER } \end{gathered}$	REMARKS
							BELDOW LADD- SURFACE DATUM (FT)	DATE OF MEASUREMEN			
Dickens County											
HY-22-34-223	W. Pickens	1963	61	14	Qal	2,267	--	--	T, E	Irr	Pump set at 55 ft .
* 224	A. Hoover	1954	57	14	do.	2,227	--	--	${ }_{15}^{\text {T, }}$	Irr	Do.Do.
225	Garner Bros.	1964	60	12	do.	2,250	--	--	$\begin{aligned} & s, \mathrm{E} \\ & 71 / 2 \end{aligned}$	Irr	
226	do.	1955	48	14	do.	2,251	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 15 \end{aligned}$	Irr	Pump set at 45 ft .
227	do.	1965	so	12	do.	2,247	19.4	May 7, 1968	${ }_{3}^{5, \mathrm{E}}$	Irr	Pump set at 60 ft .
228	do.	1964	65	14	do.	2,247	--	--	$\begin{aligned} & \mathrm{s}, \mathrm{E} \\ & 71 / 2 \end{aligned}$	Irr	
* 229	A. Carlisie	1966	--	14	Qal?	2,262	22.5	May 7, 1968	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 71 / 2 \end{aligned}$	Irr	
230	do.	1960	--	14	do.	2,263	--	--	T, E	Irr	Red bed reported at 50 ft .
501	A. Blair	1958	50	14	Qal	2,217	9.6	Mar. 27, 1968	T, ${ }_{2}$	Irr	
* 502	do.	1963	50	14	do.	2,217	11.8	do.	T,E 5	Irr	Do.
503	H. Taylor	1962	49	12	do.	2,205	13.9	Mar. 25, 1968	T, ${ }_{5}$	Irr	Red bed reported at 49 ft .
504	do.	1957	36	12	do.	2,211	22.7	Mar. 7, 1968	${ }_{\text {T, }}^{3}$	Irr	Red bed reported at 36 ft .
505	R. Powel1	--	--	12	Qa1?	2,209	16.6	Mar. 25, 1968	T, ${ }_{3}$	Irr	
506	do.	--	--	13	do.	2,211	--	--	T, ${ }_{3}$	Irr	
507	do.	--	--	14	do.	2,212	--	--	$\mathrm{T}_{3} \mathrm{E}$	Irr	
508	Elmer Cross	1955	30	13	Qal	2,202	12.4	Mar. 26, 1968	T, ${ }_{3}$	Irr	Red bed reported at 30 ft .
509	do.	1959	29	12	do.	2,201	--	--	T, E	Irr	Red bed reported at 29 ft .

See footnotes at end of table.
Table 6,--Records of Wells and Springs in Dickens and Kent Counties, Texas--Continued

WELL	OWNER	$\begin{gathered} \text { DATE } \\ \text { COM- } \\ \text { PLETED } \end{gathered}$	DEPTH of WELL (FT)	DIAM- ETER or WELL (IN)	WATER BEARING UNII	ALTITUDE of LAND SURFACE (FT)	WATER LEvEl		$\begin{gathered} \text { METHOD } \\ \text { OF } \\ \text { LIFT } \end{gathered}$	$\begin{aligned} & \text { USE } \\ & \text { OF } \\ & \text { WATER } \end{aligned}$	REMARKS
							BELOW LAND- SURFACE DATUM (FT)	DATE OF MEASUREMENT			

							kens C	ounty			
HY -22-34-510	Elmer Cross E. C. McGee	$\begin{aligned} & 1964 \\ & 1964 \end{aligned}$	$35$$65$	12 14	Qal do.	$\begin{aligned} & 2,196 \\ & 2,226 \end{aligned}$	11.8	$\text { Mar. 26, } 1968$	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 10 \\ & \mathrm{~T}, \mathrm{E} \\ & 10 \end{aligned}$	Irr Irr	Red bed reported at 35 ft . Pump set at 65 ft .
511											
512	do.	1964	70	14	do.	2,226	--	--	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 10 \end{aligned}$	Irr	
* 513	do.	1964	57	14	do.	2,224	13.0	Apr. 5, 1968	--	Irr	
514	do.	1964	50	14	do.	2,224	11.0	do.	$\underset{5}{\mathrm{~T}, \mathrm{E}}$	Irr	
* 515	G. E. Austin	1959	50	--	do.	2,227	--	--	T, E	Irr	
516	do.	1959	50	--	do.	2,227	--	--	T, E	Irr	
517	do.	1960	42	--	do.	2,222	--	--	T, E	Irr	
518	do.	1965	60	--	do.	2,222	--	--	T, E	Irr	
* 601	Mrs. Alvis Wilson	1956	52	12	do.	2,205	$\begin{aligned} & 23.1 \\ & 23.8 \end{aligned}$	$\begin{array}{lrl} \text { Dec. } & 23, & 1959 \\ \text { Mar. } & 4, & 1968 \end{array}$	$\underset{\substack{\text { T, } \\ 3}}{\text { c }}$	Irr	Reported yield 96 gpm on Aug. 17, 1960. 3/
602	J. T. Powell	--	58	12	do.	2,204?	--	--	$\underset{5}{\mathrm{~T}, \mathrm{E}}$	Irr	Red bed reported at 57 ft . (Inventoried in 1959, not visited in 1968.)
604	Floyd Faubus	1955	35	12	do.	2,186	10.1	Mar. 7, 1968	T, E	Irr	Red bed reported at 35 ft .
605	do.	1960	40	12	do.	2,192	--	--	$\underset{5}{\mathrm{~T}, \mathrm{E}}$	Irr	Red bed reported at 40 ft .
606	D. Dillashaw	--	60	12	do.	2,178	7.8	Apr. 8, 1968	$\underset{5}{\mathrm{~T}, \mathrm{E}}$	Irr	Red bed reported at 64 ft .
607	A. Carlisie	1960	52	14	do.	2,202	22.2	do.	$\underset{5}{\mathrm{~T}, \mathrm{E}}$	Irr	Pump set at 48 ft .
608	do.	1962	42	14	do.	2,199	12.1	do.	$\begin{gathered} \mathrm{T}, \mathrm{E} \\ 5 \end{gathered}$	Irr	Pump set at 42 ft .
609	Floyd Faubus	1954	35	12	do.	2,187	11.0	Mar. 7, 1968	N	N	Red bed reported at 35 ft .
701	--	--	--	6	do.	2,267	$\begin{aligned} & 36.3 \\ & 34.8 \end{aligned}$	$\begin{array}{lcc} \text { Yeb. } & 22, & 1965 \\ \text { Mar. } & 4, & 1968 \end{array}$	P, W	s	

See footnotes at end of table.
Table 6.--Records of Wells and Springs in Dickens and Kent Counties, Texas --Continued

WELL	OWNER	DATE COMPLETED	$\begin{aligned} & \text { DEPTH } \\ & \text { OF } \\ & \text { WELL } \\ & \text { (FT) } \end{aligned}$	DIAM- ETER OF WELL (IN)	WATER bearUNIT	ALTITUDE OF LAND SURFACE (FT)	WATER LEVEL		$\begin{gathered} \text { METHOD } \\ \text { OF } \\ \text { LIFT } \end{gathered}$	$\begin{gathered} \text { USE } \\ \text { OF } \\ \text { WATER } \end{gathered}$	REMARKS
							BELOW LAND- SURFACE DATUM (FT)	DATE OF DEASUREMENI			

See footnotes at end of table.

WELL	OWNER	$\begin{aligned} & \text { DATE } \\ & \text { COM- } \\ & \text { PLETED } \end{aligned}$	DEPTH 0 O WELL (FT)	$\begin{aligned} & \text { DIAM- } \\ & \text { ETER } \\ & \text { OF } \\ & \text { WELL } \\ & \text { (IN) } \end{aligned}$	hater bearING UNIT	altitude of LAND SURFACE (FT)	WATER Level		$\begin{gathered} \text { METHOD } \\ \text { OF } \\ \text { LIFT } \end{gathered}$	$\begin{aligned} & \text { USE } \\ & \text { OF } \\ & \text { WATER } \end{aligned}$	REMARKS
							BELOW LAND- SURFACE DATUM (FT)	DATE OF MEASUREMENT			

See footnotes at end of table.
Table 6, --Records of Wells and Springs in Dickens and Kent Counties, Texas --Continued

WELL	OWNER	$\begin{gathered} \text { DATE } \\ \text { COM- } \\ \text { PLETED } \end{gathered}$	$\begin{aligned} & \text { DEPTH } \\ & \text { OF } \\ & \text { WELL } \\ & \text { (FT) } \end{aligned}$	DIAM- ETER OF WELL (IN)	WATER bearING UNIT	ALTITUDE OF LAND SURFACE (FT)	Water level		$\begin{gathered} \text { METHOD } \\ \text { OF } \\ \text { LIFT } \end{gathered}$	$\begin{aligned} & \text { USE } \\ & \text { OF } \\ & \text { WATER } \end{aligned}$	REMARKS
							BELOW LAND- SURFACE DATUM $(F T)$	DATE OF MEASUREMENI			

[^7]Table 6.--Records of Wells and Springs in Dickens and Kent Counties, Texas--Continued

WELL	OWNER	DATE COMPLETED	$\begin{array}{\|l} \hline \text { DEPTH } \\ \text { OF } \\ \text { WELL } \\ \text { (FT) } \end{array}$	DIAM- ETER of WELL (IN)	WATER BEAR ING UNIT	ALTITUDE OF LAND SURFACE (FT)	WATER LEVEL		$\begin{gathered} \text { METHOD } \\ \text { OF } \\ \text { LIFT } \end{gathered}$	$\begin{aligned} & \text { USE } \\ & \text { OF } \\ & \text { WATER } \end{aligned}$	REMARKS
							BELOW LAND- SURFACE DATUM (FI)	DATE OF MEASUREMENI			

Dickens County											
* HY-23-24-304	Norman Hardy	1966	465	--	To	2,995	--	--	$\begin{aligned} & \mathrm{S}, \mathrm{E} \\ & 30 \end{aligned}$	Irr	Pump set at 458 ft .
* 305	Clyde Crausbay	1961 ?	400?	--	To?	2,995	--	--	T, Ng	Irr	Reported yield 75 gpm .
* 306	do.	1966?	450?	--	do.	2,999	--	--	T, Ng	Irr	Reported drilled into cavity. Reported yield 400-500 gpm.
* 307	McAdoo Water Supply Corp.	1961 ?	3607	8 ?	To	2,984	--	--	S,E	P	Pump set at about 320 ft .
* 308	do.	19627	4807	8	To?	2,984	--	--	S, E	P	Do.
* 602	S. Brown	1967	450	12	To	2,988	--	--	S, E	Irr	Pump set at 440 ft . Reported yield 120 gpm .
603	C. K. Simmons	1966	416	16	do.	2,981	--	--	T, G	Irr	Reported lost circulation when drilling well. If
* 604	Clyde Crausbay	--	$400 ?$	--	do.	2,975	--	--	S, E	Irr	Reported yield 75-80 gpm .
* 605	do.	--	460	--	do.	2,973	--	--	S,E	Irr	Reported yield 135 gpm .
901	D. E. Allen	1968	400	14	do.	2,952	--	--	$\begin{aligned} & \mathrm{S}, \mathrm{E} \\ & 15 \end{aligned}$	Irr	Reported drilled to red bed. Reported yield 70 gpm on 36 hour test.
* 902	J. B. Steadham	1925?	130?	6	do.	--	--	--	S, E	D, s	Well near Playa Lake. Pump set at 104 ft .
* 32-601	A. Ramage	1958	40?	6-10	Qal	2,514	$\begin{aligned} & 22.2 \\ & 19.4 \end{aligned}$	$\begin{array}{lll} \text { Dec. } & 23, & 1959 \\ \text { Dec. } & 27, & 1960 \end{array}$	$\underset{1}{\mathrm{~s}, \mathrm{~J}, \mathrm{E}}$	Irr	Two wells, 15 ft . apart, operated as single unit with combined yield of 28 gpm reported. Original depth of wells reported to be 70 ft .
602	do.	1966	50?	8	do.	--	--	--	$\begin{aligned} & S, E \\ & 3 / 4 \end{aligned}$	Irr	Pump set at about 47 ft .
603	do.	1964	50?	8	do.	--	21.8	Oct. 25, 1968	$\begin{aligned} & S, E \\ & 11 / 2 \end{aligned}$	Irr	Do.
604	do.	1964	50?	8	do.	--	--	--	$\begin{aligned} & S, E \\ & 3 / 4 \end{aligned}$	Irr	Do.
605	do.	1966	50?	--	do.	--	21.2	Oct. 26, 1968	$\begin{aligned} & \mathrm{S}, \mathrm{E} \\ & 11 / 2 \end{aligned}$	Irr	Do.
606	do.	1963	$50 ?$	6	do.	--	18.7	do.	$\mathrm{S}_{3}^{\mathrm{E}}$	Irr	Do.
* 607	do.	1964	$50 ?$	6	do.	--	--	--	$\begin{aligned} & s, E \\ & 11 / 2 \end{aligned}$	$\begin{gathered} \mathrm{S} \\ \mathrm{Irr} \end{gathered}$	Do.

See footnotes at end of table.
Table 6,--Records of Wells and Springs in Dickens and Kent Counties, Texas--Continued

WELL	OWNER	$\begin{gathered} \mathrm{DATE} \\ \text { COM- } \\ \text { PLETED } \end{gathered}$	$\begin{aligned} & \text { DEPTH } \\ & \text { OF } \\ & \text { WELL } \\ & \text { (FT) } \end{aligned}$	DIAM- ETER OF WELL (IN)	WATER BEARING UNIT	Altitude OF LAND SURFACE (FT)	WATER LEVEL		$\begin{aligned} & \text { METHOD } \\ & \text { OF } \\ & \text { LIFT } \end{aligned}$	USE of WATER	REMARKS
							BELOW LAND- SURPACE DATUM (FT)	$\begin{gathered} \text { DATE OF } \\ \text { MEASUREMENT } \end{gathered}$			

See footnotes at end of table.
Table 6,--Records of Wells and Springs in Dickens and Kent Counties, Texas--Continued

See footnotes at end of table.

WELLL	OWNER	$\begin{aligned} & \text { DATE } \\ & \text { COM- } \\ & \text { PLETED } \end{aligned}$	DEPTH OF WELL (FT)	DIAM - ETER OF WELL (IN)	$\begin{aligned} & \text { WATER } \\ & \text { BEAR- } \\ & \text { ING } \\ & \text { UNTT } \end{aligned}$	altitude of LAND SURFACE (FT)	WATER Level		$\begin{gathered} \text { METHOD } \\ \text { OF } \\ \text { LIFT } \end{gathered}$	$\begin{gathered} \text { USE } \\ \text { OF } \\ \text { WATER } \end{gathered}$	REMARKS
							BELOW LAND- SURFACE DATUM (ET)	$\begin{gathered} \text { DATE OF } \\ \text { MEASUREMENT } \end{gathered}$			

See footnotes at end of table.
Table 6．- Records of Wells and Springs in Dickens and Kent Counties，Texas－－Continued

								Rr Level．				
WELL	OWNER	$\begin{gathered} \text { DATE } \\ \text { COM- } \\ \text { CLETED } \end{gathered}$	$\begin{aligned} & \text { DEPTH } \\ & \text { of } \\ & \text { OELL } \\ & \text { (FT) } \end{aligned}$	$\begin{aligned} & \text { DIMM- } \\ & \text { ETTR } \\ & \text { OFL } \\ & \text { WELL } \\ & \text { (IN) } \end{aligned}$	$\begin{aligned} & \text { WATER } \\ & \text { BEAR- } \\ & \text { ING } \\ & \text { UNIT } \end{aligned}$	altitude SURPACE （FT）	BELDN LADD－ SURFACE DATVM （FT）	$\begin{aligned} & \text { DATE OF } \\ & \text { MEASUREMENT } \end{aligned}$	$\begin{gathered} \text { METHOD } \\ \text { OF } \\ \text { LIFT } \end{gathered}$	$\begin{gathered} \text { USE } \\ \text { OF } \\ \text { WATER } \end{gathered}$		REMARKS

								$\dot{8}$								
号	岃	岃	n	岃	害	号	z	z	岃		号	，	as	号	$\underline{\square}$	
－	$\stackrel{4}{4}$	ํㅜํ	is	$\stackrel{\sim}{-}$	$\mathrm{cin}_{\substack{\text { an }}}$	$\stackrel{\text { 島 }}{\text { H }}$	${ }_{\mathrm{H}}^{\text {m }}$	${ }_{\text {Fis }}$	is		\cdots	，	3		$\stackrel{\text { ¢ }}{ }$	
			逐馬关宮 จべジデ 这宫完芸			:	$\begin{aligned} & \text { 俞关 } \\ & \text { so } \\ & \text { 云点 } \end{aligned}$;	:							
N～®．	in	$\underset{\sim}{n}$			$\stackrel{\square}{0}$	；	Nio	；	；			－	－		$\dot{\sim} \dot{\sim}$	
$\begin{aligned} & \overrightarrow{0} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \text { of } \\ & \stackrel{y}{c} \end{aligned}$	$\begin{aligned} & \text { of } \\ & \text { ì } \end{aligned}$	$\begin{aligned} & \text { ñ } \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { Non } \end{aligned}$	N	$\stackrel{\text { a }}{\sim}$	$\underset{\sim}{2}$	：	；	；		ف	च	$\stackrel{\text { \％}}{\sim}$	
$\overrightarrow{8}$	\％	\％	$\dot{\square}$	\％	$\dot{\square}$	\bigcirc	\＃	\％	\approx	\cdots		\％	a	\＃	\％	\％
\simeq	\simeq	\simeq	\pm	\pm	\simeq	\simeq	\simeq	\bigcirc	\bullet	；	∞		！	9	9	9
®	\because	ٌ	$\stackrel{\square}{7}$	\＃	$\stackrel{7}{7}$	\pm	\exists	\because	$\stackrel{\square}{7}$	$\tilde{3}$	8	\％	$\underset{\sim}{2}$	～	∞	\％
ลิ	$\stackrel{\text { a }}{ }$	ล	¢	号	$\stackrel{\circ}{2}$	$\stackrel{\square}{\square}$	¢	\％	Ö	＇	\bigcirc	）	；	\％	\％	
		$\stackrel{\circ}{\circ}$			\％	\div	$\begin{aligned} & \frac{y}{4} \\ & \text { a } \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \hat{y} \\ & \frac{y}{4} \\ & \frac{y}{4} \\ & \dot{3} \\ & \dot{3} \end{aligned}$	赈					\％	\％
	硈	～	$\stackrel{\circ}{\sim}$	－	©	\％	ัٌ	\％	¢	$\stackrel{\text { ® }}{2}$	\bigcirc	\％	\％	¢	－	¢

Table 6.--Records of Welis and Springs in Dickens and Kent Counties, Texas --Continued

WELL	OWNER	$\begin{aligned} & \text { DATE } \\ & \text { COM- } \\ & \text { PLETED } \end{aligned}$	DEPTH or WELL (FT)	$\begin{aligned} & \text { DLAM- } \\ & \text { ETER } \\ & \text { OF } \\ & \text { WELLL } \\ & \text { (IN) } \end{aligned}$	$\begin{aligned} & \text { WATER } \\ & \text { BEAR- } \\ & \text { ING } \\ & \text { UNIT } \end{aligned}$	ALTITUDE of LAND SURFACE (FT)	Water level		$\begin{gathered} \text { METHOD } \\ \text { OF } \\ \text { LIFT } \end{gathered}$	$\begin{gathered} \text { USE } \\ \text { OF } \\ \text { WATER } \end{gathered}$	REMARKS
							BELOW LAND- SURFACE DATUM (FT)	DATE OF MEASUREMENI			

See footnotes at end of table.
Table 6,--Records of Wells and Springs in Dickens and Kent Counties, Texas--Continued

Kent County											
RH-22-50-202	General Grude Oil Co, do.	$\begin{aligned} & 1953 \\ & 1953 \end{aligned}$	$\begin{aligned} & 47 \\ & 45 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	Qal do.	$\begin{aligned} & 1,955 \\ & 1,963 \end{aligned}$			T,G	$\begin{aligned} & \text { Ind } \\ & \text { Ind } \end{aligned}$	Fine red sand at 47 ft .
* 203							--				Red clay and sand at 42 ft .
301	W. McLaury	1962	130	7	P	2,010	72.7	Jan. 12, 1965	P, W	S	
51-101	R. R. Chisum	1958	130	16	Qal	1,930	$\begin{aligned} & 52.1 \\ & 52.0 \\ & 51.2 \end{aligned}$	$\begin{array}{rrr} \text { Feb. } & 11, & 1960 \\ \text { Feb. } & 27, & 1961 \\ \text { Apr. } & 8, & 1969 \end{array}$	S, E	Irr	Reported drawdown 36 ft , after pumping 95 gpm for 30 days. Reported seldom used. Red bed reported at 130 ft .
* 102	John Phillips	1957	140	16	do.	1,950	$\begin{aligned} & 70.2 \\ & 69.9 \\ & 68.6 \end{aligned}$	Feb. 11, 1960 Feb. 27, 1961 Apr. 8, 1969	T,G	Irr	Reported yield 296 gpm .
103	L. Johns on	1956	50	16	do.	1,910	$\begin{aligned} & 34.7 \\ & 34.6 \\ & 35.7 \end{aligned}$	Feb. 11, 1960 Feb. 27, 1961 Apr. 7, 1969	N	N	11
* 104	G. W. Rodgers	1956	44	16	do.	1,910	$\begin{aligned} & 15.1 \\ & 15.5 \end{aligned}$	$\begin{array}{lll} \text { Feb. } & 11, & 1960 \\ \text { Feb. } & 27, & 1961 \end{array}$	$\begin{gathered} \mathrm{T}, \mathrm{E} \\ 2 \end{gathered}$	Irr	Red bed reported at 43 ft . Reported yield 183 gpm .
105	L. Johnson	1958	40	14	do.	1,890	$\begin{aligned} & 18.6 \\ & 19.9 \\ & 20.1 \end{aligned}$	$\begin{array}{lrr} \text { Yeb. } & 11, & 1960 \\ \text { Feb. } & 27, & 1961 \\ \text { Apr. } & 7, & 1969 \end{array}$	$\begin{gathered} \mathrm{T}, \mathrm{E} \\ 3 \end{gathered}$	Irr	Reported yield 128 gpm .
108	W. McLaury	--	24	7	do.	1,930	--	--	$\begin{aligned} & \mathrm{J}, \mathrm{E} \\ & 1 / 2 \end{aligned}$	S, Irr	Estimated yield 59 gpm on Jan. 12, 1965. Pumping level 21.9 ft , below land surface Jan. 12, 1965.
109	do.	--	25	7	do.	1,930	--	**	$\begin{aligned} & \mathrm{J}, \mathrm{E} \\ & 3 / 4 \end{aligned}$	S, Irr	Estimated yield 5 gpm. Pumping level 22.1 ft . below 1 and surface on Jan. 12, 1965.
110	do,	-*	--	7	do.	1,930	16.0	Jan. 12, 1965	N	N	Wells 108 and 109 pumping when water level measured.
* 111	do.	--	24	7	do.	1,930	16.6	do.	$\begin{aligned} & \mathrm{J}, \mathrm{E} \\ & \mathrm{I} / 2 \end{aligned}$	$\begin{aligned} & \text { D,S } \\ & \text { Irr } \end{aligned}$	Do. Used for household except cooking and drinking to which water from cistern is used.
601	Dallas Kenady	--	50?	10	do.	--	21.1	Apr. 5, 1969	$\underset{5}{T, E}$	Irr	
802	Bilby Wallace	--	150	6	P	1,960	103.8	Jan. 16, 1965	P, W	S	
* 52-101	City of Jayton	1945	45	10	Qal	1,950	28.5	Feb. 16, 1960	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 71 / 2 \end{aligned}$	P	Well No. 2 in USGS WSP 1106. City well No. 1.
* 102	do.	1949	52	10	do.	1,950	27.5	do.	$\begin{aligned} & \mathrm{T}, \mathrm{E} \\ & 10 \end{aligned}$	P	City well No. 2.

See footnotes at end of table.
Table 6.--Records of Wells and Springs in Dickens and Kent Counties, Texas--Continued

WELL	OWNER	DATE COMPLETED	DEPTH OF WELL (FT)	DIAM- ETER OF WELL (IN)	$\begin{aligned} & \text { WATER } \\ & \text { BEAR- } \\ & \text { ING } \\ & \text { UNIT } \end{aligned}$	ALTITUDE OF LAND SURFACE (FT)	WATER LEVEL		$\begin{aligned} & \text { METHOD } \\ & \text { OF } \\ & \text { LIFT } \end{aligned}$	$\begin{aligned} & \text { USE } \\ & \text { OF } \\ & \text { WATER } \end{aligned}$	REMARKS
							BELOW IAND- SURFACE DATUM (FT)	$\begin{gathered} \text { DATE OF } \\ \text { MEASUREMENI } \end{gathered}$			

[^8]Table 6. --Records of Wells and Springs in Dickens and Kent Counties, Texas --Continued

WELL	OWNER	$\begin{gathered} \text { DATE } \\ \text { COM- } \\ \text { PLETED } \end{gathered}$	$\begin{aligned} & \text { DEPTH } \\ & \text { OF } \\ & \text { WELL } \\ & \text { (FT) } \end{aligned}$	DIAM- ETER OF WELL (IN)	WATER BEARING UNIT	altitude OF LAND SURFACE (FT)	Water level		$\begin{gathered} \text { METHOD } \\ \text { OF } \\ \text { LIFT } \end{gathered}$	$\begin{gathered} \text { USE } \\ \text { of } \\ \text { WATER } \end{gathered}$	REMARKS
							BELOW LAND- SURFACE DATUM (FT)	$\begin{aligned} & \text { DATE OF } \\ & \text { MEASUREMENT } \end{aligned}$			

Kent County

RH-22-57-303	M. Davis	1964	65	--	Qal	--	--	--	T, G	Irr	Reported drilled to red bed.
701	--	--	126	--	P	2,405	107.5	Feb. 23, 1965	P, W	s	
* 58-101	L. Spires	--	60	--	Qal	--	--	--	T, G	Irr	
102	do.	--	52	--	do.	--	--	--	T, G	Irr	
401	--	--	199	--	p	2,205	184.7	Feb. 24, 1965	N	N	
501	J. Gilbert	1955	60	16	Qa1	2,000	$\begin{aligned} & 17.6 \\ & 17.9 \end{aligned}$	$\begin{array}{lll} \text { Mar. } & 16, & 1960 \\ \text { Feb. } & 27, & 1961 \end{array}$	T, G	Irr	Reported drilled in gravel; did not go to red bed. Reported yield 611 gpm with drawdown of 20 ft .
502	do.	1940	42	36	do.	--	$\begin{aligned} & 24.0 \\ & 24.0 \end{aligned}$	$\begin{array}{lll} \text { Mar. } & 16, & 1960 \\ \text { Feb. } & 27, & 1961 \end{array}$	$\begin{aligned} & \text { Cf,E } \\ & 71 / 2 \end{aligned}$	Irr	Reported yield 50 gpm . Reported well seldom used.
503	R. Furr	--	--	--	do.	2,050?	23.6	Apr. 1, 1969	T, G	Irr	
59-101	Bilby Wallace	1957	318	6	P	2,225	278	1957	P, W	s	
104	do.	--	388	6	do.	2,225	272	1965	P, W	s	Pump set at 352 ft .
* 303	do.	1951	434	7	do.	2,150	320	do.	p,W	s	
401	do.	1952	325	7	do.	2,165	293.3	Jan. 15, 1965	P,W	s	
701	do.	1953	48	16	Qal	2,000?	$\begin{aligned} & 22.6 \\ & 24.5 \end{aligned}$	$\begin{array}{lll} \text { Feb. } & 11, & 1960 \\ \text { Feb. } & 27, & 1961 \end{array}$	${ }_{75}^{\mathrm{T}, \mathrm{E}}$	Irr	Red bed reported at 48 ft . Reported drawdown 8.5 ft . after pumping 725 gpm for 24 hours.
* 702	The Texas Co.	1958	55	12	do.	1,945	--	--	$\underset{20}{\mathrm{~S}, \mathrm{E}}$	Ind	Reported not in use now - 1969.
60-101	--	--	200	6	P	2,020	183.5	Jan. 16, 1965	p,w	s	
23-56-901	Weldon Johnson	--	607	10	Qa1	--	17.3	Feb. 23, 1965	T, G	Irr	
64-301	do.	--	65	--	do.	--	--	--	--	Irr	
29-03-101	The Texas co.	1954	55	12	do.	1,940	--	--	N	N	Well equipped with water-stage recorder.
102	do.	1958	55	12	do.	--	--	--	$\begin{aligned} & s, E \\ & 40 \end{aligned}$	Ind	Reported not in use now - 1969.
103	do.	1958	55	12	do.	--	--	--	$\begin{aligned} & \mathrm{s}, \mathrm{E} \\ & 40 \end{aligned}$	Ind	Do.

See footnotes at end of table.
Table 6,--Records of Wells and Springs in Dickens and Kent Counties, Texas--Continued

WELL	OWNER	$\begin{gathered} \text { DATE } \\ \text { COM- } \\ \text { PLETED } \end{gathered}$	DEPTH OF WELL (FT)	DIAM- ETER OF WELL (IN)	$\begin{aligned} & \text { WATER } \\ & \text { BEAR- } \\ & \text { ING } \\ & \text { UNIT } \end{aligned}$	ALTITUDE OF LAND SURFACE (FT)	Water level		$\begin{gathered} \text { METHOD } \\ \text { OF } \\ \text { LIFT } \end{gathered}$	$\begin{gathered} \text { USE } \\ \text { of } \\ \text { WATER } \end{gathered}$	REMARKS
							BELOW LAND- SURFACE DATUM (FT)	DATE OF MEASUREMENT			

[^9]
C

Table 7.-Drillers' Logs of Selected Wells in the Alluvium

		Dickens County			
	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
Well HY-22-09-401			Well HY-22-19-119-Continued		
Owner: Matador Cattle Co. Driller: Bill Jameson			Sand, yellow	48	110
			Sand and gravel rock	33	143
Soil	2	2	Gravel rock	3	146
Caliche	13	15	Clay, red	9	155
Sand, brown	30	45	Well HY-22-19-904		
Sand and gravel, yellow	16	61	Owner: R. Murchison Driller: Bill Corder		
Clay, gray sandy	15	76			
Sand and gravel	9	85	Shale, red (no sand)	50	50
Clay, white	85	100	Gyp rock	2	52
Sand and gravel	15	100	Void	3	55
Gravel rock	10	175			
Clay, red	10	185		5-802	
Well HY-22-18-602 $\begin{gathered}\text { Owner: H. M. Costolow } \\ \text { Driller: Garner Bros. }\end{gathered}$					
Owner: H. D. Edwards Driller: Bill Corder			Sandy clay	7	7
			Sand and gravel	8	15
Topsoil	7	7	Sandy clay	18	33
Shale, red	80	87	Sand and gravel	4	37
Well HY-22-19-107			Clay	4	41
			Sandy clay	3	44
Owner: W. B. Carothers			Sand and gravel		
			Sand and gravel	5	49
Topsoil	10	10	Red bed	1	50
Sand	5	15			
Clay, soft	10	25	Well HY-22-34-204		
Sand	20	45	Owner: H. Bostick Driller: Garner Bros.		
Clay, soft	15	60			
	25	85	Sandy clay, soft	28	28
Sand and gravel			Sand and gravel	7	35
Well HY-22-19-119			Sandy clay, soft	8	43
Owner: Ira Sullivan			Sand and gravel	6	49
Driller: Jameson Machinery Co.			Red bed	7	56
Soil	15	15	Well HY-23-16-915		
Sand, brown	5	20	Owner: Harris Bros. Driller: Green Machinery Co., Inc.		
Clay, brown sandy	3	23			
			Topsoil	3	3
Sand, brown	27	50	Caliche	28	31
Sand, yellow	10	60	Clay and rock ledges 69		100
Sand rock	2	62			

Table 7.-Drillers' Logs of Selected Wells in the Alluvium-Continued

	Dickens County				
	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
Well HY-23-16-915-Continued			Well HY-23-24-603-Continued		
Gummy clay	75	175	Caprock	18	43
Fine tight sand and broken sandstone	43	218	Clay	37	80
Stone gravel, medium loose, medium coarse and sandrock ledges	17	235	Sandy clay and layers of fine sand	85 20	165 185
Sandy clay, white	17	252	Sandy clay, white, and rock ledges	11	196
Gravel, medium coarse	19	271	Sand, medium coarse, medium		
Sandy clay, white	29	300	loose, and gravel	18	214
Hard rock, rock bit	5	305	Clay, white sandy	19	233
Clay	2	307	Clay, blue and boulders	7	240
Hard rock	28	335	Clay, yellow and strips cemented gravel	19	259
Blue clay and rock ledges	20	355	Sandy clay	10	269
Fine tight sand and 2 and 3 ft . strips of clay	17	372	Coarse sand and gravel with cemented strips	49	318
Sand, medium loose, coarse, and gravel	36	408	Clay, blue and rock ledges	46	264
Rock	2	410	Fine tight sand and broken sandstone	42	406
Red beds	6	416	Hard rock	5	411
Well HY-23-24-603			Cavity	2	413
Owner: C. K. Simmons Driller: Green Machinery Co., Inc.			Rock	1	414
Topsoil	5	5	Cavity	2	416
Caliche	20	25			

Table 7.-Drillers' Logs of Selected Wells in the Alluvium-Continued

Kent County

THICKNESS	DEPTH
(FEET)	(FEET)

THICKNESS	DEPTH
(FEET)	(FEET)

Well RH-22-43-501-Continued

	Well RH-22-35-801	
	Owner: T. D. Wilson	
Topsoil	5	5
Sand gravel	33	38
Clay	3	41
Sand and gravel	17	58
Clay with red sand	22	80
Red bed	1.5	81.5

Sand, red	3.5	63	
Red bed		1	64
	Well RH-22-49-204		
	Owner: J. Stewart		13
Sand, dry	13	49	
Sand and gravel, fine	36	59	

Well RH-22-43-202
Owner: C. C. Kimbell

Topsoil	6	6
Sand and gravel	22	28
Clay, soft	2	30
Sand, red	54	84
Sand rock, soft	3	87
Red bed	3	90

Well RH-22-43-501

Owner: D. D. Thompson

Topsoil	4	4
Gravel, sandy	13	17
Clay, soft	4	21
Sand and gravel	30	51
Rocks	2	53
Sand and gravel	5	58
Clay	1.5	59.5

Clay, sandy	4	4
Sand and gravel	7	11
Clay, blue	8	19
Clay, sandy	4	23
Sand and gravel	16	39
Clay	2	41
Sand	7	48
Red bed	2	50
Well RH-22-52-109		
Owner: Dallas Kenady Driller: Wylie Drilling Co.		
Soil	4	4
Clay, sandy	26	30
Sand, gravel and water	30	60
Sand, red	10	70

wอL.			DATE OF COLLECTION	$\left.\begin{array}{\|l\|l\|} \hline \text { sinca } \\ \left(810_{2}\right. \end{array}\right)$	${ }_{\text {(\%e) }}^{\text {rem }}$					$\begin{gathered} \substack{\text { untictic } \\ \left(\mathrm{SO}_{4}\right)} \end{gathered}$	$\begin{aligned} & \text { aluo- } \\ & \text { atiog } \\ & \text { (c1) } \end{aligned}$	$\left.\begin{gathered} \text { nuoo } \\ \text { nipe } \\ (v) \end{gathered} \right\rvert\,$		$\begin{gathered} \text { soros } \\ \hline \end{gathered}$	$\left\|\begin{array}{c} \text { Dis. } \\ \text { soty } \\ \text { solutivs } \end{array}\right\|$		$\begin{aligned} & \text { pracurn } \\ & \text { sootvin } \end{aligned}$		$\begin{gathered} \text { uxsiduat } \\ \text { sonotion } \\ \text { cuntomre } \\ \text { (RSC) } \end{gathered}$			
Kent County																						
${ }^{\text {Nu-22-42-30] }}$	${ }^{220}$	p	Une 1, 1961	26	..	392	136	135	${ }^{\text {во }}$	1,820	260	t.1	3,010	2,040	13	${ }^{1.3}$..	3,290	6.969	6931
43-10)	160	so.	Jan. D, 1964	16	0.85	650	325	,800 9.2	"	3,270	2,420	. 2	..	5.5	8,520	2,960	3	14	..	10,900	7.045	45
${ }^{201}$	102	Qat	- 1, 1960	4)	..	358	60	4	194	996	8s	, 8	19	..	1,610	1,14	${ }^{7}$. 6	..	1,920	7.069	69
205	100	do.	Apr. 20, 1981	44	..	240	61	84	201	40	229	. 7	54	..	1,290	${ }^{590}$	${ }^{18}$	${ }^{1.3}$..	1,860	6.8 -.
206	100	do.	do.	41	-	335	104	${ }^{13} 2.2 .7$	${ }^{147}$	1,540	30	..	4.0	\cdots	2,360	1,760	2	. 1	..	2,500	6.6
501	62	do.	\%8. 16, 198a	37	..	475	131	$\% \quad 6.1$	170	1,570	126	${ }^{6}$	16	..	2,530	1,220	${ }^{11}$	2,750	7.766	$66 \quad 19$
502	${ }^{62}$	do.	do.	26	..	500	137	996.4	160	1,620	156	. 6	19	. 29	2,640	1,810	11	1.0	..	2,990	7.260	$66 \quad 19$
503	98	do	Sene 21, 1960	47	..	301	33	132	34.	590	225	. 7	31	..	1,570	970	${ }^{23}$	1.8	..	2,150	7.069	69 21
304	${ }^{136}$	do.	June 22, 1960	-	..	346	${ }^{\text {88 }}$..	40	1,510	.. 68	68.20
sos	${ }^{126}$	${ }^{4}$	Juve 21, 1960	52	..	288	4	${ }^{121}$	308	610	${ }^{168}$. 5	47	..	1,480	900	${ }^{23}$	1.8	..	1,970	7.068	68.20
508	110	do.	do.	${ }^{24}$..	${ }^{20.1}$	45	8s	236	514	${ }^{88}$. 7	26	..	1,100	692	21	1.4	..	1,500	7.2
509	101	do.	Ave. 3, 1968	34	..	110	${ }^{33}$	$31 \quad 4.2$	109	106	68	.	${ }^{26}$. 13	${ }^{687}$	410	21	1.1	..	997	7.3
${ }^{708}$	${ }^{151}$	Qu17	Apr. 10, 1789	18	..	107	6.2	3.2	${ }^{198}$	60	${ }^{43}$. 1	${ }^{17}$..	152	292	z	. 1	..	597	7.66	$66 \quad 19$
802	120	${ }^{p 7}$	oct. 26, 1964	${ }^{36}$..	398	${ }^{86}$	870.5	172	660	${ }_{6} 62$. 2	69	. 29	1,890	1,350	12	1.0	..	2,730	7.3 68	68.20
46.406	15	Qalt	May 12, 1964	${ }^{18}$..	190	${ }^{166}$	$\begin{array}{lll}1,000 & 7.7\end{array}$	159	2,000	1,910	..	8.9	.	6,000	2,660	45	${ }^{8.4}$..	8,010	7.070	70 21
406	30	Qal	Jan. 16, 1964	12	. 06	76	${ }^{3}$	2.21 .9	76	122	3.1	.	6.2	..	262	191	2	.	..	407	7.3 ss	3s 13
501	14		San. 15, 1964	${ }^{22}$. 17	388	130	18475	216	1,910	242	1.0	${ }^{20}$	1.5	1,280	2,000	16	1.8	..	3,660	7.6 3s	3513
${ }^{603}$	10	Qal7	${ }^{\text {do. }}$	16	17	485	3	$\%$	${ }^{180}$	1,320	n	. 4	3.2	..	2,130	,420	13	1.1	..	2,400	7.756	36 13
702	58	Qat	Jan. 14, 1264	${ }^{14}$. 57	${ }^{62}$	122	108	${ }^{32}$	1,870	218	. 3	2.8	..	2,970	2,050	10	1.0	..	3,280	7.064	6418
${ }^{703}$	170	P	at.	16	. 36	4.8	${ }^{82}$	200 s.	74	1,200	368	1.3	4.2	. 5	2,330	2,300	24	2.3	..	2,990	7.265	6516
${ }^{802}$	254	do.	10.	${ }^{14}$.11	153	160	1,130	37	2,120	1,950	1.0	5.0	..	6,130	2,540	49	9.8	..	8,300	7.064	$64 \quad 18$
903	150	do.	Jan. 15, 1964	22	1.9	278	56	27	${ }^{136}$	768	47	. 8	1.8	..	1,27	${ }_{924}$	6	. 4	..	1,50	7.265	65 18
30-201	$4{ }^{4}$	Qal	oct. 27, 9964	19	..	${ }^{814}$	298	13,700 64	202	2,760	1,700	1.4	. 4	1.5	39,500	3,270	9	.-	..	49,200	7.368	$68 \quad 20$
203	43	do.	do.	${ }^{21}$..	515	174	${ }_{6}^{6,560} 32$	${ }^{193}$	1,860	10,200	1.6	1,8	1.2	19,400	2,010	87	26,900	7.469	69
31-102	140	da.	Apt. 8, 169	29	. 36	275	${ }^{32}$	418	146	${ }^{637}$	-69	. 4	40	. 45	1,200	${ }^{818}$	10	. 6	..	1,320	7.3
104	44	${ }^{4}$	may 16, 1861	21	..	655	217	1,260 11	${ }^{158}$	2,760	1,680	40	..	6.3	6,750	2,530	52	${ }^{11}$..	8,680	7.067	6719
104	44	do.	Avg. 3, 1968	-	${ }^{126}$	120-	2,240	6,600	7.468	68
${ }^{11}$	24	do.	Apr. 8, 169	31	*	660	200	451	${ }^{180}$	2,100	${ }^{290}$. 9	49	..	4,370	2,490	${ }^{28}$	3.9	.-	5,370	7.3103	${ }_{63}{ }^{17}$
32-101	43	do.	Sept. 15, 1947	${ }^{23}$. 4	117	11	9.43 .8	282	106	10	. 4	9.6	..	456	${ }^{37}$	661	7.6 ..-
102	52	do.	June 21, 1%	25	..	232	42	${ }^{6}$	${ }^{24,}$	${ }^{78}$	112	. 6	25	..	1,240	${ }^{800}$	19	${ }^{1.3}$..	1,680	7.06	6921
${ }^{103}$	52	do.	do.	20	..	10,	${ }^{12}$	21	${ }^{229}$	${ }^{13}$	20	.	25	..	428	309	${ }^{13}$.	..	649	1,5
104	62	${ }^{1}$	do.	${ }^{21}$..	$\%$	8.9	3.05 .9	214	86	5.2	.s	24	..	356	276	2	.	..	350	7.368	68.20
104	62	do.	Apr. 5, 1969	${ }^{22}$..	212	${ }^{22}$	4810	242	157	112	. 2	27	..	29	${ }_{620}$	${ }^{16}$. 8	..	1,350	7.268	68.20
106	$65 \pm$	do.	do.	23	. 01	235	36	$\begin{array}{ll} & 0.5\end{array}$	232	¢80	169	. 3	18	. 30	1,180	784	16	1.1	-.	1,700	7.5

wEL			DATE OF COLLECTIOA	$\left.\begin{array}{\|l\|l\|} \operatorname{sincaca} \\ \left(\mathrm{sin}_{2}\right) \end{array} \right\rvert\,$	$\left.\begin{array}{c} \text { mox } \\ (\mathrm{t}) \end{array}\right)$			Soon Poin Ma	+10n		$\begin{gathered} \substack{\text { yunc- } \\ (\mathrm{yan} \\ (504)} \end{gathered}$	$\left\|\begin{array}{l} \text { ancor } \\ \text { aidot } \\ \text { (Ci1) } \end{array}\right\|$	$\begin{aligned} & \substack{\text { wion } \\ \text { NDO } \\ (P)} \end{aligned}$		$\begin{aligned} & \text { soros } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Dos- } \\ \begin{array}{c} \text { sourn } \\ \text { soutids } \end{array} \end{gathered}$	$\begin{aligned} & \text { meko } \\ & \text { wess } \\ & \text { cs } \\ & \text { cosoc } \end{aligned}$	rexcerm sootivm		$\begin{gathered} \text { RESIDUAL } \\ \text { Soniva } \\ \text { CoNomite } \\ \text { (RSC) } \end{gathered}$		pH	

[^0]: - Based on the average of maximum daily air temperature of $78.9^{\circ} \mathrm{F}$ at Spur, Texas.

[^1]: See footnotes at end of table.

[^2]: See footnotes at end of table.

[^3]: See footnotes at end of table.

[^4]: See footnotes at end of table.

[^5]: See footnotes at end of table.

[^6]: See footnotes at end of table.

[^7]: See footnotes at end of table.

[^8]: See footnotes at end of table.

[^9]: 3 For record of water level measurements, see Table 3 .
 ay White, W. N., Broadhurst, W. L., and Lang, J. W., 1940, Ground water in the High Plains of Texas: Texas State Board of Water Engineers, fig. 12 , p. 56.
 For chemical analyses of water from wells and springs in Dickens and Kent Counties, see Table 8.

