TEXAS WATER DEVELOPMENT BOARD

Report 133

DIVISION FILE COPY
DO NOT REMOVE FROM REPORTS DIVISION FILES.
<u>jet</u> printing
Completed on: Aug 20
No. Copies 847
Initial: Jak
\$1,394.10

GROUND-WATER RESOURCES OF CHAMBERS AND JEFFERSON COUNTIES, TEXAS

AUGUST 1971

CORRECTIONS FOR REPORT 133

Correct size of reduction page numbers on Tables 4 and 7 and 1.

With a section on Quaternary Geology

By

Saul Aronow Department of Geology Lamar State College of Technology

Prepared by the U.S. Geological Survey in cooperation with the Texas Water Development Board

TEXAS WATER DEVELOPMENT BOARD

W. E. Tinsley, Chairman Robert B. Gilmore Milton T. Potts Marvin Shurbet, Vice Chairman John H. McCoy Carl Illig

Harry P. Burleigh, Executive Director

Authorization for use or reproduction of any material contained in this publication, i.e., not obtained from other sources, is freely granted without the necessity of securing permission therefor. The Board would appreciate acknowledgement of the source of original material so utilized.

Published and distributed by the Texas Water Development Board Post Office Box 13087 Austin, Texas 78711

TABLE OF CONTENTS

	Page
ABSTRACT	1
INTRODUCTION	3
Purpose and Scope of the Investigation	3
Location and Extent of the Area	3
Economic Development	3
Climate	4
Physiography and Drainage	4
Methods of Investigation	4
Previous Investigations	6
Well-Numbering System	6
Acknowledgments	6
HYDROLOGIC AND GEOLOGIC UNITS	6
Burkeville Aquiclude	7
Evangeline Aquifer	7
Chicot Aquifer	7
Lower Unit	7
Upper Unit	11
SOURCE AND OCCURRENCE OF GROUND WATER	11
RECHARGE, MOVEMENT, AND DISCHARGE OF GROUND WATER	11
HYDRAULIC CHARACTERISTICS OF THE AQUIFERS	12
PRODUCTION AND USE OF GROUND WATER	13
WATER LEVELS	18
Evangeline Aquifer	18
Chicot Aquifer	18
Lower Unit	18
Upper Unit	25

TABLE OF CONTENTS (Cont'd.)

	Page
RELATION OF WATER-LEVEL DECLINES TO LAND-SURFACE SUBSIDENCE	25
WELL CONSTRUCTION	27
QUALITY OF GROUND WATER	28
Suitability for Public Supply	28
Suitability for Industrial Use	28
Suitability for Irrigation	30
RELATIONSHIP OF FRESH GROUND WATER TO SALINE GROUND WATER	30
DISPOSAL OF OIL-FIELD BRINES AND OTHER CONTAMINANTS	32
PROTECTION OF WATER QUALITY IN OIL-FIELD DRILLING OPERATIONS	33
AVAILABILITY OF GROUND WATER	33
Evangeline Aquifer	33
Chicot Aquifer	34
Lower Unit	34
Upper Unit	34
QUATERNARY GEOLOGY, by Saul Aronow	34
General Stratigraphy and Structure	43
Beaumont Clay	43
Deltaic and Meander Belt Deposits	43
Barrier Island and Beach Deposits	44
Mounds and Depressions	44
Geologic Age	51
Deweyville Deposits of Bernard (1950)	51
Holocene Deposits	51
Alluvial and Deltaic Deposits	51
Coastal Marsh, Mudflat, and Beach (Chenier) Deposits	53
Geologic History	53
CONCLUSIONS AND RECOMMENDATIONS	54
REFERENCES CITED	55

TABLE OF CONTENTS (Cont'd.)

Page

TABLES

1.	Geologic and Hydrologic Units Used in This Report and in Recent Reports in Nearby Areas	8
2.	Summary of Aquifer Tests	16
3.	Source and Significance of Dissolved-Mineral Constituents and Properties of Water	29
4.	Records of Wells in Chambers and Jefferson Counties and Adjacent Areas	58
5.	Drillers' Logs of Wells in Chambers and Jefferson Counties	107
6.	Water Levels in Wells in Chambers and Jefferson Counties	138
7.	Chemical Analyses of Water From Wells in Chambers and Jefferson Counties	145

FIGURES

1.	Map Showing Location of Chambers and Jefferson Counties	3
2.	Graphs Showing Average Annual Precipitation, Average Monthly Temperature, and Average Monthly Precipitation at Beaumont	5
3.	Map Showing Approximate Altitude of the Base of the Chicot Aquifer and Locations of Salt Domes	9
4.	Idealized Block Diagram Illustrating Ground-Water Circulation Around Salt Domes	12
5.	Graph Showing Relation of Drawdown to Transmissibility and Distance	14
6.	Graph Showing Relation of Drawdown to Distance and Time as a Result of Pumping Under Artesian Conditions	15
7.	Graph Showing Relation of Drawdown to Distance and Time as a Result of Pumping Under Water-Table Conditions	15
8.	Hydrographs Showing Changes in Water Levels in Wells Tapping Various Aquifers in Chambers County	19
9.	Hydrographs Showing Changes in Water Levels in Wells Tapping the Upper and Lower Units of the Chicot Aquifer in Jefferson County	20
10.	Map Showing Approximate Altitudes of Water Levels in Wells Screened in the Lower Unit of the Chicot Aquifer, 1941 and 1966	21
11.	Map Showing Approximate Altitudes of Water Levels in Wells Screened in the Upper Unit of the Chicot Aquifer, 1941 and 1966	23
12.	Map Showing Subsidence of the Land Surface in the Houston District, 1943-64	26
13.	Diagram Showing Construction of Industrial and Public Supply Wells	27
14.	Diagram for the Classification of Irrigation Waters	31
15.	Graphs Showing Comparison Between Surface-Casing Requirements in Oil Fields and	33

Depth of Base of Sands Containing Fresh to Slightly Saline Water

TABLE OF CONTENTS (Cont'd.)

		Page
16.	Map Showing Approximate Altitude of the Base of Slightly Saline Water	35
17.	Map Showing Approximate Altitude of the Base of Fresh Water and Thickness of Sand Containing Fresh Water in the Evangeline Aquifer	37
18.	Map Showing Approximate Altitude of the Base of Fresh Water and Thickness of Sand Containing Fresh Water in the Lower Unit of the Chicot Aquifer	39
19.	Map Showing Approximate Altitude of the Base of Fresh Water in the Upper Unit of the Chicot Aquifer	41
20.	Geologic Map of Chambers and Jefferson Counties	45
21.	Map Showing Selected Features From the 1965 Soil-Survey Map of Jefferson County	47
22.	Map Showing Meander-System and Delta Development of the Beaumont Clay	49
23.	Map Showing Subsurface Contours on Top of the Oxidized Pleistocene Deposits in the Vicinity of Sabine Lake, Texas and Louisiana (From Kane 1959)	50
24.		52
27.	Map Showing Location of Wells in Chambers and Jefferson Counties and Adjacent Areas	175
25.	Hydrologic Section A-A', Harris, Chambers, Liberty, Jefferson, Hardin, and Orange Counties	177
26.	Hydrologic Section B-B', Harris, Chambers, and Jefferson Counties	179
27.	Hydrologic Section C-C', Hardin and Jefferson Counties	181
28.	Hydrologic Section E-E' and Hydrologic Diagram D-D' at Barber's Hill Dome, Chambers County	183

GROUND-WATER RESOURCES OF CHAMBERS AND JEFFERSON COUNTIES, TEXAS

ABSTRACT

The hydrologic units of Chambers and Jefferson Counties, the Chicot and Evangeline aquifers and the Burkeville aquiclude, are composed of gravel, sand, silt, and clay of Miocene, Pliocene, Pleistocene, and Holocene age.

Only small quantities of fresh ground water, less than 1,000 mg/l (milligrams per liter) dissolved solids, are available in Chambers and Jefferson Counties, and these supplies are fairly well developed. In 1965, approximately 18.6 mgd (million gallons per day) of ground water was used in the report area. Of this amount 10 mgd was fresh water produced from wells in adjacent Hardin and Orange Counties. Total pumpage of fresh water in Chambers and Jefferson Counties was approximately 6.1 mgd. About 2.5 mgd was slightly or moderately saline water.

Industrial use of ground water was approximately 9 mgd, of which 4 mgd was imported. Municipal use of ground water was approximately 8 mgd, of which 6 mgd was imported from Hardin County by the city of Beaumont. Irrigation use in 1965 was approximately 1.5 mgd. Use of ground water for irrigation will remain small because most of the available water is too saline.

Two aquifers, the Chicot (including the upper and lower units), and the Evangeline, furnish fresh water to wells. Fresh water is produced from wells in the Chicot aquifer in the Mont Belvieu, Houston Point, Anahuac, Galveston Bay, and Trinity Bay areas of Chambers County; in a small strip 2 to 4 miles wide along the eastern and northern boundaries of Jefferson County; and in the Hamshire-Winnie area of Chambers and Jefferson Counties. The Evangeline aquifer produces fresh water in the Mont Belvieu and Houston Point areas of Chambers County. Salinization of water in the aquifers has occurred in the vicinity of shallow salt domes.

Additional small supplies of fresh ground water can be developed in the present producing areas. The largest undeveloped source of fresh water underlies Galveston Bay in Chambers County. Large scale increased usage of ground water will require further importation from neighboring counties.

Most areas in both counties are underlain by very little or no fresh water, but large quantities of slightly and moderately saline ground water (1,000 - 10,000 mg/l) are present at shallow depths in all areas except in the vicinity of shallow salt domes.

Aquifer tests were made in 22 wells. Coefficients of permeability ranged from 108 to 1,670 gpd (gallons per day) per square foot. The highest permeability (1,670 gpd per square foot) was determined in a brackish-water well completed in the lower unit of the Chicot aquifer. The permeability of the sands of the Evangeline aquifer (244 and 327 gpd per square foot) approximate the permeability measured in the Houston district and in Jasper and Newton Counties.

Water levels have declined generally in both counties. The largest decline is due to pumping in adjacent Harris County. The maximum decline was estimated to be at least 150 feet in the lower unit of the Chicot aquifer in the area adjacent to Baytown in Harris County. This major decline has resulted in a land-surface subsidence of about 2 feet.

The exposed formations in Chambers and Jefferson Counties consist of Pleistocene and Holocene deposits, of which the Beaumont Clay of Pleistocene age is the oldest. Remnants of the relict Ingleside barrier island and beach system are enclosed within the Beaumont. The Deweyville deposits of Bernard (1950), which are topographically lower than the Beaumont, underlie the high terraces that border the Holocene floodplains of the Trinity and Neches Rivers. The Holocene deposits are alluvial and deltaic deposits and coastal marsh, mud flat, and beach (chenier) deposits, all comparatively low lying.

The Beaumont Clay, which is the most extensively exposed formation, is a sequence of deltaic and meander-belt deposits of the Pleistocene Trinity River. The Beaumont is probably less than 100 feet thick. On the basis of radiocarbon dating, the formation is probably more than 30,000 years old.

GROUND-WATER RESOURCES OF CHAMBERS

AND JEFFERSON COUNTIES, TEXAS

INTRODUCTION

Purpose and Scope of the Investigation

The investigation of ground-water resources in Chambers and Jefferson Counties began in September 1965 as a cooperative project between the U.S. Geological Survey and the Texas Water Development Board. The purpose of the project was to determine the occurrence, availability, dependability, quality, and quantity of ground water suitable for public supply, industrial use, and irrigation.

The general scope of the investigation included the collection, compilation, and analysis of data; determination of the location and extent of the water-bearing formations; determination of the hydrologic characteristics of the water-bearing sands; a study of the chemical quality of the water; and estimates of the quantities of ground water available for development.

One section of the report presents a previously unpublished study of the Quaternary geology of the area.

Location and Extent of the Area

Chambers and Jefferson Counties are situated on the upper Texas Gulf Coast in the West Gulf Coastal Plain physiographic province (Fenneman, 1938). The two counties, which have a combined area of 1,562 square miles, are bounded on the north by Liberty and Hardin Counties; on the east by the Neches River, Sabine Lake, and Orange County; on the south by Galveston Bay and the Gulf of Mexico; and on the west by Galveston Bay, Cedar Bayou, and Harris County. Anahuac, the county seat of Chambers County, is 40 miles east of Houston; Beaumont, the county seat of Jefferson County, is 80 miles east of Houston (Figure 1).

Figure 1.-Location of Chambers and Jefferson Counties

Economic Development

The largest segment of the economy of Chambers and Jefferson Counties is based on the production of petroleum, petrochemicals, natural gas, and sulfur. Since the discovery of oil at Spindletop in 1901, a total of approximately 800 million barrels have been produced in the two counties.

Beaumont and Port Arthur are centers of a petroleum-based industrial complex served by the Intracoastal Waterway and other canals suitable for oceangoing vessels. Timber, cattle, fresh and salt-water fish, and agricultural products are other important elements of the economy.

In 1965, Chambers and Jefferson Counties had estimated populations of 11,100 and 268,000, respectively. Anahuac, the largest town in Chambers County, had a 1965 population of 2,200; Beaumont, the largest city in Jefferson County, had a 1965 population of 127,800.

Climate

Chambers and Jefferson Counties have a warm humid climate. Precipitation, which averages about 54 inches annually, is well distributed throughout the year but is greatest from May to September.

The average annual temperature at Beaumont is about $21^{\circ}C$ ($70^{\circ}F$). Temperatures below freezing occur on the average of only 12 days per year, and temperatures about $38^{\circ}C$ ($100^{\circ}F$) are unusual. The approximate dates of the first and last killing frosts are December 2 and March 2. The average annual precipitation, average monthly temperature, and average monthly precipitation at Beaumont for the period of record beginning in 1931 are shown in Figure 2.

Gross lake-surface evaporation averaged about 47 inches annually for the period 1940 to 1965 (Kane, 1967).

Physiography and Drainage

Chambers and Jefferson Counties are on the extreme seaward margin of the West Gulf Coastal Plain physiographic province and entirely within the Grassland Coastal Prairie Region of Texas (Walker and Miears, 1957). The physiography is of three general types: (1) flat to gently rolling upland, which includes most of the area; (2) the valleys of the Trinity and Neches Rivers; and (3) the coastal border. Altitudes range from sea level to a maximum of 81 feet above sea level at Mont Belvieu (Barbers Hill salt dome) in western Chambers County.

Along a line from Smith Point to Beaumont, a series of remnants of abandoned beaches and beach ridges reach altitudes ranging from 15 to 25 feet. The more prominent of these sandy remnants are about 5 feet above the upland surface. Salt domes form two prominent hills on the upland surface: Barbers Hill, in northwestern Chambers County, about 40 feet above the general land surface and Big Hill, in southwestern Jefferson County, about 20 feet high.

The major streams in Chambers County are the Trinity River, which drains the northwestern part of the county and flows into Trinity Bay near Anahuac; Cedar Bayou, which forms the western boundary of the county and flows into Galveston Bay; Double Bayou, which drains the central part of the county and flows into Trinity Bay south of Anahuac; and Oyster Bayou, Onion Bayou, and East Bay Bayou, which drain the eastern part of the county and flow into East Bay.

The major streams in Jefferson County are the Neches River, which drains the eastern part of the county and flows into Sabine Lake; Pine Island Bayou, which forms the northern boundary of the county and flows into the Neches River; Taylor Bayou and its principal tributaries, Hillebrandt and Big Hill Bayous, which drain the western part of the county and flow into Sabine Lake south of Port Arthur; and Spindletop and Salt Bayous, which drain the southern part of the county and flow into the Intracoastal Waterway.

Urbanization and rice cultivation have resulted in the canalization of many streams and the construction of ditches and canals for drainage and irrigation. In some places, natural drainage directions have been changed by deepening parts of the streams.

Methods of Investigation

The following items were included in the investigation of the ground-water resources of Chambers and Jefferson Counties:

1. An inventory was made of all industrial, public supply, and irrigation wells, and of a representative number of domestic and livestock wells (Table 4). Locations of the wells are shown on Figure 24.

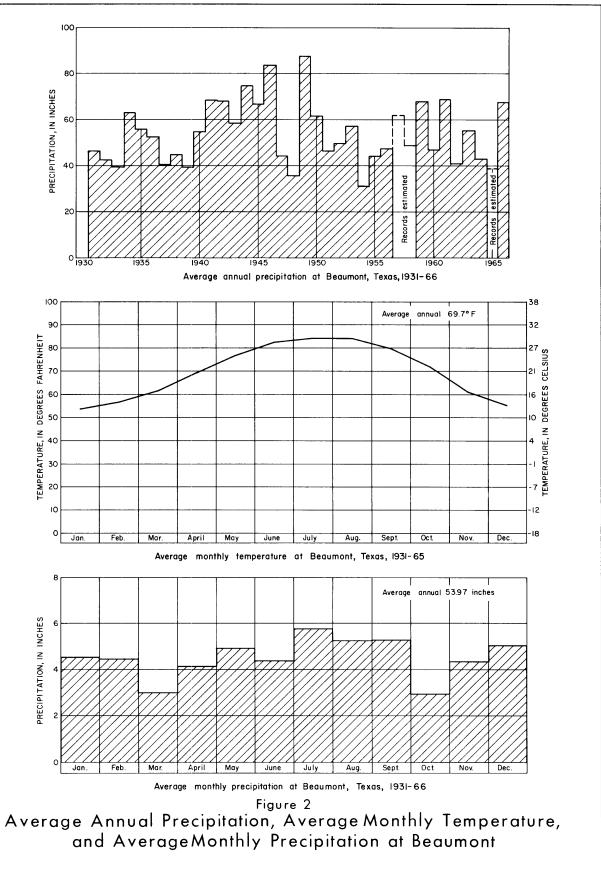
2. Electrical logs and drillers' logs of water wells and oil tests were used for construction of the hydrologic sections (Figures 25 through 28) and for determination of the total thickness of sands containing fresh water (Figures 17 and 18).

3. An inventory was made of the withdrawal of ground water for public supply, irrigation, and industrial use.

4. Pumping tests were made to determine the hydraulic characteristics of the water-bearing sands (Table 2).

5. Altitudes of water wells were determined from topographic maps.

6. Measurements of water levels were made in wells, and available records of past fluctuations of water levels were compiled (Table 6 and Figures 8 through 11).


7. Climatological records were collected and compiled (Figure 2).

8. Analyses of water samples were made to determine the chemical quality of the water (Table 7).

9. Maps, sections, and graphs were prepared to correlate and illustrate geologic and hydrologic data.

10. The hydrologic data were analyzed to determine the quantity and quality of ground water available for development.

11. Data were compiled on the subsidence of the land surface (Figure 12).

From records of U.S.Weather Bureau

12. Problems related to the development and protection of ground-water supplies were studied.

Previous Investigations

Taylor (1907) included wells in Chambers and Jefferson Counties in his report on the underground waters of the Coastal Plain of Texas. Duessen (1914), in a reconnaissance report on the underground waters of the southeastern part of the Texas Coastal Plain, discussed the ground-water geology of Chambers and Jefferson Counties and included a list of wells and springs and drillers' logs of wells.

Livingston and Cromack (1942) inventoried wells in Chambers and Jefferson Counties in 1941 and 1942, and Doyel (1956) published an updated report on Chambers County. Much of the data in these reports was used in this investigation.

Reports by Wood (1956), and Wood, Gabrysch, and Marvin (1963) discussed the ground-water supplies available from the principal water-bearing formations in the Gulf Coast region of Texas, including Chambers and Jefferson Counties.

Water levels have been measured and water samples collected systematically since 1949 in the western part of Chambers County as part of a continuing ground-water program in Harris and Galveston Counties.

Periodic measurements of water levels in wells in Chambers and Jefferson Counties have been made since 1949 as part of the statewide observation-well program in Texas. Records of these measurements are published periodically by the Texas Water Development Board, and records of selected wells in Chambers and Jefferson Counties are published by the U.S. Geological Survey in reports on water levels and artesian pressures in the United States (Hackett, 1962).

Well-Numbering System

The well-numbering system used in this report is the system adopted by the Texas Water Development Board for use throughout the State. Under this system, each 1-degree quadrangle in the State is given a number consisting of two digits. These are the first two digits in the well number. The 1-degree quadrangles are divided into 7½-minute quadrangles which are given two-digit numbers from 01 to 64. These are the third and fourth digits of the well number. Each 7½-minute quadrangle is subdivided into 2½-minute quadrangles and given a single digit number from 1 to 9. This is the fifth digit of the well number. Each well within a 2½-minute quadrangle is given a two-digit number as it is inventoried, starting with 01. These are the last two digits of the well number. Only the last three digits are shown on the well-location map (Figure 24). The second two digits are generally shown in the northwest corner of each 7½-minute quadrangle, and the first two digits are shown by the large double-lined numbers.

In addition to the 7-digit well number, a two-letter prefix is used to identify the county. Prefixes for Chambers, Jefferson, and adjacent counties are as follows:

COUNTY	PREFIX	COUNTY	PREFIX
Chambers	DH	Hardin	LH
Jefferson	РТ	Liberty	SB
Orange	UJ	Harris	LJ

Thus, well DH-64-11-802 (which supplies water for the city of Anahuac) is in Chambers County (DH), in the 1-degree quadrangle 64, in the 7½-minute quadrangle 11, in the 2½-minute quadrangle 8, and was the 2nd well (02) inventoried in that 2½-minute quadrangle.

Acknowledgments

The author acknowledges the assistance of the many county, municipal, and industrial officials who aided in this project. Particular appreciation is expressed to Jett Hankamer and to personnel of Humble Oil and Refining Co., Mobil Oil Corp., Pure Oil Co., Placid Oil Co., Gulf States Utilities Co., Diamond Alkali Co., Warren Petroleum Corp., and Chambers County Water Control and Improvement District No. 1 for permitting and assisting in pumping tests in wells. The Houston Lighting and Power Co. furnished information as it was collected in their testing program east of Baytown.

Well drillers supplied drillers' logs, electrical logs, and well-completion data; and all landowners contacted granted access to their property, wells, and records.

Dr. Saul Aronow, Department of Geology, Lamar State College of Technology, prepared the section of the report on Quaternary geology and aided the author in the task of relating geology to hydrology.

HYDROLOGIC AND GEOLOGIC UNITS

The geologic units composing the aquifers in Chambers and Jefferson Counties are, from oldest to youngest: the Fleming Formation of Miocene age; the Goliad Sand of Pliocene age; the Willis Sand of Pliocene(?) age; the Bentley Formation, Montgomery Formation, and Beaumont Clay of Pleistocene age; the Deweyville deposits of Bernard (1950) of Pleistocene(?) age; and the alluvial, deltaic, coastal marsh, mudflat, and beach (chenier) deposits of Holocene age. The correlation of geologic and hydrologic units is shown in Table 1.

The Beaumont Clay and the Holocene deposits (described in the section on Quaternary geology) crop out within the two counties. Their surface relationships are shown on the geologic map (Figure 20). The older formations crop out in the counties to the north.

The geologic units are generally composed of sand, silt, and clay, with lesser amounts of gravel, marl, and lignite. Faults are common, especially in the vicinity of salt domes, but surface traces of the fault zones are rarely discernible. Some, but not all, of the salt domes are marked by surface features such as higher altitudes, topographic depressions, or a combination of both.

Figures 25, 26, 27 and 28 are hydrologic sections showing the aquifers, their stratigraphic relationship, and the salinity of the water they contain.

Burkeville Aquiclude

The Burkeville aquiclude, the lowermost hydrologic unit discussed in this report, is principally a clay section within the Fleming Formation and is equivalent, at least in part, to the Castor Creek Member (Fisk, 1940) of the Fleming Formation of Kennedy (1892), as mapped by Rogers and Calandro (1965) in Vernon Parish, Louisiana. The Burkeville is also equivalent to "Zone 2" of Lang, Winslow, and White (1950) in the Houston district.

The Burkeville ranges in thickness from 130 to 300 feet. The unit contains minor amounts of sand in some places but is not a source of water in Chambers and Jefferson Counties. The significance of the Burkeville in the two counties is that it forms the lower confining layer for the overlying Evangeline aquifer.

Evangeline Aquifer

The Evangleine aquifer is the lowermost unit containing fresh or slightly saline water in Chambers and Jefferson Counties. The Evangeline overlies the Burkeville aquiclude and includes the Goliad Sand and sands in the upper part of the Fleming Formation. The aquifer is equivalent to the "heavily pumped" layer of Wood and Gabrysch (1965) in the Houston district. In Louisiana, the unit is equivalent to the Blounts Creek Member (Fisk, 1940) of the Fleming Formation of Kennedy (1892) in Vernon Parish (Rogers and Calandro, 1965) and the Foley Formation in Calcasieu Parish (Harder, 1960).

The Evangeline is about 1,400 feet thick in northern Jefferson County and increases in thickness toward the Gulf. The aquifer yields fresh water to large wells in northwestern Chambers County.

Chicot Aquifer

The Chicot aquifer includes all deposits above the Evangeline aquifer. The unit consists of the Willis Sand, the Bentley Formation, the Montgomery Formation, the Beaumont Clay, the Deweyville Deposits of Bernard (1950), and the Holocene alluvium.

The physical basis for separation of the Evangeline and Chicot is the difference in lithology and permeability. In some areas, the two aquifers are separated by beds of clay, but such beds are not continuous. The units differ in average grain size, cementation, and compaction. The higher permeabilities are usually associated with the Chicot.

The differences noted may be recognized in ways other than by examination of the sediments. A displacement of the spontaneous-potential curve of an electrical log as the logging tool passes out of the Evangeline into the Chicot often marks the contact between the two lithologically dissimilar aquifers. In addition, the formation factor (ratio between aquifer resistivity and aquifer water resistivity) for the two aquifers is generally significantly different. The formation factor for the Chicot aquifer is usually greater. In some areas, where lithologic differences are not pronounced or where changes in water quality makes comparative readings difficult or impossible, the contact between the two aquifers is not readily apparent from electrical logs.

In parts of eastern Jefferson County and western Chambers County, the Chicot aquifer is divided into two units by a clay bed that separates an upper sand section from a lower sand section. There are significant differences in water levels in wells completed in the upper and lower units of the Chicot in eastern Jefferson County and western Chambers County. These sands merge in some places, and in other places, one of the sands may be absent.

In some parts of the two counties, the upper and lower units of the Chicot merge into one large mass of interbedded and interconnected sand and clay as much as 1,600 feet thick. In these areas, determination of a boundary between the two units becomes impossible. This is especially true near some of the shallow piercement-type salt domes and in a large area in central Chambers County. The configuration of the base of the Chicot aquifer and the locations of most of the salt domes in the area are shown on Figure 3.

Lower Unit

In the downdip (southeast) parts of Chambers and Jefferson Counties, the lower unit of the Chicot aquifer is generally two or more massive sands separated by clay. These sands are probably equivalent to the "500-foot" and "700-foot" sands as mapped in Calcasieu Parish, Louisiana (Harder, 1960). In reports on Galveston and Harris Counties, the massive sands of the lower Chicot

Table 1Geologic and Hydrologic Units Used in This Report and in Recent Reports in Nearby Areas	Table 1	Geologic a	and Hydrologic	Units Us	sed in This	Report and in	Recent Reports	in Nearby Areas
--	---------	------------	----------------	----------	-------------	---------------	----------------	-----------------

		HARDER	(1960)	ROGERS AND (196		RECENT TEXAS REPORTS	BAKER (1964)	WESSELMAN (1965)	WOOD AND GAB- Rysch (1965)	<u>1/</u>	тніѕ	REPORT
SYSTEM	SERIES	FORMATION	HYDROLOGIC UNIT	GROUP OR FORMATION	HYDROLOGIC UNIT	FORMATION	HYDROLOGIC UNIT	HYDROLOGIC UNIT	HYDROLOGIC UNIT	HYDROLOGIC Unit		DLOGIC NIT
	Holocene	Alluvium		Alluvium	Alluvium	Alluvium <u>2</u> /	G		Beaumont		Upper	Chicot
		Prairie Formation Montgomery	Chicot shallow ''200 foot''	Stream terrace and upland	Stream terrace and upland	Beaumont Clay Montgom- Lissie ery	L F	Upper aquifer Middle	Alta Loma	Chicot aquifer	Chicot	aquifer
Quaternary	Pleistocene	Formation Bentley Formation	''500 foot''	deposits	deposits	Formation Forma- tion Bentley <u>3</u> / Formation	O A S T	aquifer	Sand of Rose (1943)		Lower	
		Willianna Formation	"700 foot"			Willis Sand <u>4</u> /	A Q	= =	= =		Chicot	
		Foley Formation	Evangeline aquifer	Fleming Formation	Blounts Creek Member	Goliad Sand	- 0 _ I E	Lower aquifer	Heavily pumped layer	Evangeline aquifer	Evange aquife	
Tertiary	Pliocene			- ? = of Kennedy (1892)	of Fisk (1940)	-	R					_
	2	Fleming Formation			Castor Creek	Fleming Formation <u>5</u> /						-
	Miocene	of Fisk==== (1940)	[Member of Fisk (1940)				Zone 2	Burkeville aquiclude	Burkev aquicl	

1/ Wesselman (1967), Tarver (1968a and 1968b), Anders and others (1968), Sandeen (1968), and Wilson (1967). 2/ Floodplain and terrace deposits in Baker (1964). 3/ Lissie Formation in Baker (1964), Wesselman (1965 and 1967), Sandeen (1968), and Anders and others (1968); and Bentley and Montgomery Formations in Wilson (1967) and Tarver (1968a and 1968b). 4/ Pliocene (?). 5/ Shown as the Lagarto Clay of Miocene (?) age in Baker (1964) and Wesselman (1967).

unit have been mapped as the Alta Loma Sand of Rose (1943). In Orange County (Wesselman, 1965), the sands were mapped together as the "middle" aquifer.

In much of the updip (northwest) parts of Chambers and Jefferson Counties, the lower unit of the Chicot thins and loses much of the sand that is present downdip. Much of this loss is due to wedging of the unit, but some of the loss is due to facies changes.

Upper Unit

The upper unit of the Chicot consists of a basal sand overlain by clay. Most of the sand is part of the Montgomery Formation and can be traced into the outcrop of this geologic unit. The uppermost overlying clay is Beaumont, but in many places clay of the Montgomery Formation is also present.

No criteria other than the mapping of terrace levels have been developed for separating the Beaumont sands or sands of Holocene age from the underlying sands of the Montgomery Formation. The basal sand of the upper unit of the Chicot may be correlated with the "200-foot" sand of Calcasieu Parish, Louisiana (Harder, 1960).

SOURCE AND OCCURRENCE OF GROUND WATER

The principal source of fresh ground water in Chambers and Jefferson Counties is precipitation. Most precipitation runs off and becomes streamflow or evaporates immediately. Only a small fraction of the rainfall infiltrates to the zone of saturation. The zone of saturation is the zone below the water table where the interstices in the rocks are filled with water. Much of the penetrating water is rapidly returned to the atmosphere by evaporation or transpiration. A large percentage of the water that reaches the zone of saturation in the aquifers is rapidly returned to the surface as spring flow, which supports the base flow of the streams of the area.

Ground water occurs in aquifers. An aquifer is a geologic formation, group of formations, or part of a formation that is water bearing. An aquiclude is an impermeable or relatively impermeable bed that may contain water but is incapable of transmitting an appreciable quantity.

The water in an aquifer exists under one of two conditions, water table or artesian. Under water-table conditions, the water contained in the aquifer is under atmospheric pressure only. The water table is free to rise or fall in response to changes in the volume of water stored. A well penetrating an aquifer under water-table conditions fills with water to the level of the water table. Artesian conditions occur when an aquifer is overlain by sediments of lower permeability that confine the water under hydrostatic pressure. Such conditions occur downdip from the outcrops of the aquifers. A well penetrating sands under artesian head (pressure) becomes filled with water to a level above the top of the aquifer. If the head (pressure) is great enough to raise the water to a level higher than the top of the well, the water flows. The height above the aquifer that the water will rise in a well is equivalent to the pressure head in the aquifer.

The water in the aquifers moves under the influence of gravity from areas of recharge to areas of discharge. The average velocity of movement is slow, less than a foot a day, except in the immediate vicinity of large wells or springs.

Discharge of ground water occurs both naturally and artificially. Natural means of discharge include evapotranspiration, spring flow, and upward seepage through clays. Artificial discharge is accomplished by pumping from wells; by pumping from excavations that intersect the water table; or by drainage that results when ditches are cut into and below the water table.

RECHARGE, MOVEMENT, AND DISCHARGE OF GROUND WATER

Before man began developing ground water in the Gulf Coast regions, the deeper aquifers had a higher head than the more shallow ones. The original higher piezometric head on the deeper aquifer systems was caused by the outcrops of the deeper aquifers being topographically higher. Downdip from the outcrops, movement of water was generally southeastward, in the direction of the hydraulic gradients, toward areas of natural discharge.

In much of the area, continuous clay beds confined the water, and the only avenue of discharge was upward through the clays. However, in some areas of low altitude, the aquifer sands are not overlain by clay, and fresh water was discharged through the sands. One such area is located between Smiths Point and Monroe City, 6 miles east of Anahuac, in Chambers County and another in the Pine Island Bayou and Neches River lowlands north and east of Beaumont. Much of the artesian fresh water that entered from surrounding counties was discharged as spring flow or seepage in these and similar areas.

The interconnection of the aquifers along the sides of the shallow piercement-type salt domes also provide avenues of discharge. Interconnection is indicated by electric logs and by water-quality data in the vicinity of Barbers Hill, Lost Lake, Moss Bluff, Fannett, Big Hill, and Spindletop Domes (Figure 3). Originally, fresh and saline waters moved toward these domes under sufficient artesian heads to cause water to flow above land surface. Much of this water was, or became, salty as it passed adjacent to the domes from the lower aquifers to the upper aquifers. Interconnection of the aquifers allowed this deeper and usually more saline water with its higher piezometric head to rise and mix with the fresher water in the upper aquifers. A generalized illustration showing ground-water movement near domes was published by Hanna (1958, p. 11). It is reproduced here as Figure 4.

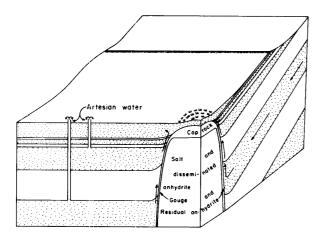


Figure 4.-Idealized Block Diagram Illustrating Ground-Water Circulation Around Salt Domes

Since the development of the ground-water resources of this region began in the 1800's, the subsurface circulation of the water has been changed repeatedly, and new recharge-discharge relationships have been established. Because of ground-water development, water levels declined. Cones of depression around each well altered the natural flow pattern, and water now moves from all directions into these centers of pumping. Withdrawals from the aquifers in Harris and Orange Counties have established large regional cones of depression that extend into Chambers and Jefferson Counties. A smaller cone of depression has been established by pumping in the Winnie-Hamshire area.

The cones of depression have lowered the piezometric surface below land surface in the artesian aquifers at all observed points, and below sea level in much of the area. Because of this alteration, the previously described areas of discharge have, or will soon become, areas of recharge to the underlying aquifers.

Specifically, some parts of the upper unit of the Chicot aquifer in Chambers and Jefferson Counties which formerly discharged water as springs and seeps are probably now recharged with fresh water through these outcrops of sand within the counties. Probably most of the lower unit of the Chicot and the Evangeline aquifers are still recharged through outcrops in adjoining or nearby counties.

HYDRAULIC CHARACTERISTICS OF THE AQUIFERS

"The worth of an aquifer as a fully developed source of water depends largely on two inherent characteristics: its ability to store and its ability to transmit water" (Ferris and others, 1962, p. 70). These characteristics are measured by the coefficients of storage and transmissibility.

The coefficient of storage is important in any calculation of the quantity of water that can be obtained from an aquifer; but the availability of the water, especially in an artesian aquifer, depends primarily on the ability of the aquifer to transmit water. The coefficient of permeability is a measure of that ability and is defined as the rate of flow of water in gallons per day through a cross-sectional area of 1 square foot under a unit-hydraulic gradient (1 foot per foot) at a temperature of 16°C (60°F). In field practice the adjustment to the standard temperature of 16°C (60°F) is commonly disregarded, and the permeability is then understood to be a field coefficient at the prevailing water temperature. The coefficient of transmissibility is the product of the field coefficient of permeability and the saturated thickness of the aquifer.

The specific capacity of a well is its yield per unit drawdown and can be theoretically related to transmissibility. It is expressed in gallons per minute per foot of drawdown. The measured specific capacity may differ from the computed theoretical specific capacity of a well for one or more reasons. Improper well construction and development, screen losses, unfavorable local geologic conditions, screening only part of the available aquifer-all are factors that will decrease the measured specific capacity. On the other hand, in some wells the effective diameter of the well may be increased by proper development. As a result, the measured specific capacity can be larger than the theoretical. Wood and others (1963, p. 40), referring to the Gulf Coast region, reported that "... the measured specific capacities of most wells in the region are smaller than the theoretical, indicating that many of the sands in the gravel-packed zone are poorly connected to the interior of the screen so that screen losses are considerable during pumping."

The coefficients of storage and transmissibility of the aquifers were determined by aquifer tests made in wells in Chambers and Jefferson Counties. The test data were analyzed by the Theis non-equilibrium method as modified by Cooper and Jacob (1946, p. 526-534), or by the Theis recovery method (Wenzel, 1942, p. 95-97). The results of the tests and specific capacities of the wells are shown in Table 2. None of the wells are completed in a full section of an aquifer, therefore the values in the table are less than the aquifer's total capability.

The coefficients of transmissibility and storage may be used to predict drawdowns in water levels caused by pumping. The theoretical relation between drawdown and distance from the center of pumping for different coefficients of transmissibility is shown on Figure 5. The calculations of drawdown are based on a withdrawal of 1 mgd (million gallons per day) for 1 year from an aquifer having coefficients of transmissibility and storage as shown and assuming the aquifer has infinite areal extent. For example, if the coefficients of transmissibility and storage are 50,000 gpd (gallons per day) per foot and 0.001, respectively, the drawdown or decline in the water level would be 12 feet at a distance of 1 mile from a well or group of wells discharging 1 mgd for 1 year. If the coefficients of transmissibility and storage are 5,000 gpd per foot and 0.0001, respectively, the same pumping rate for the same time would cause 84 feet of decline at the same distance.

Figure 6 shows the relation of drawdown to distance and time as a result of pumping from an artesian aquifer with characteristics similar to those found in the artesian aguifers of Chambers and Jefferson Counties. To prepare these curves, it was assumed that the aquifers had infinite areal extent. This illustration shows that the rate of drawdown decreases with time. For example, the drawdown at 100 feet from a well is 11 feet after 1 mgd has been pumped for 1 year, and the drawdown is about 15 feet after 1 mgd has been pumped for 100 years. The total drawdown at any one place within the cone of depression (or influence) of several wells would be the sum of the influences of the several wells. The equilibrium curve illustrates the timedrawdown relation when a line source of recharge is 25 miles from the point of discharge.

Figure 7 shows the relation of drawdown to distance and time as a result of pumping from a water-table aquifer with characteristics similar to small parts of the upper unit of the Chicot aquifer. Again, infinite areal extent of the aquifer is assumed. The drawdown is less than that in an artesian aquifer because, under water-table conditions, the coefficient of storage is larger.

Interference between wells may cause a decrease in yield of the wells, or an increase in pumping costs, or both. If the pumping level declines below the top of the aquifer screened, the saturated thickness of the aquifer decreases and the result is a decrease in the yield of the well.

Aquifer tests were run on 10 wells tapping the lower unit of the Chicot aquifer in Chambers and Jefferson Counties. Coefficients of transmissibility ranged from 5,200 to 401,000 gpd per foot and coefficients of permeability ranged from 108 to 1,670 gpd per square foot. The highest permeability was determined from a test of a saline-water well completed in the lowermost massive sand in the lower unit of the Chicot. Specific capacities ranged from 3.4 to 32.5 gpm (gallons per minute) per foot. The coefficient of storage in the lower unit of the Chicot ranged from 0.0004 to 0.0037.

Tests of 9 wells completed in the upper unit of the Chicot showed the following ranges in coefficients: transmissibilities from 10,800 to 29,800 gpd per foot; permeabilities from 174 to 596 gpd per square foot; and specific capacities from 1.7 to 11 gpm per foot. Two determinations of the coefficient of storage were 0.0007 and 0.0002.

Tests were made in two wells completed in the Evangeline aquifer. The coefficients of transmissibility were 32,000 and 36,000 gpd per foot and coefficients of permeability were 244 and 327 gpd per square foot. The coefficient of storage was 0.00003. The specific capacity of one of the wells was 16.2 gpm per foot. These results compare favorably with those observed in nearby areas. Tests of the "heavily pumped layer" (Evangeline aquifer) in the Houston district show the average coefficient of permeability to be about 250 gpd per square foot, and tests in Jasper and Newton Counties northeast of the report area showed an average of 260 gpd per square foot.

PRODUCTION AND USE OF GROUND WATER

The first production of ground water in Chambers and Jefferson Counties was probably from holes dug into beach ridges by Indians who hunted and fished along the Gulf Coast. Early permanent settlers of the region utilized mostly shallow wells. Deussen (1914) reported many deep, fairly large wells, most of which flowed. These wells had been drilled in the decades preceding and following 1900. Oil exploration together with the development of rice irrigation in southeastern Texas and southern Louisiana caused many wells to be drilled. The extent and quality of the ground water were fairly well known at that time.

Penn Livingston and G. H. Cromack (written commun., 1943) reported that in Jefferson County, production of ground water, stimulated by oil field development, irrigation, and the construction of refineries, rose to a peak of about 25 mgd in 1926. Much of this development was in areas underlain mostly by slightly or moderately saline water. The poor quality of much of the water probably discouraged its use as production decreased to about 10 mgd in 1927. In 1941, the combined production in Chambers and Jefferson Counties was probably a little less than 8.5 mgd. Total production of ground water in both counties decreased to about 5 mgd in 1948. Development of the upper unit of the Chicot aquifer in the Winnie-Hamshire, Anahuac, and Hankamer areas; of the Evangeline and Chicot

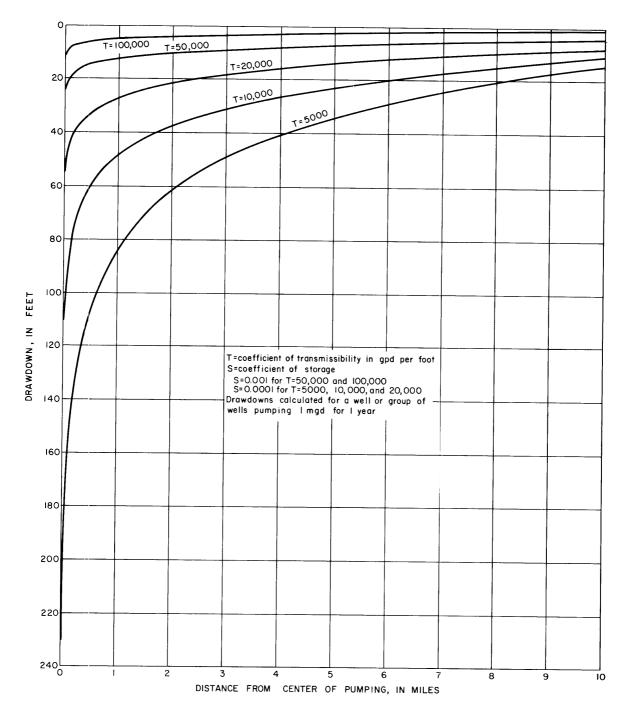


Figure 5.-Relation of Drawdown to Transmissibility and Distance

aquifers in the Mont Belvieu-Baytown area; and of the lower Chicot in the Beaumont-Port Arthur area raised the production rate to 8.6 mgd by 1965.

Most of the ground water developed prior to World War II was taken from the lower unit of the Chicot aquifer in the Beaumont-Port Arthur area, whereas production in 1965 was divided about equally among the upper unit of the Chicot, lower unit of the Chicot, and the Evangeline. The principal areas of production are the Mont Belvieu-Baytown area of western Chambers County, the Winnie-Hamshire area of Chambers and Jefferson Counties, and the Beaumont-Port Arthur area of Jefferson County. Other sites where significant ground-water withdrawals occur include the Big Hill Dome, the flank of High Island Dome, Redfish Reef in Galveston Bay, Hankamer, and Anahuac. The locations of wells in Chambers and Jefferson Counties and adjacent areas are shown on Figure 24.

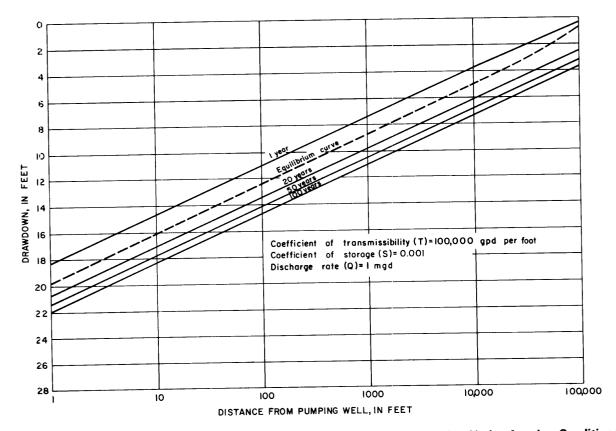


Figure 6.—Relation of Drawdown to Distance and Time as a Result of Pumping Under Artesian Conditions

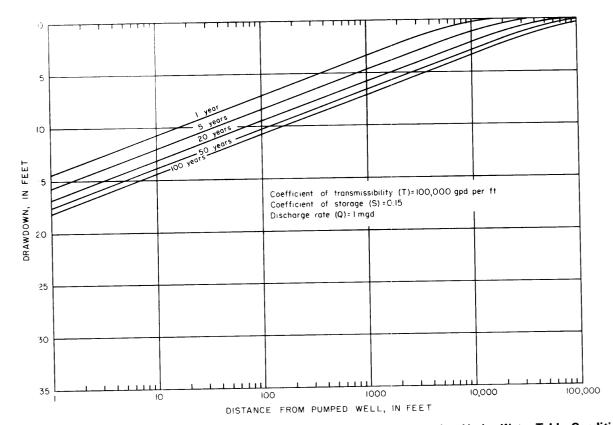


Figure 7.—Relation of Drawdown to Distance and Time as a Result of Pumping Under Water-Table Conditions

Table 2.—Summary of Aquifer Tests

WELL	DATE	COEFFICIENT OF TRANSMISSIBILITY (GPD PER FT)	COEFFICIENT OF PERMEABILITY (GPD PER FT ²)	COEFFICIENT OF STORAGE	SPECIFIC CAPACITY (GPM PER FT OF DRAWDOWN)	REMARKS
		UPPER	UNIT OF CHICOT AQUIFE	ER		
DH-64-11-801	Dec. 3, 1955	15,000	375	_	11	100 minutes pumping time; recovery pumped well.
DH-64-12-102	July 12, 1966	29,800	*596	-	7	Recovered 100 minutes after 28 hours pumping.
DH-64-13-601	Sept. 16, 1953	10,800	360	-	5.3	5-hour recovery after 48 hours pumping.
DH-64-13-602	Oct. 2, 1953	11,800	358	-	8.3	5-hour recovery after 51 hours pumping.
PT-64-14-407	June 1, 1945	26,000	222	-	6.2	Recovery after 24 hours pumping.
PT-64-14-408	June 21, 1945	17,900	174	7.0×10 ⁻⁴	-	Drawdown observation well.
PT-64-14-409	June 1, 1945	21,000		2.0×10 ⁻⁴	_	Do.
PT-64-15-704	Sept. 22, 1966	21,300	207	-	-	Recovery observation well.
PT-64-15-705	-	21,600	216	-	1.7	Recovery pumped well; 23-hour test.
		LOWER	UNIT OF CHICOT AQUIFER	2		
PT-61-64-501	1941	55,200	502	-	_	Recovery after unknown period of pumping.
PT-61-64-502	Mar. 22, 1966	13,100	108	-	8.7	40-hour recovery following 27-hour drawdown.
PT-61-64-503 PT-61-64-505	Mar. 21, 1966	18,000	310	4×10 ⁻⁴	-	Observation well; drawdown.
	Mar. 24, 1966	183,000	915	-	32.5	Recovery pumped well after 22 hours pumping.

Table 2.-Summary of Aquifer Tests-Continued

WELL	DATE	COEFFICIENT OF TRANSMISSIBILITY (GPD PER FT)	COEFFICIENT OF PERMEABILITY (GPD PER FT ²)	COEFFICIENT OF STORAGE	SPECIFIC CAPACITY (GPM PER FT OF DRAWDOWN)	REMARKS		
		LOWER	UNIT OF CHICOT AQUIFER	-Continued				
PT-61-64-506	Mar. 24, 1966	163,000	906	1.06×10 ⁻³	-	Drawdown test in observation well.		
РТ-61-64-509	Mar. 21, 1966	30,800	296	7×10 ⁻⁴	-	Drawdown observation well.		
∩H-64-09-301	Nov. 3, 1966	78,200	821	_	25.8	25 hours recovery after 27 hours pumping.		
DH-64-09-302	do	80,000	762	3.7×10 ⁻³	-	Recovery of observation well.		
DH-64-26-701	Nov. 29, 1966	5,200	157	-	3.4	5-hour recovery after 24 hours pumping.		
DH-64-29-502	Aug. 22, 1966	401,000	1,670	-	11.0	130-minute recovery after 24 hours pumping.		
		LOWER UNIT OF	CHICOT AQUIFER AND EVA	ANGELINE AQUIFER				
DH-64-10-401	Aug. 3, 1955	45,000	-	-	23.2	Recovered 70 minutes after 5 days pumping.		
EVANGELINE AQUIFER								
DH-64-09-305	May 27, 1966	32,000	244	-	16.2	300-minute recovery of constantly pumped well.		
DH-64-09-307	do	36,000	327	3.0×10 ⁻⁵	-	Recovery observation well.		

* Permeability based on screen length.

The production of water from wells in Chambers and Jefferson Counties in 1965 was as follows (figures are in mgd):

		CLASS OF US	E	
COUNTY	INDUS- TRIAL	MUNICIPAL	IRRIGA- TION	TOTAL*
Jefferson	3.1	1.0	.5	4.6
Chambers	2.0	1.0	1.0	4.0
Total*	5.1	2.0	1.5	8.6

* Figures are approximate because some of the production was estimated.

About 30 percent of this production (about 2.5 mgd) was slightly or moderately saline water used by industry.

The high salinity of much of the ground water has restricted its use. Consequently, the primary sources of water have been the Neches and Trinity Rivers, and most of the needs of industry, irrigation, and large municipalities in the area from the mid-1920's until the 1950's were met from these sources. However, the consistent quality and uniform temperature of ground water was especially desirable for some uses and as early as the 1920's, ground water produced from the lower unit of the Chicot aquifer in Orange County was imported by a refinery in the Port Arthur area.

The total estimated use of ground water (including imported ground water) in Chambers and Jefferson Counties in 1965 was approximately 18.6 mgd. Of this, 10 mgd was fresh water produced from wells in Hardin and Orange Counties and imported by the city of Beaumont and industries in Beaumont and Port Arthur. In 1958, Beaumont started supplementing its surfacewater supply with ground water from a well field tapping the Evangeline aquifer in Hardin County, and in 1965 obtained 6 mgd from this field. According to Underwood Hill, Water Superintendent of Beaumont (personal commun., July 8, 1967), the city of Beaumont plans to expand its usage of ground water to 20 mgd by 1980.

Two industries in Beaumont and Port Arthur in 1965 imported 4 mgd of ground water produced from the lower unit of the Chicot aquifer in Orange County. One industry in Port Arthur has been importing about 0.5 mgd since the 1920's. The other developed its supply in 1962.

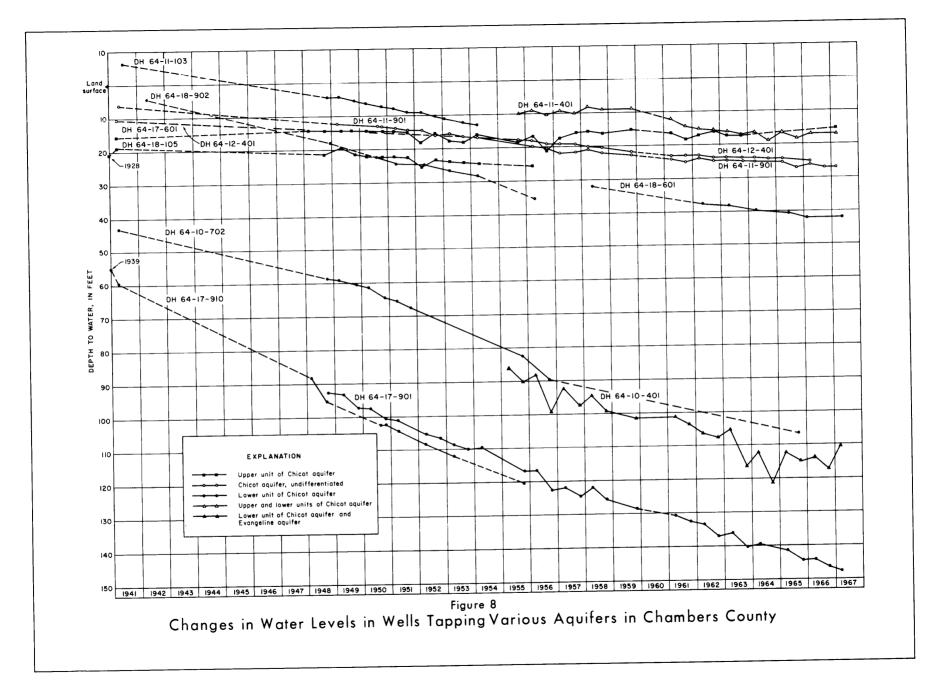
Because sufficient quantities of fresh ground water are not available locally and large supplies of fresh ground water are available nearby, further importation of fresh ground water from outside the counties is probable.

WATER LEVELS

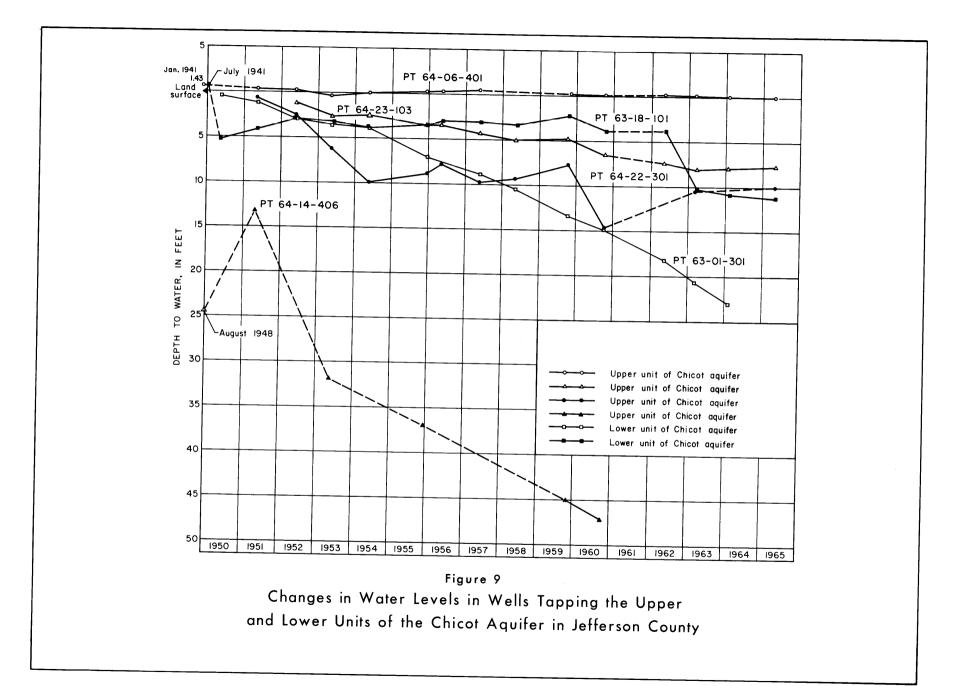
Water-level data are presented by hydrographs and maps. Data gathered during the 1941-42 inventory and during inventories since 1942 were used in the preparation of Figures 8 and 9. Water-level measurements are presented in Tables 4 and 6.

Long-term records of water levels indicate the magnitude of the water-level changes that have occurred in the Chicot aquifer. Measurements show that in well PT-64-06-401 (Figure 9), the differences in the high and low water levels were less than 2 feet during the period of record 1941-66. The largest change in water levels occurred in the lower unit of the Chicot aquifer in western Chambers County in the area adjacent to the city of Baytown, where water levels dropped more than 90 feet during the period 1941-66. The 1966 measurements, compared with the early reports of flowing wells, indicate that water levels have declined at least 150 feet. No long-term water-level records are available for the Evangeline aquifer. Water levels have possibly declined as much in the Mont Belvieu area as the decline recorded in the lower unit of the Chicot in the Baytown area.

Evangeline Aquifer


Water-level measurements in wells completed in the Evangeline aquifer in Chambers and Jefferson Counties date back only a few years. The levels that have been measured are in the Mont Belvieu area, and these closely approximate the levels in the lower Chicot in the same area.

Chicot Aquifer


The water levels and other criteria used to separate the upper and lower units of the Chicot aquifer in most of Chambers and Jefferson Counties were not sufficient to separate the two units in a large area centered near the eastern edge of Trinity Bay in Chambers County. Inspection of the maps (Figures 10 and 11) and of the hydrographs of wells (Figure 9) shows that the declines and seasonal fluctuations of water levels have been less in this area than in the areas to the east and west of it.

Lower Unit

The map of the 1941 and 1966 water levels in the lower unit of the Chicot aquifer (Figure 10) shows large depressions in western Chambers County as early as

- 19 -

- 20 -

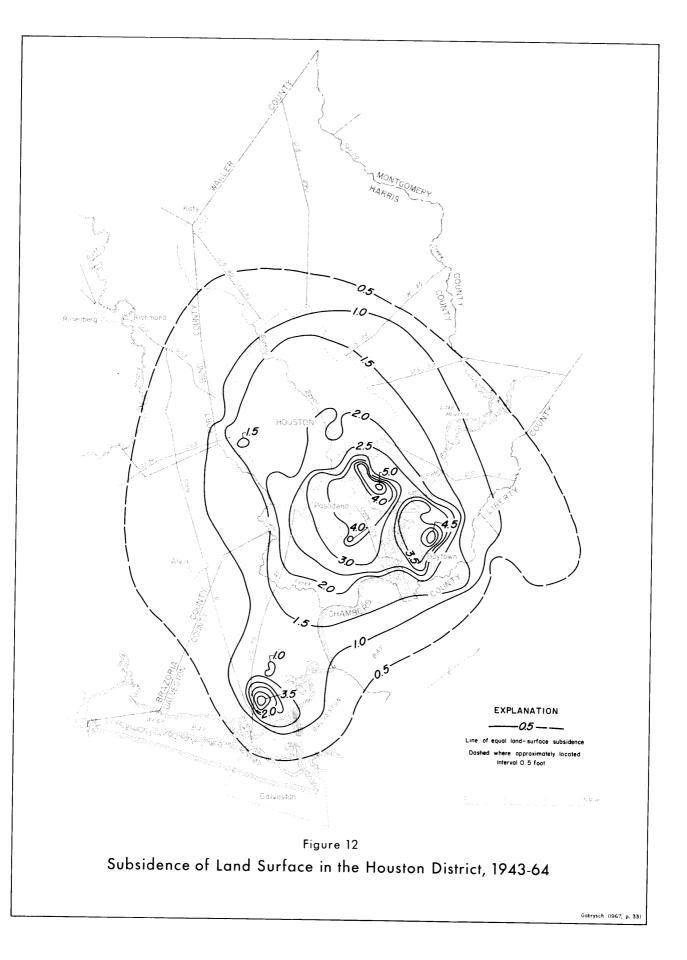
1941. These depressions were caused by heavy pumping in Galveston and Harris Counties. Contour lines on the map indicate that water in the lower unit of the Chicot aquifer was moving from western Chambers County into Harris and Galveston Counties in 1941. The direction of movement in 1966, as indicated by the map, is still the same, but the hydraulic gradient and the rate of movement have increased.

The effect of pumping from the lower Chicot in the Beaumont-Port Arthur-Orange area of eastern Jefferson and southern Orange Counties before 1941 is reflected in the shape of the contours. By 1966, the pumping center of this area was well defined. Pumping by chemical industries, municipalities, and from irrigation wells in Orange County caused a regional cone of depression that is reflected by the contours (Figure 10). The cone of depression extends into eastern Jefferson County, consequently, the movement of the water in this area is from Jefferson County into Orange County.

Upper Unit

The map of water levels in the upper unit of the Chicot aquifer in 1941 and 1966 (Figure 11) does not indicate any large regional centers of withdrawals in 1941. However, pumping depressed the water surface below sea level in areas a few miles west of Port Arthur and near Groves in Jefferson County and in the vicinity of Houston Point and Wallisville in Chambers County.

By 1966, the industrial, municipal, and irrigation withdrawals in the vicinity of Winnie had created a cone of depression (Figure 11) in eastern Chambers and western Jefferson Counties.


RELATION OF WATER-LEVEL DECLINES TO LAND-SURFACE SUBSIDENCE

The withdrawal of water from an artesian aquifer results in an immediate decrease in hydraulic pressure which partially supports the weight of the overlying rocks. With reduction in pressure, an additional load is transferred to the skeleton of the aquifer and a pressure difference between the sands and clays causes water to move from the clays to the sands. The entire process results in compaction of the sediments, most of which takes place in the clays. Because of the compaction, the land surface subsides.

Regional subsidence in the Texas Gulf Coast is due principally to the extraction of water, although subsidence may also occur because of the removal of oil and gas. In addition to other factors, the amount of decline in artesian head and the thickness of clay are important to total subsidence. R. K. Gabrysch (oral commun., 1967) found that in the Houston district, which includes the western part of Chambers County, subsidence ranged from 0.5 foot to 1.5 feet for each 100 feet of artesian head decline. The ratio of 0.5 foot subsidence per 100 feet head decline occurred in an area where the section contained about 40 percent clay. As the clay percentage increased, the ratio of subsidence to head decline increased. In the area of 1.5 feet subsidence per 100 feet head decline, clay composed about 70 percent of the section.

Winslow and Wood (1959) show that lowering of the artesian head by development of ground water has resulted in subsidence of the land surface in most of the upper Gulf Coast region of Texas. They mapped the extent of this subsidence by comparing measurements of bench-mark altitudes made at different times by the U.S. Coast and Geodetic Survey. Their map shows that the land surface subsided more than 0.5 foot in western Chambers County between 1918 and 1954. For this period of time, their map showed less than 0.25 foot subsidence for most of the rest of Chambers and Jefferson Counties. A small area in eastern Jefferson County had subsided more than 0.25 foot and an extremely local area, in the vicinity of the Spindletop Dome, subsided more than 1 foot. The areas that subsided, with the exception of the Spindletop Dome, are areas in which artesian head has declined. Subsidence at Spindletop is related to the production of oil. Extremely localized subsidence sometimes takes place when sulfur is removed from the cap rock of the salt domes by the Frasch process. A depression over 15 feet deep, which is periodically enlarging and deepening, is present at the Moss Bluff Dome on the Liberty-Chambers County line just east of the Trinity River. The Frasch process of removing sulfur has been initiated at the Fannett and Spindletop Domes in the last decade but noticeable subsidence that could be attributed to this cause was not found during this study.

The latest releveling of bench marks by the U.S. Coast and Geodetic Survey was in 1964, but only a part of the area mapped by Winslow and Wood was releveled. Gabrysch (1967) showed that subsidence in the western part of Chambers County has continued. Figure 12, a contour map of subsidence in the Houston district, shows that a maximum of 2 feet of subsidence occurred at the eastern edge of the city of Baytown (along the western edge of Chambers County) during the period 1943-1964. East of the area shown on Figure 12, regional subsidence through 1967 probably has been mostly less than 0.5 foot. In small areas, such as Lost Lake, Moss Bluff (north of Lost Lake), Hankamer, High Island, Big Hill (8 miles southeast), and Fannett, subsidence due to the removal of oil and gas probably is greater than 0.5 foot.

A sufficient number of bench marks, necessary to determine subsidence in detail, is not available in much of Chambers and Jefferson Counties.

WELL CONSTRUCTION

Generally, when a well is to be constructed for public supply or industrial use in a new location, a test hole is drilled to the depth desired. Formation samples are collected during drilling, and after completion of the test hole, an electrical log is run. The log is used to determine the occurrence of sands and to indicate in general the quality of water they contain. Some of these test holes are used to collect water samples for chemical analysis and to measure the water-yielding properties of the sands.

If favorable ground-water conditions are indicated by the data collected, the test hole is usually reamed to the top of the first sand that is to be screened; surface casing is then installed and cemented into place. The diameter of the surface casing in most large-capacity wells in Chambers and Jefferson Counties ranges from 12 to 20 inches.

The section to be screened is then reamed with the largest drilling bit that can pass through the surface casing. The hole is then underreamed by a device that expands and cuts a hole larger than the diameter of the surface casing, usually to a diameter of 30 inches. Blank pipe and screen are then installed with part of the blank pipe extending up into the surface casing. The bottom of the screen is closed off with a back-pressure valve that permits the use of fluid to keep the hole clean during emplacement of the screen, but prevents water, sand, or gravel from entering through the bottom. Gravel or sand is then pumped into the annular space between the screen and the well bore. The gravel reservoir-the space between the bottom of the surface casing and the top of the blank pipe---is also filled with gravel. The construction of a typical industrial or public-supply well is shown on Figure 13.

Usually the screen is steel pipe, 6 to 14 inches in diameter, that has been perforated and wrapped with stainless steel wire. Where corrosion is a problem, the pipe may be stainless steel. Generally the openings in the screen, which are as much as 0.05 inch wide, are larger than the sand particles in the formation but smaller than those of the gravel envelope. Blank pipe of the same diameter as the screen is used to separate screens and is positioned opposite clay beds in the producing intervals.

The well may be developed by surging, swabbing, pumping, back-washing, and by chemical treatment until the specific capacity of the well indicates complete development and the sand-water ratio is satisfactory. The final production test usually lasts from 4 to 24 hours, during which samples of water for chemical and bacterial analyses are collected.

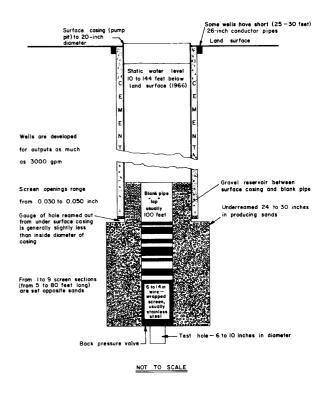


Figure 13.-Construction of Industrial and Public Supply Wells

Some large irrigation wells have been constructed in a similar manner, with slotted pipe being used instead of wrapped screen. More commonly, however, a large diameter hole is drilled from the surface to the finished depth, no cement is used, and gravel is placed outside the entire casing string. In some smaller diameter irrigation wells, screen is selected to fit the sands encountered, and no gravel is used.

The size and type of pump installed on the large-capacity wells depend upon the pumping lift and the quantity of water needed. The larger public-supply and industrial wells have high-capacity, deep-well turbine pumps powered by electricity. Irrigation wells are equipped with the same type of pumps but are powered by diesel or gas motors.

Although shallow dug wells, usually 30 to 36 inches in diameter, have been constructed in a few localities, most of the modern, small-capacity wells used for domestic or industrial supply are drilled wells that have been completed with a single screen.

A variety of screen types are available. Stainless steel and plastic have become the most widely used in Chambers and Jefferson Counties because of their resistance to corrosion. Plastic is coming into widespread use as the material for conductor pipe and screens in the small and relatively shallow wells. Stainless steel screen is used in the large wells. Oil-rig drill pipe is used as casing in most of the water-supply wells drilled in the oil fields of Trinity Bay. Because of its thick walls, the time it takes the pipe to corrode and the well to fail is extended.

Various types of pumps are used on small-capacity wells. New small wells are usually equipped with submersible pumps, whereas older wells, particularly those in areas of lowered artesian head, are usually equipped with the deep jet-type pumps. Windmills in conjunction with cylinder-type pumps are still used to lift water for livestock use, particularly in remote locations, but many windmills are being replaced by electric-powered pumps.

QUALITY OF GROUND WATER

The chemical constituents of ground water originate principally from the soil and rocks through which the water has moved. Table 3 lists many of the chemical constituents and properties of water and discusses their source and significance. The chemical analyses of water from selected wells in Chambers and Jefferson Counties are given in Table 7.

The quality of water commonly determines its suitability for use. A general classification of water, according to dissolved-solids content in mg/l (milligrams per liter), is as follows (modified from Winslow and Kister, 1956, p. 5):

DESCRIPTION	DISSOLVED-SOLIDS CONTENT (MG/L)
Fresh	Less than 1,000
Slightly saline	1,000 to 3,000
Moderately saline	3,000 to 10,000
Very saline	10,000 to 35,000
Brine	More than 35,000

Maps showing the base of fresh water, the base of slightly saline water, and the thickness of sands containing fresh water are included in this report as Figures 16, 17, 18, and 19. Analysis of these maps and the cross sections (Figures 25 through 28) shows that most of the water underlying Chambers and Jefferson Counties is slightly or more than slightly saline.

Suitability for Public Supply

The U.S. Public Health Service (1962, p. 7) has established standards for the chemical quality of water to be used on common carriers engaged in interstate commerce. These standards, which are commonly used in evaluating public water supplies, are included in Table 3. According to the U.S. Public Health Service (1962, p. 41), the optimum fluoride level for a given community depends on climatic conditions, because the amount of water (and consequently the amount of fluoride) ingested is influenced primarily by air temperature. In Chambers and Jefferson Counties, the optimum concentration based on the annual average of maximum daily air temperature of 26.1° C (79° F) at Beaumont is 0.8 mg/l. Presence of fluoride in average concentrations greater than twice the optimum value, or 1.6 mg/l, would constitute grounds for rejection of the supply. Excessive concentrations of fluoride are present in the water from some wells in Chambers and Jefferson Counties.

The 1941-42 well inventory and water-sampling program (Livingston and Cromack, 1942a, 1942b) included analyses of water from shallow wells (9 to 47 feet deep) in the upper unit of the Chicot aquifer that showed more than the recommended limit (45 mg/l) of nitrate concentration. However, the nitrate concentration in water from all deeper wells sampled at that time was less than the recommended limit. Samples from only a few shallow wells were collected in 1966. Of these, only one well (PT-64-08-403), 27 feet deep, yielded water with an excessive amount of nitrate. Also, the deeper wells sampled in 1966 did not have excessive nitrates. The presence of nitrates in excess of the limit in the shallow wells suggests pollution by sewage or by other organic material.

Water having a chloride content exceeding 250 mg/l may have a salty taste, and sulfate in water in excess of 250 mg/l may produce a laxative effect. Much of the water produced in Chambers and Jefferson Counties has a chloride content greater than 250 mg/l. Excessive amounts of sulfates occur in water in some shallow sands and in some of the deeper sands near the shallow salt domes.

About half of the samples analyzed for iron showed that this constituent was present in excess of the 0.3 mg/l limit. A relationship between iron concentration and depth of the well was not established, and it was not determined whether the iron occurred naturally or as a product of interaction between the water and the metal parts of the well.

Suitability for Iridustrial Use

The suitability of water for industrial use is dependent upon the process in which the water is used. Water for cooling and boiler uses should be noncorrosive and relatively free of scale-forming constituents, of which hardness and silica are the most important.

The silica content (Table 7) in water from the aquifers in these counties ranged from 5.3 to 38 mg/l. Moore (1940, p. 263) suggested the following allowable concentration of silica in boilers operating at various

Table 3.--Source and Significance of Dissolved-Mineral Constituents and Properties of Water

CONSTITUENT OR PROPERTY	SOURCE OR CAUSE	SIGNIFICANCE
Silica (SiO ₂)	Dissolved from practically all rocks and soils, commonly less than 30 mg/l. High concentra- tions, as much as 100 mg/l, gener- ally occur in highly alkaline waters.	Forms hard scale in pipes and boilers. Carried over in steam of high pressure boilers to form deposits on blades of turbines. Inhibits deterioration of zeolite-type water softeners.
Iron (Fe)	Dissolved from practically all rocks and soils. May also be derived from iron pipes, pumps, and other equipment. More than 1 or 2 mg/l of iron in surface waters generally indicates acid wastes from mine drainage or other sources.	On exposure to air, iron in ground water oxidizes to reddish- brown precipitate. More than about 0.3 mg/lstains laundry and utensils reddish-brown. Objectionable for food processing, tex- tile processing, beverages, ice manufacture, brewing, and other processes. U.S. Public Health Service (1962) drinking-water standards state that iron should not exceed 0.3 mg/l. Larger quantities cause unpleasant taste and favor growth of iron bacteria.
Calcium (Ca) and magnesium (Mg)	Dissolved from practically all soils and rocks, but especially from limestone, dolomite, and gypsum. Calcium and magnesium are found in large quantities in some brines. Magnesium is present in large quantities in sea water.	Cause most of the hardness and scale-forming properties of water; soap consuming (see hardness). Waters low in calcium and magnesium desired in electroplating, tanning, dyeing, and in textile manufacturing.
Sodium (Na) and potassium (K)	Dissolved from practically all rocks and soils. Found also in ancient brines, sea water, indus- trial brines, and sewage.	Large amounts, in combination with chloride, give a salty taste. Moderate quantities have little effect on the usefulness of water for most purposes. Sodium salts may cause foaming in steam boilers and a high sodium content may limit the use of water for irrigation.
Bicarbonate (HCO ₃) and carbonate (CO ₃)	Action of carbon dioxide in water on carbonate rocks such as lime- stone and dolomite.	Bicarbonate and carbonate produce alkalinity. Bicarbonates of calcium and magnesium decompose in steam boilers and hot water facilities to form scale and release corrosive carbon dioxide gas. In combination with calcium and magnesium, cause carbon- ate hardness.
Sulfate (SO ₄)	Dissolved from rocks and soils containing gypsum, iron sulfides, and other sulfur compounds. Commonly present in mine waters and in some industrial wastes.	Sulfate in water containing calcium forms hard scale in steam boilers. In large amounts, sulfate in combination with other ions gives bitter taste to water. Some calcium sulfate is considered beneficial in the brewing process. U.S. Public Health Service (1962) drinking-water standards recommend that the sulfate content should not exceed 250 mg/l.
Chloride (Cl)	Dissolved from rocks and soils. Present in sewage and found in large amounts in ancient brines, sea water, and industrial brines.	In large amounts in combination with sodium, gives salty taste to drinking water. In large quantities, increases the corrosiveness of water. U.S. Public Health Service (1962) drinking-water stan- dards recommend that the chloride content should not exceed 250 mg/l.
Fluoride (F)	Dissolved in small to minute quantities from most rocks and soils. Added to many waters by fluoridation of municipal sup- plies.	Fluoride in drinking water reduces the incidence of tooth decay when the water is consumed during the period of enamel calcification. However, it may cause mottling of the teeth, depending on the concentration of fluoride, the age of the child, amount of drinking water consumed, and susceptbility of the individual. (Maier, 1950)
Nitrate (NO3)	Decaying organic matter, sewage, fertilizers, and nitrates in soil.	Concentration much greater than the local average may suggest pollution. U.S. Public Health Service (1962) drinking-water standards suggest a limit of 45 mg/l. Waters of high nitrate content have been reported to be the cause of methemoglo- binemia (an often fatal disease in infants) and therefore should not be used in infant feeding. Nitrate has been shown to be helpful in reducing inter-crystalline cracking of boiler steel. It encourages growth of algae and other organisms which produce undesirable tastes and odors.
Dissolved solids	Chiefly mineral constituents dis- solved from rocks and soils. Includes some water of crystalli- zation.	U.S. Public Health Service (1962) drinking-water standards recommend that waters containing more than 500 mg/l dissolved solids not be used if other less mineralized supplies are available. Waters containing more than 1000 mg/l dissolved solids are unsuitable for many purposes.
Hardness as CaCO ₃	In most waters nearly all the hardness is due to calcium and magnesium. All the metallic cations other than the alkali metals also cause hardness.	Consumes soap before a lather will form. Deposits soap curd on bathtubs. Hard water forms scale in boilers, water heaters, and pipes. Hardness equivalent to the bicarbonate and carbonate is called carbonate hardness. Any hardness in excess of this is called non-carbonate hardness. Waters of hardness as much as 60 ppm are considered soft; 61 to 120 mg/l, moderately hard; 121 to 180 mg/l, hard; more than 180 mg/l, very hard.
Specific conductance (micromhos at 25 ^o C.)	Mineral content of the water.	Indicates degree of mineralization. Specific conductance is a measure of the capacity of the water to conduct an electric current. Varies with concentration and degree of ionization of the constituents.
Hydrogen ion concentration (pH)	Acids, acid-generating salts, and free carbon dioxide lower the pH. Carbonates, bicarbonates, hydrox- ides, and phosphates, silicates, and borates raise the pH.	A pH of 7.0 indicates neutrality of a solution. Values higher than 7.0 denote increasing alkalinity; values lower than 7.0 indicate increasing acidity. pH is a measure of the activity of the hydrogen ions. Corrosiveness of water generally increases with decreasing pH, However, excessively alkaline waters may also attack metals.

pressures: less than 150 psi (pounds per square inch), 40 mg/l; 150-250 psi, 20 mg/l; 250-400 psi, 5 mg/l; and more than 400 psi, 1 mg/l.

A classification commonly used with reference to hardness is as follows: 60 mg/l or less, soft; 61 to 120 mg/l, moderately hard; 121 to 180 mg/l, hard; and more than 180 mg/l, very hard. If water used in steam boilers has more than 75 mg/l hardness as calcium carbonate, it should be treated to prevent the formation of scale (American Society for Testing Materials, 1959, p. 24). In high-pressure boilers, the tolerance is much less than 75 mg/l. Suggested water-quality tolerances for a number of industries are summarized by Hem (1959, p. 253) from Moore (1940). Although the hardness of the water (Table 7) ranges from soft to very hard, most of the water sampled was moderately hard or hard.

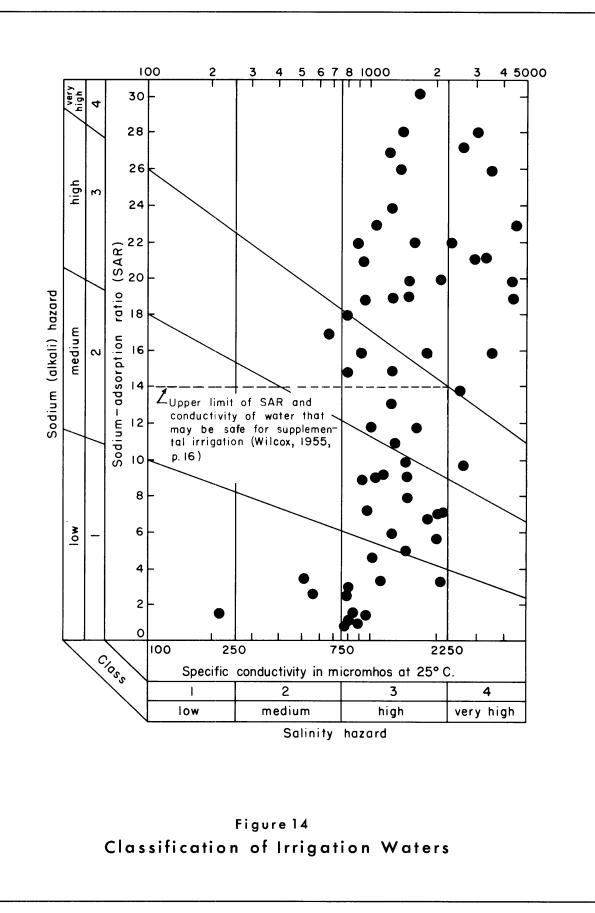
Large amounts of water are used to dissolve salt from salt domes to create caverns for storage of gas; the quality of water used for this purpose is not important. In some chemical processes, water of uniform chemical quality, clarity, and temperature is necessary, and even slightly or moderately saline ground water often meets these conditions better than surface water. In waterflooding operations, saline ground water is often preferred because of its compatability with fluids in the formation and because it is usually organically pure and sediment-free.

The temperature of water is often of great importance to industry and to other users. The temperature of ground water near the land surface is approximately the same as the mean annual air temperature of the region, $20.9^{\circ}C$ ($69.7^{\circ}F$) at Beaumont, but increases with depth. The lowest temperature of ground water recorded during the study, from a well 159 feet deep, was $22^{\circ}C$ ($71^{\circ}F$). The highest water temperature recorded during the study, from a well 1,255 feet deep, was $29.2^{\circ}C$ ($84.6^{\circ}F$). Temperature of ground water at any particular depth remains relatively constant throughout the year.

Suitability for Irrigation

The suitability of water for irrigation depends on the chemical quality of the water and on other factors such as soil texture and composition, types of crops, irrigation practices, and climate. The most important chemical characteristics pertinent to the evaluation of water for irrigation are: the proportion of sodium to total cations—an index of the sodium hazard; total concentration of soluble salts—an index of the salinity hazard; RSC (residual sodium carbonate); and the concentration of boron.

A system of classification commonly used for judging the quality of water for irrigation was proposed by the U.S. Salinity Laboratory Staff (1954, p. 69-82). This classification is based primarily on the salinity hazard as measured by the electrical conductivity of the water and on the sodium hazard as measured by the SAR (sodium-adsorption ratio). Although this classification was used in Figure 14, it may not be directly applicable because of the high rainfall. Wilcox (1955, p. 15-16) stated that water would be safe for supplemental irrigation if its conductivity was less than 2,250 micromhos per centimeter at 25°C and if its SAR was less than 14. This classification does show that in Chambers and Jefferson Counties most water tested had a high to very high salinity hazard and a low to very high sodium hazard. However, of the 62 water samples represented on the diagram, 30 samples were within the safe limits for supplemental irrigation. Most of these samples were taken from the freshest portions of the aquifers and the 32 samples which showed the water to be probably unsafe for even supplemental irrigation are probably most representative of most of the water in the aguifers of Chambers and Jefferson Counties.


An excessive concentration of boron renders a water unsuitable for irrigation. Scofield (1936, p. 286) indicated that boron concentrations of as much as 1 mg/l are permissible for irrigating most boron-sensitive crops and that concentrations of as much as 3 mg/l are permissible for the more boron-tolerant crops. All but one analysis (Table 7) which list boron show a concentration less than 1 mg/l.

Another factor in assessing the quality of water for irrigation is the RSC of the water. Excessive RSC will cause water to be alkaline, and the alkaline water will cause organic material of the soil to dissolve. The affected soil, which may become grayish-black, is referred to as "black alkali". Wilcox (1955, p. 11) states that laboratory and field studies have resulted in the conclusion that water containing more than 2.5 me/l (milliequivalents per liter) RSC is not suitable for irrigation. Water containing from 1.25 to 2.5 me/l is marginal, and water containing less than 1.25 me/I RSC is probably safe. Correct irrigation practices and proper use of amendments to the soil might make possible the successful use of marginal water for irrigation. In the majority of the samples analyzed, the RSC was high, the maximum value being 9.31 me/l.

The high conductivity (salinity hazard) and the generally unfavorable SAR and RSC values shown in the analyses are probably among the factors responsible for the abandoning of numerous irrigation wells in Chambers and Jefferson Counties in the past.

RELATIONSHIP OF FRESH GROUND WATER TO SALINE GROUND WATER

Two distinct relationships between fresh and saline water are evident in the Chicot and Evangeline aquifers in Chambers and Jefferson Counties. The normal relationship is for the fresh water to float on the salt water because of the greater density of the latter. This

relationship is modified by the interbedding of sands and clays. Fresh water occurs at depths greater than 1,400 feet under these conditions in Chambers and Jefferson Counties.

The other relationship occurs in the vicinity of the salt domes. The domes are composed of about 90 to 95 percent rock salt and 5 to 10 percent impurities, most of which is anhydrite (Hanna, 1958, p. 7). These domes have penetrated the sands and clays and placed soluble salt in contact with the water in the aquifers.

Originally, the shallowest and most permeable aquifer, the Chicot, had the lowest artesian head. Saline water has entered the lower beds of the Chicot aquifer near the domes that penetrate it. Saline water has also deteriorated the quality of the water in the Evangeline aquifer, near these domes.

When water dissolved the salt near the top and along the sides of the domes, much of the impurities in the salt remained as residue. Most of this residue was left at the top of the domes, where it became the parent material for the cap rock. Portions of this anhydrite have been altered to gypsum, lime, and sulfur. The high sulfate concentrations found in the analysis of some water from the Chicot in the vicinity of the domes probably originates from processes taking place in the cap rock.

Figure 4, a block diagram and hydrologic section showing the relationship of the ground water and its quality to the Barber's Hill Dome at Mont Belvieu, indicates that the poorer quality water in the lower unit of the Chicot aquifer can be traced from the dome to the northeastern edge of Baytown (6 miles away). Electric logs indicate that a similar relationship exists in the Nome area of Jefferson County, south of the Sour Lake Dome in Hardin County.

Sands that crop out north of the Fannett Dome, in the vicinity of the town of Fannett, contain only saline water even at very shallow depths. Because the area is topographically higher than the surrounding area, these sands should contain fresh water. The presence of saline water is probably a result of deeper artesian saline water flowing upward around the periphery of the dome and discharging into the shallower sands. Before well development, surface springs or seeps probably discharged some of this water.

DISPOSAL OF OIL-FIELD BRINES AND OTHER CONTAMINANTS

According to a 1961 salt-water inventory, about 60.4 million barrels of oil-field brine was produced during 1961 in Chambers and Jefferson Counties. Of this quantity, 66 percent was returned to saline waterbearing formations by injection wells, 26 percent was released to surface-water courses, 7.5 percent was disposed of in open pits, and 0.5 percent was disposed of by miscellaneous or "unknown" processes (Texas Water Commission and Texas Water Pollution Control Board, 1963, p. 46-86 and 258-287).

The method of disposal of least danger to fresh ground-water supplies is injection through properly constructed wells; probably the most dangerous method is disposal of the brine in open pits. In Chambers and Jefferson Counties, the average annual precipitation is 54 inches and the average annual gross lake-surface evaporation is 47 inches. To be effective in brine disposal, the open pit must be constructed in sandy soil. Such construction allows the brine to seep into the ground, thereby contaminating the ground water. Most open pits are constructed in clay soil and act as holding or storage ponds. They may fill and overflow to the nearest stream or area of sandy soil.

Although contamination of ground water has probably occurred in places from the disposal of oil-field brines, no known large-scale damage to the ground-water supplies of Chambers and Jefferson Counties has occurred. Dead trees and other vegetation noted in the vicinity of old brine pits were probably killed by brine that overflowed or seeped out of the pits. In most of these areas, injection wells have replaced pits. Many injection wells have been drilled since the 1961 saltwater inventory, and the ratio of pit to injection-well disposal is constantly improving.

Large quantities of saline waste water are produced by industry in the vicinity of salt domes and large quantities of waste water are released in these and in other industrial areas. Much of this water comes from sulfur mining and from the construction of storage chambers in salt domes. Facilities to gather and hold the waste water exist at most domes. At some locations this water is injected back into the subsurface, but at most locations ditches carry this water to large holding ponds or lakes from which the water is released to the surface-water courses of the area. Controlled releases from these lakes are made so as to minimize the effect on natural waters.

Contamination of the shallow ground water probably takes place in the vicinity of many of the gathering, holding, and release systems that are excavated in the surface formations, Those in clay probably do not need lining, but those systems in sandy soil are probably contributing inferior quality water to an already limited source of fresh ground water.

Most towns and industries dispose of their effluent in the tidal portion of the streams or into the bays, which already contain saline water. The most harmful effect of this practice is that under certain conditions this effluent kills fish and wildlife, and the effluent often imparts noxious odors and colors to the streams and bays.

PROTECTION OF WATER QUALITY IN OIL-FIELD DRILLING OPERATIONS

The Railroad Commission of Texas requires that contractors drilling oil and gas wells use casing and cement to protect fresh-water strata from contamination. For more than the past decade, the Railroad Commission has received recommendations from the Texas Water Development Board and from its predecessors, the Texas Water Commission and the Texas Board of Water Engineers, concerning the depths to which the water should be protected.

Where oil or gas fields are established, the recommended depths are incorporated in some of the field rules. Figure 15 shows the amount of surface casing required by the Oil and Gas Division of the Railroad Commission of Texas and the depth of slightly saline water in those fields in Chambers and Jefferson Counties having surface-casing requirements. Figure 16 is a map showing the approximate altitude of the base of slightly saline water.

AVAILABILITY OF GROUND WATER

Evangeline Aquifer

The Evangeline aquifer contains fresh water only in parts of western Chambers County and northern Jefferson County. Assuming a porosity of 30 percent, about 2,600,000 acre-feet of fresh water is stored in western Chambers County and about 800,000 acre-feet of fresh water is stored in northern Jefferson County; however, only a small part of this water could be recovered because of specific retention of much of this water and because of encroachment of nearby salt water. The fresh water extends to depths greater than 1,400 feet below sea level in western Chambers County and to depths of more than 1,000 feet below sea level in northern Jefferson County. Areas where fresh water occurs in the Evangeline aguifer underlie less than 10 percent of the combined areas of these counties. The maximum thicknesses of fresh-water sands is greater than 400 feet in Chambers County and greater than 200 feet in Jefferson County (Figure 17). Several large capacity industrial wells are completed in the Evangeline on the southwest flank of the Barbers Hill Dome. One irrigation well, in the Houston Point area of Chambers County, is completed in the Evangeline and lower unit of the Chicot.

Wells yielding 1,000-3,000 gpm could be constructed in northwestern Chambers County where sands in the Evangeline contain fresh water to depths approaching 1,500 feet below sea level.

Some sands of the Evangeline aquifer contain fresh water in parts of the Houston Point area. These sands and the Chicot sands above them are currently being tested and evaluated by the industries that are establishing new plants. Limited uses for sanitary purposes and boiler-feed water are planned. Wells yielding 100-1,000 gpm from the Evangeline aquifer could be developed in this area. The proximity of slightly saline water in the same beds in this area will probably preclude any large scale development of this water as a dependable source.

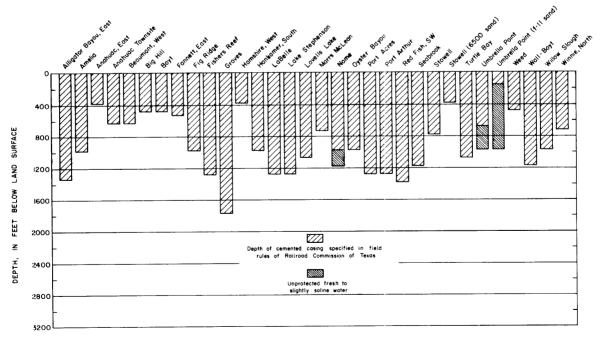


Figure 15.—Comparison Between Surface-Casing Requirements in Oil Fields and Depth of Base of Sands Containing Fresh to Slightly Saline Water

Lower Unit

The approximate base and thickness of the freshwater sands in the lower unit of the Chicot aquifer are shown on Figure 18. The lower unit of the Chicot contains fresh water in the Houston Point, Mont Belvieu, and Galveston Bay areas of Chambers County and in a small area along the eastern boundary of Jefferson County. The deepest occurrence of fresh water is in western Chambers County where fresh water extends to depths of more than 800 feet below sea level. Here the net thickness of sands containing fresh water is greater than 100 feet. In Jefferson County the maximum sand thickness is less than 50 feet. Fresh water in this aquifer underlies about a third of Chambers County and less than 5 percent of Jefferson County.

In the Houston Point and Mont Belvieu areas of northwestern Chambers County, the only place in which the lower unit of the Chicot has not been affected by saline water from Barbers Hill Dome is northwest of the dome. In this small area, all of the water in the aquifer is fresh. Large capacity wells that would produce fresh water could be constructed here.

The town of Mont Belvieu is using two publicsupply wells (DH-64-09-301 and DH-64-09-302) near the saline water. Water from the public-supply wells will probably become more saline as pumping continues.

Assuming a porosity of 30 percent, almost 4,000,000 acre-feet of fresh water is stored in the lower unit of the Chicot aquifer in Chambers County, 2,900,000 acre-feet of which underlies 150 square miles of Galveston Bay. Only a small part of these quantities could be pumped, however, because of specific retention of much of the water and because of encroachment of nearby salt water.

About 150,000 acre-feet of fresh water is stored in the lower unit of the Chicot aquifer in Jefferson County. The wells tapping this fresh-water supply are all near the interface of the fresh water with the slightly saline water. Extensive development of additional fresh water will cause saline water to move into the wells. Many of the wells developed in this aquifer in eastern Jefferson County already produce slightly or moderately saline water which is used by industry for cooling and fire protection. Wells that produce up to 3,000 gpm have been developed in the aquifer, and additional wells of this capacity can be constructed.

Generally, more than 100 feet of saturated sand containing slightly to moderately saline water is present in most places, and in ε large area along the southern boundaries of the counties, massive beds in the aquifer total more than 500 feet in thickness. Large (tens of mgd) sustained withdrawals of moderately saline water

could be made in most areas of the two counties without excessive drawdown in water levels.

Upper Unit

The most widespread aquifer containing fresh water in Chambers and Jefferson Counties is the upper unit of the Chicot. Generally, it contains fresh water in and beyond the same areas as the lower unit of the Chicot and the Evangeline aquifers. However, in over 50 percent of Chambers and Jefferson Counties, only small supplies can be developed in this aquifer. Individual sand beds range in thickness from several feet to about 50 feet. Wells produce or have produced up to 1,000 gpm of fresh water from this aquifer in the Houston Point area of eastern Chambers County, at Anahuac, and in a fairly large area centered at Winnie. Additional freshwater wells can be constructed in this aquifer in these areas of Chambers County and in extreme northern Jefferson County without an immediate threat of water-quality deterioration.

Throughout much of Chambers and Jefferson Counties water of poorer quality underlies or occurs at short distances from many of the producing wells. With continued pumpage, some of these wells probably will produce poorer quality water.

The approximate altitude of the base of fresh water in the upper unit of the Chicot aquifer is shown in Figure 19. The deepest occurrence of fresh water is in the northernmost part of Jefferson County where the base is greater than 200 feet below sea level. The base of fresh water becomes more shallow to the south and is only a few feet below sea level in the central and southern parts of Chambers and Jefferson Counties.

QUATERNARY GEOLOGY

By

Saul Aronow

Geologic field studies in southeastern Texas that contributed to the preparation of this report were supported by grants from the National Science Foundation, Lamar Tech Research Center, and Sigma Xi.

Most of the systematic field work was done as part of the Geologic Atlas of Texas project of the Bureau of Economic Geology of the University of Texas. The geologic map of Chambers and Jefferson Counties (Figure 20) was adapted from preliminary copies of the Houston and Beaumont sheets of the Geologic Atlas (Bureau of Economic Geology, 1968a and 1968b).

The Soil Conservation Service of the U.S. Department of Agriculture provided technical assistance in the field and provided copies of published and unpublished maps of soil surveys in Chambers and Jefferson Counties.

Marcus E. Milling, Marcus W. Walsh, Ben Wicker, and George Zahar, geology students at Lamar Tech, aided the author in mapping geomorphic features, in the preparation of illustrations, and in the determination of stream gradients.

General Stratigraphy and Structure

The geologic units in Chambers and Jefferson Counties (Figure 20) crop out in belts that are nearly parallel to the shoreline of the Gulf of Mexico. The beds dip toward the Gulf, with the older beds dipping at steeper angles than the younger beds. Most formations thicken downdip. The regional (gulfward) dip is interrupted by uplifts associated with salt domes and by arcuate belts of normal faults that are generally downthrown to the Gulf.

The oldest unit that crops out in Chambers and Jefferson Counties is the Beaumont Clay of Pleistocene age (Bernard, LeBlanc, and Major, 1962). The alluvial terrace deposits along the modern floodplains of the Trinity and Neches Rivers, mapped by Bernard (1950) as the "Deweyville beds", are probably of late Pleistocene and Holocene age. The youngest sediments are floodplain, deltaic, coastal marsh, mud flat, and beach (chenier) deposits of Holocene age.

Beaumont Clay

The Beaumont Clay crops out across most of Chambers and Jefferson Counties (Figure 20). The formation was described by Hayes and Kennedy (1903, p. 27-29), from exposures and from samples from wells in the vicinity of Beaumont, as a "series of yellow, gray, blue, brown, and black clays with black sands" overlying the "Columbia sands."

No definite type section has been described, and probably no complete section can be described from the outcrops alone. A type well or a combination type well and surface section can be established only when some unequivocal means of determining the base of the formation can be agreed upon. Bernard (1950) mapped the Beaumont in Texas as its presumed equivalent in Louisiana, the Prairie Formation; Doering (1956) mapped it as the Oberlin and Eunice Formations; Price (1947) mapped it as the Montgomery and Prairie Formations; and Bernard and LeBlanc (1965) reverted to the original name, Beaumont Clay, as used on the geologic map of Texas (Darton and others, 1937).

Two mappable facies of the Beaumont Clay occur in Chambers and Jefferson Counties: (1) a clayey facies composed of alluvial, deltaic, coastal marsh, and lagoonal deposits of clay, silty clay, and sandy clay; and (2) a sandy facies composed of barrier island and beach deposits of very fine to fine sand, which are of local importance as sources of small quantities of fresh ground water.

The clayey facies of the Beaumont composes almost all of the exposed Pleistocene sediments in Chambers and Jefferson Counties. For descriptions of these facies see Crout and others (1965), McEwen (1963, p. 63-64), Kunze and others (1963), and Graf (1966, p. 6, and Figure 8).

The sandy facies of the Beaumont Clay compose a very small percentage of the exposed Pleistocene sediments in Chambers and Jefferson Counties. The material is mostly very fine to fine, well-sorted sand of the barrier island and beach deposits (mapped separately on Figure 20). Grain-size determinations by mechanical analyses and heavy-mineral data are given in Graf (1966).

Deltaic and Meander Belt Deposits

Barton (1930a, 1930b) concluded that the coastal area of southeastern Texas was deltaic plain deposited by Pleistocene streams. The main evidence for this interpretation was the meandering pattern of the sandier soils, found in many places on the crests of low "levee" ridges. Barton pointed out that most of the present drainage is between and is controlled by the old levee or distributary ridges.

The major difference between the views of Barton and those of the author is in the significance of the levee or distributary ridges. Barton believed that the meander belts were a relict group of passes with a "palmate" pattern, similar to that of the present-day Mississippi Delta. The deposits of the Pleistocene Trinity River would therefore represent a delta as large as or larger than the present Mississippi Delta. Barton concluded that the Pleistocene Trinity River had a greater discharge and load than at present because of higher precipitation and a diminution in the drainage basin since the Pleistocene. The author believes that this group of passes was actually a succession of meander belts that terminated in relatively small deltas, similar in size to the present day Trinity River Delta.

A map compiled from the latest soil survey of Jefferson County (Crout and others, 1965) that shows the meander belts defined by mapping the soils that are related to fluviatile deposits is shown as Figure 21.

As shown in Figure 22, there are four wellpreserved, more or less continuous meander belts and one less definite belt in Chambers and Jefferson Counties. In order of decreasing age, they are: (1) the Neches Ridge System, which roughly parallels the Neches River in the extreme eastern part of Jefferson County-the relict meanders in this system are fragmentary and obscure, but the soils are similar to the soils found in the other systems;(2) the Barbers Hill System, between the Trinity River and Cedar Bayou; (3) the Sea Breeze System, in eastern Chambers County; (4) the Big Hill Ridge System; and (5) the China Ridge System, which is the best preserved and has the greatest continuity.

The system of straight stretches of relict stream channels to the northwest and southeast of the Smith Point and Pine Island barriers may be the remains of a stream that was not a tributary to the Pleistocene Trinity River but flowed directly into the Gulf. Figure 20 shows a number of anomalous meanders that cannot be defined as a coherent system.

The bluffs along Trinity Bay and along the valleys of the Trinity and Neches Rivers are the result of stream cutting during a glacial lowering of sea level. Wave erosion of the areas bordering Lake Anahuac and Trinity Bay has maintained the steepness of the bluffs in those areas. East of the Trinity River, the contact of the Deweyville deposits with the Beaumont Clay is marked by low scarps less than 10 feet in height.

The contact of the Beaumont Clay with the marsh and fluviatile deposits of Holocene age between Smith Point in Chambers County and Sabine Lake in Jefferson County has a digitate pattern, and only a few of the recesses are occupied by larger streams. Most of the salients of the Beaumont Clay are levee or distributary ridges similar to those of the Trinity River Delta, and the center lines of some of them are water-filled or marshy depressions. Those that do not have axial depressions can be identified by their sandy soils, by their terminal position in relation to the meander system, and by their areal pattern. The margins of most of these small deltas, which are about 5 feet above sea level, slope gently under the marsh deposits. The termination of the Neches Ridge System does not have a clearly digitate pattern, but does have approximately the same elevation as the other terminations.

The average slope of the surface of the Beaumont Clay east of the Trinity River in Chambers County is about 1 foot per mile. West of the Trinity River, the slope is about 1.5 feet per mile. The gradients of the two best preserved meander belts (not the old stream gradients) are: Big Hill Ridge System, 1.64 feet per mile; and China Ridge System, 0.92 foot per mile. The reconstructed stream gradients are: Big Hill Ridge System, 0.75 foot per mile; and China Ridge System, 0.49 foot per mile.

McEwen (1963), in his study of the most recent delta of the Trinity River, found that the whole delta was only about 15 feet thick. On this basis, a local thickness for the Beaumont Clay of less than 100 feet can easily be conjectured. Should a widespread and easily identifiable lithologic change be found that has some reasonable relationship to the subsurface projection of the surface of the Montgomery Formation, then perhaps the base of the Beaumont can be defined.

Barrier Island and Beach Deposits

The barrier island and beach deposits (Figure 20) were first described by W. A. Price (1933, 1947), and named for the occurrence at Ingleside, near Aransas Pass, Texas. As mapped by Price, the Ingleside System is a series of discontinuous features extending along most of the Gulf Coast of Texas. In Chambers and Jefferson Counties, the barrier island and beach deposits, which are composed of very fine to fine sand, may be divided into three sections-one in Chambers County and two in Jefferson County (see areas marked Qbb on Figure 20). The section in Chambers County consists mainly of three elongated parts, each less than 1 mile wide. extending from Smith Point northeastwardly for a distance of about 20 miles. the part from Smith Point to Lake Stephenson is a ridge that rises about 10 feet above the adjacent marshland (altitude about 12 feet). The ridge contains a number of small, nearly circular lakes. The remainder of this section is more easily identified on soil maps and aerial photographs. The sections in Jefferson County are west of Fannett and in the western part of the city of Beaumont. The one west of Fannett is an irregularly shaped area about 4 miles in width that is essentially a series of abandoned beaches of "cheniers" similar to those near Sabine Pass. Altitudes range from about 15 to 25 feet. This section is forested and is locally called "Lawhorn Woods." The section in the western part of the city of Beaumont is about 3 miles long and about 1 mile in width. The altitude is about 20 feet, but because of urban development, this section is difficult to identify.

Mounds and Depressions

Widespread surface features of the Beaumont Clay, and of the Deweyville deposits, are the "pimple mounds." These circular to elliptical mounds are about 15 to about 50 feet in diameter and 1 to 4 feet in height. They are almost exclusively limited to the sandier and siltier soils that underlie the relict meander belts and the barrier island and beach system. They are largely absent from the gentle swales or relict backswamp areas between meander belts and from some, but not all, of the relict lagoonal areas landward of the old barriers. Pimple mounds are best developed and most abundant on the old barriers.

The origin of pimple mounds is not clearly understood, and they have been considered the result of both organic and inorganic processes. Mounds of this type are not restricted to the Gulf Coast, and similar features elsewhere are sometimes referred to as mima mounds. Discussion of these features goes back to the 1870's; reviews of the literature and references can be found in Melton (1954), Holland and others (1952), and in Bernard and Leblanc (1965, p. 174-176).

The hog wallows or "gilgai microrelief" (Crout and others, 1965, p. 6; Mowery and others, 1960, p. 11, 33), are a minor but locally conspicuous kind of surface feature. These are areas of uneven or "wavy" ground consisting of very low mounds or microknolls (less than 2 feet in diameter and less than 8 inches in height) and intervening depressions. They usually become apparent after a heavy rain when the depressions impede surface drainage. In Chambers and Jefferson Counties, hog wallows are restricted to the clayier soils. They are thought to result from the unequal absorption of water or dehydration by certain clay minerals.

Geologic Age

The Beaumont Clay is at least 30,000 years old as determined by radiocarbon dating. McFarlan (1961, p. 133) reported that samples from the Prairie Formation of Louisiana (correlative with the Beaumont Clay) were "dead" and older than 30,000 years. Oyster shells collected by the author from the relict lagoonal area north of Lake Charles, Louisiana, were likewise "dead" and were older than 40,000 years according to Dr. E. L. Martin, Shell Development Co., Exploration and Production Research Division, Houston, Texas. The shell material collected near Winnie by Professor W. H. Matthews was also "dead" and older than 37,000 years according to the Humble Oil and Refining Company (now Esso Production Research), Houston, Texas.

Deweyville Deposits of Bernard (1950)

The Deweyville deposits in Chambers and Jefferson Counties are found along the Trinity and Neches Rivers and are intermediate between the Beaumont Clay and the modern flood plain deposits of the two rivers.

These deposits were first mapped and described by H. A. Bernard (1950), in an unpublished doctoral dissertation. They were named for the community of Deweyville, in Newton County, Texas, about 12 miles north of Orange, Texas, where the deposits form a terrace flanking the Holocene flood plain of the Sabine River. On the Beaumont and Houston Sheets of the Geologic Atlas of Texas (Bureau of Economic Geology, 1968a and 1968b), the Deweyville deposits are identified as the Deweyville Formation.

Along the Neches River in Jefferson County, the Deweyville deposits form a single-level terrace north of the city of Beaumont. The deposits range from silty clay to very fine sand in some places and from very fine sand to coarse sand in others. The top of these deposits, which are at least 30 feet thick, is about 20 feet above sea level. In Chambers County, the Deweyville deposits are on the eastern side of the Trinity River where they form at least three terrace levels ranging in altitude from 15 to 25 feet. As seen in road cuts, the deposits are clayey silts and silty sands. In several sand pits, the clayey silts and silty sands are underlain by very fine to coarse sand. Incomplete soil maps in the office of the U.S. Soil Conservation Service in Anahuac show that the higher terraces are underlain in many places by soils that are characteristic of the Beaumont Clay, and therefore may be considerably older than the deposits along the Neches River where a sequence of terraces is not present.

The age of the Deweyville deposits has been determined by radiocarbon methods for several localities outside of Chambers and Jefferson Counties. Aronow (1967) reported on samples from deposits along the Trinity, San Jacinto, and Sabine Rivers; and B. H. Slaughter (1965) reported on a sample, which the author interprets to be Deweyville, from deposits along the Trinity River. The dates of these samples range from 13,250 to 25,700 years. Bernard and Leblanc (1965, p. 149) give dates ranging from 17,000 to 30,000 years, but no localities are identified in their paper.


Holocene Deposits

Alluvial and Deltaic Deposits

The principal alluvial deposits of Holocene age are along the Neches River in Jefferson County, along the Trinity River in Chambers County, and in an extensive area along the coast. The principal deltaic deposits of Holocene age are at the mouth of the Trinity River. A map by Kane (1959) showing subsurface contours on top of the oxidized Pleistocene deposits (base of the Holocene) in the vicinity of Sabine Lake is included on Figure 23.

The geomorphology of the floodplains and deltas of the Holocene Trinity River has been worked out in some detail by Aten (1966a and 1966b), who distinguishes a sequence of five delta terminations. The sediments and the three-dimensional geometry of the most recent delta have been studied in detail by McEwen (1963), who divides the sediments of the delta into nine facies or genetic groups.

The modern delta of the Trinity began to form within the past 1,000 years. McEwen (1963, p. 93) reports that the two oldest radiocarbon dates of articulated *Rangia flexuosa* shells found in cores taken near the bottom of delta-front churned sands in the northwest part of the delta are 810 years and 750 years old.

(From Kane, 1959)

Coastal Marsh, Mudflat, and Beach (Chenier) Deposits

The coastal marsh, mud flat, and beach (chenier) deposits along the southern margins of Chambers and Jefferson Counties are the most extensive of the Holocene deposits. The coastal marsh sediments underlie the low plains areas separated from the Gulf by the most recent beaches and include the deposits between relict beaches in the Sabine Pass area of Jefferson County (See Bernard and Leblanc, 1965, Figure 5). The mud flats are the areas of fine-grained sediments gulfward of the most recent beaches.

The surface features in the Sabine Pass area of Texas consist of low beach ridges and intervening relict mud flat or coastal marsh deposits. As can be seen on Figure 20, these arcuate beach ridges or cheniers, convex towards the present shoreline, merge to the southwest into a single beach along the present coast. The ridges, which are 3 to 8 feet in height and as much as 10 miles long, consist of very fine to fine sand with a highly variable shell content. The sand is similar in size to the Holocene beach sands of Galveston Island and Bolivar Peninsula to the west and to the cheniers in Louisiana to the east. (See Hsu, 1960, p. 381-384; Garner, 1967, p. 49-52, 57).

A number of wells, all less than 15 feet deep, have been developed in the beach and associated shell deposits.

Arcuate, fan-like arrangement of the beach ridges on the Texas side of Sabine Pass is more or less duplicated on the Louisiana side of the Pass. This arrangement undoubtedly indicates the gradual closing of the mouth of Sabine Lake by constriction of its southern connection with the Gulf. Originally, Sabine Lake must have been an open estuary of the Gulf. Kane (1959) in his study of the micro-fauna and sediments of Sabine Lake concludes that the micro-fauna, especially the foraminifers, found in the sediments beneath the lake "are similar to those of the present Gulf, indicating greater circulation of saline waters from the Gulf of Mexico before the south end of Sabine Lake was restricted".

Geologic History

The geologic history of the surface formations of Chambers and Jefferson Counties can be tied into the framework of the Pleistocene and Holocene history of the western Gulf Coast region as worked out by H. N. Fisk and his many associates. Later work and areal extensions of Fisk's concepts have been recently and excellently summarized in Bernard and LeBlanc (1965) which contains references to Fisk's many papers.

Fisk believed that the Pleistocene formations of Louisiana and Texas were all deposited as coast-wise

terraces between the major stages of continental glaciations, with each successive Pleistocene formation being tilted gulfward. The amount of tilt was cumulative, so that the oldest formation has a considerably greater dip than the youngest.

The Montgomery Formation (with a regional slope of more than twice that of the Beaumont Clay) was deposited during the Sangamon Interglaciation; the Beaumont Clay, or Prairie Formation, was deposited during post-Sangamonian time. (See Fisk and McFarlan, 1955). The glacial stages were times of low sea level when the streams of the Gulf Coast entrenched their channels well below present-day sea level. Estimates of the lowering of sea level during the last glacial stage range from about 300 to 450 feet. The Trinity and Neches Rivers, during the last lowering of sea level, flowed over a 100-mile stretch of the then exposed continental shelf before discharging into the Gulf. (See maps in: Fisk and McFarlan, 1955, figure 4; Curray, 1965, figure 19a; Kane, 1959, figure 2). Kane's map of the oxidized zone at the top of the Beaumont Clay showed that the entrenched valleys of the Neches and Sabine Rivers joined under the present site of Sabine Lake (Figure 23). The sediments deposited since the beginning of the Holocene are those that lie above this marker horizon, which extends beneath the land areas and continues as an unconformity beneath the continental shelf. (See Bernard and LeBlanc, 1965, p. 150, 177-179; Curray, 1965, p. 733).

The time of the lowest sea level during the mid-Wisconsin has been estimated as more than 25,000 years ago by Bernard and LeBlanc (1965, p. 149) and about 18,000 years ago by Curray (1965, p. 723-724).

Sea level rose to its present level perhaps 3,000 to 5,000 years ago and has remained at about the same level. The various coastal features of Holocene age, seaward of the outcrop of the Beaumont Clay, are all less than 5,000 years old. Trinity Bay and Sabine Lake are essentially drowned valleys of the entrenched Pleistocene Trinity and Neches Rivers.

A few recent concepts and reformulations of the glacial stratigraphy and history of the midwestern United States have pointed up some areas where Fisk's theories seem to need revision; see Flint (1963), Frye and Willman (1960), Frye, Willman, and Black (1965), Frye and Leonard (1965), Curray (1965), Frye and Leonard (1953), Bernard and LeBlanc (1965), Durham (1965), Aten (1966a, 1966b), and Aronow (1967).

The Pleistocene history of the western Gulf Coast in general and of Chambers and Jefferson Counties in particular is far from worked out in detail, and much work remains to be done.

CONCLUSIONS AND RECOMMENDATIONS

Only small supplies of fresh ground water exist in the aquifers in Chambers and Jefferson Counties. Most of the fresh water used is surface water from the Trinity and Neches Rivers. Fifty-two percent of the ground water used is imported from neighboring counties. Large quantities of fresh ground water are available in adjoining counties and any large-scale demand for fresh ground water will likely be met by additional importation. Except for Beaumont's planned expansion of its well field in Hardin County, most future water needs will probably be met by surface-water supplies. Additional small fresh water supplies can be developed in Chambers and Jefferson Counties, but this development should be preceded by a careful program of testing and evaluation.

To fully utilize available ground water, the observation-well program in Chambers and Jefferson Counties to obtain data on both quality of water and water levels should not only be continued, but expanded and combined with the programs in adjacent counties. At present, the observation-well program in Chambers and Jefferson Counties covers only parts of the area. The expansion of this program should consider the planned increase of pumpage in Hardin County as well as anticipated increases in other counties. New wells should be continually inventoried, and aquifer tests should be made on the new wells to obtain additional information on the hydraulic properties of the aquifers. Collection of water samples should be expanded to monitor salt movement in all areas. Detailed observation of water levels and water quality in the vicinity of the salt domes, particularly in the vicinity of Mont Belvieu, is needed in

order to more precisely define and predict the movement of water in these areas of salinization.

Subsidence, as related to ground-water production, is, and will likely remain, a minor problem because additional development will probably be limited. Water levels will probably continue to be lowered by pumping in adjacent counties. However, data derived from measurements of subsidence when used with geologic and hydrologic data are useful in determining maximum water availability. This type of data has been used in the construction of analog models in this area. Also, knowledge of amount and rate of subsidence is important in planning surface drainage and water transfer facilities. Thus, an expanded program for measuring subsidence is needed in Chambers and Jefferson Counties. Further delay in starting such a program may prevent accurate determination of total subsidence and rates of subsidence. An enlarged network of bench marks should be established and leveled periodically. This program should be in conjunction with the program for the collection of water-level and pumpage records, so that correlations of cause and effect of subsidence can be made in the future.

Electrical-analog models are useful in the evaluation of aquifers. Such a model has been completed for the aquifers of the Houston district (Wood and Gabrysch, 1965). A preliminary model of the Chicot and Evangeline aquifers in southeast Texas and southwest Louisiana, including Chambers and Jefferson Counties, has been constructed. The program recommended above will provide data that could be used to improve the models and aid in the proper planning and development of the ground-water resources of Chambers and Jefferson Counties.

- American Society for Testing Materials, 1959, Manual on industrial water and industrial waste water: Am. Soc. for Testing Materials Spec. Tech. Pub. 148-D, 2nd., 653 p, [1960].
- Anders, R. B., McAdoo, G. D., and Alexander, W. H., Jr., 1968, Ground-water resources of Liberty County, Texas: Texas Water Devel. Board Rept. 72, 140 p.
- Aronow, Saul, 1967, Place of the Deweyville Formation in the Western Gulf Coast Recent-Pleistocene sequence: Program 1967 Southeastern Sec. Geol. Soc. America Ann. Mtg., Tallahassee, Florida, p. 15-16.
- Aten, L. E., 1966a, Late Quaternary alluvial history of the Lower Trinity River, Texas, a preliminary report, in Shafer, H. J., An archeological survey of Wallisville Reservoir, Chambers County, Texas: Texas Archeol. Salvage Proj. Survey Rept. no. 2, p. 39-43.
- —___1966b, Late quaternary surface geology of the Lower Trinity River area, Southeastern Texas: Univ. of Houston, Dept. Geology, unpublished rept., 29p.
- Baker, E. T., Jr., 1964, Geology and ground-water resources of Hardin County, Texas: Texas Water Comm. Bull. 6406, 179 p.
- Barton, D. C., 1930a, Deltaic Coastal Plain of southeastern Texas: Geol. Soc. America Bull., v. 41, no. 3, p. 359-382.
- 1930b, Surface geology of coastal southeast Texas: Am. Assoc. Petroleum Geologists Bull., v. 14, no. 10, p. 1301-1320.
- Bernard, H. A., 1950, Quaternary geology of southeast Texas: Louisiana State Univ., doctoral dissertation, 165 p.
- Bernard, H. A., and LeBlanc, R. J., 1965, Resume of the Quaternary geology of the northwestern Gulf of Mexico Province, *in* Wright, H. E., and Frey, D. G., eds., The Quaternary of the United States: Princeton, N. J., Princeton Univ. Press, p. 137-185.
- Bernard, H. A., LeBlanc, R. J., and Major, C. F., 1962, Recent and Pleistocene geology of southeast Texas, *in* Geology of the Gulf Coast and Central Texas and guidebook of excursions: Geol. Soc. America, 1962 Ann. Mtg., Houston, Texas, Houston Geol. Soc., p. 175-224.
- Bureau of Economic Geology, 1968a, Geologic Atlas of Texas, Beaumont Sheet: Univ. Texas at Austin, Bur. Econ. Geology map.
 - ____1968b, Geologic Atlas of Texas, Houston Sheet: Univ. Texas at Austin, Bur. Econ. Geology map.

- Cooper, H. H., Jr., and Jacob, C. E., 1946, A generalized graphical method for evaluating formation constants and summarizing well-field history: Am. Geophys. Union Trans., v. 27, p. 526-534.
- Crout, J. D., Symmank, D. G., and Peterson, G. A., 1965, Soil survey of Jefferson County, Texas: U.S. Dept. Agr. Ser. 1960, no. 21.
- Curray, J. R., 1965, Late Quaternary history, continental shelves of the United States, *in* Wright, H. E., and Frey, D. G., eds., The Quaternary of the United States: Princeton, N. J., Princeton Univ. Press, p. 723-735.
- Darton, N. H., Stephenson, L. W., and Gardner, Julia, 1937, Geologic map of Texas: U.S. Geol. Survey map.
- Deussen, Alexander, 1914, Geology and underground waters of the southeastern part of the Texas Coastal Plain: U.S. Geol. Survey Water-Supply Paper 335, 365 p.
- Doering, John, 1956, Review of Quaternary surface formations of Gulf Coast Region: Am. Assoc. Petroleum Geologists Bull., v. 40, no. 8, p. 1816-1862.
- Doyel, W. W., 1956, Basic data and summary of ground-water resources of Chambers County, Texas: Texas Water Comm. Bull. 5605, 77 p.
- Durham, C. O., 1965, Stream activity in the Central Gulf Coast area during the Wisconsin Glacial (abs): Geol. Soc. America Spec. Paper 82, p. 298.
- Fenneman, N. M., 1938, Physiography of eastern United States: New York, McGraw-Hill Book Co., Inc., 714 p.
- Ferris, J. G., Knowles, D. B., Brown, R. H., and Stallman, R. W., 1962, Theory of aquifer tests: U.S. Geol. Survey Water-Supply Paper 1536-E, 173 p.
- Fisk, H. N., 1940, Geology of Avoyelles and Rapides Parishes: Louisiana Dept. Conserv. Bull. 18, 240 p.
- Fisk, H. N., and McFarlan, Edward, Jr., 1955, Late Quaternary deltaic deposits of the Mississippi River *in* Poldervaart, Arie, ed., Crust of the earth: Geol. Soc. America Spec. Paper 62, p. 279-302.
- Flint, R. F., 1963, Status of the Pleistocene Wisconsin stage in Central North America: Science, v. 139, no. 3553, p. 402-404.
- Frye, J. C. and Leonard, A. B., 1953, Definition of time line separating a Glacial and Interglacial Age in the

Pleistocene: Am. Assoc. Petroleum Geologists Bull., v. 37, no. 11, p. 2581-2586.

- Frye, J. C., and Leonard, A. B., 1965, Quaternary of the Southern Great Plains *in* Wright, H. E., and Frey, D.
 G., eds: The Quaternary of the United States: Princeton, N. J., Princeton Univ. Press, p. 203-216.
- Frye, J. C., and Willman, H. B., 1960; Classification of the Wisconsinan Stage in the Lake Michigan Glacial Lobe: Illinois Geol. Surv. Circ. 285, 16 p.
- Frye, J. C., Willman, H. B., Black, R. F., 1965, Outline of glacial geology of Illinois and Wisconsin, *in* Wright, H. E., and Frey, D. G., eds., The Quaternary of the United States: Princeton, N. J., Princeton Univ. Press, p. 43-61.
- Gabrysch, R. K., 1967, Development of ground-water in the Houston district, Texas, 1961-65: Texas Water Devel. Board Rept. 63.
- Garner, L. E., 1967, Sand resources of Texas Gulf Coast: Univ. Texas at Austin, Bur. Econ. Geology Rept. Inv. 60, 85 p.
- Graf, C. H., 1966, The Late Pleistocene Ingleside Barrier trend: Rice Univ. masters thesis, 83 p.
- Hackett, O. M., 1962, Ground-water levels in the United States, 1956-59, south central states: U. S. Geol. Survey Water-Supply Paper 1549, 192 p.
- Hanna, M. A., 1958, Salt dome structures: Gulf Oil Company Petroleum Indoctrination Course, 45 p.
- Harder, A. H., 1960, Geology and ground-water resources of Calcasieu Parish, Louisiana: U.S. Geol. Survey Water-Supply Paper 1488, 102 p.
- Hawkins, M. E., and Jirik, C. J., 1966, Salt domes in Texas, Mississippi, Alabama, and offshore tidelands, a survey: U.S. Bur. Mines, I.C. 8313, 78p.
- Hayes, C. W., and Kennedy, William, 1903, Oil fields of the Texas-Louisiana Gulf Coastal Plain: U.S. Geol. Survey Bull. 212, 174 p.
- Hem, J. D., 1959, Study and interpretation of the chemical characteristics of natural water: U.S. Geol. Survey Water-Supply Paper 1473, 269 p.
- Holland, W. C., Hough, L. W., and Murray, G. E., 1952, Geology of Beauregard and Allen Parishes: Louisiana Dept. of Conserv. Bull. no. 27, 224 p.
- Hsu, J. H., 1960, Texture and mineralogy of the Recent Sands of the Gulf Coast: Jour. Sed. Petrology, v. 30, no. 3, p. 380-403.
- Kane, H. E., 1959, Late Quaternary geology of Sabine

Lake and vicinity, Texas and Louisiana: Gulf Coast Assoc. Geol. Soc. Trans., v. 9, p. 225-235.

- Kane, J. W., 1967, Monthly reservoir evaporation rates for Texas, 1940 through 1965: Texas Water Devel. Board Rept. 64, 111 p.
- Kennedy, W., 1892, A section from Terrell, Kaufman Co., to Sabine Pass on the Gulf of Mexico: Texas Geol. Survey 3d Ann. Rept., p. 45 and 62.
- Kunze, G. W., Oakes, Harvey, and Bloodworth, M. E., 1963, Grumosols of the Coast Prairie of Texas: Soil Sci. Soc. America Proc., v. 27, no. 4, p. 412-421.
- Lang, J. W., Winslow, A. G., and White, W. N., 1950, Geology and ground-water resources of the Houston district, Texas: Texas Board Water Eng. Bull. 5001, 59 p.
- Livingston, Penn, and Cromack, G. H., 1942a, Records of wells, drillers' logs, water analyses, and maps showing locations of wells and test holes in Chambers County: Texas Board Water Eng. dupl. rept., 94 p.
- _____1942b, Well data, Jefferson County, Texas: Texas Board Water Eng. dupl. rept., 64 p.
- Maier, F. J., 1950, Fluoridation of public water supplies: Am. Water Works Assoc. Jour., v. 42, pt. 1, p. 1120-1132.
- McEwen, M. C., 1963, Sedimentary framework of the Trinity River Delta: Rice Univ. doctoral dissertation, 100 p.
- McFarlan, Edward, Jr., 1961, Radiocarbon dating of Late Quaternary deposits, south Louisiana: Geol. Soc. America Bull., v. 72, no. 1, p. 129-158.
- Melton, F. A., 1954, "Natural mounds" of northeastern Texas, southern Arkansas, and northern Louisiana: Hopper, v. 14, no. 7, p. 89-121.
- Moore, E. W., 1940, Progress report of the committee on quality tolerances of water for industrial uses: New England Water Works Assoc. Jour., v. 54, p. 263.
- Mowery, I. C., McKee, G. S., Matanze, Francisco, and Everett, Francis, 1960, Soil survey of Fort Bend County, Texas: U.S. Dept. Agr. Ser. 1955, no. 5.
- Price, W. A., 1933, Role of diastrophism in topography of Corpus Christi area, South Texas: Am. Assoc. Petroleum Geologists Bull., v. 17, no. 8, p. 907-962.
- ——___1947, Equilibrium of form and forces in tidal basins of coast of Texas and Louisiana: Am. Assoc. Petroleum Geologists Bull., v. 31, no. 9, p. 1619-1663.

- Rogers, J. E., and Calandro, A. J., 1965, Water resources of Vernon Parish, Louisiana: WaterResources Bull. no. 6, 104 p.
- Rose, N. A., 1943, Progress report on the ground-water resources of the Texas City area, Texas: U.S. Geol. Survey open-file rept. 45 p.
- Sandeen, W. M., 1968, Ground-water resources of San Jacinto County, Texas: Texas Water Devel. Board Rept. 80, 89 p.
- Scofield, C. S., 1936, The salinity of irrigation water: Smithsonian Inst. Ann. Rept., 1934-35, p. 275-287.
- Slaughter, B. H., 1965, Preliminary report on the Paleontology of the Livingston Reservoir Basin, Texas: Fondren Sci. Ser. 10.
- Tarver, G. R., 1968a, Ground-water resources of Tyler County, Texas: Texas Water Devel. Board Rept. 74, 91 p.
- 1968b, Ground-water resources of Polk County, Texas: Texas Water Devel. Board Rept. 82, 109 p.
- Taylor, T. U., 1907, Underground waters of the Coastal Plain of Texas: U.S. Geol. Survey Water-Supply Paper 190, 73 p.
- Texas Water Commission and Texas Water Pollution Control Board, 1963, A statistical analysis of data on oil field brine production and disposal in Texas for the year 1961 from an inventory conducted by the Texas Railroad Commission: Railroad Commission Dist. 3, v. 2, 473 p.
- U.S. Public Health Service, 1962, Public Health Service drinking water standards: Public Health Service Pub. 956, 61 p.
- U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. of Agr. Handb. 60, 160 p.

- Walker, R. K., and Miears, R. J., 1957, The Coastal Prairies, *in* Soil, the Yearbook of Agriculture: Washington, D. C., Dept. of Agr., p. 531-534.
- Wenzel, L. K., 1942, Methods for determining permeability of water-bearing materials, with special reference to discharging well methods: U.S. Geol. Survey Water-Supply Paper 887, 192 p.
- Wesselman, J. B., 1965, Geology and ground-water resources of Orange County, Texas: Texas Water Comm. Bull. 6516, 112 p.
- _____1967, Ground-water resources of Jasper and Newton Counties, Texas: Texas Water Devel. Board Rept. 59, 167 p.
- Wilcox, L. V., 1955, Classification and use of irrigation waters: U.S. Dept. Agr. circ. 969, 19 p.
- Wilson, C. A., 1967, Ground-water resources of Austin and Waller Counties, Texas: Texas Water Devel. Board Rept. 68, 231 p.
- Winslow, A. G., and Kister, L. R., Jr., 1956, The saline water resources of Texas: U.S. Geol. Survey Water-Supply Paper 1365, 105 p.
- Winslow, A. G., and Wood, L. A., 1959, Relation of land subsidence to ground-water withdrawals in the upper Gulf Coast region, Texas: Mining Eng., p. 1030-1034.
- Wood, L. A., 1956, Availability of ground water in the Gulf Coast region of Texas: U.S. Geol. Survey open-file rept.
- Wood, L. A., and Gabrysch, R. K., 1965, Analog model study of ground water in the Houston district, Texas: Texas Water Comm. Bull. 6508, 103 p.
- Wood, L. A., Gabrysch, R. K., and Marvin, Richard, 1963, Reconnaissance investigation of the ground-water resources of the Gulf Coast region, Texas: Texas Water Comm. Bull. 6305, 114 p.

DEPTH (FEET) 1,005 1,068 1,073 1,126 1,139 1,154 1,167 1,250

т	HICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)
Chambers County			Sand	13
Well DH-64-04-709	ľ		Shale and streaks of sand	34
Owner: Gulf Oil Co			Sand	8
Driller: Gulf Oil Co			Shale and sandy shale	51
Clay, surface	15	15	Sand	21
Gumbo	37	52	Shale	16
Sand	58	110	Sand and streaks of shale	40
Gumbo	18	128	Shale	5
Sand	21	149	Sand, coarse and streaks of shale	65
Gumbo	25	174	Shale and streaks of sand	16
Sand	22	196	Sand and streaks of shale	29
Gumbo	2	198	Shale	10
			Sand	13
Well DH-64-09-30			Shale	18
Owner: Chambers County Wat Improvement District No. Driller: Layne-Texas	1 Well 5		Shale and sand streaks	26
Soil	4	4	Sand, fine and shale streaks	101
Clay	111	115	Shale and sand streaks	63
Clay, sandy	45	160	Sand	5
Shale	30	190	Shale and sandy shale	53
Shale, sandy and shale	100	290	Sand, fine white	13
Shale	108	398	Shale, sandy and shale	15
Sand, fine gray	72	470	Sand	13
Shale	4	474	Shale and sandy shale	83
Sand, coarse white	46	520	Well DH-64-0)9-305
Shale	10	530	Owner: Diamond All Driller: Layne-⊺	
Well DH-64-09-30)2		Surface soil	4
Owner: Chambers County Wa	ter Control 8	ia di la constante di la consta	Clay	31
Improvement District No Driller: Layne-Texa	. 1 Well 4		Clay and lime breaks	41
Soil	4	4	Clay, sandy and few lime breaks	40
Clay	112	116	Clay, sticky	20
Shale, sandy	42	158	Clay, sandy	14
	475	222		

Clay

Sand

Clay

Clay, sandy

Shale, sandy

Sand, broken

Sand and clay breaks

з

Shale

Sand and shale

Sand, gray

Shale

Shale

Shale and streaks of sand

Sand, coarse white

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
Well DH-64-09-305-	Continued		Well DH-64-09	-306	
Shale	21	391	Owner: Warren Petr		
Shale, sandy	17	408	Driller: Layne-Te		10
Shale	20	428	Surface soil	10	10
Sand	32	460	Clay	113	123
Sand, broken	25	485	Sand	15	138
Shale, sandy	24	509	Shale	172	310
Sand and shale breaks	19	528	Sand	60	370
Sand	37	565	Shale, sandy	70	440
Sand and shale streaks	29	594	Sand-cut good	90	530
Rock	1	595	Sand and layers of rock	5	535
Shale	28	623	Sandy coarse-cut good, little hard	43	578
Shale, sandy and sand	21	644	Shale	112	690
Shale	32	676	Sand, coarse with hard shale breaks	96	786
Shale, sandy	11	687	Sand-cut good	37	823
Sand	18	705	Sand, coarse with hard shale breaks	94	917
Shale	14	719	Shale-few sand breaks	81	998
Sand	51	770	Sand, fine	33	1,031
Sand and shale streaks	18	788	Sand, fine with shale breaks	54	1,085
Sand and few shale breaks	76	864	Sand	41	1,126
Shale	11	875	Shale and streaks of sand	25	1,151
Sand and shale, broken	30	905	Sand	30	1,181
Sand	23	928	Shale	9	1,190
Shale, sandy and shale breaks	25	953	Sand and streaks of shale	29	1,219
Shale	22	975	Shale	26	1,245
Shale, sandy	10	985	Sand	20	1,265
Sand and lime breaks	125	1,110	Shale and few sand breaks	21	1,286
Sand and shale breaks	124	1,234	Sand	27	1,313
Shale	10	1,244	Shale	40	1,353
Sand	37	1,281	Sand and few shale breaks	103	1,456
Shale	10	1,291	Shale	11	1,467
Sand	10	1,301	Sand, coarse, cut good	22	1,489
Shale	37	1,338	Shale	8	1,497
Sand	19	1,357	Sand, coarse and shale breaks	30	1,527
Shale, sandy	5	1,362	Shale	32	1,559
Sand and shale breaks	44	1,406	Sand, cut poorly	16	1,585
Shale	11	1,417	Shale	21	1,606
			Shale, sandy	10	1,616
			Shale	5	1,621

Shale, sandy

5

1,626

THICKNESS DEPTH (FEET) (FEET)

Well DH-64-09-307

Owner: Diamond Alkali Co. Well 3 Driller: Layne-Texas Co.

СІау	98	98
Sand	102	200
Clay, sandy	117	317
Sand	100	417
Sand and shale streaks	260	677
Shale	23	700
Sand	28	728
Sand and shale breaks	189	917
Shale and sand streaks	103	1,020
Sand and sandy shale	180	1,200
Gana and the second		

Well DH-64-09-310

Owner: Chambers County Water Control & Improvement District No. 1 Driller: Layne-Texas Co.

Soil	5	5
Clay	60	65
Sand, white, coarse	22	87
Clay	12	99
Sand layers and shale	17	116
Shale	8	124
Sand	12	136
Shale	20	156
Sand, gray, coarse	25	181
Sand, coarse, and traces of gravel	35	216
Shale	10	226

Well DH-64-09-314

Owner: Asa Wilburn Driller: Amos Jennische

Soil	2	2
Clay	58	60
Shale and fine sand	9	69
Gumbo	21	90
Gumbo and shale	46	136
Sand	20	156

THICKNESS	DEPTH
(FEET)	(FEET)

Well DH-64-09-315

Owner: Chambers County Water Control & Improvement District No. 1 Driller: Layne-Texas Co.

Topsoil	5	5
СІау	47	52
Sand, brown, fine	9	61
Shale	14	75
Shale, sandy	30	105
Shale	84	189
Sand, white, fine	18	207
Sand and shale streaks	11	218
Shale	8	226
Sand, coarse	25	251
Shale	21	272
Sand, blue	11	283
Shale	6	289
Sand, white, coarse	51	340

Well DH-64-09-316

Owner: Sun Oil Co. Driller: Sun Oil Co.

Clay and sand	99	99
Clay	12	111
Sand and boulders	42	153
Gumbo	184	337
Sand and gravel	95	432
Rock	2	434
Sandy shale	30	464
Sand	14	478
Gumbo	128	606
Sand	18	624
Gumbo	2	626

Well DH-64-09-318

Owner: Crumpler Brothers Driller: Homer Wright

Soil and sandy clay	30	30
Sand	14	44
Clay	8	52
Clay, sandy	24	76

Well DH-64-09-318–C	THICKNESS (FEET)	DEPTH (FEET)
Sand	14	90
Gumbo	22	112
Sand	17	129
Gumbo	33	162
Sand	10	172
Gumbo	10	182
Sand	6	188
Gumbo	3	191
Sand, white, coarse	24	215
Sand, blue, fine, and wood	6	221
Gumbo, light blue	3	224
Sand, white, coarse	12	236
Shale, sticky	18	254

Well DH-64-09-319

Owner: Crumpler Brothers Driller: Homer Wright

Sand, soil and clay	76	76
Sand	14	90
Clay, sandy	93	183
Sand	7	190
Gumbo	4	194
Sand	44	238
Gumbo	10	248
Shale, sandy	34	282
Sand and boulders	58	340
Sand, shale and boulders	68	408
Gumbo	24	432
Shale, sandy	34	466
Sand	8	474
Gumbo	9	483
Sand, coarse	25	508
Gumbo	10	518
Sand, fine	52	570
Sand, coarse	30	600
Shale	3	603

Well DH-64-09-321		
	Owner: Crumpler Brothers Driller: Homer Wright	
Soil and sand	20	20
Clay	20	40
Shale, sandy	138	178
Shale, hard	26	204
Sand, fine	33	237
Shale, green	4	241
Sand, fine	42	283
Sand, coarse	21	304

THICKNESS

(FEET)

DEPTH

(FEET)

Well DH-64-09-324

Owner: J. O. Stockbridge Driller: C. A. Williams

Clay, yellow	64	64
Gumbo, tough	28	92
Shale, sandy	23	115
Sand, soft	30	145
Gumbo, soft and sand	27	172
Gumbo, tough	16	188
Gumbo, soft and sand	22	210
Gumbo, tough	10	220
Sand and shale	20	240
Gumbo, sticky	41	281
Sand and gumbo	5	286
Sand, hard	28	314

Well DH-64-09-327

Owner: Crumpler Brothers Driller: Homer Wright

Soil and clay	10	10
Sand	9	19
Clay	a	25
Sand	10	35
Sand and clay	25	60
Sand	16	76
Clay, hard	6	82
Sand	10	92
Gumbo	17	109
Sand	21	130

	THICKNESS (FEET)	DEPTH (FEET)
Well DH-64-09-327	-Continued	
	٩	130

Gumbo	9	139
Sand	6	145
Gumbo	40	185
Shale, sandy	12	197
Sand	44	241
Gumbo and sand	40	281

Well DH-64-09-328

Owner: Tillman Fitzgerald Driller: Amos Jennische

Soil	3	3
Clay	17	20
Shale	50	70
Gumbo	5	75
Shale and sand	10	85
Gumbo	15	100
Shale and gumbo	10	110
Gumbo	85	195
Shale	9	204
Sand, fine	3	207
Gumbo and shale	48	255
Gumbo	52	307
Shale and sand	10	317
Sand	83	400
Gumbo	93	493
Sand	17	510

Well DH-64-09-329

Owner: Temple Fitzgerald Driller: Amos Jennische

Soil	3	3
Clay	3	6
Quicksand	29	35
Shale	25	60
Gumbo and shale	20	80
Gumbo	120	200
Shale	9	209
Sand	8	217

	THICKNESS (FEET)	DEPTH (FEET)
Well DH-64-09-6	13	
Owner: Humble Oil & Re Driller: Lowry Water	-	
Clay, yellow and white	72	72
Sand	41	113
Shale	13	126
Sand, good	14	140

Well DH-64-09-903

Owner: John Nelson Driller: Katy Drilling Co.

Clay and topsoil	137	137
Sand and clay strips	48	185
Clay	63	248
Shale, sandy	22	270
Clay	50	320
Shale, sandy	20	340
Clay	37	377
Sand	30	407
Clay and sand strips	15	422
Sand, rocky and clay strips	71	493
Clay	27	520
Sand	6	526
Clay and sand strips	27	553
Sand and clay strips	44	597
Clay and sand strips	118	715
Sand	11	726
Clay	20	746
Sand and clay strips	85	831
Sand, fine	76	907
Clay	5	912
Sand and clay	33	945

Well DH-64-09-918

Owner: Houston Lighting & Power Co. Driller: --

Clay, small sand breaks7070Sand31101Clay with small sand breaks147248Clay and sandy clay86334Sand and gravel with clay breaks71405

	THICKNESS (FEET)	DEPTH (FEET)		THICK (FEE
Well DH-64-09-918	-Continued		Clay	:
Sand	1	406	Sand and hard streaks	2
Clay	2	408	Clay	
Sand	31	439		
Clay	19	458	Well DH-64-10-2	205
Sand with clay breaks	7	465	Owner: Will Ic Driller: Amos Jenr	
Sand	20	485	Soil	(
Sand and hard streaks	126	611	Clay	124
Sand, fine	20	631	Sand	1!
Sandy clay with streaks of sand	15	646	Gumbo, sand and shale	20
Clay with sandy clay	31	677	Gumbo	129
Sand and clay	8	685	Sand	1:
Clay, sandy clay, and streaks of sand	37	722	Well DH-64-10-2	206
Sand, fine	15	737	Owner: H. C. Ic	
Clay and streaks of sand	19	756	Driller: C. A. Will	
Sand and streaks of clay	52	808	Clay, red	150
Sand and sandy clay	50	858	Gumbo	20
Clay and sandy clay	113	971	Sand, fine	10
Sand, fine	19	990	Gumbo	30
Clay	8	998	Sand	10
Sand	60	1,058	Gumbo, hard	60
Sand and streaks of clay	19	1,077	Shale, soft	25
Clay and sandy clay	11	1,088	Sand, coarse	35
Sand	5	1,093	Sand, fine	30
Clay and sandy clay with streaks of sand	22	1,115	Well DH-64-10-3	02
Sand and streaks of clay	25	1,140	Owner: Mayes Es Driller: Texas Highwa	
Sand	7	1,147	Soil, black, sandy	iy Dept.
Sandy clay with streaks of clay	29	1,176	Clay, gray, soft, sandy	
Clay and sandy clay	21	1,197	Clay, yellow, sticky	-
Sand, fine	19	1,216	Sand, yellow, water	-
Clay and sandy clay	10	1,226	Sand, water	14
Sand	63	1,289		8
Сіау	9	1,298	Clay, brown and gray, sandy with small shells	8
Сіау	8	1,306	Clay, brown and blue	2
Sand	6	1,312	Clay, brown and blue streaked	15
Sandy clay and hard streaks	9	1,321	Clay, brown and blue streaked hard	2
Sand	22	1,343		

lay	3	1,346
and and hard streaks	25	1,371
lay	4	1,375
Well DH-64-10	-205	
Owner: Will I Driller: Amos Jer		
oil	6	6
lay	124	130
and	15	145
umbo, sand and shale	205	350
umbo	129	479
and	13	492
Well DH-64-10	-206	
Owner: H. C. Driller: C. A. Wi		

THICKNESS DEPTH

(FEET)

(FEET)

	THICKNESS (FEET)	DEPTH (FEET)
Well DH-64-10-302Co	ontinued	
Clay, hard, light-brown streaked	1	59
Clay, light-blue streaked	10	69
Clay, blue, sandy, soft	1	70
Sand, blue, water	8	78
Sand, blue, soft, water	8	86
Sand, blue, water	2	88
Clay, blue	1	89
Sand, blue, water	31	120
Clay, blue	7	127
Sand, blue, water	7	134
Clay, blue, soft, sandy	1	135
Sand, blue, water	13	148
Weil DH-64-10-4	.01	
Owner: Finger Furnit Driller: Katy Drillir	ture Co.	
Topsoil and clay	132	132
Sand and clay strips	58	190
Clay	45	235
Sand, real fine	12	247
Clay, blue	83	330
Sand	61	391
Clay	52	443
Sand, fine	63	506
Clay and sand strips	54	560
Clay	30	590
Sand	7	597
Clay and sand strip	68	665
Sand, rock, and clay strips	51	716
Clay and sand strips	39	755
Sand, rocky and clay	116	871
Well DH-64-10-405		
Owner: C. O. Williams Driller: Jim Avera		
Sand	2	2

Clay

Shale

Sand, coarse

	THICKNESS (FEET)	DEPTH (FEET)
Sand	15	346
Shale	8	354
Sand	8	362
Shale	68	430
Shale, sandy	10	440
Shale	30	470
Sand	18	488
	Well DH-64-10-406	
	Owner: Jack Rosenau Driller: Jim Avera	
Clay	118	118
Shale, sandy	10	128
Sand, water	21	149
	Well DH-64-10-408	
	Owner: Ben Dutton Driller: Amos Jennische	
Soil	3	3
Clay	93	96
Shale	22	118
Sand	25	143
	Well DH-64-10-501	
	Owner: C. T. Joseph, Jr. Driller: Katy Drilling Co.	
Topsoil and clay	110	110
Sand	23	133
Ciay	38	171
Sand	98	269
Clay	10	279
Sand	31	310
Clay	35	345
Sand, shale	22	367
Sand	20	387
Clay	28	415
Shale, soft	32	447
Sand and shell	19	466
Clay	13	479
Shale, soft	49	528

87

127

331

85

40

204

	THICKNESS (FEET)	DEPTH (FEET)
Well DH-64-10-501-0	Continued	
Shale, soft, and sandy strips	38	566
Shale and small clay strips	35	601
Sand	15	616
Shale	112	728
Sand, rocky	181	909
Shale	1	910
No record	2	912

	THICKNESS (FEET)	DEPTH (FEET)
Gumbo and shale	147	265
Shale, sandy	10	275
Gumbo	70	345
Sand	15	360
Gumbo	120	480
Sand	28	508

Well DH-64-10-514

Owner: Mayes Estate Driller: Texas Highway Dept.

Clay, brownish-yellow and shell 1 1 Clay, yellow, soft, brown 1 2 Clay, yellow 1 з Clay, yellow and gray and some white gravel 1 4 Clay, yellow and gray 4 8 Clay, yellow and gray, sandy 1 9 Clay, yellow and gray 4 13 Clay, yellow and gray, sandy 1 14 Clay, yellow with white gravel 3 17 Clay, gray and yellow 4 21 Clay, yellowish-blue and gray 1 22 Clay, red, yellow and blue 3 25 Clay, red, yellow and blue, sandy, water 1 26 Clay, red and gray 5 31 Clay, yellow and blue 10 41 Clay, blue and brown 5 46

Well DH-64-10-516

Owner: C. T. Joseph Estate Driller: Jim Avera

Soil	2	2
Clay	146	148
Sand	12	160
Shale	118	278
Sand	5	283
Shale	62	345
Sand	8	353
Shale	145	498
Sand	14	512

Well DH-64-10-504

Owner: Ernest Winfree Driller: Amos Jennische

Soil	3	3
Clay	112	115
Sand	6	121
Gumbo	6	127
Rock and boulders	8	135
Gumbo	50	185
Shale	19	204
Sand	18	222

Well DH-64-10-511

Owner: Hugh Welch Driller: Jim Avera

Clay	94	94
Sand, water	24	118
Shale with sand streaks	42	160
Shale, sticky	110	270
Shale, sandy	8	278
Shale, sticky	62	340
Sand, water	26	366
Shale, sticky	39	405
Shale, sandy	7	412
Shale, sticky	63	475
Sand, water	26	501

Well DH-64-10-512

Owner: C. T. Joseph Estate Driller: Amos Jennische			
Clay	98	98	
Sand	20	118	

	THICKNESS (FEET)	DEPTH (FEET)
	Well DH-64-10-702	
(Dwner: Texas Oil and Gas Co. Driller: Homer Wright	
Clay and sand	185	185
Sand	27	212
Shale and sand	105	317
Sand	25	342
Shale	58	400
Sand	75	475

Well DH-64-10-703

Owner: V. A. Lawren Driller: Pitre Water We		
Clay	71	71
Sand	3	74
Gravel	1	75
Clay	15	90
Clay, sandy	8	98
Gravel	2	100
Clay, sandy	14	114
Sand	7	121
Clay	4	125
Sand, fine	16	141
СІау	7	148
Sand, fine	7	155
СІау	19	174
Clay, fine sand with lens of clay	31	205
Clay	29	234
Clay with lens of sand and gravel	16	250
Sand	12	262
СІау	2	264
Sand, fine, water	4	268
Sand, coarse, water	10	278
Gravel, water	6	284
Sand, fine, water	6	290
Clay, blue	15	305
Sand	10	315
Clay, sandy	5	320
Sand and gravel	19	339
Clay	9	348

	THICKNESS (FEET)	DEPTH (FEET)
Gravel	2	350
Shale, sandy	12	362
Sand	4	366
Clay	18	384
Sand and gravel	1	385
Clay	2	387
Sand, fine	3	390
Clay, sandy	3	393
Clay	7	400
Sand and gravel, water	43	443

Well DH-64-10-707

Owner: V. A. Lawrence Driller: Luther Patterson

Surface	24	24
Shale	124	148
Sand	49	197
Shale	11	208
Sand	44	252
Shale	133	385
Sand, water	44	429

Well DH-64-10-801

Owner: Amos Lawrence Estate Driller: Amos Jennische

Soil	3	3
Shale	52	55
Sand	5	60
Shale	10	70
Gumbo, soft	65	135
Sand	10	145
Gumbo	60	205
Sand, fine	25	230
Gumbo, soft	43	273
Gumbo and rock	2	275
Sand	25	300
Gumbo	65	365
Sand	34	399

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
	Well DH-64-11-105			Well DH-64-11-401	
	Owner: A. H. Stade Driller: B & L Water Wells		D	Owner: E. S. Abshier riller: Katy Drilling Co.	
Clay	9	9	Topsoil	5	5
Sand	25	34	Sand	25	30
Shale	76	110	Clay	82	112
Sand	20	130	Sand	30	142
Shale	33	163	Clay	65	207
Sand	15	178	Sand	12	219
	Well DH-64-11-205		Clay	10	229
			Sand	40	269
	Owner: Stanolind Oil and Gas Co. Driller: Pitre Water Wells		Clay	71	340
Clay	31	31	Sand	42	382
Sand, water	17	48	Clay	110	492
Clay, tough	19	67	Sand, rocky	38	530
Sand, fine	34	101	Clay	10	540
Clay	9	110	Sand, rocky	27	567
Sand, water	26	136	Clay	11	578
Shale	23	159	Sand and clay	17	595
Sand	3	162		Well DH-64-11-502	
Shale	7	169			
Sand, water	6	175		Owner: Sun Oil Co. Driller: Sun Oil Co.	
Clay, tough	23	198	Sand, surface and clay	, 108	108
Sand	3	201	Shale, gravel and sand	88	196
Shale	12	213	Shale and gravel	420	616
Shale, sandy	7	220	Shale	100	716
Sand	1	221	Shale and sand	244	960
Shale, sandy	6	227	Sand and gravel	130	1,090
	Well DH-64-11-206		Shale and sand	162	1,252
	Owner: Stanolind Oil and Gas Co. Driller: Layne-Texas Co.			Well DH-64-11-802	
Clay	11	11		er: City of Anahuac Well 1 ler: Big State Drilling Co.	
Sand	43	54	Surface soil	2	2
Clay	29	83	Clay	3	5
Sand	23	106	Clay and sand	15	20
Clay	11	117	Clay	10	30
Sand	19	136	Shale	40	70
Clay	4	140	Clay	10	80
,	-		· · · · •		00

	Ū		
	THICKNESS (FEET)	DEPTH (FEET)	
Well DH-64-11-802-C	ontinued		
Sand, water	40	120	
Clay, sandy	10	130	Soil
Shale	20	150	Clay
Shale, sandy	48	198	Sand
Clay	2	200	
Sand	5	205	
Shale, sandy	120	325	
Sand, poor	25	350	Surfa
Shale	10	360	Clay
Sand and shale, layers	60	420	Sand
Shale	20	440	Gum
Sand, poor	20	460	Sand
Sand and shale broken layers	59	519	Gum
Well DH-64-11	-911		Sand
Owner: L. F. Fa Driller: Pitre Wate			
Clay, vari-colors	97	97	
Sand, fine, white	25	122	Clay
Sand and clay, broken	3	125	Sand
Well DH-64-11	-914		Shal
Owner: W. H. C Driller: Andy Fra			Sano Shal
Surface sand	2	2	San
Clay, yellow	158	160	Sha
Sand, fine	15	175	San
Gumbo, gray	145	320	San
Sand	20	340	Sha
Weil DH-64-13	2-107		San
Owner: M, P, I Driller: Andy Fr			
Surface sand	2	2	
Clay, yellow	60	62	Cla
Sand	29	91	Cla Sar
Well DH-64-1	2-109		Cla
Owner: Roy E. Driller: Pitre Wa	Abshier ter Wells		Sar
Clay	22	22	
Sand, very fine, white	16	38	

	THICKNESS (FEET)	DEPTH (FEET)	
Well DH-64-1	12-204		
Owner: C. A. Fowler Driller: J. E. Abshier			
Soil	4	4	
Clay	8	12	
Sand	22	34	
Well DH-64-12-206			
Owner: C. J. M Driller: Andy F			
Surface sand	2	2	
Clay, yellow	52	54	
Sand, fine	26	80	
Gumbo	185	265	
Sand	15	280	
Gumbo	11	291	
Sand	19	310	

Well DH-64-12-303

Owner: W. E. Jenkins Driller: Pitre Water Wells

Clay, tough, yellow	194	194
Sand, fine, gray	10	204
Shale, blue	74	278
Sand, fine, gray	10	288
Shale, blue	32	320
Sand, fine, gray	5	325
Shale, gray	20	345
Sand, fine, gray	5	350
Sand, loose, gray	23	373
Shale, medium	25	398
Sand, soft, dark-gray, very fine	5	403
• • • • •		

Well DH-64-12-502

Owner: Humble Oil and Refining Co. Driller: Humble Oil and Refining Co.			
Clay	91	91	
Sand and gravel	4	95	
Clay	35	130	
Sand, water	17	147	

	THICKNESS (FEET)	DEPTH (FEET)
Well DH-64-1	2-704	
Owner: Humble Oil ar Driller: L. Pat	-	
Clay	22	22
Sand	25	47
Clay	4	51
Sand	8	59
Clay	4	63

Well DH-64-13-102

Owner: Sun Oil Co. Driller: A-1 Water Wells

Soil, black surface	4	4
Clay, yellow	18	22
Sand, yellow	3	25
Shale, yellow	25	50
Sand, fine, blue	6	56
Shale, sticky	42	98
Sand, fine, gray	27	125
Shale, soft, blue	15	140
Sand, gray, water	35	175

Well DH-64-13-106

Owner: Lawrence Rowland Driller: V. R. Phelps

Clay	40	40
Shell, oyster	20	60
Clay	46	106
Sand	74	180

Well DH-64-13-112

Owner: C. B. Jeffery Driller: Andy Frankland

Surface sand	2	2
Clay, yellow	103	105
Sand, and clay, fine	15	120
Clay, gray	39	159
Sand	17	176

THICKNESS	DEPTH
(FEET)	(FEET)

Well DH-64-13-601

Owner: Trinity Bay Conservation District Well 1 Driller: Layne-Texas Co.

Topsoil	3	3
Clay	114	117
Sand, coarse	28	145
Clay	46	191
Sand, fine, gray	21	212
Clay	49	261

Well DH-64-13-602

Owner: Trinity Bay Conservation District Well 2 Driller: Layne-Texas Co.

Clay	115	115
Sand, white	33	148
Clay	41	189
Sand, gray	20	209
Clay	52	261

Well DH-64-13-604

Owner: H. M. Franssen Driller: V. R. Phelps

СІау	20	20
Sand, blue, fine	80	100
Clay	40	140
Sand	22	162

Well DH-64-13-616

Owner: Sinclair Refining Co. Driller: Lowry Water Wells

Surface, clay	18	18
Sand, gray	46	64
Shale, blue	61	125
Sand, good	25	150
Shale, soft	2	152

Well DH-64-13-617

Owner: Wilson LeBlanc Driller: Green Bros. Water Well Service				
Clay, yellow	16	16		
Sand, white	34	50		

	THICKNESS (FEET)	DEPTH (FEET)	
Well DH-64-14-	102		Shal
Owner: S. J. R [.] Driller: Pitre Wate			Sand
Clay, medium	20	20	
Sand, fine	29	49	
Clay, medium	64	113	Clay
Sand, coarse	35	148	Sano
Clay, medium	8	156	Shal
Sand, soft	20	176	Sand
Clay, medium	22	198	Shal
Well DH-64-14-	704		Shal
Owner: J. B. M Driller: V. R. Pl			Sano No i
Clay	35	35	
Quicksand	4	39	
СІау	150	189	
Sand	8	197	Clay
Well DH-64-17-	212		Clay Shai
Owner: C. Vicl Driller: Amos Jen			Sha San
Сіау	74	74	Sha
Sand	29	103	San
Shale	37	140	Sha
Shale and gumbo	60	200	Sha
Gumbo	125	325	San
Sand, fine and shale	10	335	San
Sand	11	346	Clay
Well DH-64-17	-302		San
Owner: The Tex Driller: Pitre Wate			
Clay, red	71	71	
Sand	28	99	Soil
Shale, blue	8	107	Cla
Sand, hard	13	120	San
Shale, blue	92	212	San
Sand, hard	47	259	
Shale, blue	61	320	
Sand, hard	7	327	

	THICKNESS (FEET)	DEPTH (FEET)	
Shale	5	332	
Sand	66	398	

Well DH-64-17-304

Owner: The Texas Co. Driller: Pitre Water Wells				
Clay, medium	64	64		
Sand, soft	44	108		
Shale, blue and sheli	75	183		
Sand, white fine	37	220		
Shale with coarse sand	178	398		
Shale, hard	120	518		
Sand, hard	47	565		
No record	19	584		

Well DH-64-17-305

Owner: The Texas Co. Driller: Pitre Water Wells

Clay, medium red	40	40
Shale, medium blue	25	65
Shale, medium blue and sand	15	80
Sand, rough, white and gravel	28	108
Shale, blue, sticky	36	144
Sand, medium fine, blue and shale	31	175
Shale, medium blue, sandy	44	219
Shale, medium blue	32	251
Sand, medium white, rough, fine	22	273
Sand, soft, white, fine	22	295
Clay, sticky, blue	49	344
Sand, rough, white	28	372

Well DH-64-17-307

Owner: Odell Fisher Driller: Amos Jennische

Soil	3	3
Clay	77	80
Sand	16	96

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
Well DH-64-17-3	308		Sand	5	595
Owner: B, D, Fis			Shale	26	621
Driller: Amos Jenr			Sand, broken and shale layers	14	635
Soil	3	3	Shale and sandy shale	58	693
Clay	77	80	Shale	18	711
Sand	17	97	Sand, broken	20	731
Well DH-64-17-6	501		Shale	28	759
Owner: Asa Wilt	ourn		Sand	80	839
Driller: Amos Jenr	nische		Shale	6	845
Soil	3	3	Sand-fine and shale breaks	30	875
Clay	71	74	Shale, hard	32	907
Sand	20	94	Sand	5	912
Well DH-64-17-6	507		Shale, sandy	12	924
Owner: J. C. For	wler		Sand	6	930
Driller: Amos Jenr			Shale, hard	20	950
Soil	3	3	Sand, fine	35	985
Сіау	12	15	Shale	8	993
Quicksand	5	20	Sand	25	1,018
СІау	10	30	Shale	8	1,026
Quicksand	15	45	Sand	6	1,032
Clay	50	95	Shale, sandy	9	1,041
Sand	10	105	Sand and shale streaks	80	1,121
Well DH-64-17-6	\$10		Shale	17	1,138
			Sand and shale streaks	52	1,190
Owner: Jones & Laughli Driller: Layne-Tex			Shale, hard	29	1,219
Clay	75	75	Sand and shale streaks	39	1,258
Clay, sandy	16	91	Shale	48	1,306
Sand, broken	29	120	Sand	26	1,332
Shale	30	150	Shale	8	1,340
Sand and shale layers	35	185	Sand	58	1,398
Shale and sandy	46	231	Shale	4	1,402
Sand, broken and shale	10	241	Sand	32	1,434
Shale	146	387	Shale and sandy shale	7	1,441
Shale, sandy	8	395	Sand and shale streaks	54	1,495
Shale	38	433	Shale and sandy shale	18	1,513
Sand and shale streaks	9	442			
Shale	50	492			
Sand and shale streaks	93	585			

590

5

Shale

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
Well DH-64-17-	901		Well DH-64	-18-107	
Owner: Seacrest Driller: Pitre Wate			Owner: Irvi Driller: Amos		
Sand	18	18	Soil	3	3
Clay	7	25	Clay	122	125
Sand	25	50	Sand and shale	5	130
Shale	17	67	Gumbo	20	150
Sand	63	130	Sand	25	175
Clay	8	138	Shale	15	190
Sand and shale	12	150	Gumbo	35	225
Sand, soft, green, and shale	80	230	Sand	30	255
Clay, medium red	13	243	Gumbo and shale	45	300
Sand, soft gray	8	251	Sand	42	342
Shale, medium blue	43	294	Gumbo	58	400
Shale, soft green	36	330	Sand	70	470
Shale, hard blue, boulders	53	383	Gumbo	140	610
Shale, soft gray	11	394	Sand	24	634
Gumbo, medium blue	42	436	Well DH-6	4.18.111	
Shale, medium green and sand	15	451			
Shale, medium shale and sand	13	464	Owner: W. F Driller: J		
Shale, medium blue	28	492	Clay	125	125
Sand, soft gray	43	535	Shale	25	150
Shale, medium blue	19	554	Shale, fine and sand streaks	16	166
Sand, soft gray	63	617	Sand, fine	30	196
Clay, red medium	15	632	Well DH-6	SA-18-407	
Sand, fine, soft gray, water	68	700			
Shale, medium blue	3	703	Owner: F. A. Driller: C.	. Fards Estate A. Williams	
No Record	6	709	Clay	10	10
Well DH-64-1	9-104		Sand, yellow	20	30
			Gumbo	170	200
Owner: E. E. E Driller: Luther F			Sand	40	240
Surface	24	24	Gumbo	40	280
Shale	197	221	Sand and boulders	77	357
Sand	22	243	Gumbo and boulders	36	393
Shale	43	286	Shale and boulders	44	437
Sand	54	340	Gumbo, hard and lime	13	450

Shale

Sand, hard

13

2

463

465

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
Well DH-64-18-407-	-Continued		Shale, hard	9	338
Shale	2	467	Shale, soft	11	349
Rock	3	470	Sand	7	356
Shale and boulders	4	474	Gumbo	13	369
Shale, sandy	34	508	Clay	7	376
Shale, hard	20	528	Gumbo	23	399
Sand	60	588	Sand	33	432
Shale	11	599	Gumbo	4	436
Gumbo	6	605	Clay	6	442
Sand, hard	5	610	Sand and gravel	32	474
Shale, hard and lime	95	705	Clay, blue	29	503
Shale, broken and sand	25	730	Shale	33	536
Sand	25	755	Sand	18	554
			Gumbo	26	580
Well DH-64-19	-204		Shale	19	599
Owner: Humble Oil and Driller⊹ Pitre Wat			Gumbo	42	641
Clay, medium	72	72	Shale, blue	3	644
Clay, hard	60	132	Clay, tough	56	700
Sand, fine, soft	13	145	Gumbo	57	757
Clay, hard	13	158	Shale	20	777
			Sand	8	785
Well DH-64-19	-308		Gumbo	15	800
Owner: Layne-Bo Driller: Layne-Bo			Sand	12	812
Loam	2	2	"Hard Pan"	8	820
Clay	8	10	Sand and gravel	31	851
Sand	24	34	Gumbo	18	869
Clay	10	44	No record	181	1,050
Sand	39	83		Well DH-64-19-609	
Clay	19	102			
Gumbo	48	150		Owner: Charlie Gilfillian Driller: R. H. Schneider	
Shale, hard	19	169	Clay, yellow	24	24
Shale, soft	15	184	Shale, blue	16	40
Shale, hard	13	197	Shale, pink	22	62
Gumbo	7	204	Sand, fine	19	81
Sand	46	250			
Gumbo, blue	13	263		Well DH-64-19-911	
Sand	43	306		Owner: E. A. Wilburn Driller: Andy Frankland	
Gumbo, blue	23	329	Clay, yellow	18	18
			0	-	

Sand, fine

6

24

	THICKNESS (FEET)	DEPTH (FEET)
Well DH-64-19-911-	Continued	
Clay, soft gray	254	278
Sand, streaks	11	289
Clay, blue	15	304
Sand with clay streaks	22	326

Well DH-64-20-408

Owner: Mrs. James B. Jackson Driller: Andy Frankland

Surface sand	24	24
Clay, yellow	61	85
Sand, fine	20	105
Clay, gray	165	270
Sand	4	274
Clay, soft	256	530
Sand	19	549

Well DH-64-20-601

Owner: Sun Oil Co. Driller: R. H. Schneider

Clay, yellow	20	20
Shale, blue	62	82
Sand	16	98
Shale, blue	92	190
Sand	24	214

Well DH-64-20-804

Owner: Guy Jackson Driller: Amos Jennische

Soil	3	3
Clay	77	80
Clay and shale	100	180
Gumbo	40	220
Shale	80	300
Sand	6	306
Shale	48	354
Sand	6	360
	15	375
Gumbo	45	420
Sand		

CKNESS	DEPTH
FFFT)	(FEET)

Well DH-64-21-204

Owner: Frost Oil Co. Driller: Pitre Water Wells

DEPTH

(FEET)

THICKNESS

(FEET)

Clay, medium yellow	22	22
Sand, fine, soft	17	39
Clay, soft sandy	44	83
Sand, fine, soft	17	100
Shale, medium	58	158
Sand, medium soft	17	175
Sand, coarse and gravel	9	184
Clay, medium	11	195

Well DH-64-21-301

Owner: Sun Oil Co. Driller: A-1 Water Wells

Soil, surface black	2	2
Clay, yellow	16	18
Sand, fine, yellow	12	30
Sand, fine, blue	35	65
Shale, blue	91	156
Sand, water	38	194

Well DH-64-21-306

Owner: Sun Oil Co. Driller:		
Surface soil, black	2	2
Clay, yellow	20	22
Sands, fine yellow	11	33

Well DH-64-21-501

Owner: Prince Drilling Co. Driller: Pitre Water Wells

Sand	18	18
Shale	22	4 0
Unknown	20	60
Sand	96	156
Sand, fine	24	180
Shale	6	186

	THICKNESS (FEET)	DEPTH (FEET)			THICKNESS (FEET)	DEPTH (FEET)
Well DH-64-26-70	7			Well DH-64-27-7		
Owner: Humble Oil and Driller: Humble Oil and	l Refining Co. Refining Co.			Owner: S. W. Mah Driller: Andy Fran	oney kland	
Sand and shale	456	456	Surface sand		30	30
Shale, sandy	27	483	Clay, soft gray		60	90
Sand	74	557	Sand		36	126
Well DH-64-26	708			Jefferson Coun	ty	
Owner: Humble Oil and Driller: Humble Oil and	Refining Co. Refining Co.			Well PT-61-56-7	02	
Shell and clay	160	160		Owner: Beaumont Cou Driller: Layne-Texa	untry Club	
Sand and clay	130	290	Clay, sandy		22	22
Shale	183	473	Clay, tough		184	22
Sand and gravel	43	516	Sand, white		41	200
Shale	85	601	Clay		30	247
Sand	15	616	Clay, sandy		37	314
Shale	29	645	Sand		26	340
Gravel	18	663	Clay		28	368
Sand	47	710	Clay, sandy		16	384
No record	8	718	Sand		20	404
Well DH-64-26-	905		Shale		130	534
Owner: J. E. Pat Driller: Pitre Water				Well PT-61-61-80	7	
Sand, brown	6	6		Owner: Southern Pacif Driller: Gust C. Warn	fic Co. ecke	
Clay, broken black	1½	7½	Clay		19	19
Sand, powder brown	10	17½	Sand		84	103
Log, brown	1/2	18	Clay		4	103
Sand, fine, vari-color	12	30	Sand		16	123
Shell, oyster and sand	3	33	Clay		46	169
Well DH-64-27-2	207		Sand		12	181
Owner: McCarthy C			Clay		49	230
Driller: Pitre Water			Loam, sandy		129	359
Sand, soft gray, fine	33	33	Sand		21	380
Clay, medium red	7	40	Clay		40	420
Clay, medium red, and sand	20	60	Sand		40	460
Shale, medium green	25	85	Shale, soft		182	642
Sand, soft gray, fine	115	200	Sand, water		50	692
Sand, medium green and shale	22	222				
Sand, soft gray	46	268				
No record	146	414				

THICKNESS DEPTH

(FEET)

(FEET)

		•
Well PT-61-64-5	501	
Owner: Mobil Oi Driller: Layne-Tex		
Soil, surface and clay	25	25
Sand, red	28	53
Shale	62	115
Sand, gray	30	145
Shale	209	354
Sand and shale layers	32	386
Shale, sandy	45	431
Sand	25	456
Shale	39	495
Sand	10	505
Shale	3	508
Sand, water	110	618
Shale	2	620

Well PT-61-64-502

Owner: Gulf States Utilities Co. Driller: Coastal Water Wells

Topsoil	5	5
Sand	25	30
Shale	60	90
Shale and sand	30	120
Shale	30	150
Sand, fine	40	190
No record	40	230
Sand, coarse	30	260
No record	270	530
Shale, sandy	100	630

Well PT-61-64-504

Owner: Olin Mathieson Co. Driller: Frank Balcar		
Clay	18	18
Sand	4	22
Shale	11	33
Gumbo	19	52
Sand	10	62
Gumbo	47	109

	THICKNESS (FEET)	DEPTH (FEET)
Sand	47	156
Gumbo	9	165
Sand	50	215
Shale	34	249
Sand	9	258
Gumbo	5	263
Sand and shale	45	308
Gumbo	16	324
Sand and shale	65	389
Gumbo	28	417
Sand	20	437
Gumbo	59	496
Sand with gravel at bottom	145	641

Well PT-61-64-505

Owner: Mobil Oil Co. Driller: Texas Water Wells, Inc.

Surface	4	4
Clay	28	32
Sand	7	39
Shale	32	71
Sand	14	85
Shale	11	96
Sand	51	147
Shale	153	300
Shale, sandy	56	356
Shale	56	412
Sand	35	447
Shale	61	508
Sand	125	633
Sand, shale streaked	27	660
Sand	178	838
Shale, sandy	71	909

Well PT-61-64-506

Owner: Mobil Oil Co. Driller: Texas Water Wells, Inc. 7

Surface	7	7
Clay	24	31
Sand, fine	3	34

	THICKNESS (FEET)	DEPTH (FEET)
Well PT-61-64-506-C	ontinued	
Sand, clay streaks	64	98
Sand, gray	50	148
Clay	255	403
Sand, fine, hard	54	457
Shale	51	508
Sand, fine hard	45	553
Shale, sand streaks	41	594
Sand, fine, hard	39	633
Shale	29	662
Sand, very hard	171	833
Shale, sandy	63	896
Shale	12	908
Well PT-61-64-50	18	
Owner: Gulf States Util Driller: Coastal Water		
Sand	15	15
Gumbo	30	45
Sand	15	60
Gumbo	13	73
Shale	87	160
Sand	100	260
Shale	60	320
Sand	30	350
Shale	40	390
Sand	50	440
Shale	40	480
Sand	80	560
Shale, sandy	240	800
Shale, gummy	800	1,600
Sand, fine	12	1,612
Well PT-61-64-510		
Owner: Gulf States Utilities Co. Driller: Coastal Water Wells		

	THICKNESS (FEET)	DEPTH (FEET)
Shale, sandy	55	125
Gumbo	45	170
Sand, medium	75	245
Gumbo	3	248

Well PT-61-64-513

Owner: Mobil Oil Co. Driller: Layne-Texas Co.

Surface soil	3	3
Clay	68	71
Sand	12	83
Clay	13	96
Sand and clay, streaks	12	108
Sand	40	148
Clay	5	153
Sand, broken	20	173
Shale, sandy	3	176
Shale, sandy and sand, streaks	49	225
Sand	11	236
Clay, sandy	28	264
Sand and clay	17	281
Clay, sandy	31	312
Sand and clay, streaks	29	341
Sand and clay	20	361
Sand and clay, streaks	84	445
Clay, sandy	12	457
Sand, coarse	25	482
Shale and sand, streaks	32	514
Sand, hard, and shale, streaks	122	636
Shale	4	640

Well PT-61-64-803

Owner: Philip Bros. Driller: Higgins Oil and Fuel Co.

Soil, black sandy loam	1	1
Clay, yellow with red streaks	13	14
Clay, blue with limy concretions	2	16
Sand, bluish-gray	6	22
Clay, yellowish-colored with lime	8	30
Clay, dark-blue with lime and shells	10	40

Sand	19	19
Gumbo	24	43
Sand	18	61
Gumbo	9	70

	THICKNESS (FEET)	DEPTH (FEET)
Well PT-61-64-803-C	ontinued	
Sand, gray	16	56
Sand, blue	13	69
Clay, blue with pyrites	51	120
Sand, blue with some clay and small pebbles	26	146
Sand, fine bluish-gray	10	156
Sand, fine gray	31	187
Sand, fine gray with black specks	10	197
Sand, bluish-tinted gray	65	262
Sand, dark-gray with black specks	9	271
Sand, fine, dark-gray	44	315
Sand, fine grayish-tinted	35	350
Sand, fine, grayish-green	50	400
Sand, fine, brownish-gray	40	440
Sand, fine brown with shells	30	470
Sand, fine, brown with broken shells	21	491
Sand, coarse, blue with broken shells	9	500
Sand, very fine, muddy	47	547
Sand, very fine, bluish-gray	17	564
Sand, very fine, gray with bluish tint	48	612
Sand, fine, gray with bluish tint	12	624
Clay, fine, sandy (fishbones at 628 feet)	42	666
Clay, fine, blue, sandy	6	672
Sand, very fine, light blue	13	685
Rock, light blue	43	728
Sand, bluish-gray	8	736
Sand, light gray with shells	14	750
Marl with small shells	6	756
Sand, light bluish-gray and shells	5	761
Sand, fine and shells	64	825
Sand, very fine, dark brownish-gray	49	874
Clay, hard, grayish-blue, sandy with shells	26	900
Rock, dark-2 feet, shells-1 foot	3	903
Sand, dark grayish-blue with some clay	12	915

	THICKNESS (FEET)	DEPTH (FEET)
Lignite	5	920
Sand, bluish-gray with shells	34	954
Rock, bluish-gray	4	958
Sand, very fine, grayish-brown, with shells	24	982
Sand, very fine, with shells	13	995
Rock, dark gray, "Cap Rock"	5	1,000
Sand, coarse, dark-gray with oil	6	1,006

Well PT-61-64-804

Owner: McFadden, Wiess & Kyle Driller: J. G. & A. W. Hamill

Clay, yellow	36	36
Sand, coarse, gray	20	56
Clay, blue, hard	114	170
Sand, fine, gray	75	245
Gravel, vari-colored	20	265
Sand, coarse, gray	52	317
Clay, blue	35	352
Sand, coarse gray with pyrite concretions	24	376
Clay, blue	19	395
Sand, fine, gray with lignite	45	440
Marl	8	448
Sand, gray with concretions and much lignite	60	508
Limestone, soft	⅔	508¾
Clay, gray and sulphurated hydrogen gas	19½	528%
Sandstone, hard with calcite depositions	*	529
Sand, gray	34	563
Sand, compact hard with pyrite	25	588
Sandstone, hard and calcareous concretions	1/2	588½
Clay, gray	13%	601¾
Sand, hard	1/4	602
Clay, gray with calcareous concretions	57	659
Shells, white, calcareous	6	665
Clay, gray	14	679
Sandstone, gray	6	685

	THICKNESS (FEET)	DEPTH (FEET)
Well PT-61-64-804-0	Continued	
Clay, gray, with calcareous concretions	7	692
Clay, gray, hard	23	715
Concretions, calcareous	2	717
Clay, hard, gray, with calcareous concretions and fine pyrite	136	853
Sandstone and pyrite, hard	20	873
Rock, hard, limestone	2	875
Sand, fine, oil	24	899
Clay, hard	80	979
Sandstone, hard with calcareous concretions	50	1,029
Gas, heavy pressure and oil	40	1,069
Sand, mixed with calcareous concretions and fossils	70	1,139
No record	21	1,160

Well PT-61-64-901

Owner: Air Reduction Corporation Driller: Layne-Texas Co.

Surface soil	3	3
Clay, sandy	57	60
Сіау	11	71
Sand	31	102
Clay, sandy	47	149
Sand	12	161
СІау	5	166
Sand	20	186
Clay and sand streaks	215	401
Clay, sandy and sand streaks	51	452
Sand, coarse	34	486
Clay	4	490
Sand, fine	4	494
Clay	6	500
Sand, coarse (very good)	20	520
No record	20	540

Well PT-61-64-902

Owner: Air Reduction Corporation Driller: Layne-Texas Co.

	Diffiel: Layne-Texas CO.	
Surface soil		4
Clay, sandy		65

	THICKNESS (FEET)	DEPTH (FEET)
Sand	28	97
Clay	51	148
Sand	13	161
Clay	4	165
Sand	20	185
Clay and streaks of sand	263	448
Sand, broken	42	490
Clay	7	497
Sand (good)	53	550

Well PT-61-64-903

Owner: Big Three Industrial Gas Co. Driller: Layne-Texas Co.

Top soil	3	3
Clay	18	21
Sand	14	35
Clay	35	70
Sand and sandy clay	83	153
Sand and streaks of clay	57	210
Sandy clay and streaks of sand	240	450
Sand	22	472
Clay	11	483
Sand	107	590

Well PT-61-64-904

Owner: Big Three Industrial Gas Co. Driller: Layne-Texas Co.

Top soil	3	3
Clay	57	60
Sand	34	94
Clay	15	109
Sand, clay and sandy clay	49	158
Sand, shell and sandy clay	68	226
Clay	20	246
Clay and sandy clay	108	354
Clay, sandy and clay	21	375
Clay	69	444
Sand	23	467
Clay	10	477
Sand, salt and pepper	284	761
Clay, sandy	19	780

4

69

DEPTH (FEET)

	THICKNESS (FEET)	DEPTH (FEET)		Tł	IICKNESS (FEET)
Well PT-62-53	7-703			Well PT-62-57-706	
Owner: Pure C Driller:Wa			(Owner: Pure Oil Co. Driller:Walling	
Clay	38	38	Sand and clay		150
Sand and shale	73	111	Sand		22
Sand	15	126	Clay		90
Clay	10	136	Sand		21
Sand and clay	34	170	Clay		154
Clay	56	226	Gumbo		20
Sand	8	234	Sand		61
Sand and clay	38	272		Well PT-62-57-707	
Clay	18	290			
Gumbo	20	310		Owner: Pure Oil Co. Driller:Walling	
Clay and shale	28	338	Mud		22
Clay	42	380	Sand		119
Clay and shale	13	393	Mud and sand		41
Gumbo	74	467	Mud		41
Sand	17	484	Clay		119
Sand and clay	22	506	Gumbo		40
Sand	102	608	Clay		20
			Gumbo		47
Well PT-62-8			Sand		66
Owner: Pure Driller:W			Gumbo		29
Mud and sand	70	70	Sand		62
Clay	45	115		Well PT-62-57-709	
Sand	20	135		Owner: Pure Oil Co	
Shale and clay	55	190		Driller:Walling	
Sand and boulders	15	205	Mud and clay		28
Sand	15	220	Sand and shale		103
Clay	20	240	Clay		39
Sand and boulders	28	268	Sand and clay		14
Clay	67	335	Gumbo and boulders		44
Gumbo	47	382	Clay		17
Clay	32	414	Sand		5
Gumbo	36	450	Clay		108
Sand	68	518	Shale and clay		12
Gumbo	23	541	Gumbo		90
Sand	61	602	Sand and clay		28

Sand

	-	THICKNESS (FEET)	DEPTH (FEET)			THICKNESS (FEET)	DEPTH (FEET)
	Well PT-62-57-710)		Sand		52	161
	Owner: Pure Oil Co Driller:Walling			Shale		11	172
Clay		34	34	Gumbo, blue		13	185
Sand and shale		84	118	Shale, gray		60	245
Sand and clay		36	154	Rock, sand		1	246
Gumbo		35	189	Gumbo		24	270
Shale and clay		35	224	Shale, hard		30	300
Clay		31	255	Gumbo		26	326
Sand		21	276	Rock		1	327
Gumbo		61	337	Shale, pink		23	350
Sand and shale		63	400	Gumbo		32	382
Gumbo		27	427	Shale, hard		53	435
Sand and clay		47	474	Shale, soft		23	458
Gumbo		30	504	Shale, sandy		22	480
Sand		106	610	Rock, shale Sand, water		2	482
	Well PT-62-57-713			Sand, water		28	510
					Well PT-63-01-20)2	
	Owner: Pure Oil Co Driller:Walling				Owner: City of Port / Driller: Layne-Bow		
Mud		30	30				

Mud	30	30
Sand	110	140
Sand and mud	40	180
Clay	65	245
Sand and clay	35	280
Clay	45	325
Gumbo	55	380
Clay	36	416
Gumbo	39	455
Sand	61	516
Gumbo	24	540
Sand	66	606

Well PT-63-01-104

Owner: City of Nederland Driller: Frank Balcar

Clay, yellow	32	32
Sand	6	38
Shale	22	60
Gumbo	10	70
Shale, blue	39	109

Clay	14	14
Quicksand	13	27
Sand, yellow	41	68
Sand, white, fine-grained, water	27	95
Clay	83	178
Sand, black, fine-grained	14	192
Clay, yellow	48	240
Sand, gray, medium-grained	43	283
Gumbo, blue	77	360
Sand, white, coarse-grained	14	374
Gumbo, hard	68	442
Pack sand, hard	185	627
Shale, hard	2	629

Well PT-63-01-204

Owner: City of Port Arthur Driller: Layne-Bowler

Clay	14	14
Quicksand	17	31
Clay, yellow	44	75

	THICKNESS (FEET)	DEPTH (FEET)			
Well PT-63-01-204-Co	ontinued				
Sand, white, coarse-grained, water	27	102			
Gumbo	83	185			
Sand, blue, fine-grained	33	218			
Gumbo, blue	38	256			
Sand, gray, medium-grained	46	302			
Gumbo, blue	18	320			
Sand, white, medium-grained	32	352			
Gumbo, hard	91	443			
Sand, gray, fine-grained	34	477			
Gumbo, blue	19	496			
Sand, gray, medium-grained	80	576			
Sand and gravel	80	656			
Rock	1	657			
Well PT-63-01-205					
Owner: City of Port Driller: Layne-Bo					
Topsoil	12	12			
Quicksand	18	30			
Gumbo, blue	48	78			
Sand, blue, fine-grained	30	108			
Sand, coarse-grained	51	159			
Clay, yellow	37	196			
Sand, blue, fine-grained	58	254			
Gumbo, blue	59	313			
Sand, fine-grained	33	346			
Sand, heavy, white	30	376			

90

20

196

466

486

682

Owner: City of Port Arthur Driller: Layne-Texas Co.

Gumbo, hard, blue

Sand, blue, fine-grained

Sand, medium-grained and gravel

Soil	3	3
Сіау	80	83
Sand, and salt, white, coarse-grained	58	141
Shale, soft blue	189	330

	THICKNESS (FEET)	DEPTH (FEET)
Sand, gray, coarse-grained	55	385
Gumbo, soft blue	115	500
Sand with layers of gravel	137	637
Gravel, coarse	7	644

Well PT-63-01-302

Owner: Atlantic Refining Co. Driller: Layne-Texas Co.

Clay	18	18
Clay, sandy	8	26
Clay	45	71
Shale	15	86
Sand, streaks, and shale	12	98
Shale	6	104
Sand, water	37	141
Shale	36	177
Sand	18	195
Shale	15	210
Sand	10	220
Gumbo	34	254
Shale, sticky	39	293
Shale and sand streaks	15	308
Sand and shale	13	321
Shale, tough, sticky	11	332
Sand and shale	5	337
Sand	10	347
Shale, tough	79	426
Sand	26	452
Shale	21	473
Sand layers, and shale	12	485
Sand	61	546
Shale	3	549

Well PT-63-01-303

Owner: Atlantic Refining Co. Driller: --

Clay, yellow	18	18
Sand	12	30
Clay, yellow	23	53
Gumbo, soft	44	97

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
Well PT-63-01-303-0	Continued		Sand	2	358
Gumbo, hard	20	117	Shale	65	423
Sand	34	151	Sand	28	451
Gumbo, blue	12	163	Gumbo	15	466
Sand	4	167	Sand	82	548
Gumbo	47	214	Gumbo	52	600
Sand	4	218	Lime, sandy	10	610
Gumbo and shale	264	482	Gumbo, sandy lime streaks	18	628
Sand	30	512	Shale	46	674
Gumbo	40	552	Gumbo	24	698
Sand	38	590	Sand, water	130	828
Gravel	6	596	Gumbo	25	853
Shale, blue	111	707	Sand	207	1,060
Shale, sandy	23	730	Gumbo	47	1,107
Sand	26	756	Shale	220	1,327
Gravel	66	822	Sand	60	1,387
Well PT-63-01-	205		Gumbo	18	1,405
			Shale, sticky	20	1,425
Owner: Atlantic Ref Driller: Layne-Tex			Sand	42	1,467
Surface soil	1	1	Shale, sticky	4	1,471
Clay	9	10	Well PT-63-0	1 505	
Clay with sand streaks	51	61			
Shale	18	79	Owner: Texas High Driller: Layne-T		
Sand, small amount of water	19	98	Surface soil	6	6
Clay	4	102	Clay, blue	57	63
Sand, water	40	142	Sand	34	97
Clay	33	175	Clay	21	118
Sand	18	193	Sand	27	145
Shale	20	213	Clay	24	169
Sand	7	220	Sand	29	198
Gumbo	26	246	Clay and sand streaks	123	321
Shale	5	251	Sand and clay streaks	59	380
Gumbo	12	263	Sand	17	397
Shale and gumbo streaks	50	313	Clay	4	401
Sand	11	324	Sand and clay streaks	21	422
Gumbo	3	327	Clay, sandy and clay streaks	48	470
Sand	12	339	Clay	39	509
Gumbo	17	356	Clay, and sand streaks	31	540

	THICKNESS (FEET)	DEPTH (FEET)
Well PT-63-01-505-C	ontinued	
Sand	20	560
Sand and hard streaks	40	600
Well PT-63-01-6		
Owner: City of G Driller: Layne-Tex	roves as Co.	
Soil	4	4
Clay	11	15
Clay, sandy	45	60
Clay	25	85
Sand, fine	12	97
Clay	26	123
Sand, fine	3	126
Shale and sandy shale	51	177
Sand, fine	5	182
Shale	32	214
Shale, sandy	16	230
Sand	11	241
Shale, sandy	230	471
Sand	5	476
Shale, sandy shale, and streaks of sand	269	745
Sand	126	871
Shale	15	886
No record	1	887
Well PT-63-0	1-701	
Owner: The Te Driller: -		
Clay, surface	20	20
Sand	10	30
Clay and sand	148	178
Sand and shale	113	291
Gumbo	18	309
Shale, sandy and boulders	131	440
Shale, hard	50	490
Gumbo	10	500
Sand	36	536
Gumbo	30	566

	THICKNESS (FEET)	DEPTH (FEET)
Sand and boulders	59	625
Rock, sand	22	647
Gumbo	23	670
Sand	14	684
Gumbo	16	700
Shale, sandy	15	715
Gumbo	88	803
Sand, fine-grained	37	840
Gravel, coarse	10	850
Sand, coarse-grained	10	860
Sand, fine-grained	48	908

Well PT-63-01-702

Owner: The Texas Co. Driller: --

Surface, clay	54	54
Shells	22	76
Shale	41	117
Gumbo	90	207
Shale	178	385
Gumbo	30	415
Shale, sandy	15	430
Gumbo	138	568
Shale	81	649
Gumbo	26	675
Shale	25	700
Gumbo	35	735
Shale	19	754
Gumbo	21	775
Shale, sandy	67	842
Sand, medium and coarse-grained, water	80	922
Gumbo	2	924

Well PT-63-01-703

Owner: Olin Mathieson Co. Driller: Frank Balcar

No formational record	756	756
Gumbo, blue and shale	84	840
Sand, blue and shale rock	15	855
Sand and gravel	80	935

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
Well PT-63-09-	102		Sand, coarse-grained, water	20	125
Owner: Gulf Refin			Clay	6	131
Driller: Gulf Coast D	-		Sand	5	136
Clay	150	150	Clay	10	146
Sand	30	180	Sand	9	155
Gumbo	36	216	Clay	5	160
Sand	14	230	Clay, soft, sandy	5	165
Gumbo	110	340	Clay	58	223
Sand, and thin layers of lignite	110	450	Sand and shale	22	245
Gumbo	64	514	Shale, sandy and shell	36	281
Sand, hard	44	558	Sand	12	293
Gumbo	30	588	Clay	45	338
Sand	102	690	Sand	20	358
Gumbo	110	800	Shale	17	375
Shale	80	880	Sand	33	408
Sand, coarse-grained, water	64	944	Clay and sand	11	419
Gumbo	2	946	Sand	9	428
Well PT-63-09-	103		Clay	12	440
Owner: Gulf Refin			Sand	30	470
Driller: Gulf Coast D			Clay	32	502
Clay, blue and yellow	95	95	Sand	49	551
Shells	21	116	Wood	4	555
Shale	42	158	Sand	16	571
Gumbo	65	223	Clay	109	680
Sand and shale	143	366	Sand	5	685
Sand, hard	102	468	Clay	10	695
Gumbo	68	536	Sand	5	700
Shale	18	554	Shale	10	710
Gumbo	46	600	Sand	38	748
Shale	80	680	Shale	5	753
Gumbo	100	780	Sand	16	769
Shale	45	825	Shale	41	810
Sand and shale	55	880	Sand	82	892
Sand, water	82	962	Shale	4	896
Gumbo	3	965		4	896
			Sand and gravel, coarse-grained, water	47	943
Well PT-63-09-7			Shale	10	953
Owner: Gulf State Ut Driller: Layne-Tex					
Surface	3	3			
Clay, sandy	102	105			

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
Well PT-63-09	-203		Clay, hard, yellow	6	39
Owner: Gulf State U	Itilities Co.		Clay, yellow, wet	2	41
Driller: Layne-Te	exas Co.		Clay, hard, yellow	1	42
No record	112	112	Clay, hard, brown, joint	6	48
СІау	5	117	Clay, hard, dark-brown	5	53
Sand	8	125	Clay, dark-blue, sticky	3	56
Clay	4	129	Clay, blue, sandy	1	57
Sand	15	144	Clay, soft blue and shell	1	58
Clay	10	154	Clay, soft blue	5	63
Sand	29	183	Clay, dark-gray, sandy and shell	2	65
Clay	31	214	Clay, dark-blue, sticky	6	71
Sand, coarse-grained	36	250	Shells, small, gray	1	72
Shale	124	374	Shells, some large	1	73
Sand	36	410	Clay, dark-gray, sticky	5	78
Shale	80	490	Clay, hard, light-brown	2	80
Sand	52	542	Shells, dark-gray, and medium sized	1	81
Shale	51	593	Clay, hard, brown	1	82
Sand	10	603	Clay, light-brown	3	85
Shale	97	700	Clay, hard, dark-brown	3	88
Sand	14	714	Shale, hard, light-gray,	3	91
Shale	32	746	limy bedded	1	92
Sand	15	761	Clay, black and lignite	8	100
Shale	16	777	Clay, tough, light-blue, sticky		100
Sand, water	104	881	Clay, hard, light-blue	1	101
			Clay, blue, sandy	2	103
Well PT-63-			Clay, impervious hard, blue	1	
Owner: W. O Driller: Works Projec	. Fawvor t Administration		Sand, dark-gray	1	105
Surface sand, reddish-brown	1	1	Clay, compact, hard, brown	1	106
Sand, brown, fine-grained	6	7	Sand, light-gray, fine-grained	2	108
Sand, brown and small shell			Clay, gray, sandy and small shell	4	112
fragments	1	8	Clay, hard, dark-gray	3	115
Sand, brown, silty, fine-grained, and shell fragments	2	10	Clay, gray, sandy	3	118
and snell tragments			Clay, hard, dark, impervious	5	123
shell fragments	5	15	Clay, light-gray, sandy and some caliche	2	125
Silt, blue, sandy	1	16	Clay, light-gray and yellow		
Silt, gray, sandy and small	4	20	with shell and caliche	2	127
shell fragments	11	31	Clay, yellow and shell fragments	1	128
Clay, dark-gray, sticky	1	32	Sand, yellowish-gray, silty	1	129
Shell, small, gray, hard packed			Clay, gray, with hard pieces of shell and caliche	3	132
Clay, dark-gray, sticky and pieces of rock	1	33	OT SUELI SUC CSUCHE	_	

	THICKNESS	DEPTH	
	(FEET)	(FEET)	
Well PT-63-17-504-Co	ontinued		
Clay, hard, light-blue with shell and caliche	3	135	
Well PT-63-18-10	01		Clay, gree
Owner: Houston Oi Driller: Gust C. Warı			Sand, wh Clay, gray
Mud, black and sand	60	60	Clay, blue
Sand, salt water, no flow	115	175	Sand, wat
Clay	277	452	
Sand, flows 7 gallons a minute of salt water	46	498	
Clay and shell mixed	533	1,031	Sand, red
Shell	4	1,035	Clay, yell
Sand, flows salt water	30	1,065	Clay, blue
Well PT-64-06-90	D1		Sand, wat
Owner: I. R. Borda Driller: V. R. Phe			
Shale, sandy and clay	22	22	
Sand, blue	46	68	Soil, sand
Clay, blue	17	85	Clay, yell
Clay, yellow	2	87	Sand, fin
Sand, white	32	119	Sand, fine
Shale, blue, chalky	75	194	Shale, gra
Sand, gray, fine-grained	6	200	Shale
Well PT-64-07-20	03		Sand, bro
Owner: Ivy Sens Driller: Green Bro			Sand, loo Sand, loo
Clay, yellow	20	20	Shale
Sand, yellow	5	25	Shale, thi
Clay, yellow	40	65	·
Clay, blue	75	140	
Sand, salt and pepper	16	156	
Well PT-64-07-20)4		Surface so
Owner: P. A. Neich	hoy		Clay

Well PT-64-07-207			
	Owner: Lizza Breaux Driller: Green Bros.		
ay, green		20	20
ind, white		10	30
ay, gray		60	90
ay, blue		25	115
nd, water		40	155

THICKNESS DEPTH (FEET)

(FEET)

Well PT-64-07-405

Owner: Poley Mitchell Driller: Green Bros.

20	20
60	80
50	130
25	155
	60 50

Well PT-64-14-101

Owner: Union Texas Petroleum Co. Well 5 Driller: Layne-Texas Co.

Soil, sandy	2	2
Cont, Sandy	2	2
Clay, yellow	14	16
Sand, fine, loose, white	21	37
Sand, fine, gray, shale	21	58
Shale, gray, sandy, with some shell	20	78
Shale	35	113
Sand, broken, shale (poor)	33	146
Sand, loose, gray (good)	39	185
Sand, loose, gray (good)	26	211
Shale	11	222
Shale, thin layers	82	304

Well PT-64-14-406

Owner: Union Texas Petroleum Co. Well 9 Driller: Layne-Texas Co.

Surface soil	3	3
Clay	38	41
Sand, fine	7	48
Shale	48	96
Sand	29	125
Shale, broken	6	131
Sand	30	161

	Owner: P. A. Neichoy Driller: Green Bros.	
Clay, gray	29	
Sand, red	6	
Clay, blue	55	
Clay, gray	20	
Sand, water	45	

	THICKNESS (FEET)	DEPTH (FEET)
Well PT-64-14-406-	-Continued	
Shale, broken	7	168
Sand	37	205
Shale	52	257
Shale, sandy	15	272
Sand	16	288
Shale	11	299

Well PT-64-14-407

Owner: Union Texas Petroleum Co. Well 1 Driller: Layne-Texas Co.

СІау	12	12
Sand, white	35	47
Clay, and shale	64	111
Sand, cut clean	80	191
Shale	12	203
Sand, good	24	227
Sand, coarse	20	247
Shale	28	275

Well PT-64-15-202

Owner: C. E. Ward Driller: Sun Oil Co.

Dillar, Sul of Cor		
Loam, brown, sandy	4	4
Shale, yellow	4	8
Clay, white, and shale	7	15
Clay, brown	6	21
Shale, brown, sandy	12	33
Sand, brown	3	36
Gumbo, blue	38	74
Gumbo, blue and yellow with red streaks	23	97
Sand	20	117

Well PT-64-15-306

Owner: Port Arthur Country Club Driller: Pitre Water Wells

Surface sand, brown	2	2
Clay, vari-colored, hard	4	6
Sand, fine, white	5	11

	THICKNESS (FEET)	DEPTH (FEET)
Clay, sandy, brown	6	17
Sand, powder, brown	18	35
Clay, white, hard	13	48
Clay, blue, hard	7	55
Clay, and shell blue	28	83
Clay, brown, hard	8	91

Well PT-64-15-308

Owner: J. J. Hebert Heirs & Co. Driller: Green Bros.

Clay, yellow	20	20
Sand, white	5	25
Clay, blue	35	60
Sand, salt and pepper	26	86

Well PT-64-15-603

Owner: Sun Oil Co. Driller: N. H. Schnieder

Clay, yellow	30	30
Sand	11	41
Shale, blue	5	46
Sand, fine	15	61
Shale, blue	29	90
Sand	9	99
Shale, blue	1	100

Well PT-64-15-705

Owner: Pure Oil Co. Driller: Layne-Texas Co.

		_
Topsoil	2	2
Clay	30	32
Shale, blue and seashells	277	309
Sand, cut good	163	472
Shale	8	480

Table 6.—Water Levels in Wells in Chambers and Jefferson Counties (Water level, in feet, below land surface)

	DATE	WATER LEVEL		DATE	WATER LEVEL		DATE	WATER LEVEL
	Chambers Cour	nty	Nov.	3, 1950	43.24	Oct.	22, 1962	107.57
	Well DH-64-09-	318	Apr.	19, 1951	48.76	Apr.	2, 1963	105.17
	Owner: Crumpler	Bros.	Apr.	10, 1952	52.30	Oct.	31	116.28
	Elevation: 55	j	Oct.	10	52.32	Apr.	6, 1964	112.35
Mar.	31, 1941	50.18	Apr.	13, 1953	63.23	Oct.	14	121.27
Mar.	1, 1948	66.87	Oct.	16	65.76	Apr.	5, 1965	112.39
Oct.	6	67.71	Apr.	15, 1954	65.45	Oct.	18	115.02
Apr.	27, 1949	67.15	Oct.	13, 1955	68.64	Apr.	7, 1966	113.32
Nov.	7	71.85	Apr.	5, 1956	71.83	Oct.	12	117.27
Nov.	3, 1950	77.23	Oct.	13	83.23	Mar.	16, 1967	110.74
Apr.	19, 1951	76.70	Apr.	9, 1957	73.98			
Oct.	15	79.00	Oct.	31	73.14		Well DH-64-10-	403
Apr.	10, 1952	80.29	Apr.	7, 1958	71.40		Owner: C. D. Ha Elevation: 20	
Oct.	10	82.18	Oct.	23	74.21		1939	18
Apr.	13, 1953	83.06	Nov.	10, 1959	90.89	Mar.	5, 1941	18.07
Oct.	16	84.57	Apr.	10, 1961	95.83	Oct.	27, 1948	19.82
Apr.	15, 1954	85.42	Oct.	18	101.6	Nov.	7, 1949	19.66
Oct.	13, 1955	83.07	Oct.	10, 1962	110.0	Apr.	12, 1950	21.22
Apr.	5, 1956	82.52	Apr.	2, 1963	96.0	Nov.	3	21.90
	Well DH-64-09-319		Oct.	28	111.2	Apr.	19, 1951	20.75
	Owner: Crumpler	Bros.	Oct.	18, 1965	85.0	Oct.	15	21.46
	Elevation: 55		Mar.	16, 1967	101.9	Apr.	10, 1952	26.15
Mar.	31, 1941	43.16				Oct.	10	22.79
Mar.	1, 1948	61.09		Well DH-64-10-	401	Apr.	13, 1953	22.5
Apr.	10, 1952	79.20		Owner: Fing Furniture Co).	Apr.	15, 1954	24.53
Oct.	10	82.91		Elevation: 3	7	Oct.	13, 1955	23.69
Apr.	13, 1953	83.70	Apr.	1955	86			
Oct.	16	87.92	Oct.	13	90.99		Well DH-64-10-	501
Apr.	5, 1956	94.19	Apr.	5, 1956	88.34	C	wner: C. T. Jose Elevation: 33	
Apr.	9, 1957	79.60	Oct.	18	99.67	July	18, 1957	, 70.63
	Well DH-64-09-9	01	Apr.	5, 1957	92.26	Oct.	14	69.55
	Owner: S. R. Willi		Oct.	31	97.94	Oct.	31	68.73
	Elevation: 15	a1115	Apr.	7, 1958	94.60	Apr.	7, 1958	66.10
Mar.	1, 1948	47.70	Oct.	23	99.38	Oct.	23	69.52
Oct.	6	46.85	Nov.	9, 1959	101.63	Nov.	9, 1959	67.29
Apr.	27, 1949	42.40	Apr.	10, 1961	101.31	Apr.	10, 1961	63.54
Nov.	4	43.18	Oct.	18	103.66	Apr.	6, 1962	65.67
Apr.	12, 1950	47.54	Apr.	6, 1962	106.34	Apr.	2, 1963	69.69
						Apr.	2, 1303	05.05

I	DATE	WATER LEVEL	ſ	DATE	WATER LEVEL		DATE	WATER LEVEL
Well [OH-64-10-501-0	Continued		Well DH-64-11-	103	Apr.	6, 1966	17.16
Apr.	7, 1964	40.25		Owner: Josh M Elevation: 9		Mar.	15, 1967	17.36
Apr.	5, 1965	43.20	July	15, 1941	+ 6.2		Well DH-64-11	-811
Apr.	7, 1966	40.22	Apr.	24	Flows		Owner: G, Chan	
	Well DH-64-10-	702	Nov.	18, 1948	4.74		Elevation: 2	
)wner: Texas Oi		Apr.	28, 1949	4,44	Apr.	1947	12.0
Ľ	Gas Co.		Nov.	8	5.65	Oct.	9, 1952	21.86
	Elevation: 32		Apr.	10, 1950	6.48	Apr.	8, 1953	20.54
Apr.	19, 1941	43.44	Nov.	1	7.45	Oct.	15	20,83
Oct.	5, 1948	58.40				Apr.	14, 1954	21.20
Apr.	27, 1949	59.13	Apr.	20, 1951	8.03	Oct.	11, 1955	10.58
Nov.	3	60.58	Oct.	11	9.11	Apr.	4, 1956	19.23
Apr.	12, 1950	61.25	Apr.	11, 1952	9.25	Oct.	17	21.48
Nov.	3	64.80	Oct.	9	10.78	Apr.	5, 1957	20.11
Apr.	19, 1951	65.70	Apr.	8, 1953	11.21			
Oct.	15	67.80	Oct.	15	12.40		Well DH-64-11	-812
Oct.	13, 1955	82.43	Apr.	14, 1954	13.30		Owner: G, Char Elevation: 4	
Oct.	18, 1956	89.75		Well DH-64-11	-401	July	24, 1941	4.89
Sept.	1965	106.5	c)wner: E, S, At	oshier	Oct.	6, 1948	9.08
	Well DH-64-10-	703		Elevation: 8	5	Apr.	28, 1949	5.92
0	wner: V. A. Lav		Oct.	11, 1955	10.10	Nov.	8	7.87
0	Elevation: 3		Apr.	4, 1956	9.07	Apr.	10, 1950	7.82
Oct.	1938	38	Oct.	17	10.94	Nov.	1	8.68
Mar.	28, 1941	42.75	Apr.	5, 1957	9.53	Apr.	20, 1951	6.90
May	7, 1962	89.98	Oct.	30	10.30			
Oct.	22	96.70	Apr.	10, 1958	8.42	Oct.	11	7.84
Apr.	2, 1963	92.26	Oct.	21	9.25	Apr.	11, 1952	4.14
Oct.	28	99.87	Nov.	9, 1959	9.03		Well DH-64-11	-901
Apr.	6, 1964	94.75	Apr.	7, 1961	12.67		Owner:Barri	nger
Oct.	14	103.97	Oct.	19	14.77		Elevation: 2	2
Apr.	5, 1965	96.24	Apr.	5, 1962	15.50	May	2, 1941	6.22
Oct.	18	106.91	Oct.	23	16.05	Mar.	16, 1949	12.47
Apr.	7, 1966	98.61	Apr.	4, 1963	16.61	Aug.	31, 1950	13.34
Oct.	12	104.27	Oct.	30	17.33	Nov.	1	13.74
Mar.	16, 1967	100.47	Apr.	7, 1964	16.82	Apr.	20, 1951	14.17
	,		Oct.	14	19.02	Oct.	11	14.74
			Apr.	6, 1965	16.75	Apr.	11, 1952	14.92
			Oct.	19	18.92	Oct.	9	16.06

	DATE	WATER LEVEL		DATE	WATER LEVEL		DATE	WATER LEVEL
Well I	DH-64-11-901C	Continued	Apr.	14, 1954	9.87		Well DH-64-12-	802
Apr.	8, 1953	16.02	Oct.	11, 1955	9.29	c	Owner: U.S. De	
Oct.	15	16.76	Apr.	4, 1956	8.52		Agriculture Elevation: 2	
Apr.	14, 1954	16.97	Oct.	17	9.37	May	2, 1941	5.34
Apr.	4, 1956	19.55	Apr.	5, 1957	10.51	Dec.	1, 1948	11.81
Oct.	17	20.83	Oct.	30	9.94	Nov.	8, 1949	12.09
Apr.	5, 1957	22.15	Apr.	10, 1958	8.55	Apr.	10, 1950	12.60
Oct.	30	21.97	Oct.	21	8.87	Nov.	1	13.24
Apr.	10, 1958	21.32	Nov.	3, 1959	8.63	Apr.	20, 1951	13.46
Oct.	21	22.08	Apr.	7, 1961	7.31	Oct.	11	13.90
Nov.	3, 1959	22.86	Apr.	5, 1962	7.27	Apr.	8, 1953	15.16
Apr.	7, 1961	24.39	Apr.	4, 1963	8.51	Oct.	18	15.83
Oct.	19	25.51		Well DH-64-12	401	Apr.	14, 1954	16.07
Apr.	5, 1962	24.13		Owner: Sun Oi			Well DH-64-13	.101
Oct.	23	25.41		Elevation: 2		-		
Apr.	4, 1963	24.77	Apr.	7, 1941	10.84	Ĺ	wner: Oscar De Elevation: 3	
Oct.	30	25.62	Apr.	14, 1954	17.13	May	16, 1941	6.03
Apr.	7, 1964	25.17	Oct.	11, 1955	18.22	Mar.	15, 1948	6.85
Apr.	6, 1965	25.84	Apr.	4, 1956	18.46	Nov.	8, 1949	5.78
Oct.	19	26.21	Oct.	17	19.56	Apr.	10, 1950	8.15
Apr.	6, 1966	26.34	Apr.	5, 1957	19.32	Nov.	1	8.91
Oct.	13	27.07	Oct.	30	19.84	Apr.	23, 1951	9.05
Mar.	15, 1967	27.15	Apr.	10, 1958	20.43	Oct.	11	9.97
	Well DH-64-12-	101	Oct.	27	20.92	Apr.	11, 1952	10.86
	Owner: U.S. Dep		Nov.	3, 1959	21.97	Apr.	8, 1953	10.18
	Agriculture Elevation: 28	_	Apr.	7, 1961	23.54	Apr.	14, 1954	10.97
Apr.	15, 1941	9.35	Oct.	19	23.42	Apr.	4, 1956	10.73
Dec.	1, 1948	8.14	Apr.	5, 1962	23.49	Oct.	17	11.06
Nov.	8, 1949	8.55	Oct.	23	24.10	Apr.	5, 1957	12.16
Apr.	10, 1950	6.49	Apr.	4, 1963	24.31	Oct.	30	11.03
Nov.	1	7.44	Oct.	30	24.36	Apr.	10, 1958	12.59
Apr.	20, 1951	7.66	Apr.	7, 1964	24.21	Oct.	21	12.71
Oct.	11	8.47	Oct.	14	24.87	Nov.	3, 1959	13.80
Apr.	11, 1952	8.06	Apr.	6, 1965	24.79	Apr.	7, 1961	11.94
Oct.	9	8.93	Apr.	6, 1966	25.16	Oct.	19	12.03
Apr.	8, 1953	8.67				Apr.	5, 1962	12.19
Oct.	15	9.65				Oct.	23	14.00
						Apr.	4, 1964	14.01

D	ATE	WATER LEVEL	DA	TE	WATER LEVEL	DA	TE	WATER LEVEL
	4-64-13-101-Co	ntinued	We	II DH-64-17-60	01	Apr.	12, 1950	97.32
Oct.	30, 1964	15.21		ner: Asa Wilbu	rn	Nov.	3	100.53
Apr.	6, 1965	14.06		Elevation: 15		Apr.	19, 1951	101.10
Oct.	19	15.73	Apr.	5, 1941	15.88	Apr.	10, 1952	105.52
	6, 1966	14.13	Mar.	1, 1948	14.50	Oct.	10	106.91
Apr.	5	13.95	Oct.	6	14.48	Apr.	13, 1953	108.83
Oct.	5	10.00	Apr.	27, 1949	14.43	Oct.	16	110.1
v	Nell DH-64-17-2	09	Nov.	7	14.75	Apr.	15, 1954	109.83
0	wner: J. W. Wilb	urn	Apr.	12, 1950	14.67	Oct.	13, 1955	116.85
	Elevation: 16		Nov.	3	14.90	Apr.	5, 1956	116.81
	1931	20	Apr.	19, 1951	15.15	Oct.	18	122.79
Apr.	5, 1941	44.53	Oct.	15	15.18	Apr.	9, 1957	121.96
Aug.	31, 1950	80.60	Apr.	10, 1952	18.24	Oct.	31	124.34
-	3, 1950	80.80	Oct.	10	15.68	Apr.	7, 1958	122.03
Nov.	·	82.01	Apr.	13, 1953	17.96	Oct.	23	125.82
Apr.	19, 1951		Oct.	16	18.49	Nov.	10, 1959	128.36
Oct.	15	85.37	Apr.	15, 1954	16.33	Apr.	10, 1961	130.81
Apr.	10, 1952	85.65	Oct.	13, 1955	18.94	Oct.	18	132.46
Oct.	10	88.59	Apr.	5, 1956	16.97	Apr.	6, 1962	133.16
Apr.	13, 1953	89.73	Oct.	18	21.46	Oct.	22	136.99
Apr.	15, 1954	91.53	Apr.	9, 1957	17.64	Apr.	2, 1963	136.11
			Oct.	31	16.30	Oct.	28	140.21
	Well DH-64-17-	301	Apr.	7, 1958	15.85	Apr.	6, 1964	139.52
c	Owner: The Texa Elevation: 24		Oct.	23	16.52	Apr.	5, 1965	141.65
Мау	7, 1962	41.58	Nov.	10, 1959	15.53	Oct.	18	144.84
Oct.	22	43.23	Apr.	10, 1961	16.78	Apr.	7, 1966	144.2
Apr.	 2, 1963	41.89	Oct.	18	18.82	Oct.	12	146.5
Oct.	28	45.07	Apr.	6, 1962	17.33	Mar.	16, 1967	147.7
	6, 1964	41.90	Oct.	22	16.08		-	
Apr.	14	46.72	Apr.	2, 1963	17.28		Well DH-64-1	7-910
Oct.	5, 1965	42.27	Oct.	28	17.71	0	wner: Charles Elevation:	
Apr.	7, 1966	43.54	Mar.	16, 1967	15.53		1939	55
Apr.	·	44.62						59.47
Oct.	12	43.82		Well DH-64-1	7-901	Apr.	9, 1941	88.30
Mar.	16, 1967	40.02	(Owner: Seacre Elevation:		Mar.	1, 1948	95.47
			Oct.	5, 1948	92.60	Oct.	6	95.47
			Apr.	27, 1949	93.45	Aug.	31, 1950	102.70
			Nov.	7	97.25	Nov.	3	
			NOV.	,		Apr.	19, 1951	104.26

	DATE	WATER LEVEL		DATE	WATER LEVEL		DATE	WATER LEVEL
Well	DH-64-17-910-0	Continued	Apr.	9, 1963	34,46		Well DH-64-2	
Apr.	10, 1952	108.53	Apr.	17, 1964	40.0			
Apr.	13, 1953	112.16	June	16, 1965	39.4		Owner: U.S. D Agricultur Elevation:	e
Oct.	13, 1955	120.45	Aug.	1, 1966	41.41	May	22, 1941	5.54
	Well DH-64-18-	105		Well DH-64-18	-603	Dec.	1, 1948	9.45
	Owner: W. W. Pfi		0	wner: Humble (Nov.	8, 1949	8.81
	Elevation: 22		0	Refining Co Elevation: 0	.	Apr.	10, 1950	9.02
	1928	21	Apr.	15, 1960		Nov.	1	6.06
Mar.	29, 1941	18.91	Арі. Мау	21, 1962	34.69	Apr.	23, 1951	10.89
Oct.	5, 1948	21.38	Apr.	9, 1963	35.74	Oct.	11	10.58
Apr.	27, 1949	19.62	Apr.	9, 1963 17, 1964	37.10	Apr.	11, 1952	10.96
Nov.	4	21.78	June		40.4	Oct.	9	12.38
Apr.	12, 1950	22.17	Aug.	16, 1965	37.9	Apr.	8, 1953	13.17
Nov.	3	22.75	May	1, 1966 13, 1967	39.02	Oct.	15	11.6
Apr.	19, 1951	22.58	iviay	13, 1907	40.6	Apr.	4, 1954	11.99
Oct.	15	23.00		Well DH-64-18-	902	Oct.	11, 1955	15.3
Apr.	10, 1952	25.51	Ov	wner: Humble C		Apr.	4, 1956	15.2
Oct.	10	23.92		Refining Co. Elevation: 0		Nov.	3, 1959	19.35
Apr.	13, 1953	24.05	May	15, 1942	4.40	Apr.	7, 1961	18.22
Oct.	16	24.84	Dec.	16, 1948	18.15		Well DH-64-22	400 ·
Apr.	15, 1954	24.33	Aug.	25, 1950	22.91			
Apr.	5, 1956	25.98	Мау	4, 1951	24.74	Owner: U.S. Dept. of Agriculture Elevation: 5±		
	Well DH-64-18-6	01	May	20, 1952	24.95	July	16, 1941	- + 2.9
Ov	wner: Humble Oil	and	Apr.	16, 1953	27.00	Mar.	15, 1949	
	Refining Co. Elevation: 0		Apr.	29, 1954	28.77	Nov.	9	+ 0.49
May	29, 1958	32.2	Apr.	24, 1956	35.40	Apr.	11, 1950	+ .42 + .41
May	21, 1962	37.90	1	Nell DH-64-19-9	104	Nov.	2	+ .41 + .46
Apr.	9, 1963	38.35		Owner: R. Barro		Apr.	- 23, 1951	+ .80
Apr.	17, 1964	39.85		Elevation: 11		Apr.	11, 1952	+ .70
June	16, 1965	40.9		1940	Flowed	Oct.	9	
Aug.	1, 1966	42.3	Mar.	17, 1948	2.84	Oct.	22, 1953	
May	13, 1967	42.08	Nov.	9, 1949	6.12	Apr.	14, 1954	46
	·		Apr.	11, 1950	13.94	<u>сы.</u>	17, 1904	48
١	Well DH-64-18-60	2	Nov.	2	18.27	v	Vell DH-64-26-	704
Ow	ner: Humble Oil Refining Co.	and	Apr.	23, 1951	19.65	Ow	ner: Humble O	
	Elevation: 0±		Oct.	11	19.52		Refining Co. Elevation: 0	
Apr.	15, 1960	32.06				Apr.	14, 1960	68.0
Ma;⁄	21, 1962	34.86				May	21, 1962	69.24

ſ	DATE	WATER LEVEL	I	DATE	WATER LEVEL	D	ATE	WATER LEVEL
Well C)H-64-26-704-C	ontinued	Apr.	5, 1957	6.53	May	16, 1951	4.39
Apr.	9, 1963	69.77	Oct.	30	6.58	May	29, 1952	3.31
Apr.	17, 1964	78.38	Apr.	10, 1958	6.28	May	27, 1953	3.48
June	16, 1965	76.2	Oct.	21	6.64	May	27, 1954	3.98
Aug.	1, 1966	76.75	Nov.	12, 1959	5.51	Dec.	14, 1955	3.57
		100	Apr.	3, 1962	6.15	May	16, 1956	3.05
~	Well DH-64-26-7		Oct.	23	6.59	May	29, 1957	3.24
0	wner: Humble O Refining Co.	li and	Apr.	4, 1963	6.36	May	21, 1958	3.48
	Elevation: 0		Oct.	30	6.61	Oct.	19, 1959	2.39
Dec.	16, 1948	59.63	Apr.	7, 1964	6.41	Oct.	11, 1960	3.92
Aug.	25, 1950	58.87	Apr.	6, 1965	6.42	May	10, 1962	3.84
May	4, 1951	58,56	Apr.	6, 1966	6.58	Mar.	20, 1963	10.26
May	20, 1952	61.61	Oct.	13	6.09	Feb.	6, 1964	10.82
May	20	61.79	Mar.	15, 1967	6.56	May	7, 1965	11.09
May	20	61.59						
Apr.	15, 1953	59.96		Jefferson Cour	nty	,	Well PT-64-06	-401
Apr.	29, 1954	62.47		Well PT-63-01-3	301	Owi	ner: Texas Pipe Elevation: 2	
Apr.	24, 1956	64.67		Owner: L. J. Git Elevation: 12		Jan.	28, 1942	+ 1.43
May	29, 1958	70.62	Мау	18,1950	0.64	May	17, 1951	+ .32
	Well DH-64-27-2	201	May	16, 1951	1.47	June	5, 1952	+ .35
	Owner: Sun Oil	Co.	May	29, 1952	3.08	May	27, 1953	39
	Elevation: 5		May	27, 1953	3.71	May	28, 1954	+ .01
Apr.	1944	4	May	27, 1954	4.03	Dec.	14, 1955	+ .31
Mar.	17, 1949	4.60	Dec.	14, 1955	7.68	May	16, 1956	+ .28
Nov.	9	22.12	May	28, 1957	9.09	May	29, 1957	+ .46
Apr.	11, 1950	7.22	May	21, 1958	10.57	Nov.	10, 1959	+ .19
Nov.	2	6.34	Oct.	19, 1959	13.54	Oct.	11, 1960	+ .13
Apr.	23, 1951	6.27	Oct.	10, 1960	14.96	May	9, 1962	+ .15
Oct.	11	5.72	May	10, 1962	18.07	Mar.	19, 1963	+ .05
Apr.	11, 1952	6.09	Mar.	19, 1963	20.74	Feb.	6, 1964	+ .13
Oct.	9	6.54	Feb.	6, 1964	22.96	May	7, 1965	.09
Apr.	8, 1953	5,99		-,			.,	
Oct.	15, 1953	6.26		Well PT-63-18-	101		Well PT-64-14	-406
Apr.	14, 1954	6.82	c	Dwner: Houston Elevation: 5			Owner: Union ' etroleum Co. V	Well 9
Apr.	14	6.57		1906	+ 20		Elevation: 1	
Oct.	11, 1955	6.45	July	18, 1941	+ .72	Aug.	31, 1948	24
Apr.	4, 1956	6.39	Мау	18, 1950	5.52	May	17, 1951	13.29
Oct.	17	6.75				May	27, 1953	31.93

	DATE	WATER LEVEL		DATE	WATER LEVEL	C	ΑΤΕ	WATER LEVEL
Well I	PT-64-14-406–C	ontinued	May	16, 1956	7.74	May	28, 1954	2.43
Dec.	14, 1955	36.98	May	29, 1957	9.80	Dec.	14, 1955	3.54
Nov.	4, 1959	45.08	May	21, 1958	9.42	May	16, 1956	3.53
Oct.	11, 1960	47.26	Oct.	19, 1959	7.72	May	29, 1957	4.37
	Well PT-64-22-301		Oct.	11, 1960	14.64	May	21, 1958	5.01
			Mar.	20, 1963	10.48	Oct.	19, 1959	4.75
Owner: Pipkin Ranch Elevation: 5		May	7, 1965	9.73	Oct.	11, 1960	6.58	
May	17, 1951	0.67			400	May	10, 1962	7.42
June	5, 1952	2.47		Well PT-64-23-		March	20, 1963	8.01
May	22, 1953	6.16		Owner: Pipkin F Elevation: §		Feb.	6, 1964	7.82
May	28, 1954	9.99	June	5, 1952	1.06	May	7, 1965	7.69
Dec.	14, 1955	8.91	May	27, 1953	2.67			