

TEXAS SURFACE WATER QUALITY STANDARDS

Texas Department of Water Resources April, 1981 LP-71

PREFACE

The Surface Water Quality Standards are the current revision of a document, Water Quality Requirements, which the Texas Water Quality Board staff developed in early 1967. In order to comply with the requirements of the Federal Water Pollution Control Act Amendments of 1972, the requirements were revised and approved by the Environmental Protection Agency on October 25, 1973. The Standards were amended in part on three occasions. In October, 1974, the Standards for the San Jacinto Basin and the Trinity-San Jacinto River Estuary were revised. In January, 1975, the Standards for the segments which traverse the Edwards Aquifer were revised. Also, in October, 1975, minor revisions for numerical values were incorporated into the Standards document which, the Environmental Protection Agency approved on February 9, 1976.

Major revisions to the Water Quality Standards are incorporated into this document. Water Quality Standards were written and based on the strategies which are being developed to meet the 1983 goals of PL 95-217. These goals require that, where attainable, water quality will support aquatic life and contact recreational uses.

TEXAS SURFACE WATER QUALITY STANDARDS

	Page
01 - Canadian River Basin	17
02 - Red River Basin	18
03 - Sulphur River Basin	20
04 - Cypress Creek Basin	22
05 - Sabine River Basin	23
06 - Neches River Basin	24
24 - Sabine-Neches Estuary	25
07 - Neches-Trinity Coastal Basin	26
08 - Trinity River Basin	27
09 - Trinity-San Jacinto Coastal Basin	31
24 - Trinity-San Jacinto Estuary	32
10 - San Jacinto River Basin	34
ll - San Jacinto-Brazos Coastal Basin	36
12 - Brazos River Basin	38
13 - Brazos-Colorado Coastal Basin	43
24 - East Matagorda Estuary	44
14 - Colorado River Basin	45
15 - Colorado-Lavaca Coastal Basin	49
24 - Lavaca-Tres Palacios Estuary	50
16 - Lavaca River Basin	51
17 - Lavaca-Guadalupe Coastal Basin	52
18 - Guadalupe River Basin	53
19 - San Antonio River Basin	56

TEXAS SURFACE WATER QUALITY STANDARDS (CONT.)

24	-	Guadalupe Estuary	58
24	-	Mission-Aransas Estuary	59
20	-	San Antonio-Nueces Coastal Basin	60
21	-	Nueces River Basin	61
24	-	Nueces Estuary	64
22	-	Nueces-Rio Grande Coastal Basin	65
24	-	Laguna Madre Estuary	66
23	-	Rio Grande Basin	67
25	-	Gulf of Mexico	69

TABLE OF CONTENTS

General Statement

I.	Authority	1
II.	Policy Statement	1
III.	Antidegradation Statement	1
IV.	Classification of Surface Waters	3
ν.	Description of Standards	3
VI.	General Criteria	4
VII.	Numerical Criteria	7
VIII.	Water Uses	9
IX.	Application of Standards	11
х.	Determination of Compliance	13
XI.	Comments	15
Brazos	River Basin	39
Brazos	-Colorado Coastal Basin	44
Canadi	an River Basin	17
Colora	do River Basin	46
Colora	do-Lavaca Coastal Basin	50
Cypres	s Creek Basin	22
East M	atagorda Estuary	45
Guadal	upe River Basin	54
Guadal	upe Estuary	59
Gulf o	f Mexico	70
Laguna	Madre Estuary	67

.

TABLE OF CONTENTS (CONT.)

Lavaca-Guadalupe Coastal Basin	53
Lavaca River Basin	52
Lavaca-Tres Palacios Estuary	51
Mission-Aransas Estuary	60
Neches River Basin	24
Neches-Trinity Coastal Basin	27
Nueces Estuary	65
Nueces-Rio Grande Coastal Basin	66
Nueces River Basin	62
Red River Basin	18
Rio Grande Basin	68
Sabine-Neches Estuary	26
Sabine River Basin	23
San Antonio-Nueces Coastal Basin	61
San Antonio River Basin	57
San Jacinto-Brazos Coastal Basin	37
San Jacinto River Basin	3.5
Sulphur River Basin	21
Trinity River Basin	28
Trinity-San Jacinto Coastal Basin	32
Trinity-San Jacinto Estuary	33
Appendix A. Base Flow Conditions	71
Appendix B. Segment Descriptions	82

GENERAL STATEMENT

I. Authority

Pursuant to the authority contained in Section 26.023 of the Texas Water Code, as amended, the Texas Water Development Board on behalf of the Texas Department of Water Resources adopts the following stream standards.

II. Policy Statement

It is the policy of this State and the purpose of this chapter to maintain the quality of water in the State consistent with the public health and enjoyment, the propagation and protection of terrestrial and aquatic life, the operation of existing industries, and the economic development of the State; to encourage and promote the development and use of regional and areawide waste collection, treatment, and disposal systems to serve the waste disposal needs of the citizens of the State; and to require the use of all reasonable methods to implement this policy (Section 26.003, Texas Water Code, as amended).

III. Antidegradation Statement

In implementing the legislative policy expressed in Section 26.003, it is the policy of the Texas Department of Water Resources that:

1. The waters in the State whose existing quality is better than the applicable water quality standards described herein as of the date when these standards become effective will as provided hereafter be maintained at their high quality, and no waste discharges may be made which will result in the lowering of the quality of these waters unless and until it has been demonstrated to the Texas Department of Water Resources that the change is justifiable as a result of necessary economic or social development.

- 2. Water uses identified in the numerical criteria of these standards will be maintained. Identified uses will be reviewed when appropriate and changes, if necessary, will be proposed and justified in accordance with 40 CFR, 35.1550(c)(2)(3) and (4). Additionally, no degradation shall be allowed in high quality waters within or adjacent to National Parks and Wildlife refuges or wild and scenic rivers designated by law if such degradation would significantly impact the use of an area for its designated purposes. Existing instream water uses shall be protected consistent with provisions of Chapter 11 of the Texas Water Code and in accordance with Section 101(g) of the Federal Clean Water Act.
- 3. The Department will not authorize or approve any waste discharge which will result in the quality of any of the waters in the State being reduced below the water quality standards without complying with the Federal and State laws applicable to the amendment of water quality standards.
- 4. Anyone making a waste discharge from any industrial, public or private project of development which would constitute a new source of pollution or an increased source of pollution to any of the waters in the State will be required, as part of the initial project design to provide the highest and best degree of waste treatment available under existing technology consistent with the best practice in the particular field affected under the conditions applicable to the project or development.

The Executive Director will keep the Environmental Protection Agency informed of its activities and will furnish to the agency such reports in such form, and containing such information as the Administrator of the Environmental Protection Agency may from time to time reasonably require to carry out his functions under the Federal Water Pollution Control Act, 33 U.S.C., 1251, et seq. Additionally, the Executive Director will consult and cooperate with the Environmental Protection Agency on all matters affecting the federal interest.

IV. Classification of Surface Waters

The surface waters of the State have been divided into the following categories for ease of classification.

- River Basin Waters those surface inland waters comprising the major rivers and their tributaries, including listed impounded waters, and including the tidal portion of the river to the extent that it is confined in a channel.
- 2. Coastal Basin Waters those surface inland waters, including listed impounded waters, exclusive of (1) above, discharging or flowing or otherwise communicating with bays or the gulf including the tidal portion of streams to the extent that they are confined in channels.
- Bay Waters all tidal waters exclusive of those included in river basin waters, coastal basin waters, and gulf waters.
- 4. Gulf Waters those waters which are not included in or form a part of any bay or estuary but which are a part of the open waters of the Gulf of Mexico to the limit of Texas' jurisdiction.
- V. Description of Standards

The General Statement is an integral part of the Standards and the Standards shall be interpreted in accord with the General Statement.

The Standards consist of three parts:

- 1. General Criteria applicable to all surface waters of the State except as otherwise provided herein.
- 2. Numerical Criteria applicable to specific surface waters designated in the standards.
- Water Uses deemed desirable for specific surface waters designated in the Standards.

The designation of a segment as desirable for a particular water usage reflects the objective of the Texas Department of Water Resources to attain and maintain a quality of water appropriate to a specific water usage for a stream segment.

VI. General Criteria

The general criteria enumerated below are applicable to all surface waters of the State at all times and specifically apply with respect to substances attributed to waste discharges or the activities of man as opposed to natural phenomena. Natural waters may, on occasion, have characteristics outside the limits established by these criteria; in which these criteria do not apply. The criteria adopted herein relate to the condition of waters as affected by waste discharges or man's activities. The following criteria do not override a specific exception to any one or more of the following if the exception is specifically stated in a water quality standard.

- Taste and odor producing substances shall be limited to concentrations in the waters of the State that will not interfere with the production of potable water by reasonable water treatment methods, or impart unpalatable flavor to food fish, including shellfish, or result in offensive odors arising from the waters, or otherwise interfere with the reasonable use of the waters.
- 2. The surface waters of the State shall be maintained so as to be essentially free of floating debris and suspended solids conducive to the production of putrescible sludge deposits or sediment layers which would adversely affect benthic biota or any lawful uses.
- 3. The surface waters of the State shall be maintained so as to be essentially free of settleable suspended solids conducive to changes in the flow characteristics of stream channels, to the untimely filling of reservoirs, lakes, and bays.
- 4. The surface waters of the State shall be maintained in an aesthetically attractive condition.
- 5. There shall be no substantial change in turbidity from ambient conditions due to waste discharges.
- There shall be no foaming or frothing of a persistent nature.
- 7. There shall be no discharge of radioactive materials in excess of that amount regulated by the Texas Radiation Control Act, Article 4590(f), Revised Civil Statutes, State of Texas and Texas Regulation for Control of Radiation.

Radioactivity levels in the surface waters of Texas, including the radioactivity levels in both suspended and dissolved solids for the years 1958 through 1960, were measured and evaluated by the Environmental Sanitation Services Section of the Texas Department of Health in a report prepared for and at the direction of the Health Department by the Sanitary Engineering Research Laboratory at the University of Texas. The document is entitled, "Report on Radioactivity--Levels in Surface Waters--1958-1960" pursuant to contract No. 4413-407 and is dated June 30, 1960. This document comprises an authoritative report on background radioactivity levels in the surface waters in the State and quite importantly sets out the locations where natural radioactive deposits have influenced surface water radioactivity. The impact of radioactive discharges that may be made into the surface waters of Texas will be evaluated and judgments made on the basis of the information in the report which was at the ime made, and may still be the only comprehensive report of its kind in the nation.

Radioactivity in fresh waters associated with the dissolved minerals (measurements made on filtered samples) shall not exceed those enumerated in the Interim Primary Drinking Water Regulations, December 1977, or latest revision, unless such conditions are of natural origin.

8. The surface waters of the State shall be maintained so that they will not be toxic to man, fish and wildlife, and other terrestrial and aquatic life.

With specific reference to public drinking water supplies, toxic materials not removable by ordinary water treatment techniques shall not exceed those enumerated in the Interim Primary Drinking Water Regulations, December, 1977, or latest revision.

For a general guide, with respect to fish toxicity, receiving waters outside mixing zones should not have a concentration of nonpersistent toxic materials exceeding 1/10 of the 96-hour LC50, where the bioassay is made using fish indigenous to the receiving waters. Similarly, for persistent toxicants, the concentrations should not exceed 1/20 of the 96-hour LC50.

For evaluations of toxicity, bioassay techniques will be selected as suited to the purpose at hand. As a general guideline, bioassays will be conducted using fish indigenous to the receiving waters, and water quality conditions (temperature, hardness, pH, salinity, dissolved oxygen, etc.) which approximate those of the receiving waters.

- 9. At the present time sufficient information is not available concerning (1) cause-effect relationships between nutrient concentrations and water quality, and (2) nutrient cycling mechanisms in Texas waters, to establish appropriate water quality standards for nutrients. As such information becomes available standards for nutrients will be established, if appropriate. Decisions regarding the establishment of nutrient standards will be made on a case-by-case basis by the Department after proper hearing and public participation. The establishment of a schedule for decisions as to the need for the nutrient standards which should be adopted is not feasible at this time.
- 10. The surface waters of the State shall be maintained so that no oil, grease, or related residue will produce a visible film of oil or globules of grease on the surface, or coat the banks and bottoms of the watercourse.
- 11. A dissolved oxygen concentration of at least 2.0 mg/L shall be maintained in all waters of the State, with the exception of intermittent streams and inland effluent dominated streams, for all flow conditions for which a dissolved oxygen limit is not enumerated elsewhere in these Standards (note also Section IX.4).
- 12. The quality of surface waters of the State, other than intermittent streams and those segments with specifically identified desired uses and numerical criteria, will be protected so that certain minimal uses such as navigation, agricultural water supply, or industrial water supply will be maintained. The foregoing statement is not to be construed to mean that the criteria enumerated in Quality Criteria for Water shall be applied in determining suitable water quality for the uses identified.

13. Consistent with its water resource management responsibilities, the State has determined that in most areas of the State the use of man-made impoundments for industrial cooling accomplishes both water conservation and water quality management objectives. While numerical criteria for temperature are not established for all such reservoirs, temperatures in these reservoirs and all other surface waters of the State shall be maintained so as not to interfere with the reasonable use of such waters for beneficial purposes consistent with the Policy Statement and in accordance with water rights permits.

VII. Numerical Criteria

The numerical criteria apply to the specific waters identified. A detailed description of the inland segment boundaries is contained in Appendix B - Segment Descriptions. Boundaries of coastal and estuarine segments have not yet been precisely defined; however, approximations are illustrated in the Segment Identification Maps, Texas River and Coastal Basins, Texas Department of Water Resources, LP-132, October 1980. Stream standards are established and specifically apply with respect to substances attributed to waste discharges or the activities of man as opposed to natural phenomena. Other surface waters are covered by the criteria in the General Statement and Section IX, 4.

Chemical concentration parameters, with the exception of dissolved oxygen and pH, apply to the approximate midpoint of the segment. The numerical values shown represent arithmetic average conditions over a period of one year. Compliance is determined from at least four measurements per segment by averaging measurements from all monitoring stations within the segment to allow for reasonable gradients within the segment. Whenever an unusual chemical concentration is found, an investigation of its origin will be made and such action as is warranted initiated. These chemical parameters, as identified in the numerical criteria will be maintained through the permit review process. Salinity levels in estuarine areas are discussed in Section XI, (2) Estuarine Salinity.

The dissolved oxygen values are minimum values which are applicable except as qualified in Section IX. For short periods of time, diurnal variations of 1.0 mg/L below the standard specified in the table shall be allowed for no more than 8 hours during any 24-hour period. The pH range represents maximum and minimum conditions throughout the segment except as qualified in Section IX.

The temperature limitations are intended to be applied with judgment and are applicable to the waters specifically identified herein with the qualifications enumerated in Section IX. Temperature standards are composed of two parts, a maximum temperature and a maximum temperature differential attributable to heated effluents.

Fresh Water Streams:

Maximum Temperature	See Table for Specific Waters
Maximum Temp. Diff.	5°F rise over ambient
Fresh Water Impoundment:	
Maximum Temperature	See Table for Specific Waters
Maximum Temp. Diff.	3°F rise over ambient

Tidal River Reaches, Bay and Gulf Waters:

	Fall Winter, Spring	Summer (June, July August)
Maximum Temp. Diff.	4°F	1.5°F
Maximum Temperature	95°F	95°F

The specific temperature differentials shall not apply where the temperature increase is due to the discharge of a treated domestic (sanitary) sewage effluent.

The maximum temperature differential applies only to temperatures below the maximum criteria. If a recorded temperature exceeds the maximum criteria for a specific segment it will be considered a violation of the Water Quality Standards.

Bacteriological water quality standards consist of two parts: (1) a measure of general quality, and (2) a limit on variations from the general quality. For all waters except gulf and bay waters, the measure of general quality is the logarithmic mean (geometric mean) of fecal coliform determinations. The number specified in the tables applies to the logarithmic mean of data from a representative sampling of not less than 5 samples collected over not more than 30 days. All aspects of the sampling shall be such that a truly representative result is obtained. For routine observation and evaluation of water guality, lesser numbers of samples collected over longer periods will In bay waters (exclusive of bay waters in the be used. buffer zone), the number specified in the tables applies to the median total coliform density as specified in the "National Shellfish Sanitation Program Manual or Operations, Part 1, Sanitation Shellfish Growing Areas", 1965 Revision, or latest revision.

The limit on variations from the general bacteriological quality on all waters except gulf and bay waters is a fecal coliform density which shall not be equaled or exceeded in more than 10% of the samples. This density is twice the numerical criteria specified in the table. In the instance of gulf and bay waters (exclusive of the buffer zone), the criteria for shellfish growing water shall apply.

VIII. Water uses

1. Contact recreation waters

Surface waters suitable for contact recreation shall not exceed a logarithmic mean (geometric mean) fecal coliform content of 200 organisms per 100 ml from a representative sampling of not less than 5 samples collected over not more than 30 days, as determined by either multipletube fermentation or membrane filter techniques. No more than 10 percent of the total samples taken during any 30-day period shall exceed a logarithmic mean fecal coliform content of 400 organisms per 100 ml.

Simple compliance with bacteriological standards does not insure that waters are safe for primary contact recreation, such as swimming. Longstanding public health principles mandate that a watershed sanitary survey be conducted in order to adequately evaluate the sanitary hazards potentially present on any natural watercourse.

2. Noncontact recreation

Surface waters for general or noncontact recreation should, with specific and limited exceptions, be suitable for human use in recreation activities not involving significant risks of ingestion. These waters shall not exceed a logarithmic mean (geometric mean) fecal coliform content of 2,000/100 ml, nor equal or exceed 4,000/100 ml in more than 10 percent of the samples, except in specified mixing zones adjacent to outfalls.

3. Domestic raw water supply

It is the goal that the chemical quality of all surface waters used for domestic raw water supply conform to the Interim Drinking Water Regulations. However, it must be realized that some surface waters are being used that cannot meet these standards. Since in these cases it is the only source available, these surface waters may be deemed suitable for use as a domestic raw water supply, where the chemical constituents do not pose a potential health hazard.

The evaluation of raw water for domestic use cannot be reduced to simply counting bacteria of any kind and the foregoing must be used with judgment and discretion. This paragraph is not intended to limit the responsibilities and authorities of responsible local governments or local health agencies.

4. Propagation of fish and wildlife

The water quality requirements necessary to support the propagation of fish and wildlife are too diverse to be defined by a single set of numerical criteria. Different, but equally desirable, biological communities may have substantially different water quality requirements. Also, the impact of a given chemical or physical component on a biological community can be assessed only when the other components of the system are known since synergistic and antagonistic interactions are common. Determination of the suitability of a stream for the propagation of fish and wildlife is most effectively accomplished by an assessment which considers both the physical-chemical parameters of the stream and the biological community present in the stream.

Specific criteria do exist with respect to shellfish waters. In shellfish areas in the bays and outside the buffer zones, the total coliform criteria shall be limited and guided by the latest revision of the U. S. Public Health Service Manual, "Sanitation of Shellfish Growing Areas".

IX. Application of Standards

1. Flow Criteria

The flow criteria as defined below and listed specifically for each segment at the referenced stations (See Appendix A) apply only to river and coastal basin waters. They do not apply to reservoir, estuarine, or gulf waters. Flow conditions were computed from historic USGS daily streamflow records where available. In cases where there was not a USGS flow station at the TDWR monitoring station, the base flow condition was interpolated/extrapolated from the nearest comparable USGS stations. The seven-day, two-year low flows shown in Appendix A were calculated using USGS data. When the calculated seven-day, two-year low flow was less than 0.1 cfs the base flow was set at 0.1 cfs.

The flows will be recomputed periodically to reflect any alterations in the hydrologic characteristics of a segment which may result from upstream activities in the basin, including construction of new reservoirs, climatological trends or other phenomena.

a. Chemical Parameters: The water quality standards exclusive of temperature, dissolved oxygen, and pH, but including chlorides, sulfates, and total dissolved solids represent annual arithmetic mean concentrations which shall not be exceeded for any year. The measurements that shall be used to compute the annual arithmetic mean will be only those taken when the flow at the time of sampling equals or exceeds the specified flow criterion. At least four (4) measurements per year are required to determine compliance with standards.

- b. The dissolved oxygen and pH standards represent minimum and minimum/maximum values, respectively, and shall apply at all times that the daily flow equals or exceeds the specified flow criterion.
- c. Temperature: The temperature standard represents a maximum value that shall apply at all times that the daily flow exceeds the specified flow criterion.
- d. Other Parameters and General Criteria: The general criteria and the numberical criteria not specifically discussed above shall apply at all times regardless of flow unless specifically excepted under Section IX, 4.
- e. The flow criteria identified in Appendix A are solely for the purpose of defining the conditions under which the numerical water quality standards apply to a given water body. The Appendix A flow criteria are not for the purpose of regulating flows in water bodies in any manner or requiring that minimun flows be maintained in the referenced water bodies.
- 2. Mixing Zones

Where mixing zones are specifically defined in a valid waste discharge permit issued by the Texas Department of Water Resources or a National Pollutant Discharge Elimination System Permit, the defined zone shall apply.

Where the mixing zone is not so defined, a reasonable zone shall be allowed. Because of varying local physical, chemical and biological conditions, no single criterion is applicable in all cases. In no case, however, where fishery resources are considered significant, shall the mixing zone allowed preclude the passage of free-swimming and drifting aquatic organisms to the extent of significantly affecting their populations. Normally mixing zones should be limited to no more than 25 percent of the cross-sectional area and/or volume of flow of the stream or estuary, leaving at least 75 percent free as a zone of passage unless otherwise defined by specific Board Order or Permit. Where specific mixing zones are defined consideration will be given to the guidance in Chapter 5, Guidelines for State and Areawide Water Quality Management Program Development, (1976) in establishing the mixing zone.

3. Buffer Zones in Bay and Gulf Waters

For all bay and gulf waters, exclusive of those contained in river or coastal basins as defined in Section IV, a buffer zone of 1,000 feet measured from the shorelines at ordinary high tide is hereby established. In this zone, the bacteriological requirements enumerated in other sections of these standards shall not apply. In these zones, the logarithmic mean (geometric mean) density of fecal coliform organisms shall not exceed 200/100 ml nor shall more than 10% of the total samples exceed 400/100 ml. The foregoing percentages are applicable when examining data from not less than 5 samples collected over not more than 30 days. For routine observation and evaluation of water quality, lesser numbers of samples collected over longer periods will be used.

4. Exceptions

The Water Quality Standards will not apply to treated effluents and, except General Criteria, will not apply to:

- a. water in mixing zones as defined in this section or in a waste discharge operating under a valid permit issued by the Texas Department of Water Resources or the National Pollutant Discharge Elimination System, or
- b. dead-end barge and dead-end ship channels constructed for navigation purposes unless specifically designated in the tables. This does not include finger canals to marinas or other developments.

In dead-end barge canals and dead-end ship channels, intermittent streams, and inland effluent dominated streams, a minimum goal shall be to maintain a concentration of 2.0 mg/L dissolved oxygen except in areas where it is not feasible or justifiable. Nothing in this statement precludes requiring waste treatment over and above that required to meet a 2.0 mg/L dissolved oxygen standard.

X. Determination of Compliance

In making any tests or analytical determination on classified surface waters to determine compliance

or noncompliance with water quality standards, representative samples shall be collected at locations approved by the Texas Department of Water Resources.

1. Collection and Preservation of Samples

Samples for determining compliance with the standards, excepting temperature as explained below, will be collected one foot below the water surface unless the water depth is less than 1.5 feet, in which case the collection depth shall be one-third of the water depth measured from the water surface.

For impoundments, the temperature standards enumerated shall apply to the representative temperature of the receiving water outside the mixing zone measured by averaging temperature measurements made at equal and appropriate intervals from the surface to the bottom except where the impoundment is stratified. In these cases, the bottom is defined as the thermocline and the temperature measurements for determining compliance shall be confined to the epilimnion. The thermocline shall be that point of rapid temperature change with vertical depth as defined in standard textbooks on the subject.

In tidal river reaches, the temperature standards apply to the fresh water layer in stratified situations similar to impoundments.

Samples will be collected from the present established sampling stations to insure continuance in monitoring with that done in the past. In those cases where there are not sufficient established points, it may be necessary to establish additional stations. This statement does not preclude sampling at other points in the conduct of field investigations.

Collection and preservation of samples will be in accordance with accepted procedures to assure representative samples of the water and to minimize alterations prior to analysis.

2. Analysis of Samples

Numerical values in the water quality standards will be determined by analytical procedures outlined in the latest edition of "Standard Methods for the Examination of Water and Wastewater" as prepared and published jointly by the American Public Health Association, the American Waterworks Association, and the Water Pollution Control Federation. Also, tests may be in accordance with other acceptable methods which have proven to yield reliable data to the satisfaction of the Texas Department of Water Resources.

XI. Comments

1. Inadequate Data

The Board reserves the right to amend these standards following the completion of extensive studies presently under way or being planned in the near future on some of the major river basins.

Errors in these water quality standards resulting from clerical or human errors, or erroneous data, will be subject to correction by the Board; and the discovery of such errors does not render the remaining or unaffected standards invalid.

2. Estuarine Salinity

It is recognized that the maintenance of proper salinity gradients during various periods of the year within estuarine waters is very important to the continuation of balanced and desirable populations of estuarine dependent marine life. The dominant force in determining salinity gradients is weather -- although gradients can be affected by waste discharges; modifications in the flow regime of in-flow rivers and streams, by the construction of impoundments, water diversions, etc.; and by physical alterations of gulf passes and other interconnections between estuarine and gulf waters. Since the dominant force controlling salinity gradients is beyond control, meaningful salinity standards cannot be enforced. Careful consideration, however, will always be given to all activities of any nature which can or might detrimentally affect salinity gradients in estuarine waters.

All phases of the natural mineral composition of estuarine and marine waters commonly known as salinity or salinity gradient are outside the scope of these standards, but are not outside the scope of the interest, responsibility, and authority of the several State agencies concerned with water quality, quantity, development, regulations, and administration. For the State's purposes, using both existing data and data yet to be collected, the State proposes to adopt carefully considered estuarine salinity criteria upon which future State evaluations and regulatory actions might be based. Such evaluations and regulatory actions shall not be precluded because of the absence of established salinity standards.

		•		1	I	1	1	1
	AATURE °F Gen, Statement)		95	85	95	93	85	
	ment) - COml) - CO avg. not more T ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	• fot	200	200	200	200	200	
ĹĂ	AGE	AA Hq	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	
CRITERIA) иос јегг сучи СЛЕД ОХХСЕИ		5.0	5.0	5.0	5.0	5.0	
	exceed s (mg/l) avg. DISSOLVED	SOLID	3,500	1,250	2,500	1,000	300	
	not to exceed TE (mg/l)		600	350	500	100	40	
	not to exceed TDE (mg/l)	1,000	350	006	300	50		
	NIC RAW SUPPLY			x			×	
USES MED	GATION OF	×	×	×	×	×		
WATER USES DEEMED	TDATN NOITA	×	×	×	×	×		
	CT AT ION	×	×	×	×	×		
	CANADIAN RIVER BASIN	SEGMENT DESCRIPTION	Canadian River - (Sanford Dam)	Lake Meredith	Canadian River - Lake Meredith to New Mexico	Wolf Creek	Rita Blanca Lake	
		NUMBER	1010	0102	0103	0104	0105	

TEXAS SURFACE WATER QUALITY STANDARDS

.

FRESH AND TIDAL WATERS

•• •• •••	T	1	1	T	T	1	T	1	4	TT			
	0208	0207	0206	0205	0204	0203	0202		NUMBER				
	Lake Crook	Prairie Dog Town Fork Red River	Red River - Pease River confluence to Prairie Dog Town Fork Red River	Red River - Wichita River confluence to Pease River confluence	Red River - Lake Texoma headwater to Wichita River confluence	Lake Texoma	Red River - Oklahoma state line to Lake Texoma	Red River - Arkansas state line at Index to Oklahoma stațe line	DESCRIPTION	SEGMENT	RED RIVER BASIN		
	X	х	X	×	×	×	Х	×	1	CONT	ACT EATION		
	X	Х	х	×	×	x	х	×			ONTACT EATION	WATER USES DEEMED DESIRABLE	FRESH AND I LUAD
	Х	х	X	×	×	х	х	x			AGATION OF & WILDLIFE	USES MED ABLE	ł.
	x					×	х	×			STIC RAW R SUPPLY		NA LEAD
	75	30,000	12,000	5,000	2,000	600	375	375			RIDE (mg/l) not to exceed		
	150	4,500	4,000	2,000	1,200	300	250	250			ATE (mg/l) not to exceed		
	350	65,000	25,000	10,000	6,000	1,500	1,100	1,100	S	OLI	L DISSOLVED DS (mg/l) avg. to exceed		
	5.0	5.0	5. 0	5.0	5.0	5.O	5.0	5.0			OLVED OXYGEN 1) not less than	CRITERIA	
	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	F	H R	ANGE	IA	
	200	200	200	200	200	200	200	200	1 t	FECA .og. chan Stat			
	90	93	93	93	93	92	93	93			ERATURE °F Gen. Statement)		

TEXAS SURFACE WATER QUALITY STANDARDS

FRESH AND TIDAL WATERS

8τ

	 0217	0216	0215	0214	0213	0212	0211	0210	0209	NUMBER	
	Lake Kemp	Wichita River - Diversion Lake headwater to Lake Kemp Dam	Diversion Lake	Wichita River - Red River confluence to Diversion Dam	Lake Kickapoo	Lake Arrowhead	Little Wichita River	Farmers Creek Reservoir (Nocona Lake)	Pat Mayse Reservoir	RED RIVER BASIN SEGMENT DESCRIPTION	
	×	×	×	×	×	×	×	×	×	CONTACT RECREATION	
_	×	×	×	×	×	×	×	х	x	NONCONTACT RECREATION PROPAGATION OF FISH & WIDDLEE	
-	×	×	×	×	×	×	X	х	Х	PROPAGATION OF	1 1 U 1 U
=					×	×	×	х	×	DOMESTIC RAW WATER SUPPLY	
_	7,000	1,800	1,800	1,800	100	250	250	150	100	CHLORIDE (mg/1) avg. not to exceed	
	2,500	008	008	008	50	50	50	100	175	SULFATE (mg/1) avg. not to exceed	
_	15,000	5,000	5,000	5,000	400	500	500	500	350	TOTAL DISSOLVED SOLIDS (mg/l) avg. not to exceed	
	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	DISSOLVED OXYGEN (mg/l) not less than	
-	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	ph RANGE	
-	200	200	200	200	200	200	200	200	200	FECAL/ (100ml) - 0 log. avg. not more F than (see Gen. 0 Statement)	
_	93	06	06	06	90	93	91	93	90	TEMPERATURE °F (see Gen. Statement)	

	r	r	1	1	1	1		च			7			
0225	0224	0223	0222	0221	0220	0219	0218	NUMBER						
McKinney Bayou	North Fork Red River - Oklahoma to headwater	Greenbelt Reservoir	Salt Fork Red River - Oklahoma to Greenbelt Reservoir Dam	Pease River - Middle and South Forks Pease River from North Fork Pease River confluence to headwater	Pease River - Red River confluence to North Fork Pease River headwater	Lake Wichita	Wichita River - Lake Kemp headwater to river headwater, including North, Middle, and South Forks	DESCRIPTION	SEGMENT	RED RIVER BASIN				
	Х	х	х	×	x	Х	×			TACT REATION		FRESH		
×	×	×	×	×	X	Х	Х			CONTACT REATION	WATER USE: DEEMED DESIRABLE	AND TI		
×	×	×	X	×	×	х	×			PAGATION OF H & WILDLIFE	USES MED ABLE	TIDAL WATERS		
×		x								ESTIC RAW ER SUPPLY		TERS		
60	800	250	400	2,500	12,000	1,000	7,000			DRIDE (mg/l) . not to exceed				
06	1,200	200	1,400	1,200	3,500	400	3,500			FATE (mg/l) . not to exceed				
400	2,500	750	3,000	7,000	30,000	1,800	15,000	s	OL	AL DISSOLVED IDS (mg/l) avg. to exceed				
5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0			SOLVED OXYGEN /1) not less than	CRITERIA			
6.0-8.5	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	F	н	RANGE	IA			
2,000	200	200	200	200	200	200	200	1 t	FECAL/ (100ml) - O log. avg. not more H than (see Gen. O Statement) K					
93	16	93	93	16	16	06	93			PERATURE °F e Gen. Statement)				

TEXAS SURFACE WATER QUALITY STANDARDS

			1	्र	-	T		٦	
0304	0303	0302	0301	NUMBER					
Days Creek - Arkansas State Line to headwaters	Sulphur River - above Lake Wright Patman, including North, Middle and South Sulphur Rivers	Lake Wright Patman	Sulphur River - Arkansas to Lake Wright Patman Dam.	DESCRIPTION	SEGMENT	SULPHUR RIVER BASIN			
	×	×	×			IACT REATION		FRESH	
×	Х	×	×	NONCONTACT RECREATION PROPAGATION OF FISH & WILDLIFE					
х	Х	×	×	PF F1	WATER USES DEEMED DESIRABLE	FRESH AND TIDAL WATERS			
	×	×		DC WZ		ATERS			
525	100	75	120			ORIDE (mg/l) not to exceed		·	
75	100	75	100			ATE (mg/l) not to exc ee d			
850	500	400	500	sc	LI	L DISSOLVED DS (mg/l) avg. to exceed			
5.0	5.0	5.0	5.0			OLVED OXYGEN 1) not less than	CRITERIA		
6.0-8.5	6.0-8.5	6.0-8.5	6.0-8.5	рН	R	ANGE	IA		
2,000	200	200	200	lo th	g. an	L/ (100ml) - O avg. not more (see Gen. ement)			
90	93	06	06			ERATURE °F Gen. Statement)			

.

TEXAS SURFACE WATER QUALITY STANDARDS

TEXAS SURFACE WATER QUALITY STANDARDS

FRESH AND TIDAL WATERS

				WATER DEEL DESIR	MED		CRITERIA						
		CYPRESS CREEK BASIN	CONTACT RECREATION	NONCONTACT RECREATION	PROPAGATION OF FISH & WILDLIFE	ISTIC RĂW Sr Supply	CHLORIDE (mg/l) avg. not to exceed	SULFATE (mg/l) avg. not to exceed	TOTAL DISSOLVED SOLIDS (mg/l) avg. not to exceed	DISSOLVED OXYGEN (mg/l) not less than	RANGE	AL/ (100ml) - 0 . avg. not more 1 1 (see Gen. 9 .ement)	TEMPERATURE °F (see Gen. Statement)
		SEGMENT	E C H	ECF	ROF	DOMES' WATER	CHLC avg.	11.F	TOTA SOLI not	SSI SSI	PH H	FECAL log. than State	BME
	NUMBER	DESCRIPTION	ъ S	ž 2	6 E	ĂÌ	ต่ ปี	a Si	ъйч	<u> </u>	ם	S T L B	F -
22	0401	Caddo Lake - Lousiana State Line to Lake headwater	x	х	x	x	100	50	300	5.0	6.0-8.5	200	90
	0402	Cypress Creek (also called Big Cypress Creek) - above Caddo Lake to Lake O' the Pines Dam	x	x	x	x	100	50	300	5.0	6.0-8.5	200	93
	0403	Lake O' the Pines	x	х	X	х	80	50	300	5.0	6.0-8.5	200	93
	0404	Cypress Creek - above Lake O' the Pines to Franklin County Dam.		х	х	х	100	100	500	5.0	6.0-8.5	2,000	90
	0405	Lake Cypress Springs	Х	x	X	X	100	100	500	5.0	6.0-8.5	200	93
	0406	Black Bayou		Х	X	Х	80	50	300	5.0	6.0-8.5	2,000	90
	0407	James' (Jim's) Bayou	1	х	X	Х	100	50	300	5.0	6.0-8.5	2,000	90

			WATER DEE DESIF	MED		CRITERIA						
	SABINE RIVER BASIN	CONTACT RECREAT ION	NONCONTACT RECREATION	PROPAGATION OF FISH & WILDLIFE	DOMESTIC RAW WATER SUPPLY	CHLORIDE $(mg/1)$ avg. not to exceed	SULFATE (mg/l) avg. not to exceed	TOTAL DISSOLVED SOLIDS (mg/1) avg. not to exceed	DISSOLVED OXYGEN (mg/l) not less than	RANGE	FECAL/ (100ml) - 00 log. avg. not more 11 than (see Gen. 94 Statement) W	SRATURE °F Gen. Statement)
NUMBER	DESCRIPTION	CON	NON	PRO FIS	NOM VAT	CHLO	SULFI avg.	TOTAL SOLIDS not to	,Em SI	H Hd	FECAL/ log. a than Staten	TEMPI (see
0501	Sabine River Tidal	x	x	 X			01 10	- F 0 L	4.0	<u>с</u> , 6.0-8.5	200	
0502	Sabine River - Morgan's Bluff to Sabine River Authority pump station	x	x	x	х	120	60	500	4.0 5.0	6.0-8.5	200	95 90
0503	Sabine River - Sabine River Authority pump station to Toledo Bend Dam	x	х	x	x	120	60	500	5.0	6.0-8.5	200	91
0504	Toledo Bend Reservoir	Х	Х	Х	Х	120	60	500	5.0	6.0-8.5	200	93
0505	Sabine River - Toledo Bend headwater to US 271 near Gladewater		х	х	х	175	75	400	5.0	6.0-8.5	2,000	93
0506	Sabine River - US 271 near Gladewater to Lake Tawakoni	х	х	х	х	200	100	500	5.0	6.0-8.5	200	90
0507	Lake Tawakoni	Х	х	Х	Х	75	50	200	5.0	6.0-8.5	200	93
0508	Adams Bayou Tidal		Х	Х					4.0	6.0-8.5	2,000	95
0509	Lake Murvaul	Х	Х	Х	<u>x</u>	150	75	500	5.0	6.5-9.0	200	92
0510	Lake Cherokee	Х	Х	X	Х	75	50	250	5.0	6.0-8.5	200	95
0511	Cow Bayou Tidal	Х	Х	X					4.0	6.0-8.5	200	95
		t t										

23

	0610	0609	8090	0607	0606	0605	0604	0603	0602	0601	NUMBER				
*Does not apply to flows less than 1 000 ofc	Sam Rayburn Reservoir	Angelina River - Steinhagen Reservoir confluence to Sam Rayburn Dam	Village Creek	Pine Island Bayou	Neches River - above Lake Palestine	Lake Palestine	Neches River - Steinhagen Reservoir headwater to Blackburn Crossing Dam	B. A. Steinhagen Reservoir	Neches River - above tidal to Dam B	Neches River Tidal	DESCRIPTION	SEGMENT	NECHES RIVER BASIN		
	х	х	х	x	×	Х	×	×	х				FACT REATION		
	Х	х	Х	х	х	х	х	×	x	×		ON ECI	WATER USES DEEMED DESIRABLE		
	х	х	х	×	×	х	х	×	х	×			PAGATION OF H & WILDLIFE	USES MED ABLE	
	х	х	х	×	×	х	×	×	x				ESTIC RAW Er Supply		
	70	70	150	150	50	50	50	50	50		1	HLO	DRIDE (mg/l) . not to exceed		
	40	40	75	50	30	30	30	30	30				FATE (mg/l) . not to exceed		
-	250	250	300	300	150	150	150	150	150		s	TOTAL DISSOLVED SOLIDS (mg/l) avg. not to exceed			
	5.0		5.0	0.5	0.5	5.0	5.0	5.0	5.0	2.5*		DISSOLVED OXYGEN (mg/l) not less than			
-	6.0-8.5	.0-8	6.0-8.5	6.0-8.5	6.0-8.5	6.0-8.5	•	6.0-8.5	6.0-8.5	.0-8					
	200	200	200	200	200	200	200	200	200	2,000	llog avg not more l				
	56	90	06	95	95	06	91	93	τe	95			PERATURE °F e Gen. Statement)		

*Does not apply to flows less than 1,000 cfs

₽Z.

 0614	0613	0612	TT90	NUMBER	Γ			
Lake Jacksonville	Lake Tyler and Lake Tyler East	Attoyac Bayou	Angelina River - above Sam Rayburn Reservoir	DESCRIF	SEGMENT	NECHES RIVER BASIN		
×	×	×	×			TACT REATION		FRESH
×	×	×	×			CONTACT REATION	WATER DEEN DESIR	AND
 ×	×	×	×			PAGATION OF & WILDLIFE	VATER USES DEEMED DESIRABLE	TIDAL WATERS
×	×	×	×			STIC RAW R SUPPLY		AL WATERS
50	100	75	125			RIDE (mg/l) not to exceed		
75	50	50	40			ATE (mg/l) not to exceed		
 750	250	150	250	so	DLI	L DISSOLVED DS (mg/l) avg. to exceed		
5.0	5.0	5.0	5.0			OLVED OXYGEN 1) not less than	CRITERIA	
6.5-9.0	6.5-9.0	6.0-8.5	6.0-8.5	pH	I R.	ANGE	łΙΆ	
200	200	200	200	FE lc th St				
93	93	90	06			ERATURE °F Gen. Statement)		

 2412	2411	NUMBER						
Sabine Lake	Sabine Pass - U. S. Coast Guard Station to end of jetties	DESCRIPTION	SABINE-NECHES ESTUARY					
Х	X		NTACT CREATION	с ×	BAY & GULF W			
Х	x		NCONTACT CREATION	WATER USES DEEMED DESIRABLE	WATERS			
×	х		OPAGATION OF SH & WILDLIFE					
4.0	5.0		SSOLVED OXYGEN (mg/l) t less than					
6.5-9.0	6.5-9.0	рН	RANGE					
70	70	me	TAL/ (100 ml) - dian not more than ee Gen. Statement)	CRITERIA				
95	95	FALL, WINTER & SPRING not to exceed 4°F rise SUMMER not to exceed a 1.5°F rise						

ш.

TEXAS SURFACE WATER QUALITY STANDARDS BAY & GULF WATERS

5,6

			r	1	1	1
	MPERATURE °F ee Gen. Statement)		95	95	95	
	CAL/ (100ml) - 0 3. avg. not more 7 3. (see Gen. 0 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	५२ ०⊺	200	2,000	2,000	
IA	вуисе	Нq	6.5-9.0	6.5-9.0	6.5-9.0	
CRITERIA	d\j) vof jess fygu SSOLVED OXYGEN		5.0	4.0	4.0	
	MTAL DISSOLVED DLIDS (mg/l) avg. Dt to exceed	os	600			
	ונדאדב (mg/l) ים. not to exceed		75			
	νg. not to exceed		100			
	MESTIC RAW VIER SUPPLY					
WATER USES DEEMED DESIRABLE	O PAGATION OF STLDLIFE & WILDLIFE		x	. ×	×	
WATER USES DEEMED DESIRABLE	DUCONTACT NOITAEND		×	×	×	
	NUTACT CREATION		×			
	NECHES-TRINITY COASTAL BASIN SEGMENT	R DESCRIPTION	Taylor Bayou - above tidal	Intracoastal Waterway - Port Bolivar to Sabine-Neches Canal	Sabine-Neches Canal - Stewt's Island to U. S. Coast Guard Station	
		NUMBER	1070	0702	0703	

TEXAS SURFACE WATER QUALITY STANDARDS

FRESH AND TIDAL WATERS

			WATER DEE DESIR	MED		CRITERIA						
	TRINTY RIVER BASIN	CONTACT RECREATION	NONCONTACT RECREATION	PROPAGATION OF FISH & WILDLIFE	DOMESTIC RAW WATER SUPPLY	CHLORIDE (mg/l) avg. not to exceed	SULFATE (mg/l) avg. not to exceed	TOTAL DISSOLVED SOLIDS (mg/1) avg. not to exceed	DISSOLVED OXYGEN (mg/l) not less than	ph range	AL/ (100ml) - 0 . avg. not more 11 1 (see Gen. 4 .ement)	TEMPERATURE °F (see Gen. Statement)
	SEGMENT	ON1 ECF	ONC ECF	ROF	0ME A T E	CHLOI a vg .	SULF1 avg.	OLI OLI ot	/ɓw SSI	н Н	FECAL, log. a than Stater	EME
NUMBER	DESCRIPTION	U M	R R	ሲሴ	Āß	ਲ ਹੋ	ຫ່ດີ	ĒŪ	ЪЭ			
0801	Trinty River Tidal	Х	х	х					4.0	6.5-9.0	200	95
0802	Trinity River - Tidal to Livingston Dam	Х	Х	Х	Х	125	100	600	5.0	6.5-9.0	200	93
0803	Lake Livingston	X	Х	X	Х	150	50	500	5.0	6.5-9.0	200	93
0804	Trinity River – Lake Livingston headwater to SH 31 near Trinidad		x	x		150	150	600	5.0	6.5-9.0	2,000	93
0805	Trinity River - SH 31 near Trinidad to Beach Street bridge in Fort Worth		X*			175	175	850	3.0**	6.5-9.0	2,000	95
0806	West Fork Trinity River - Beach St. Bridge in Fort Worth to Lake Worth Dam	х	x	x	x	100	100	500	5.0	6.5-9.0	200	93
0807	Lake Worth	X	Х	X	Х	100	100	500	5.0	6.5-9.0	200	91
0808	West Fork Trinity River - Lake Worth headwater to Eagle Mountain Dam	x	х	x	х	100	100	500	5.0	6.5-9.0	200	91
0809	Eagle Mountain Reservoir	Х	X	x	Х	75	75	300	5.0	6.5-9.0	200	94

* Desired uses such as navigation, agricultural water supply and industrial water supply are applicable to this segment.

** "Does not apply when the headwater flow at U.S.G.S. gauge station 0804800 located at West Fork Trinity River at Fort Worth, Texas, is less than 80 cfs. In such cases, the dissolved oxygen standard shall be 1.0 mg/l. Application of diurnal variation of dissolved oxygen criteria noted in Section VII of these Standards is restricted to those incidences Segment 0805 where ambient dissolved oxygen levels are 2.0 mg/l or greater."

28

	0318	/ T80	0 T R D	CT80		0813	2180	0811	0810	NUMBER			<u> </u>]
_	Cedar Creek Reservoir	Javarro Mills Reservoir	xahachi	1 5			West Fork Trinity River - above Lake Bridgeport	Lake Bridgeport		DESCRIPTION	SE	TRINITY RIVER BASIN		
	×	×	×	×	×	X	×	X	×			FACT REATION		r AE ON
	×	×	×	×	×	X	X	X	х			CONTACT REATION	WATER USES DEEMED DESIRABLE	FREST AND IIDAL
	×	×	×	×	×	x	×	x	×			PAGATION OF L& WILDLIFE	USES MED AB LE	
	×	×	×	×	×	×	×	×	×			STIC RAW R SUPPLY		WATERS
	50	50	50	50	100	75	100	75	100			RIDE (mg/l) not to exceed		
	50	75	50	50	100	75	100	75	100			ATE (mg/l) not to exceed		
	200	300	300	300	500	300	500	300	500	s	OLI	L DISSOLVED DS (mg/l) avg. to exceed		
	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0			OLVED OXYGEN 1) not less than	CRITERIA	
	6.0-8.5	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	pl	HR	ANGE	IA	
	200	200	200	200	200	200	200	200	200	lo tl	og. han	L/ (100ml) - O avg. not more (see Gen. ement)		
	93	06	91	91	06	93	06	90	06			ERATURE °F Gen. Statement)		

.

TEXAS SURFACE WATER QUALITY STANDARDS

FRESH AND TIDAL WATERS

water habitat.	*For this segment, the desired use "Propagation of Fish and Wildlife" is
	the
	the desired 1
	use
+ L	"Propagation
	оf т
	1sh
	and
	Wildlife" is i
	ր. Տ
	ident
	as
	that
	ified as that applicable to a modified war
	ť
	a modified war
	war

	0828	0827	9826	0825	0824	0823	0822	0821	0820	6180	NUMBER		
*For this segment, the desired use "Propagation	Lake Arlington	White Rock Lake	Grapevine Reservoir	Denton Creek	Elm Fork Trinity River - above Lake Lewisville	Lake Lewisville (Garza-Little Elm Res.)	Elm Fork Trinity River - West Fork Trinity River confluence to Lewisville Dam	Lake Lavon	Lake Ray Hubbard	East Fork Trinity River - Trinity River confluence to Forney Dam	SEGMENT DESCRIPTION	TRINITY RIVER BASIN	
ion of	х	Х	х	Х	×	×	X	х	Х			TACT REATION	
Fish a	х	х	Х	х	24	Х	X	х	х	Х		CONTACT REATION	WATER USES DEEMED DESIRABLE
and Wil	Х	Х	Х	Х	Х	х	×	х	Х	x		PAGATION OF H & WILDLIFE	USES MED ABLE
Wildlife"	X	х	x	×	х	×	×	×	х	×		ESTIC RAW ER SUPPLY	
is identi	100	00 T	08	08	80	08	80	40	40	75		ORIDE (mg/l) . not to exceed	
fied	100	00T	60	60	60	60	60	40	40	50		FATE (mg/l) . not to exceed	
as that	300	400	500	500	500	500	500	300	300	400	SOL	AL DISSOLVED IDS (mg/l) avg. to exceed	
applicable	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	0.5	4.0*		SOLVED OXYGEN /1) not less than	CRITERIA
able to a	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	рН И	RANGE	IA
1 modified	200	200	200	200	200	200	200	200	200	2,000	log thai	AL/ (100ml) - O . avg. not more n (see Gen. tement)	
d warm	95	93	93	06	06	06	06	93	93	91		PERATURE °F e Gen. Statement)	

30

0834 Lake Amon	0833 Clear Fork Weatherford	Lake	Reservoi		0829 Clear Fo River cc	NUMBER		гj		
on G. Carter	Fork Trinity River - above Lake srford	Weatherford	Reservoir headwater to Weatherford Dam		Fork Trinity River - West Fork Trinity confluence to Benbrook Dam	DESCRIPTION	SEGMENT	TRINITY RIVER BASIN		
×	×	×	х	×	×			FACT REATION		FRESH AND
×	×	X	Х	×	×			CONTACT REATION	WATER USES DEEMED DESIRABLE	AND T
×	×	×	Х	х	×			PAGATION OF 4 & WILDLIFE	USES MED ABLE	TIDAL WATERS
×	x	×	x	х	Х			ESTIC RAW ER SUPPLY		ATERS
150	125	100	100	75	100			ORIDE (mg/l) not to exceed		
150	125	100	100	75	100			TATE (mg/l) not to exceed		
400	750	500	500	300	500	s	OLI	L DISSOLVED DS (mg/l) avg. to exceed		
5.0	5.0	5.0	5.0	5.0	5. 0			OLVED OXYGEN 1) not less than	CRITERIA	
6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	pI	HR	ANGE	IA	
200	200	200	200	200	200	lo tì	og. nan	L/ (100ml) - O avg. not more (see Gen. ement)		
93	95	93	06	93	93			ERATURE °F Gen. Statement)		

 0902	1060	NUMBER				
 Cedar Bayou - above tidal	Cedar Bayou Tidal		SEGMENT	TRINITY-SAN JACINTO COASTAL BASIN		
	×			ACT EATION		
×	×			CONTACT EATION		WATER USES DEEMED DESIRABLE
 ×	×			AGATION OF & WILDLIFE		USES MED VABLE
×				STIC RAW R SUPPLY		
 200				RIDE (mg/l) not to exceed		
00T				ATE (mg/l) not to exceed		
400		s	DLI	L DISSOLVED DS (mg/l) avg. to exceed		
5.0	4.0			OLVED OXYGEN 1) not less tha	n	CRITERIA
6.5~9.0	6.5-9.0	pŀ	I R.	ANGE		IA
1,000	200	lc tł	g. Ian	L/ (100ml) - avg. not more (see Gen. ement)	COLIFORM	$\sum_{i=1}^{n}$
06	95			ERATURE °F Gen. Statement	>	

TEXAS SURFACE WATER QUALITY STANDARDS BAY & GULF WATERS

			ATER USES DEEMED ESIRABLE				CRITERIA	
					1)		COLIFORM	TEMP.
	TRINITY-SAN JACINTO ESTUARY	CONTACT RECREAT ION	NONCONTACT RECREATION	PROPAGATION OF FISH & WILDLIFE	DISSOLVED OXYGEN (mg/l) not less than	RANGE	TOTAL/ (100 ml) - median not more than (see Gen. Statement)	FALL, WINTER & SPRING not to exceed 4°F rise SUMMER not to exceed a 1.5°F rise
	SEGMENT	CON	NON REC	PROP <i>P</i> FISH	DISS not	Hď	TOTAL, media (see (FALL, not 1 risc SUMMI a 1.4
NUMBER	DESCRIPTION							
2421	Upper Galveston Bay	х	х	х	4.0	6.5-9.0	70	95
2422	Trinity Bay	х	х	х	4.0	6.5-9.0	70	95
2423	East Bay	х	х	х	4.0	6.5-9.0	70	95
2424	West Bay	Х	х	х	4.0	6.5-9.0	70	95
2425	Clear Lake	х	х	х	4.0	6.5-9.0	200*	95
2426	Tabbs Bay	Х	х	х	4.0	6.5-9.0	200*	95
2427	San Jacinto Bay	х	х	х	4.0	6.5-9.0	200*	95
2428	Black Duck Bay	х	х	х	4.0	6.5-9.0	200*	95
2429	Scott Bay	х	х	х	4.0	6.5-9.0	200*	95

* Contact recreation bacteriological standards apply - 200/100 ml fecal coliform

	TEXAS SURFACE BAY	CE WATER QUALITY Y & GULF WATERS	1 ~	STANDARDS				
		Γ¥	WATER USES DEEMED DESIRABLE				CRITERIA	
					1)		COLIFORM	TEMP.
	TRINITY-SAN JACINTO ESTUARY						ore than	l 4°F
		ITACT CREATION	ICONTACT CREATION	PAGATION O SH & WILDLI	SOLVED OXY less than	RANGE	TAL/ (100 m dian not mo ee Gen. Sta	LL, WINTER to exceed se MMER not to L.5°F rise
	SEGMENT					эΗ	neđ	not ris SUM
NUMBER	DESCRIPTION					F	n	r 1 S
2430 Bu	Burnett Bay	×	×	×	4.0	6.5-9.0	200*	95
2431 Mo	Moses Lake	X	х	х	4.0	6.5-9.0	200*	95
2432 Ch	Chocolate Bay	X	×	х	4.0	6.5-9.0	70	95
2433 Ba	Bastrop Bay - including Oyster Lake	х	х	Х	4.0	6.5-9.0	70	95
2434 Ch	Christmas Bay	Х	х	х	4.0	6.5-9.0	70	95
2435 Dr	Drum Bay	Х	х	х	4.0	6.5-9.0	70	95
2436 Ba	Barbours Cut	X	×		4.0	6.5-9.0	200*	95
2437 Te	Texas City Ship Channel		х		4.0	6.5-9.0	1,000**	95
2438 Ba	Bayport Channel		х		4.0	6.5-9.0	1,000**	95
2439 Lo	Lower Galveston Bay	Х	х	×	4.0	6.5-9.0	70	95
								ļ

тотботот Ardda channans 7007 / D07 Ĩ H (

** Refers to Fecal Coliform count and not total coliform count

FRESH AND TIDAL WATERS

			WATER DEEL DESIR	MED					CRITER	IA		
	SAN JACINTO RIVER BASIN	CONTACT RECREAT ION	NONCONTACT RECREATION	PROPAGATION OF FISH & WILDLIFE	DOMESTIC RAW WATER SUPPLY	CHLORIDE (mg/l) avg. not to exceed	SULFATE (mg/l) avg. not to exceed	TOTAL DISSOLVED SOLIDS (mg/l) avg. not to exceed	DISSOLVED OXYGEN (mg/l) not less than	ph range	FECAL/ (100m1) - 0 log. avg. not more 1 than (see Gen. 2 Statement)	TEMPERATURE °F (see Gen. Statement)
NUMBER	SEGMENT DESCRIPTION	CON' RECI	NON	PRO FISI	DOM WATI	CHL(avg	SULI avg	TOT/ SOL: not	′бш) SIQ	I Hq	FECAL/ log. a than (Statem	TEMPE (see
1001	San Jacinto River Tidal - 200 yards below I.H. 10 Bridge to Lake Houston Dam	x	x	x					4.0	6.5-9.0	200	95
1002	Lake Houston	х	х	Х	х	100	50	200	5.0	6.5-9.0	200	90
1003	East Fork San Jacinto River - above Lake Houston		x	x	x	80	40	400	5.0	6.0-8.5	2,000	91
1004	West Fork San Jacinto River - Lake Houston to Conroe Dam	x	x	x	х	80	40	300	5.0	6.5-9.0	200	95
1,005	Houston Ship Channel - Morgan's Point to San Jacinto River confluence, including tidal portion of San Jacinto River to 200 yards below I.H. 10 Bridge		x	x					4.0	6.5-9.0	1,000	95
1006	Houston Ship Channel - San Jacinto River confluence to Turning Basin, including tidal portions of tributaries*								2.0	6.5-9.0	2,000	95
1007	Houston Ship Channel - Turning Basin*								1.5	6.5-9.0	2,000	95

* The toxicity clause applies to this segment in order to preserve segment 1005 and Galveston Bay, not this segment, as a fishery resource.

ա Ծ

1012	1011	1010	1009	1008	NUMBER	
Lake Conroe	Peach Creek	Caney Creek	Cypress Creek	Spring Creek	DESCRIPTION	SAN JACINTO RIVER BASIN
×	х	х				NTACT CREATION
Х	Х	Х	Х	х		NTACT CREATION NCONTACT CREATION OPAGATION OF SH & WILDLIFE
х	Х	х	Х	х		
×	×	×	×	х		MESTIC RAW TER SUPPLY
50	50	50	08	08		LORIDE (mg/l) g. not to exceed
40	0 È;	40	40	40		LFATE (mg/l) g. not to exceed
200	200	300	300	300	soi	TAL DISSOLVED LIDS (mg/l) avg. t to exceed
5.0	5.0	5.0	5.0	5.0		SSOLVED OXYGEN RI g/l) not less than RI RI SA
6.5-9.0	6.0-8.5	6.0-8.5	6.5-9.0	6.5-9.0	рН	RANGE
200	200	200	2,000	2,000	log tha	CAL/ (100ml) - O g. avg. not more an (see Gen. atement)
06	06	06	90	06		MPERATURE °F ee G en. Sta tement)

]		FRESH	FRESH AND TIDAL WATERS	IDAL W	ATERS							
			WATER USES DEEMED DESIRABLE	USES MED VABLE					CRITERIA	IA		
									in		COLIFORM)
	SAN JACINTO-BRAZOS COASTAL BASIN										more	
		CACT TACT	CONTACT EATION	AGATION O	STIC RAW R SUPPLY	RIDE (mg/ not to e	ATE (mg/l not to e	L DISSOLV DS (mg/l) to exceed	OLVED OXY(1) not les	ANGE	L/ (100ml) avg. not (see Gen. ement)	CRATURE °F Gen. Stat
	SEGMENT							LI		R	g. an	
NUMBER	DESCRIPTION	1						sc		рН	lo th	
1101	Clear Creek Tidal		Х	, x					4.0	6.5-9.0	2,000	95
1102	Clear Creek - above Tidal		х	x		200	100	600	5.0	6.5-9.0	2,000	95
1103	Dickinson Bayou Tidal	×	х	х					4.0	6.5-9.0	200	95
1104	Dickinson Bayou - above Tidal		х	х		200	100	600	5.0	6.5-9.0	2,000	90
1105	.Bastrop Bayou Tidal	×	Х	х					4.0	6.5-9.0	200	95
1106	Bastrop Bayou - above Tidal		x	х	х	100	50	500	5.0	6.5-9.0	2,000	90
1107	Chocolate Bayou Tidal	×	Х	Х					4.0	6.5-9.0	200	95
1108	Chocolate Bayou - above Tidal		х	х		150	50	600	5.0	6.5-9.0	1,000	90
1109	Oyster Creek Tidal		Х	х					4.0	6.5-9.0	1,000	95
1110	Oyster Creek - above tidal to Brazos River Authority Diversion dam south of Sugar Land		×	х		300	150	750	5.0	6.5-9.0	2,000	90
1111	Old Brazos River Channel	×	×						4.0	6.5-9.0	200	95

1113	1112	NUMBER			
Armand Bayou Tidal	Oyster Creek - Brazos River Authority Diver- stion dam south of Sugar Land to headwaters	R DESCRIPTION	SE	SAN JACINTO-BRAZOS COASTAL BASIN	
 x	×	1		ACT EATION	
х	x			CONTACT EATION	WATER USES DEEMED DESIRABLE
х	×			AGATION OF & WILDLIFE	USES MED VABLE
	х			STIC RAW R SUPPLY	
	300			RIDE (mg/l) not to exceed	
	150			ATE (mg/l) not to exceed	
	750	s	OLI	L DISSOLVED DS (mg/l) avg. to exceed	
4.0	5.0			OLVED OXYGEN 1) not less than	CRITERIA
6.5-9.0	6.5-9.0	P	HR	ANGE	IA
200	200	1 t	og. han	L/ (100ml) - avg. not more (see Gen. ement)	
95	95			ERATURE °F Gen. Statement)	

FRESH AND TIDAL WATERS

FRESH AND TIDAL WATERS

			WATER DEE DESIH	MED					CRITER	RIA		
	BRAZOS RIVER BASIN	CONTACT RECREAT ION	NONCONTACT RECREATION	PROPAGATION OF FISH & WILDLIFE	DOMESTIC RAW WATER SUPPLY	CHLORIDE (mg/l) avg. not to exceed	SULFATE (mg/l) avg. not to exceed	L DISSOLVED DS (mg/l) avg. to exceed	DISSOLVED OXYGEN (mg/l) not less than	RANGE	FECAL/ (100ml) - 0 log. avg. not more 11 than (see Gen. 9 Statement) W	SRATURE °F Gen. Statement)
NUMBER	SEGMENT DESCRIPTION	CON	NON	PRO1	IMOC VATI	CHLOH avg.	SULF <i>1</i> avg.	TOTAL I SOLIDS not to	/ɓw SSI	pH R	FECAL/ log. a than (Statem	TEMPI (see
1201	Brazos River Tidal	x	x	x	- 4		03 18		4.0	6.5-9.0	<u>م</u> ب ب م 200	<u>₽</u> ~
1202	Brazos River - above tidal to Navasota River confluence	x	х	x	x	300	200	750	5.0	6.5-9.0	200	95
1203	Whitney Reservoir	Х	х	х		600	300	1,500	5.0	6.5-9.0	200	93
1204	Brazos River - Whitney Reservoir headwater to de Cordova Bend Dam	х	х	x		600	300	1,600	5.0	6.5-9.0	200	91
1205	Lake Granbury	Х	х	Х		1,000	600	2,500	5.0	6.5-9.0	200	93
1206	Brazos River - Lake Granbury headwater to Possum Kingdom Reservoir (Morris Sheppard Dam)	x	x	x		600	300	1,600	6.0	6.5-9.0	200	90
1207	Possum Kingdom Reservoir	Х	Х	х		1,200	500	3,500	5.0	6.5-9.0	200	93
1208	Brazos River - Possum Kingdom headwater to Salt Fork Brazos River confluence	x	x	x		5,000	2,000	12,000	5.0	6.5-9.0	200	95
1209	Navasota River - Brazos River confluence to Lake Mexia	x	x	x	x	100	50	400	5.0	6.5-9.0	200	93

		1	1	1	1	1	1		EL	r	
	1217	1216	1215	1214	1213	1212	1211	1210	NUMBER		
-	Lampasas River - Headwater of Stillhouse Hollow Reservoir to Lampasas River headwater	Stillhouse Hollow Reservoir	Lampasas River - Little River confluence to Stillhouse Hollow Dam	San Gabriel River - Little River confluence to headwater	Little River - Brazos River confluence to confluence of Leon and Lampasas Rivers	Somerville Reservoir	Yegua Creek - Brazos River confluence to Somerville Reservoir	Lake Mexia	SEGMENT DESCRIPTION	BRAZOS RIVER BASIN	
	×	×	х	X	Х	Х	Х	×		TACT REATION	
	Х	Х	Х	Х	Х	Х	Х	x		CONTACT REATION	WATER USE: DEEMED DESIRABLE
	х	Х	Х	Х	Х	х	х	×	1	PAGATION OF H & WILDLIFE	USES MED ABLE
		х	х	×	X	Х	X	×		ESTIC RAW ER SUPPLY	
	200	100	100	50	75	75	75	100		ORIDE (mg/l) . not to exceed	
	100	75	75	50	75	75	75	50		FATE (mg/l) . not to exceed	
	700	500	500	400	400	250	250	400	SOL	AL DISSOLVED IDS (mg/l) avg. to exceed	
	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		SOLVED OXYGEN /1) not less than	CRITERIA
	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0		RANGE	IA
	200	200	200	200	200	200	200	200	log tha	AL/ (100ml) - O . avg. not more n (see Gen. tement)	
	91	93	91	16	06	93	91	06		PERATURE °F e Gen. Statement)	

017

	PERATURE °F Gen. Statement)		93	91	93	90	93	93	93	93	
	د المراقع المراق المراقع المراقع المراقع المراقع المراقع المراقع المراقع المراقع	льйт . Роі	2,000	200	200	200	200	200	200	200	
IA	М ИGE	янq	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	
CRITERIA	<pre>\] not less than SOLVED OXYGEN</pre>		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
	to exceed נDS (שק/ן) פּאק. גר DISSOLVED	rios	500	500	500	500	500	500	500	400	
	. ποτ το exceed		75	75	75	75	75	75	75	60	
	. not to exceed		001	150	100	150	200	150	150	60	
	MAR SUPPLY STIC RAW		×	×	x	X	Х	×	x	х	
WATER USES DEEMED DESIRABLE	PACATION OF H & WILDLIFE		×	х	×	×	×	×	×	x	
WATER USES DEEMED DESIRABLE	TOATNOO NOITAEA		×	×	×	×	×	×	×	×	
	TACT REATION			×	×	×	×	X	×	×	
	BRAZOS RIVER BASIN	SEGMENT DESCRIPTION	Nolan Creek - Leon River confluence to headwater	Leon River - Little River confluence to Belton Reservoir Dam	Belton Reservoir	Leon River - Belton Reservoir headwater to Lake Proctor Dam	Lake Proctor	Leon River - Lake Proctor headwater to Leon Reservoir Dam	Leon Reservoir	Lake Waco	
		NUMBER	1218	1219	1220	1221	1,222	1223	1224	1225	

 			T		,	1	1					1
1234	1233	1232	1231	1230	1229	1228	1227	1226	NUMBER			
Lake Cisco	Hubbard Creek Reservoir	Clear Fork Brazos River	Lake Graham	Lake Palo Pinto	Paluxy River	Lake Pat Cleburne	Nolands River - Whitney Reservoir to Pat Cleburne Dam	Bosque River - Lake Waco headwater to Bosque River headwater, including North, Middle, and South Forks	SEGMENT DESCRIPTION	BRAZOS RIVER BASIN		
×	×	×	×	×	×	×		×	1	TACT REATION		FRESH
 ×	×	х	х	×	Х	Х	Х	Х		CONTACT REATION	WATER USES DEEMED DESIRABLE	FRESH AND TIDAL WATERS
 ×	×	Х	×	×	Х	Х	Х	Х		PAGATION OF H & WILDLIFE	USES MED ABLE	IDAL W
×	×		х	х	х	Х				ESTIC RAW ER SUPPLY		ATERS
 75	350	008	200	100	100	100	75	250		ORIDE (mg/l) . not to exceed		
 75	75	008	75	100	100	001	75	150		FATE (mg/l) . not to exceed		
 350	750	з, ооо	500	450	450	300	500	800	SOL	AL DISSOLVED IDS (mg/l) avg. to exceed		
 5.0	5.0	5.0	5,0	5.0	5.0	5.0	5.0	5.0		SOLVED OXYGEN /1) not less than	CRITERIA	
 6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	рН	RANGE	IA	
 200	200	200	200	200	200	200	2,000	200	log tha	AL/ (100ml) - . avg. not more n (see Gen. tement)		
 93	93	93	95	56	91	93	95	91		PERATURE °F e Gen. Statement)		

			WATER DEE DESII	MED		CRITERIA							
	BRAZOS RIVER BASIN SEGMENT	CONTACT RECREATION	NONCONTACT RECREATION	PROPAGATION OF FISH & WILDLIFE	DOMESTIC RAW WATER SUPPLY	CHLORIDE (mg/l) avg. not to exceed	SULFATE (mg/l) avg. not to exceed	TOTAL DISSOLVED SOLIDS (mg/1) avg. not to exceed	DISSOLVED OXYGEN (mg/l) not less than	ph range	FECAL/ (100ml) - 0 log. avg. not more 10 than (see Gen. Walden Statement)	TEMPERATURE °F (see Gen. Statement)	
NUMBER	DESCRIPTION Lake Stamford						t				EI Lc St	T ,	
		X	X	X	X	425	3 5:0	1,100	5.0	6.5-9.0	200	93	
1236	Lake Fort Phantom Hill	X	X	Х	X	200	100	600	5.0	6.5-9.0	200	93	
1237	Lake Sweetwater	Х	х	х	Х	175	225	500	5.0	6.5-9.0	200	93	
1238	Salt Fork of Brazos River	Х	х	х		23,000	4,000	40,000	5.0	6.5-9.0	200	93	
1239	White River - Salt Fork Brazos River confluence to White River dam	х	х	x	x	100	100	500	5.0	6.5-9.0	200	92	
1240	White River Lake	Х	Х	х	х	150	100	450	5.0	6.5-9.0	200	89	
1241	Double Mountain Fork Brazos River - Salt Fork Brazos River confluence to North Fork Double Mountain Fork Brazos River confluence	x	х	x		2,100	1,900	5,500	5.0	6.5-9.0	200	95	
1242	Brazos River - Navasota River confluence to Whitney Dam	x	х	x	x	400	250	1,650	5.0	6.5-9.0	200	95	
1243	Salado Creek-Lampasas River confluence to headwaters	x	x	x	x	50	50	300		6.5-9.0	200	90	
1244	Brushy Creek - San Gabriel River confluence to headwaters		x	x	x	125	15 0	6 00	5.0	6.5-9.0	1,000	90	

1305	1304	1303	1302	1301	NUMBER]
Caney Creek - above tidal	Caney Creek Tidal	Cedar Lakes *	San Bernard River - above tidal	San Bernard River Tidal	BRAZOS-COLORADO COASTAL BASIN SEGMENT DESCRIPTION	TEXAS
	х	×	×	×	CONTACT RECREATION	
×	×	×	×	х	NONCONTACT RECREATION PROPAGATION OF FISH & WILDLIFE	URFACE WATER QUALITY S FRESH AND TIDAL WATERS
×	×	×	х	х	PROPAGATION OF FISH & WILDLIFE	R QUAL: IDAL WA
			×		DOMESTIC RAW WATER SUPPLY	LTY STA ATERS
200			100		CHLORIDE (mg/l) avg. not to exceed	ANDARDS
75			50		SULFATE (mg/l) avg. not to exceed	
 1,000			500	-	TOTAL DISSOLVED SOLIDS (mg/l) avg. not to exceed	
5.0	4.0	4.0	5.0	4.0	DISSOLVED OXYGEN	
 6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	ph RANGE	
 2,000	200	*	200	200	FECAL/ (100ml) - O log. avg. not more L than (see Gen. O Statement) X	
 90	95	95	06	95	TEMPERATURE °F (see Gen. Statement)	

 \star Shellfish sanitation bacteriological standards apply - 70/100 ml total coliform

\$ Þ

BAY & GULF WATERS

			ATER USES DEEMED DESIRABLE		CRITERIA				
					1)		COLIFORM	TEMP.	
	EAST MATAGORDA ESTUARY	CONTACT RECREATION	NONCONTACT RECREATION	PROPAGATION OF FISH & WILDLIFE	DISSOLVED OXYGEN (mg/l) not less than	RANGE	TOTAL/ (100 ml) - median not more than (see Gen. Statement)	FALL, WINTER & SPRING not to exceed 4°F rise SUMMER not to exceed a 1.5°F rise	
	SEGMENT	CON	NON	PR(FIS	DIS	μd	TOJ mec (st	FAI not ris SUN	
NUMBER	MDER DESCRIPTION								
2441	East Matagorda Bay	X	Х	Х	5.0	6.5-9.0	70	95	

al stability of a stability of	1409	1408	1407	1406	1405	1404	1403	1402	1401	NUMBER				
	Colorado River - Lake Buchanan headwater to San Saba River confluence	Lake Buchanan	Inks Lake	Lake Lyndon B. Johnson	Lake Marble Falls	Lake Travis	Lake Austin	Colorado River - above tidal to Tom Miller Dam, including Town Lake	Colorado River Tidal	DESCRIPTION	SEGMENT	COLORADO RIVER BASIN		
	Х	×	×	×	×	×	×	×	×			TACT REATION		
	Х	×	×	×	×	Х	x	х	×			CONTACT REATION	WATER USES DEEMED DESIRABLE	
	х	×	×	×	x	х	х	x	×			PAGATION OF 1 & WILDLIFE	USES MED VABLE	1
	×	×	≈	×	×	x	x	х				ESTIC RAW ER SUPPLY		
	200	100	100	100	100	100	100	100				DRIDE (mg/l) . not to exceed		
	200	75	75	75	75	75	75	75				FATE (mg/l) , not to exceed		
	500	400	400	400	400	400	400	500		s	OLI	AL DISSOLVED LDS (mg/l) avg. to exceed	-	
	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.0			GOLVED OXYGEN /1) not less than	CRITERIA	
	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	p	нв	RANGE	IA	
	200	200	200	200	200	200	200	200	200	1 t	og har	AL/ (100ml) - Co avg. not more (see Gen. cement)		
	91	90	90	94	94	C 6	90	95	95			PERATURE °F e Gen. Statement)		

•

TEXAS SURFACE WATER QUALITY STANDARDS

FRESH AND TIDAL WATERS

FRESH AND TIDAL WATERS

			WATER DEEM DESIR	1ED		CRITERIA						
	COLORADO RIVER BASIN SEGMENT	CONTACT RECREAT ION	NONCONTACT RECREATION	PROPAGATION OF FISH & WILDLIFE	DOMESTIC RAW WATER SUPPLY	CHLORIDE (mg/l) avg. not to exceed	SULFATE (mg/l) avg. not to exceed	TOTAL DISSOLVED SOLIDS (mg/l) avg. not to exceed	DISSOLVED OXYGEN (mg/l) not less than	RANGE	FECAL/ (100ml) - 00 log. avg. not more 11 than (see Gen. 20 Statement)	TEMPERATURE °F (see Gen. Statement)
NUMBER	DESCRIPTION	CO RE	NO RE	РR FI	DC	CH	SU av	TC SC DC		Hd	Str	Ë Ü
1410	Colorado River - San Saba River confluence to Concho River confluence	x	х	x	х	450	450	1,500	5.0	6.5-9.0	200	91
1411	E. V. Spence Reservoir	х	х	х	х	950	450	1,500	5.0	6.5-9.0	200	93
1412	Colorado River - FM 2059 near Silver to Lake J. B. Thomas (Colorado River Dam)	х	x	x		11,000	2,500	20,000	5.0	6.5-9.0	200	93
1413	Lake J. B. Thomas	Х	х	x	х	50	60	500	5.0	6.5-9.0	200	90
1414	Pedernales River	Х	Х	х	Х	80	50	500	5.0	6.5-9.0	200	91
1415	Llano River	х	х	х	х	50	50	300	5.0	6.5-9.0	200	91
1416	San Saba River	Х	X	x	х	80	50	500	5.0	6.5-9.0	200	90
1417	1417 Pecan Bayou - Colorado River confluence to Lake Brownwood Dam			x	x	250	200	1,000	5.0	6.5-9.0	1,000	90
1418 Lake Brownwood			Х	Х	X	150	100	500	5.0	6.5-9.0	200	90

1426	1425	1424	1423	1422	1421	1420	1419	NUMBER	and and a second of the second s		
Colorado River - Concho River confluence to E. V. Spence Reservoir (Robert E. Lee Dam)	O. C. Fisher Reservoir	South and Middle Concho Rivers and Spring Creek - above Twin Buttes Reservoir	Twin Buttes Reservoir	Lake Nasworthy	Concho River - Colorado River confluence to Fork in San Angelo, including South Fork to Lake Nasworthy Dam and North Fork to San Angelo Reservoir Dam	Pecan Bayou - above Lake Brownwood	Lake Coleman	SEGMENT DESCRIPTION	COLORADO RIVER BASIN		
 Х	×	×	×	×	×	×	×		FACT REATION		r RESH
×	×	×	×	×	×	×	×		CONTACT REATION	WATER USES DEEMED DESIRABLE	FRESH AND ITUAL
×	×	X	×	×	×	х	X		PAGATION OF H & WILDLIFE	USES MED ABLE	
×	×	х	×		×		×		ESTIC RAW ER SUPPLY		WALERS
 425	150	150	150	450	600	500	150		DRIDE (mg/l) . not to exceed		
750	150	150	150	400	500	500	100		FATE (mg/l) . not to exceed		
1,400	700	700	700	1,500	2,000	1,500	500	SOL	AL DISSOLVED IDS (mg/l) avg. to exceed		
5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		SOLVED OXYGEN /1) not less than	CRITERIA	
6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	рн	RANGE	IA	
200	200	200	200	200	200	200	200	log tha	AL/ (100ml) - . avg. not more n (see Gen. tement)		
16	06	06	06	93	06	90	93		PERATU RE °F e Gen. Statement)		

61	V	
1427	NUMBER	
Onion Creek - Colorado River confluence to headwaters	COLORADO RIVER BASIN SEGMENT DESCRIPTION	
×	CONTACT RECREATION	FRESH
 ×	NONCONTACT RECREATION PROPAGATION OF FISH & WILDLIFE	FRESH AND TIDAL WATERS
×	PROPAGATION OF FISH & WILDLIFE	IDAL WA
×	DOMESTIC RAW WATER SUPPLY	TERS
50	CHLORIDE (mg/l) avg. not to exceed	
50	SULFATE (mg/l) avg. not to exceed	
300	TOTAL DISSOLVED SOLIDS (mg/l) avg. not to exceed	
5.0	DISSOLVED OXYGEN (mg/l) not less than	
6.5-9.0	pH RANGE	
200	FECAL/ (100ml) - O log. avg. not more H than (see Gen. O Statement)	
 06	TEMPERATURE °F (see Gen. Statement)	

1502	1501	NUMBER				
Tres Palacios Creek - above tidal	Tres Palacios Creek Tidal	SEGMENT DESCRIPTION	COLORADO-LAVACA COASTAL BASIN			
×	×	CONT RECF	CACT REATION		FRESH	
><	×		CONTACT EATION	WATER USES DEEMED DESIRABLE	FRESH AND TIDAL WATERS	
 ×	×		PAGATION OF & WILDLIFE	VATER USES DEEMED DESIRABLE	IDAL W	
			STIC RAW R SUPPLY		ATERS	
250			RIDE (mg/l) not to exceed			
100			ATE (mg/l) not to exceed			
600		SOLI	L DISSOLVED DS (mg/l) avg. to exceed			
5.0	5.0		OLVED OXYGEN 1) not less than	CRITERIA		
6.5-9.0	6.5-9.0	pH R	IA			
200	200	FECAL/ (100ml) - O log. avg. not more H than (see Gen. O Statement)				
06	95	TEMP (see				

TEXAS SURFACE WATER QUALITY STANDARDS BAY & GULF WATERS

			ATER USES DEEMED DESIRABLE		CRITERIA					
					1)		COLIFORM	TEMP.		
	LAVACA-TRES PALACIOS ESTUARY SEGMENT	CONTACT RECREATION	NONCONTACT RECREATION	PROPAGATION OF FISH & WILDLIFE	DISSOLVED OXYGEN (mg/l) not less than	I RANGE	TOTAL/ (100 ml) - median not more than (see Gen. Statement)	FALL, WINTER & SPRING not to exceed 4°F rise SUMMER not to exceed a 1.5°F rise		
NUMBER	DESCRIPTION	R CC	NC	Ч Ц Ц	I G G	Hq	Ŭ Ŭ Ŭ	FI SU SU		
2451	Matagorda Bay - including Powderhorn Lake and Turtle Bay	Х	х	х	5.0	6.5-9.0	70	95		
2452	Tres Palacios Bay	х	х	Х	5.0	6.5-9.0	70	95		
2453	Lavaca Bay - including Chocolate Bay	x	х	х	5.0	6.5-9.0	70	95		
2454	Cox Bay	x	x	х	5.0	6.5-9.0	70	95		
2455	Keller Bay	х	x	х	5.0	6.5-9.0	70	95		
2456	Carancahua Bay	x	x	х	5.0	6.5-9.0	70	95		

••••	1603	1602	1601	NUMBER				
	Navidad River - Lavaca River confluence to headwater	Lavaca River - above tidal to headwater	Lavaca River Tidal	SEGMENT DESCRIPTION	LAVACA RIVER BASIN			
	×	×	×	CONT RECH	FACT REATION			
	×	×	×		CONTACT REATION	WATER USES DEEMED DESIRABLE		
	X	×	×		PAGATION OF H & WILDLIFE	USES MED VABLE		
	×	×			ESTIC RAW ER SUPPLY			
	150	150			DRIDE (mg/l) , not to exceed			
	75	75			TATE (mg/1) not to exceed			
	500	500		SOLI	AL DISSOLVED DS (mg/l) avg. to exceed			
	5.0	5.0	4.0	1	GOLVED OXYGEN (1) not less than	CRITERIA		
	6.5-9.0	6.5-9.0	6.5-9.0	pH F	RANGE	ĹĂ		
	200	200	200	FECA log. thar Stat				
	91	91	95	TEMP (see				

.

TEXAS SURFACE WATER QUALITY STANDARDS FRESH AND TIDAL WATERS

and the second data and th			
	TEMPERATURE °F (1800 Gen. Statement)	95	
	FECAL/ 100, 300, 100 more Год. аvg. not more 70, 00 Prace Gen. 0, 00 Statement) -	2,000	
IA	рн куисе	6.5-9.0	
CRITERIA	(mg/l) not less than DISSOLVED OXYGEN	4.0	
	TOTAL DISSOLVED Solids (mg/l) avg. not to exceed		
	SULFATE (mg/l) avg. not to exceed		
	алд. not to exceed CHLORIDE (mg/l)		
	DOMESTIC RAW		
WATER USES DEEMED DESIRABLE	PROPAGATION OF	×	
WATER USES DEEMED DESIRABLE	NONCONTACT NONCONTACT	×	
	CONTACT RECREATION		
	LAVACA-GUADALUPE COASTAL BASIN SEGMENT DESCRIPTION	Victoria Barge Canal - San Antonio Bay to Victoria Turning Basin	
*********	NUMBER	1701	

۲

יי * סרדים	1805	1812*	1804	1803	1802	1801	NUMBER			
"This segment has been established in its geographical the Edwards Aquifer, and the Water Quality Standards of the water infiltrating into, and therefore recharc	Canyon Lake	Guadalupe River - Comal River confluence to Canyon Dam	Guadalupe River - San Marcos River confluence to Comal River confluence	Guadalupe River - San Antonio River confluence to San Marcos River confluence	Guadalupe River - Guadalupe River Authority salt water barrier to San Antonio River confluence	Guadalupe River Tidal - Guadalupe Bay to Guadalupe-Blanco River Authority salt water barrier	DESCRIPTION	SEGMENT	GUADALUPE RIVER BASIN	
geographical ext y Standards for fore recharging,	×	х	х	х	х	x			TACT REATION	
exte for i ing,	х	Х	Х	Х	Х	X			CONTACT REATION	WATER USES DEEMED DESIRABLE
cent as that p it have as a the aquifer.	Х	х	Х	Х	Х	Х			PAGATION OF H & WILDLIFE	USES MED ABLE
e t ra	×	×	×	×	x				ESTIC RAW ER SUPPLY	
portion of principal	40	40	80	100	100			CHLO	ORIDE (mg/l) . not to exceed	
	40	40	50	50	08				FATE (mg/l) . not to exceed	
eam v the	400	400	400	400	500			SOL	AL DISSOLVED IDS (mg/l) avg. to exceed	
is	5.0	6.0	5.0	5.0	5.0	5. • 0			SOLVED OXYGEN /1) not less than	CRITERIA
t le	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0		рH	RANGE	IA
of recharging he quality of	200	200	200	200	200	200		log tha	AL/ (100m1) - O . avg. not more n (see Gen. O tement)	
ging of	90	06	06	93	06	95			PERATURE °F e Gen. Statement)	

₽2

			WATER DEEN DESIR	MED					CRITER	IA		
	GUADALUPE RIVER BASIN	CONTACT RECREATION	NONCONTACT RECREATION	PRCPAGATION OF FISH & WILDLIFE	DOMESTIC RAW WATER SUPPLY	CHLORIDE (mg/l) avg. not to exceed	SULFATE (mg/l) avg. not to exceed	TOTAL DISSOLVED SOLIDS (mg/l) avg. not to exceed	DISSOLVED OXYGEN (mg/l) not less than	RANGE	FECAL/ (100mI) - 0 log. avg. not more 1 than (see Gen. 2 Statement)	TEMPERATURE °F (see Gen. Statement)
	SEGMENT	CON	NON	PRC FIS	DOM	CHL/OF a vg .	SULF <i>l</i> avg.	TOTAL SOLIDS Not to	DIS (mg	Hq	FECAL/ log. a than (Statem	TEMPI (see
NUMBER	DESCRIPTION									<u> </u>		
1806	Guadalupe River - Canyon Lake headwater to headwater of river	х	х	х	x	40	40	400	5.0	6.5-9.0	200	90
1807	Coleto Creek - Guadalupe River confluence to headwaters	x	x	x	x	250	100	500	5.0	6.5-9.0	200	93
1808	San Marcos River - Guadalupe River confluence to headwater	x	x	x	x	60	50	400	5.0	6.5-9.0	200	90
1809	Blanco River - San Marcos River confluence to Limekiln Road Ford west of Kyle	х	x	x	x	40	50	400	5.0	6.5-9.0	200	92
1813*	Blanco River - Limekiln Road Ford west of Kyle to headwaters	x	x	x	x	25	30	400	5.0	6.5-9.0	200	92
1810	Plum Creek - San Marcos River confluence to headwater		x	x		350	150	1,120	5.0	6.5-9.0	2,000	90

* "This segment has been established in its geographical extent as that portion of the stream which is capable of recharging the Edwards Aquifer, and the Water Quality Standards for it have as a principal purpose the protection of the quality of the water infiltrating into, and therefore recharging, the aquifer."

Ծ Ծ

99	
1811	NUMBER
Comal River - Guadalupe River confluence to headwater	GUADALUPE
×	CONTACT RECREATION
×	NONCONTACT RECREATION PROPAGATION OF FISH & WILDLIFE
 ×	PROPAGATION OF
×	DOMESTIC RAW WATER SUPPLY
25	CHLORIDE (mg/l) avg. not to exceed
30	SULFATE (mg/l) avg. not to exceed
 400	TOTAL DISSOLVED SOLIDS (mg/l) avg. not to exceed
 5.0	DISSOLVED OXYGEN (mg/l) not less than
6.5-9.0	ph range
200	FECAL/ (100ml) - 0 log. avg. not more H than (see Gen. 0 Statement)
06	TEMPERATURE °F (see Gen. Statement)

	1904	**6061	1903	1908**	1902	1901	NUMBER				
* Not presently suitable, however, upon completion	Medina Lake	<pre>Medina River - USGS-TDWR Station 08180500 to Medina Lake Dam</pre>	Medina River - San Antonio River confluence to USGS-TDWR Station 08180500	Cibolo Creek - MoPac R.R. Bridge West of Bracken to headwaters	Cibolo Creek - San Antonio River confluence to MoPac R. R. Bridge West of Bracken	San Antonio River - Guadalupe River con- fluence to headwater	DESCRIPTION	SEGMENT	SAN ANTONIO RIVER BASIN		
pletion	Х	×	Х	Х		*			IACT REATION		
of	х	×	х	х	х	×			CONTACT REATION	WATER USES DEEMED DESIRABLE	
proposed	Х	×	Х	х	х	Х			PAGATION OF H & WILDLIFE	USES MED ABLE	
	х	х	Х	Х	х	х			ESTIC RAW ER SUPPLY		
facilities, t	50	50	120	40	200	200		vд НГ(DRIDE (mg/1) . not to exceed		
the qual	75	75	120	75	300	150			FATE (mg/l) . not to exceed		
quality will	.400	400	700	400	006	700	s	oL	AL DISSOLVED IDS (mg/l) avg. to exceed		
be	5.0	5.0	5.0	5.0	5.0	5.0			SOLVED OXYGEN /l) not less than	CRITERIA	
improved	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	P	н	RANGE	IA	
-	200	200	200	200	2,000	2,000	1 t	og hai	AL/ (100ml) - O . avg. not more h (see Gen. tement) R		
	88	06	06	06	06	06	TEMPERATURE °F (see Gen. Statement)				

** "This segment has been established in its geographical extent as that portion of the stream which is capable of recharging the Edwards Aquifer, and the Water Quality Standards for it have as a principal purpose the protection of the quality of the water infiltrating into, and therefore recharging, the aquifer."

L۵

	1910	1907*	1906	1905	NUMBER						
ω	Salado Creek - San Antonio River confluence	Leon Creek - SH 16 northwest of Leon Valley to headwaters	Leon Creek - Medina River confluence to SH 16 northwest of Leon Valley	Medina River - Medina Lake headwater to Medina River headwater	DESCRIPTION	SEGMENT	SAN ANTONIO RIVER BASIN				
		x	Х	×			FACT REATION				
×		Х	Х	×			CONTACT REATION		WATER USES DEEMED DESIRABLE		
×		х	Х	×			PAGATION OF H & WILDLIFE		USES MED ABLE		
×		×	×	×			ESTIC RAW ER SUPPLY				
50		40	120	40		чд	DRIDE (mg/l) . not to exceed				
200		75	120	100			FATE (mg/l) . not to exceed				
550		400	700	400	s	or:	AL DISSOLVED IDS (mg/l) avg. to exceed				
5.0		5.0	5.0	5.0			GOLVED OXYGEN /1) not less tha	ın	CRITERIA		
6.5-9.0		6.5-9.0	6.5-9.0	6.5-9.0	pl	н	RANGE		IA		
2,000		200	200	200	FECAL/ (100m1) - O log. avg. not more I than (see Gen. M Statement) X						
06		56	95	88	TEMPERATURE °F (see Gen. Statement)						

* "This segment has been established in its geographical extent as that portion of the stream which is capable of recharging the Edwards Aquifer, and the Water Quality Standards for it have as a principal purpose the protection of the quality of the water infiltrating into, and therefore recharging, the aquifer."

BAY & GULF WATERS

			ATER USES DEEMED DESIRABLE				CRITERIA	
					(1)		COLIFORM	TEMP.
	GUADALUPE ESTUARY	CONTACT RECREATION	NONCONTACT RECREATION	PROPAGATION OF FISH & WILDLIFE	DISSOLVED OXYGEN (mg/l) not less than	RANGE	TOTAL/ (100 ml) - median not more than (see Gen. Statement)	FALL, WINTER & SPRING not to exceed 4°F rise SUMMER not to exceed a l.5°F rise
NUMBER	SEGMENT DESCRIPTION	REC	NON REC	PRO FIS	DIS	Hq	TOT med (s e	FAL not ris SUM a l
2461	Espiritu Santo Bay - Saluria to Steamboat Pass	x	x	x	5.0	6.5-9.0	70	95
2462	San Antonio Bay including Hynes Bay and Guadalupe Bay	х	x	x	5.0	6.5-9.0	70	95
2463	Mesquite Bay	х	Х	х	5.0	6.5-9.0	70	95

1							1	<u> </u>	T
		TEMP.	, S°F rise to exceed 4°F MFR not to exceed L, WINTER & SPRINC	MU: si: Joi	S X U	95	95	95	•
	CRITERIA	COLIFORM	ALV (100 ml) - ian not more than e Gen. Statement)	pəı	u	70	70	70	
			Алисе	Н	đ	6.5-9.0	6.5-9.0	6.5-9.0	
		(τ,	јєгг сучи SOFAED OXXCEN (шд\			5.0	5.0	5.0	
CONFORMATO			PAGATION OF H به WILDLIFE			×	×	×	
	WATER USES DEEMED DESIRABLE		CONTACT REATION			X	×	×	
Y & GULF WATERS	M		TACT NOITAER		- 1	×	×	×	
BAY			MISSION-ARANSAS ESTUARY	SEGMENT	R DESCRIPTION	Aransas Bay	Copano Bay including Port Bay	St. Charles Bay	
					NUMBER	2471	2472	2473	

STANDARDS	ß
QUALITY	TIDAL WATERS
WATER	AND TIL
SURFACE	FRESH
TEXAS	

۱

	PERATURE °F e Gen. Statement)			95	95	95	95	
	AL/ (100ml) - م د. عرب مرد شمتو 1 د. عرب مرد شمتو 1 ۲ ۳ ۲ ۳ ۳ ۳ ۳ ۳ ۳ ۳	еца бот		200	200	200	200	
IA	RANGE	Нç	I	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	
CRITERIA	ען) עסך זפצצ בעשט SOLVED OXYGEN			4.0	5.0	4.0	5.0	
	רס פּאכפּפּק וםצ (של/ן) שּתם. אר מוצפטרתבם	201	5		2, 250		600	
	. not to exceed . . not to exceed				100		20	
	י חסל לס exceed ספוסב (mg/l)				1, 500		300	
	ESTIC RAW ER SUPPLY							
USES IED ABLE	PAGATION OF FAGATION & H			×	х	х	x	
WATER USES DEEMED DESIRABLE	TOATNOO NOITAEA			×	х	х	х	
	TDAT NOI TAEA			×	Х	х	х	
	SAN ANTONIO-NUECES COASTAL BASIN	SEGMENT		Mission River Tidal	Mission River - above tidal*	Aransas River Tidal	Aransas River - above tidal	
			NUMBER	2001	2002	2003	2004	
			61	-				

* High chlorides are due to residual brines; river quality is improving and adjustments to quality criteria will be made as the river is upgraded.

			WATER USES DEEMED DESIRABLE	USES ED ABLE					CRITERIA	A		
	NUECES RIVER BASIN	TACT NOI TAEX	TDATNOD NOITAEX	PAGATION OF H & WILDLIFE	WAA DIT23 Y199U2 A3	. not to exceed ORIDE (mg/l)	ATE (mg/l) . • not to exceed	to exceed IDS (mg/l) פּאק. Fo DISSOLVED	∖⊺) во¢ језа ¢узи ЗОГЛЕВ ОХХСЕИ	куисе	ורפשפור) אר פאט. חסל מסרפ אר פאט. חסל מסרפ אר, מעט. חסל מסרפ אר, מעט. חסל אר, מעט. אר, מעט.	PRAATURE °F e Gen Statement)
	SEGMENT							ог		H	е ц : 601	
NUMBER							-	s		đ	t	
1012 62	Nueces River Tidal - Nueces Bay to salt water barrier	×	×	×					5.0	6.5-9.0	200	95
2102	Nueces River - Salt water barrier west of US 77 near Calallen to Wesley Seale Dam	Х	Х	×	×	250	250	500	5.0	6.5-9.0	200	16
2103	Lake Corpus Christi	×	×	×	×	250	250	500	5.0	6.5-9.0	200	93
2104	Nueces River - Lake Corpus Christi headwater to Holland Dam southeast of Cotulla	×	×	х		700	300	1,500	5.0	6.5-9.0	200	06
2105	Nueces River - Holland Dam southeast of Cotulla to FM 1025 south of Uvalde	×	×	×	х	200	200	006	5.0	6.5-9.0	200	06
2112*	* Nueces River - FM 1025 south of Uvalde to headwater	×	X	Х	Х	4 O	40	300	5.0	6.5-9.0	200	06
	 "This segment has been established in its g recharging the Edwards Aguifer, and the Wa 	s geographical Water Ouality	1	extent as Standards	as that rds for	t portion . . it have	n of t as a	the stream principal		h is capable ose the prot(which is capable of purpose the protection	

2 Ĺ, 2, recharging the Edwards Aquifer, and the Water Quality Standards for it have as a principe of the quality of the water infiltrating into, and therefore recharging, the aquifer."

FRESH AND TIDAL WATERS

			WATER DEEL DESIR	MED					CRITER	IA		
	NUECES RIVER BASIN	CONTACT RECREATION	NONCONTACT RECREATION	PROPAGATION OF FISH & WILDLIFE	DOMESTIC RAW WATER SUPPLY	CHLORIDE (mg/l) avg. not to exceed	SULFATE (mg/l) avg. not to exceed	AL LISSOLVED (DS (mg/l) avg. to exceed	DISSOLVED OXYGEN (mg/l) not less than	RANGE	FECAL/ (100ml) - 0 log. avg. not more 1 than (see Gen. 9 Statement)	TEMPERATURE °F (see Gen. Statement)
	SEGMENT	ECH ECH	ONC	PROP <i>F</i> FISH	DOMES' WATER	CHLC avg.	лд. Уд.	TOTAL 1 SOLIDS not to	/fm) SSI(pH R.	FECAL/ log. av than (s Stateme	rempi (see
NUMBER	DESCRIPTION	U 4	Z Z	<u>с, й</u>	A 3	סט	en evi	For	a 🔾	<u>D</u>	S t L H	<u>ب</u>
2106	Frio River - Nueces River confluence to US 90 west of Knippa	х	х	x	х	650	500	2,000	5.0	6.5-9.0	200	90
2113*	Frio River - US 90 west of Knippa to headwater	x	х	x	х	25	30	300	5.0	6.5-9.0	200	90
2107	Atascosa River - Frio River confluence to headwater	x	х	x		600	500	1,500	5.0	6.5-9.0	200	90
2108	San Miguel Creek - Frio River confluence to headwater	х	х	x		700	700	2,000	5.0	6.5-9.0	200	95
2109	Leona River - Frio River confluence to headwater	x	x	x		650	500	2,000	5.0	6.5-9.0	200	90
2110	Sabinal River - Frio River confluence to SH 127	x	х	x	х	200	75	700	5.0	6.5-9.0	200	90

* "This segment has been established in its geographical extent as that portion of the stream which is capable of recharging the Edwards Aquifer, and the Water Quality Standards for it have as a principal purpose the protection of the quality of the water infiltrating into, and therefore recharging, the aquifer."

the second se	-				-	_							
		2115	2114	2111*	NUMBER								
		Seco Creek - Hondo Creek confluence to headwaters	Hondo Creek - Frio River confluence to headwaters	Sabinal River - SH 127 to headwaters		SEGMENT	NUECES RIVER BASIN						
-		×	Х	×	1		FACT REATION						
		х	Х	x			CONTACT	WATER USES DEEMED DESIRABLE					
_		х	x	×			PAGATION OF H & WILDLIFE						
		×	x	×			ESTIC RAW ER SUPPLY						
		50	50	40		vd HP(DRIDE (mg/l) . not to exceed						
		60	50	75			FATE (mg/l) . not to exceed						
		260	270	500	s	JL:	AL DISSOLVED IDS (mg/l) avg. to exceed						
		5.0	5.0	5.0			SOLVED OXYGEN /1) not less than	CRITERIA					
-		6.5-9.0	6.5-9.0	6.5-9.0	р	ph range							
		200	200	200	1 t	og hai	AL/ (100ml) - O . avg. not more h (see Gen. O tement) X						
		06	06	06	TEMPERATURE °F (see Gen. Statement)								

FRESH AND TIDAL WATERS

* "This segment has been established in its geographical extent as that portion of the stream which is capable of recharging the Edwards Aquifer, and the Water Quality Standards for it have as a principal purpose the protection of the quality of the water infiltrating into, and therefore recharging, the aquifer."

₽9

BAY & GULF WATERS

				ATER USES DEEMED DESIRABLE				CRITERIA	
		NUECES ESTUARY				1)		COLIFORM	TEMP.
			CONTACT RECREATION	NONCONTACT RECREATION	PROPAGATION OF FISH & WILDLIFE	DISSOLVED OXYGEN (mg/l) not less than	RANGE	TOTAL/ (100 ml) - median not more than (see Gen. Statement)	FALL, WINTER & SPRING not to exceed 4°F rise SUMMER not to exceed a 1.5°F rise
•		SEGMENT	REC	NOI RE(PRC FIS	DIU	Hď	, s (s	FALI not rise SUMM a l.
65	NUMBER 2481	DESCRIPTION Corpus Christi Bay	x	x	x	5.0	6.5-9.0	70	95
		Nueces Bay	x	x	x	5.0	6.5-9.0	70	95
		Redfish Bay	x	x	х	5.0	6.5-9.0	70	95
	2484	Corpus Christi Inner Harbor - US 181 bridge to Viola Turning Basin		x	х	3.0	6.5-9.0	1,000	95
	2485	Oso Bay	x	х	Х	5.0	6.5-9.0	70	95

2201	NUMBER	
Arroyo Colorado	NUECES-RIO GRANDE COASTAL BASIN SEGMENT DESCRIPTION	
	CONTACT RECREATION	FRESH
 ×	NONCONTACT RECREATION PROPAGATION OF FISH & WILDLIFE	AND
 ×	PROPAGATION OF FISH & WILDLIFE	TIDAL WATERS
	DOMESTIC RAW WATER SUPPLY	ATERS
	CHLORIDE (mg/l) avg. not to exceed	
	SULFATE (mg/l) avg. not to exceed	
	TOTAL DISSOLVED SOLIDS (mg/l) avg. not to exceed	
4.0	DISSOLVED OXYGEN (mg/l) not less than	
6.5-9.0	PH RANGE	
2,000	FECAL/ (100ml) - C log. avg. not more H than (see Gen. O Statement) K	
 95	TEMPERATURE °F (see Gen. Statement)	
-	(see Gen. Statement)	

BAY & GULF WATERS

		WATER USES DEEMED DESIRABLE			CRITERIA			
					1)		COLIFORM	TEMP.
	LAGUNA MADRE ESTUARY	CONTACT RECREATION	NONCONTACT RECREATION	PROPAGATION OF FISH & WILDLIFE	DISSOLVED OXYGEN (mg/l) not less than	RANGE	TOTAL/ (100 ml) - median not more than (see Gen. Statement)	FALL, WINTER & SPRING not to exceed 4°F rise SUMMER not to exceed a 1.5°F rise
	SEGMENT	COL	NOI RE(PR(DISS	Hd	TO me (s	FALL not risc SUMM a l.
NUMBER	DESCRIPTION	+						
2491	Laguna Madre	Х	х	Х	5.0	6.5-9.0	70	95
2492	Baffin Bay	х	х	х	4.0	6.5-9.0	70	95
2493	South Bay	х	х	х	5.0	6.5-9.0	70	95
2494	Brownsville Ship Channel		х	х	5.0	6.5-9.0	1,000	95

67

FRESH AND TIDAL WATERS

				WATER USES DEEMED CRITERIA DESIRABLE									
		RIO GRANDE BASIN*	CONTACT RECREAT ION	NONCONTACT RECREATION	PROPAGATION OF FISH & WILDLIFE	DOMESTIC RAW WATER SUPPLY	CHLORIDE (mg/l) avg. not to exceed	SULFATE (mg/l) avg. not to exceed	AL DISSOLVED (DS (mg/l) avg. to exceed	DISSOLVED OXYGEN (mg/l) not less than	RANGE	AL/ (100ml) - . avg. not more tement) - . constant . constant	TEMPERATURE °F (see Gen. Statement)
	SEGMENT		LONT	ONC	ROP ISH	OME	HLO.	SULF avg.	TOTAL I SOLIDS not to	SSI(PH Hq	FECAL, log d than Stater	remi (see
68	NUMBER DESCRIPTION		0 %	ZX			O ro	מה גיט	For	<u> </u>	<u>ц</u>	H H P 0	<u> </u>
	2301 Rio Grande Tidal			х	х					5.0	6.5-9.0	1,000	95
	2302	Rio Grande - Tidal to Falcon Dam	х	х	x	х	270	350	880	5.0	6.5-9.0	200	90
	2303 Falcon Lake		х	х	х	х	200	250	700	5.0	6.5-9.0	200	93
	2304 Rio Grande - Falcon Lake headwater to Amistad Dam		х	х	x	x	200	300	1,000	5.0	6.5-9.0	200	95
	2305 Amistad Reservoir		х	х	х	х	150	250	500	5.0	6.5-9.0	200	88
	2306 Rio Grande - Amistad Reservoir headwater to Rio Conchos (Mexico) confluence near Presidio		x	x	x	x	200	500	1,200	5.0	6.5-9.0	200	93
	2307	Rio Grande - Rio Conchos (Mexico) confluence near Presidio to Riverside Diversion Dam	x	x	x	x	300	550	1,500	5.0	6.5-9.0	200	93

* Since the Rio Grande is an international river, the State will make every effort to improve and/or maintain the quality. However, it must be understood that the State only has jurisdiction on the Texas side of the river.

		FRESH	AND TI	FRESH AND TIDAL WATERS	TERS							
			WATER USES DEEMED DESIRABLE	USES MED ABLE					CRITERIA	A		
									n		COLIFORM)
									ar			t)
	RIO GRANDE BASIN*										more	
		ACT EATION	CONTACT REATION	PAGATION OF A & WILDLIF	STIC RAW R SUPPLY	ORIDE (mg/l , not to ex	ATE (mg/l) not to ex	AL DISSOLVE [DS (mg/l) to exceed	OLVED OXYC (1) not les	RANGE	AL/ (100ml) . avg. not n (see Gen. cement)	PERATURE °E Gen. Stat
	SEGMENT					HL		OL		н	.og :ha	
NUMBER	DESCRIPTION							s	- 1	F	1 t	
2308	Rio Grande - Riverside Diversion Dam to New Mexico		×	X	×	500	700	1,800	5.0	6.5-9.0	2,000	95
2309	Devils River - Amistad Reservoir headwater to river headwater	Х	х	Х	×	20	20	300	6.0	6.5-9.0	200	06
2310	Pecos River - Amistad Reservoir headwater to county road low water crossing near Pandale	×	×	×	×	1,000	500	3,000	5.0	6.5-9.0	200	92
2311	Pecos River - County road low water crossing near Pandale to Red Bluff Dam	×	×	×		7,000	3,500	15,000	5.0	6.5-9.0	200	92
2312	Red Bluff Reservoir	х	х	х		6,000	3,500	15,000	5.0	6.5-9.0	200	90
-				+								

* Since the Rio Grande is an international river, the State will make every effort to improve and/or maintain the quality. However, it must be understood that the State only has jurisdiction on the Texas side of the river.

69

BAY & GULF WATERS

			WATER USES DEEMED DESIRABLE		CRITERIA			
					1)		COLIFORM	TEMP.
	GULF OF MEXICO	CONTACT RECREATION	NONCONTACT RECREATION	PROPAGATION OF FISH & WILDLIFE	DISSOLVED OXYGEN (mg/l) not less than	pH RANGE	TOTAL/ (100 ml) - median not more than (see Gen. Statement)	FALL, WINTER & SPRING not to exceed 4°F rise SUMMER not to exceed a 1.5°F rise
	SEGMENT	CON	NON	PRO FIS	DISS	HO	TOTAI media (see	FALL, not t rise SUMME a 1.5
NUMBEF	DESCRIPTION	ļ						
2501	Gulf of Mexico - beginning at Gulf shoreline and extending to the limit of Texas' jurisdiction, from Sabine Pass to Brazos Santiago Pass	x	x	x	5.0	6.5-9.0	70	95

Appendix A. Base Flow Conditions

The base flow value listed for each station represents the calculated seven-day two-year low flow value. The sevenday two-year low flow is the minimal seven-day average flow that could be expected to recur with a frequency of once every two-years. The calculated values were based on stream discharge data taken from United States Geological Survey Gauging Stations for the period of record at the existing hydrological conditions.

Where USGS Stream Gauging Stations were not present, the base flow values were estimated by using data from nearby stations with similar hydrological characteristics or from the best information available.

Segment Number	Station Number	Base Flow (cfs)
0101	0101.0100 0101.0200 0101.0300	0.1 0.1 0.1
0103	0103.0100 0103.0200	0.9 0.1
0104	0104.0100	0.2
0201	0201.0100 0201.0200	2337.1 1892.0
0202	0202.0100 0202.0200	1890.0 1097.4
0204	0204.0100 0204.0200	162.1 113.9
0205	0205.0100	11.7
0206	0206.0100	0.1
0207	0207.0100	0.3
0211	0211.0100	0.1
0214	0214.0100 0214.0200	66.3 35.2
0216	0216.0100	2.8
0218	0218.0100 0218.0200 0218.0300	0.] 0.1 0.1
0220	0220.0050 0220.0100 0220.0200 0220.0300	0.1 0.1 0.1 0.1
0221	0221.0100	0.1

•

Segment Number	Station Number	Base Flow (cfs)
0222	0222.0100	2.7
0224	0224.0100 0224.0200	0.1 0.1
0225	0225.0100	0.1
0301	0301.0100	10.0
0303	0303.0100 0303.0200 0303.0300 0303.0400 0303.0500	1.1 0.8 0.1 0.1 0.1
0304	0300.0100	0.1
0402	0402.0100	29.0
0404	0404.0100	3.3
0406	0406.0100	0.1
0407	0407.0100	0.1
0502	0502.0200	850.0
0503	0503.0100 0503.0200 0503.0300	668.9 387.1 158.3
0505	0505.0100 0505.0200 0505.0300 0505.0400 0505.0500	41.0 35.7 34.0 32.0 28.0
0506	0506.0100 0506.0200	27.4 18.5
0602	0602.0100 0602.0200	348.0 131.1
0604	0604.0100 0604.0200 0604.0300 0604.0500 0604.0600	53.7 33.2 26.0 21.2 20.0

;

Segment Number	Station Number	Base Flow (cfs)
0606	0606.0200	16.0
0607	0607.0100	100.0
0608	0608.0100	80.0
0609	0609.0100	50.0
0611	0611.0100	45.3
0612	0612.0100	17.7
0701	0701.0100	38.4
0802	0802.0100 0802.0200	781.4 543.8
0804	0804.0300 0804.0400 0804.0500 0804.0600	495.8 449.8 431.0 416.4
0805	0805.0100 0805.0200 0805.0300 0805.0400 0805.0500 0805.0600 0805.0700	381.7 362.7 343.7 147.6 75.0 26.0 4.5
0806	0806.0100 0806.0200	4.5 3.0
0808	0808.0100	0.5
0810	0810.0100	2.6
0812	0812.0100	0.1
0814	0814.0100 0814.0200	0.1 0.1
0819	0819.0100	23.3
0822	0822.0100 0822.0200	34.0 18.0

Segment Number	Station Number	Base Flow (cfs)
0824	0824.0100	1.4
0825	0825.0100	5.3
0829	0829.0100	0.1
0831	0831.0100	0.1
0833	0833.0100	0.1
0902	0902.0100	1.1
1003	1003.0100	9.9
1004	1004.0100	27.6
1008	1008.0025 1008.0100	10.0 7.9
1009	1009.0050 1009.0100 1009.0200 1009.0300	0.2 0.2 0.2 0.1
1010	. 1010.0100	9.7
1011	1011.0100	7.2
1102	1102.0050 1102.0100 1102.0200 1102.0300	1.5 1.0 0.2 0.1
1104	1104.0100	1.5
1106	1106.0150	0.1
1108	1108.0100	2.0
1110	1110.0100	29.1
1112	1110.0100	29.1
1202	1202.0100	839.1

Segment Number	Station Number	Base Flow (cfs)
1204	1204.0100	11.8
1206	1206.0100 1206.0300	34.0 32.4
1208	1208.0100 1208.0200 1208.0300	3.8 1.8 0.1
1209	1209.0100 1209.0200 1209.0300	1.5 1.3 0.1
1211	1211.0100	0.1
1213	1213.0100	54.8
1214	1214.0100 1214.0200 1214.0300	4.0 2.1 1.1
1215	1215.0100	4.2
1217	1217.0100	30.3
1218	1218.0100 1218.0200	32.0 17.7
1219	1219.0100 1219.0200	47. 0 54.4
1221	1221.0100 1221.0300	2.2 0.1
1223	1223.0100	0.1
1226	1226.0100 1226.0150 1226.0300 1226.0400 1226.0500	1.4 0.1 0.1 0.1 0.1
1227	1227.0100	0.1

Segment Number	Station Number	Base Flow (cfs)
1229	1229.0100	1.2
1232	1232.0150 1232.0200 1232.0300 1232.0400 1232.0450	0.1 0.1 0.1 0.1 0.1
1238	1238.0200 1238.0300 1238.0400	0.1 0.1 0.1
1239	1239.0100	0.1
1241	1241.0100	0.1
1242	1242.0200 1242.0300 1242.0400 1242.0500 1242.0600 1242.0700	566.1 461.8 356.9 178.2 128.6 112.0
1243	1200.2500	25.0
1244	1200.1300	5.1
1302	1302.0100	8.7
1305	1305.0750	10.0
1402	1402.0100 1402.0200 1402.0300 1402.0400 1402.0500 1402.0600 1402.0700	393.2 290.7 261.8 232.7 203.7 139.3 74.8
1409	1409.0100	27.1
1410	1410.0100 1410.0125 1410.0300	1.1 0.6 0.3
1412	1412.0100 1412.0200	0.1 0.1

Segment Number	Station Number	Base Flow (cfs)
1414	1414.0100 1414.0200	3.3 0.5
1415	1415.0100 1415.0200	30.7 23.4
1416	1416.0100 1416.0200	25.8 1.6
1417	1417.0100 1417.0200	2.2 0.1
1420	1420.0100	0.1
1421	1421.0100 1421.0200 1421.0300	0.1 0.1 0.1
1424	1424.0100 1424.0200 1400.0300	4.1 0.1 0.1
1426	1426.0100	0.3
1427	1427.0100	1.5
1502	1502.0100	50.0
1602	1602.0100 1602.0200	12.5 0.6
1603	1603.0100 1603.0200	7.9 3.7
1802	1802.0100	662.0
1803	1803.0100 1803.0200	564.8 542.7
1804	1804.0100	385.14
1806	1806.0200 1806.0300	22.2 25.1
1807	1807.0100 1807.0200	10.0 7.0

Segment Number	Station Number	Base Flow (cfs)
1808	1808.0100 1808.0200 1808.0300	152.0 150.0 149.0
1809	1809.0100	10.9
1810	1810.0100	1.6
1811	1811.0100	253.8
1812	1812.0100	65.6
1813	1813.0200	14.8
1901	1901.0100 1901.0200 1901.0300	120.1 100.0 80.3
1902	1902.0100 1902.0250	9.8 0.6
1903	1903.0100 1903.0200	34.8 44.2
1905	1905.0100 1905.0200	6.6 2.1
1906	1906.0100	10.0
1907	1907.0100	0.1
1908	1908.0100	0.1
1909	1909.0100	14.8
1910	1900.0100 1900.0170	8.5 0.1
2002	2002.0100	2.4
2004	2004.0100	5.0
2102	2102.0100	48.4
2104	2104.0100 2104.0200 2104.0300	0.3 0.1 0.1

Segment Number	Station Number	Base Flow (cfs)
2105	2105.0505 2105.0100	0.1 0.1
2106	2106.0150 2106.0200	0.1 0.1
2107	2107.0100 2107.0200	0.5 0.1
2108	2108.0100	0.1
2109	2109.0100 2109.0200	0.10.1
2110	2110.0100	0.1
2111	2111.0100	0.1
2112	2112.0100 2112.0200 2112.0300	3.0 6.3 23.6
2113	2113.0100	22.9
2114	2114.0100	0.1
2115	2115.0100	0.1
2302	2302.0100 2302.0150 2302.0200 2302.0250 2302.0300	2.1 28.2 35.3 26.0 18.0
2304	2304.0050 2304.0075 2304.0100 2304.0150 2304.0200 2304.0250 2304.0300	233.0 233.0 233.0 187.0 187.0 142.0 48.4

Segment Number	Station Number	Base Flow (cfs)
2306	2306.0100	287.0
	2306.0130	198.0
	2306.0160	108.0
	2306.0250	74.3
	2306.0300	40.7
2307	2307.0050	0.1
2308	2308.0100	0.1
	2308.0200	0.1
2309	2309.0100	116.0
2310	2310.0100	58.0
2311	2311.0100	39.3
	2311.0200	9.9
	2311.0300	4.8

Appendix B. Segment Descriptions

;

•

SEGMENT DESCRIPTIONS

SEGMENT	DESCRIPTION
0101	Canadian River - Oklahoma to Lake Meredith (Sanford Dam)
0102	Lake Meredith - from Sanford Dam to the 2940' contour line 7.3 miles south of the Moore-Potter County line and 7.1 miles west of State Highway 136 in Potter County. Impounds Canadian River.
0103	Canadian River - Lake Meredith headwater at the 2940' contour line 7.3 miles south of the Moore- Potter County line and 7.1 miles west of State Highway 136 in Potter County to New Mexico.
0104	Wolf Creek from the Texas-Oklahoma border to headwaters @ 3,000' contour line approximately 3.9 miles due West of SH 70 and approximately 15.8 miles east of Spearman in Ochiltree County (Spearman in Hansford County).
0105	Rita Blanca Lake - from Rita Blanca Dam to the 3860' contour line .4 mile downstream from US 54 in Hartley County. Impounds Rita Blanca Creek.
0201	Red River - Arkansas State Line at Index to Oklahoma State Line.
0202	Red River - Oklahoma State Line to Lake Texoma
0203	Lake Texoma - from Denison Dam to the 640' contour line 1.3 miles west of FM 371, 8.6 miles north of US 82 and 7.0 miles downstream from IH 35 in Cooke County. Impounds Red River.
0204	Red River - Lake Texoma headwater at the 640' contour line 1.3 miles west of FM 371, 8.6 miles north of US 82 and 7.0 miles downstream from IH 35 in Cooke County to Wichita River confluence
0205	Red River - Wichita River confluence to Pease River confluence.
0206	Red River - Pease River confluence to Prairie Dog Town Fork Red River confluence.
0207	Prairie Dog Town Fork of the Red River from confluence of Red River to Lake Tanglewood Dam in Randall County; approximately 10.4 miles northeast of Canyon.
0208	Lake Crook - from Crook Dam to the 476' contour line .8 mile downstream from FM 79 in Lamar County. Impounds Pine Creek.
0209	Lake Pat Mayse - from Pat Mayse Dam to the 451' contour line approximately 350 yards below FM 1499 in Lamar County. Impounds Sanders Creek.

.

SEGMENT	DESCRIPTION
0210	Farmers Creek Reservoir (Lake Nocona) - from Farmers Creek Dam to the 827' contour line 2.8 miles downstream from FM 1956 in Montague County. Impounds Farmers Creek.
0211	Little Wichita River from confluence of Red River to Lake Arrowhead Dam
0212	Lake Arrowhead - from Lake Arrowhead Dam to US 281 in Archer County. Impounds Little Wichita River.
0213	Lake Kickapoo - from Kickapoo Dam to the 1045' contour line 4.5 miles north of FM 422, 7.5 miles south of US 82-277, and 4.1 miles east of the Archer-Baylor County line in Archer County. Impounds North Fork of Little Wichita River.
0214	Wichita River - Red River confluence to Diversion Dam
0215	Diversion Lake - From Diversion Dam to a point 1.0 mile downstream from the confluence with Cottonwood Creek in Baylor County. Impounds Wichita River.
0216	Wichita River - Diversion Lake headwater at a point 1 mile downstream from the confluence with Cottonwood Creek in Baylor County to Lake Kemp Dam.
0217	Lake Kemp - from Lake Kemp Dam to a point at the 1145' contour line 1.8 miles upstream from the confluence with Crooked Creek, 1.5 miles north of FM 1919 in Baylor County. Impounds Wichita River.
0218	Wichita River - Lake Kemp headwater at a point at the 1145' contour line 1.8 miles upstream from the confluence with Crooked Creek, 1.5 miles north of FM 1919 in Baylor County to River head- water, including North, Middle, and South Forks. North Fork ends at a point 5.9 miles south of Motley-Dickens County line and 2.2 miles west of Hwy 193 in Dickens County. Middle Fork ends at a point 1.1 miles east of US 83 and 4.5 miles south of Cottle-King County line in King County. South Fork ends at a point .9 mile north- east of FM 2941 and 4.4 miles south of FM 193 in Dickens County.

٠

SEGMENT	DESCRIPTION
0219	Lake Wichita from the Wichita Dam to the 980' contour line approximately 350 yards upstream from the FM 2650 Bridge and .4 mile south of the Archer-Wichita County line in Archer County. Impounds Holiday Creek.
0220	Pease River from Red River confluence to head- waters in Floyd County @ the 2850' contour line; approximately 1.4 miles west of the Floyd- Motley County line; approximately 15.2 miles south of Floyd-Briscoe County line; approxi- mately 18.2 miles north of Crosby-Floyd County line.
0221	Pease River-Middle and South Forks Pease River from North Fork Pease River confluence to the headwater (of the Middle Pease) 3.5 miles east of the Floyd-Motley County line at the 2600' contour level, 15.2 miles north of the Motley- Dickens County line, and 18 miles south of the Briscoe-Motley County line.
0222	Salt Fork Red River - Oklahoma to Greenbelț Reservoir Dam.
0223	Greenbelt Lake - from Greenbelt Dam to the con- fluence with Allen Creek 3.5 miles west of SH 70 and 4.4 miles north of US 287 in Donley County. Impounds Salt Fork of Red River.
0224	North Fork Red River from Texas - Oklahoma State Line to headwaters in Gray County approximately 1 mile east of Carson-Gray County line and approximately 1.4 miles west of State Farm- Market Route 2300 @ the 3260' contour line; 15.4 miles south of Gray-Roberts County line.
0225	McKinney Bayou from Arkansas State Line to a point approximately 1 mile north of Ranch Road 1398 and approximately 1.1 miles East of 94° 15' longitude in Bowie County.
0301	Sulphur River - Arkansas to Lake Wright Patman Dam.
0302	Lake Wright Patman - from Wright Patman to 94° 30' west longitude on the Cass-Bowie County line approximately 2.4 miles south of Simms, Texas. Impounds Sulphur River.
0303	Sulphur River above Lake Wright Patman including North, Middle, and South Sulphur Rivers. North Fork ends at 650' contour line approximately 3.7 miles west of SH 68 and 2.0 miles north of SH 1281 in Fannin County, approximately 2.8 miles South- west of Gober, Texas. South Fork ends at a point approximately .4 mile East of SH 1553.
0304	Day's Creek from Arkansas State Line in Bowie County to headwaters.

SEGMENT	DESCRIPTION
0401	Caddo Lake - from the Texas-Louisiana Border to a point approximately .4 miles upstream from the confluence with Kitchen Creek, 3.2 miles west of the Texas-Louisiana Border on the Harrison-Marion County Line. Impounds Cypress Bayou (lake impounded by Caddo Dam in Louisiana).
0402	Cypress Creek (Also called Big Cypress Creek) above Caddo Lake (at a point approximately .4 mile upstream from the confluence of Kitchen Creek, 3.2 miles West of the Texas-Louisiana Border, and 2.1 miles NNW of the Northern most point of Pine Island Bayou) to Lake O' the Pines Dam.
0403	Lake O' the Pines - from Ferrell's bridge Dam to .7 miles downstream from the US 259 bridge on the Upshur-Morris County line. Impounds Cypress Creek.
0404	Cypress Creek above Lake O' the Pines (at a point .7 mile downstream from US 259 Bridge on the Upshur-Morris County line and .3 mile South of the Camp-Upshur County line at its point of con- fluence with Big Cypress Creek) to Franklin County Dam.
0405	Cypress Springs Lake - from Franklin County Dam to SH 37 (385' contour line) in Franklin County. Impounds Big Cypress Creek.
0406	Black Bayou from Texas-Louisiana State Line to the confluence of Kite and Butler Creeks in Cass County .6 mile North of SH 2791 and 3.9 miles West of SH 59.
0407	James' (Jim's) Bayou from Texas-Louisiana State Line to a point 1.8 miles West of SH 8 and 11 miles South of SH 77 in Cass County.
0501	Sabine River Tidal from the mouth of Sabine River at the northernmost point of Sabine Island .4 mile upstream from the confluence of Black Bayou and 5.0 miles east of SH 87 in Orange County to Morgan's Bluff 2.6 miles east of SH 87 and 2.4 miles south of the Newton- Orange County Line in Orange County.

.

EGMENT	DESCRIPTION
0502	Sabine River - Morgan's Bluff 2.6 miles east of SH 87 and 2.4 miles south of the Newton-Orange County line to the Sabine River Authority Pump Station 3.2 miles upstream from Morgan's Bluff and .9 mile south of the Newton-Orange County line in Orange County.
0503	Sabine River - Sabine River Authority Pump Sta- tion 3.2 miles upstream from Morgan's Bluff to Toledo Bend Dam.
0504	Toledo Bend Reservoir - from Toledo Bend Dam to a point 4.7 miles downstream from FM 2517 in Panola County. Impounds Sabine River.
0505	Sabine River - Toledo Bend headwater 4.7 miles downstream from FM 2517 in Panola County to US 271 - 1.3 miles southwest of Gladewater in Gregg County.
0506	Sabine River - US 271, 1.3 miles southeast of Gladewater in Gregg County to Lake Tawakoni.
0507	Lake Tawakoni - from the Iron Bridge Dam to the 440' contour lines on the South Fork and Cow- leech Fork of the Sabine River and Caddo Creek.
0508	Adams Bayou Tidal from the confluence with the Sabine River 1.7 miles downstream from the FM 1006 Bridge near Orange in Orange County to a point .7 miles upstream from the IH 10 Bridge in Orange County.
0509	Murvaul Lake - from Murvaul Dam to a point 2.8 miles south of SH 315 and 4.8 miles east of the Rusk - Panola County line in Panola County. Impounds Murvaul Bayou.
0510	Cherokee Lake - from Cherokee Dam to a point .9 mile downstream from SH 322 in Rusk County. Impounds Cherokee Bayou.
0511	Cow Bayou Tidal from the Sabine River confluence to IH 10 in Orange County.
0601	Neches River Tidal - from 1.5 miles downstream of SH 87 (Rainbow) Bridge in Jefferson County to the temporary salt water barrier 7.0 miles upstream from the IH 10 Bridge in Orange County
0602	Neches River above Tidal - from the temporary salt water barrier 7.0 miles upstream from the IH 35 Bridge in Orange County to Town Bluff Dam (Dam B) in Jasper County.

SEGMENT	DESCRIPTION
0603	B. A. Steinhagen Lake - from Town Bluff Dam (Dam B) to the headwaters on the Neches River 6.2 miles upstream from US 190 on the Jasper- Tyler County line (measured at the Neches River Channel), and to its headwaters on the Angelina River approximately 5.3 miles downstream from the Bevilport townsite in Jasper County. Im- pounds Neches and Angelina Rivers.
0604	Neches River - Steinhagen Reservoir headwater 6.2 miles upstream from US 190 on the Jasper-Tyler County line (measured at river channel) to Blackburn Crossing Dam.
0605	Lake Palestine - from Blackburn Crossing Dam to the headwaters .9 mile upstream from SH 31 on the Henderson-Smith County line. Impounds Neches River.
0606	Neches River above Lake Palestine (.9 mile up- stream from SH 31 Bridge at the Smith-Henderson County line) to Ryan's Lake Dam.
0607	Pine Island Bayou from the confluence of Pine Island Bayou and the Neches River to a point 1.8 miles south of Fuqua and 1.7 miles west of Liberty-Hardin County line in Liberty County.
0608	Village Creek from its confluence with Neches River and Jasper/Orange/Hardin County line to Kimble Lake Dam in Wildwood Resort City approxi- mately 3.6 miles west of Village Mills in Hardin County.
0609	Angelina River from Steinhagen Reservoir con- fluence (approximately 5.3 miles downstream from the Bevilport town site in Jasper County) to Sam Rayburn Dam.
0610	Sam Rayburn Reservoir - from Sam Rayburn Dam to the headwater at the 164' contour line 1.5 miles downstream from the confluence of Papermill Stream with the Angelina River in Angelina County. Im- pounds Angelina River.
0611	Angelina River above Sam Rayburn Reservoir to the confluence of Scooba Creek and Shawnee Creek with the Angelina River 3.4 miles west of intersection of FM 225 and 1798 in Laneville and .4 mile north of FM 1798 in Rusk County.
0612	Attoyac Bayou from a point 1.7 miles east of FM 95, .1 mile west of FM 1196, and 4.5 miles north of US 103 on the Nacogdoches-San Augustine County line and end 3 miles east southeast of the inter- section of Hwy 95 and 315 and 2.6 miles north of US Hwy 84 in Rusk County.

.

SEGMENT	DESCRIPTION
0613	Lake Tyler - from Whitehouse and Mud Creek Dams to a point 1.6 miles downstream from SH 64 in Smith County. Portion of the Lake formerly known as Lake Tyler East ends .7 mile east of FM 2607 and 1.4 miles north of SH 64 in Smith County. Impounds Whitehouse and Mud Creeks.
0614	Lake Jacksonville - from Buckner Dam (Gum Creek) to a point approximately .2 mile downstream from US 79 in Cherokee County. Impounds Gum Creek.
0701	Taylor Bayou above Tidal - from the salt water lock and gate structure 5.75 miles downstream from the SH 73 bridge in Jefferson County to the LNVA Channel in Jefferson County 0.8 mile west of FM 1406 and 4 miles north of Jefferson- Chambers County line.
0702	Intracoastal Waterway - Port Bolivar to Sabine- Neches Canal from the SH 87 bridge across the Intracoastal Canal in Port Arthur to the con- fluence of Houston Ship Channel .8 mile east of the end of SH 87 at the ferry landing on Bolivar Peninsula.
0703	Sabine-Neches Canal - south tip of Pleasure Island to 1.5 miles downstream from the SH 87 (Rainbow) bridge and .2 mile west of Stewt's Island.
0801	Trinity River Tidal from the confluence of Trinity River and Anahuac Channel in Chambers County at Anahuac to a point 1.9 miles downstream from US 90 bridge at Liberty which is the confluence of the Trinity River and Liberty Barge Canal in Liberty County.
0802	Trinity River from the end of tidal zone (Seg- ment 0801) to Livingston Dam.
0803	Lake Livingston - from Livingston Dam to a point l.l miles downstream from the confluence with Boggy Creek and l.l miles downstream from con- fluence with Lower Keechi Creek in Leon County. Impounds Trinity River.

SEGMENT	DESCRIPTION
0804	Trinity River - Lake Livingston headwater 1.1 miles upstream from the confluence of Boggy Creek and 1.1 miles downstream from confluence of Lower Keechi Creek in Leon County to SH 31 2.0 miles West of Trinidad.
0805	Trinity River - SH 31 2.0 miles West of Trinidad to Beach Street Bridge in Fort Worth.
0806	West Fork Trinity River - Beach Street Bridge in Fort Worth to Lake Worth Dam.
0807	Lake Worth - from Lake Worth Dam to a point l mile downstream from Eagle Mountain Dam. Impounds West Fork Trinity River.
0808	West Fork Trinity River - Lake Worth headwater l mile downstream from Eagle Mountain Dam to Eagle Mountain Dam.
0809	Eagle Mountain Reservoir - from Eagle Mountain Dam to the 650' contour line 2.1 miles west of FM 718, .6 mile east of FM 730 and 3.1 miles south southeast of intersection of SH 114 and 730 in Boyd, Texas in Wise County, Impounds West Fork Trinity River.
0810	West Fork Trinity River - Eagle Mountain Lake headwater at the 650 ft. contour line 2.1 miles west of FM 718, .6 mile east of FM 730 and 3.1 miles south southeast of intersection of SH 114 and 730 in Boyd, Texas in Wise County to Bridge- port Dam.
0811	Lake Bridgeport - from Bridgeport Dam to the con- fluence of Bear Hollow (Davis Hollow) 8.5 miles west of the Jack-Wise County line. Impounds West Fork Trinity River.
0812	West Fork Trinity River above Lake Bridgeport at the confluence of Bear Hollow (Davis Hollow) 8.5 miles west of the Jack-Wise County line to a point .1 mile north of SH 79, 1.3 miles north of the Archer-Young County line, approximately 2.6 miles west of the FM 2178, and .2 mile south of the 33° 25' latitude in Archer County.
0813	Lake Houston County - from Houston County Dam to a point 3.2 miles south of FM 227 and 3.9 west of US 287 in Houston County. Impounds Elkhart Creek.

SEGMENT	DESCRIPTION
0814	Chambers-Richland Creek from confluence with Trinity River (including Richland Creek from confluence with Chambers to confluence with Trinity in Freestone County) to the conserva- tion dam on the South Fork 2.4 miles west of the intersection of FM 110 and 916, 1.0 mile south of FM 110, and 1.2 miles north of FM 916 in Johnson County.
0815	Lake Bardwell - from Bardwell Dam to the 420' contour line 1.6 miles south of US 287, 2.5 miles north of FM 984 and 5.1 miles west of SH 34 in Ellis County. Impounds Waxahachie Creek.
0816	Lake Waxahachie - from South Prong Dam to Waxahachie City Boundary .1 mile east of IH 35 east in Ellis County. Impounds South Prong Creek.
0817	Lake Navarro Mills - from Navarro Mills Dam to a point 1.1 miles east of the Hill-Navarro County line and 1.5 miles southwest of the intersection of FM 639 and FM 744 in Emmett, and .5 mile south of FM 744, Navarro County. Im- pounds Richland Creek.
0818	Cedar Creek Reservoir - from Joe B. Hogsett Dam to the 322' contour line .3 mile north of US 175, 1.4 mile south of FM 1391 and 2.8 miles east southeast of the intersection of FM 1391 and US 175 in Kemp-Kaufman County. Impounds Cedar Creek.
0819	East Fork Trinity River - Trinity River confluence to Rockwall-Forney Dam.
0820	Lake Ray Hubbard (formerly Forney Reservoir) - from Rockwall - Forney Dam to SH 78, .6 mile downstream from Lavon Dam in Collin County. Impounds East Fork Trinity River.
0821	Lake Lavon - from Lavon Dam to the 475' contour line (spillway crest of the dam) .7 mile down- stream from US 380 on the Pilot Grove Creek Arm in Collin County. Impounds East Fork Trinity River.
0822	Elm Fork Trinity River - West Fork Trinity River confluence to Lewisville Dam.

SEGMENT	DESCRIPTION
0823	Lake Lewisville (called also Lake Dallas and Garza Little Elm) - from Lewisville Dam to a point on the Elm Fork .9 mile south of US 380 and 3.7 miles east of SH 288 in Denton County. Impounds Elm Fork and Trinity River.
0824	Elm Fork Trinity River above Lake Lewisville at a point .9 mile south of US 380 and 3.7 miles east of SH 288 in Denton County to a point .6 mile south of US 82, .9 mile north of SH 59 and 2.1 miles west northwest of the intersection of US 82 and 677 in Saint Jo, Montague County.
0825	Denton Creek from Grapevine Dam to Elm Fork confluence.
0826	Lake Grapevine - from Grapevine Dam to the 540' contour line 3 miles upstream (.9 mile west) from US 377 in Denton County. Impounds Denton Creek.
0827	White Rock Lake - from White Rock Dam to the 460' contour line .04 mile east of Abram Road and l.2 miles north of Loop 12 (northwest Highway) in Dallas. Impounds White Rock Creek.
0828	Lake Arlington - from Arlington Dam to a point .02 mile upstream from US 287 in Tarrant County. Impounds Village Creek.
0829	Clear Fork Trinity River - West Fork Trinity River confluence to Benbrook Dam.
0830	Lake Benbrook - from Benbrook Dam to a point .l mile downstream from US 377 across the Clear Fork of the Trinity River in Tarrant County. Impounds Clear Fork Trinity River.
0831	Clear Fork Trinity River - Benbrook Reservoir headwater .l mile downstream from US 377 Bridge across the Clear Fork in Tarrant County to Weatherford Dam.
0832	Lake Weatherford - from Weatherford Dam to a point 1.9 miles upstream from FM 1707 Bridge across Lake Weatherford in Parker County. Impounds Clear Fork Trinity River.

SEGMENT	DESCRIPTION
0833	Clear Fork Trinity River - above Lake Weather- ford 1.9 miles upstream from FM 1707 Bridge across Lake Weatherford to a point .7 mile south of FM 3107, 4.4 miles east of 98° longitude, .6 mile south southeast of Lone Star Church, and .03 mile east of Lone Star Church County Road, Parker County Texas.
0834	Lake Amon G. Carter - from Amon G. Carter Dam to a point 2.8 miles east of the Clay-Montague County line and 4.3 miles north of the Montague- Jack County line in Montague County. Impounds Big Sandy Creek.
0901	Cedar Bayou tidal from a point 0.7 mile downstream from Tri-City Beach Road drawbridge on the Harris- Chambers County line to a point 1.4 miles up- stream from the IH 10 Bridge.
0902	Cedar Bayou - above tidal from approximately 1.4 miles upstream from IH 10 Bridge in Chambers County to a point 2.5 miles east of the Harris/ Liberty County line, 2.4 miles north of FM 1960, 1.4 miles west of 95° longitude at a point where Cedar Bayou divides in Liberty County.
1001	San Jacinto River Tidal - from approximately 200 yards below IH-10 in Harris County to Lake Houston Dam.
1002	Lake Houston - from Lake Houston Dam to a point in Montgomery County on the West Fork of the San Jacinto at the 45' contour line 3.0 miles upstream from US 59 Bridge (Bridge in Harris County). Impounds San Jacinto River.
1003	East Fork San Jacinto River - above Lake Houston from a point 4.4 miles downstream from Houston City Boundary at Lake Houston, .5 mile east of the end of Dunnam Road and 2.7 miles south of the Harris/Montgomery County line, .4 mile south- east of Champion Rod and Gun Club Roads and end at a dam .2 mile east of SH 405, .1 mile north- east of the Dodge Jr. High School, 1.6 miles north of US 190 in Walker County.
1004	West Fork San Jacinto River - from Lake Houston at a point in Montgomery County 3.0 miles up- stream from the US 59 Bridge (in Harris County) to Conroe Dam.

SEGMENT	DESCRIPTION
1005	Houston Ship Channel from Morgan's Point Channel light .4 mile north of the Harris-Chambers County line to a point in mid-channel due north of the SH 134 ferry landing at San Jacinto confluence and including the tidal portion of the San Jacinto River to approximately 200 yards below IH 10 Bridge.
1006	Houston Ship Channel - San Jacinto River con- fluence at a point in mid-channel due north of the south ferry landing on SH 134 to the Turning Basin at a point in mid-channel approximately 200 yards northeast of the end of 75th Street in Houston and including tidal portions of tributaries.
1007	Houston Ship Channel-Turning Basin from end of Segment 1006.
1008	Spring Creek from confluence with Lake Houston (West Fork San Jacinto River) .6 mile upstream from US 59 Bridge to a point 4.2 miles west of State Hwy 362 and 4.1 miles south of Grimes- Waller County line.
1009	Cypress Creek - from the confluence with Spring Creek in Harris County to the confluence of Snake Creek and Mound Creek .5 mile west of the Harris-Waller County line and 4.0 miles east of FM 362 in Waller County.
1010	Caney Creek - Lake Houston headwater 1.2 miles upstream from the Montgomery-Harris County line in Harris County to a point .7 mile east of SH 758 2.2 miles northeast of the intersection of FM 1375 and US 75 in New Waverly, Walker County.
1011	Peach Creek from the confluence of Caney Creek .7 mile west northwest of Montgomery-Harris County line in Montgomery County to a point approximately .1 mile east of Walker-San Jacinto County and approximately .1 mile north of SH 150 near the community of Old Waverly.
1012	Lake Conroe - from Dam to .4 mile downstream from the confluence of West Sandy Creek in Walker County. Impounds West Fork San Jacinto River.
1101	Clear Creek tidal from its confluence with Clear Lake to the FM 528 Bridge in Harris and Galvestor Counties.

SEGMENT	DESCRIPTIONS
1102	Clear Creek above tidal from the FM 528 Bridge in Harris County to the confluence with the American Canal 1.2 miles south of FM 2234 and 2.6 miles west of SH 288 in Fort Bend County.
1103	Dickinson Bayou Tidal from a point 1.3 miles downstream from SH 146 Bridge on Dickinson Bayou to a point 2.5 miles upstream from Arcadia Cemetery Road, 3.7 miles west of FM 646 and .7 mile south of FM 517 in Galveston County.
1104	Dickinson Bayou - above Tidal from the end of Segment 1103 to a point .6 mile west of SH 35, approximately 70 yards south of the American Canal Levee, and 3.2 miles north of the inter- section of 2nd Street and Sealy Street in Alvin, Brazoria County.
1105	Bastrop Bayou Tidal - from a point .7 mile down- stream (east) of mid-channel of the Intracoastal Waterway to a point 2.0 miles upstream from FM 1495.
1106	Bastrop Bayou - above tidal from the end of Segment 1105 to a point 2.4 miles south of SH 35, 1.7 miles west of SH 288 at a point where Bastrop Bayou enters a canal, 2.8 miles SW of the intersection of Velasco and W. Mulberry Streets in Angelton, Brazoria County.
1107	Chocolate Bayou Tidal from a point .3 mile downstream from FM 2004 Bridge at Chocolate Bayou in Brazoria County to a point 2.6 bayou miles downstream from SH 35 Bridge in Brazoria County.
1108	Chocolate Bayou - above tidal from the end of Segment 1107 to a point 1.3 miles north of SH 6 and 4.1 miles east of the Fort Bend- Brazoria County line in Brazoria County.
1109	Oyster Creek Tidal from the confluence of Oyster Creek and the Intracoastal Waterway 1.7 miles above SH 332 Bridge in Brazoria County to a point approximately 100 yards upstream from FM 2004 Bridge in Brazoria County.
1110	Oyster Creek above tidal from the end of Segment 1109 to the Brazos River Authority diversion dam (.6 mile upstream from SH 6).

•

SEGMENT	DESCRIPTION
1111	Old Brazos River Channel from confluence of the Intracoastal Waterway .4 mile inland from the Coast Guard Station at Surfside in Brazoria in Brazoria County to a point approximately .4 mile east of SH 288.
1112	Oyster Creek from the Brazos River Authority diversion dam (.6 mile upstream from SH 6) to the headwaters.
1113	Armand Bayou Tidal - from its confluence with Clear Lake to a point 0.5 miles downstream from Red Bluff - Genoa Road in Harris County.
1201	Brazos River Tidal from the mouth of the Brazos River 6.0 miles downstream from the SH 36 Bridge in Brazoria County to the SH 332 Bridge at Brazoria, Texas in Brazoria County.
1202	Brazos River above tidal from the end of Seg- ment 1201 to the Navasota River confluence.
1203	Lake Whitney - from Whitney Dam to the 530' con- tour line 1.7 miles east of FM 56 and 5.3 miles south of FM 200 on the Johnson-Bosque County line (6.9 miles downstream from the convergence of the Bosque, Somervell, and Jo-nson County lines).
1204	Brazos River - Whitney Reservoir headwater at the 530' contour line 6.9 miles downstream from the intersection of the Bosque-Somervell-Johnson County lines, 1.7 miles east of FM 56 and 5.3 miles south of FM 200 to the DeCordova Bend Dam in Hood County.
1205	Lake Granbury - from DeCordova Bend Dam to the headwater at the 693' contour line 3.3 miles upstream from Snachez Creek confluence and 1.2 miles north of the Parker-Hood County line in Parker County. Impounds Brazos River.
1206	Brazos River - Lake Granbury headwater at the 693' contour line 3.3 miles upstream from the Sanchez Creek confluence and 1.2 miles north of the Parker- Hood County line in Parker County to Morris Sheppard Dam in Palo Pinto County.
1207	Possum Kingdom Reservoir from Morris Sheppard Dam to a point at the 33° latitude, 3.2 miles north of the Young-Palo Pinto County line and 2.3 miles east of FM 1287 in Young County. Impounds Brazos River.

SEGMENT	DESCRIPTION
1208	Brazos River - Possum Kingdom headwater at 33° latitude, 3.2 miles north of the Young-Palo Pinto County line and 2.3 miles east of FM 1287 in Young County to the confluence of Salt Fork of the Brazos River and the Double Mountain Fork of the Brazos River in Stonewall County.
1209	Navasota River - from the Brazos River confluence to Bistone Dam (Lake Mexia).
1210	Lake Mexia from Bistone Dam to the 450' contour line .8 mile upstream from US 84 in Limestone County. Impounds Navasota River.
1211	Yegua Creek from the confluence with the Brazos River to Somerville Dam.
1212	Lake Somerville from Somerville Dam to the 240 foot contour line 2.5 miles downstream from the confluence of the middle and east Yegua Creeks on Burleson and Lee County line. Impounds Yegua Creek.
1213	Little River - Brazos River confluence to con- fluence of Leon and Lampasas Rivers.
1214	San Gabriel River from confluence with Little River in Milam County. South Fork ends at point 3.0 miles east of US 281 and .2 mile south of SH 29 in Burnet County. North Fork ends at a point .1 mile southeast of the intersection of US 281 and FM 2340 at the 1500 ft. contour line in Burnet Count
1215	Lampasas River - from confluence of the Leon and Little Rivers in Bell County to Stillhouse Hollow Da
1216	Stillhouse Hollow Reservoir from Stillhouse Hollow Da to the 620' contour line 4.7 miles upstream from the confluence of Rock Creek and 2.3 miles downstream from the confluence of Stillman Valley Creek in Bell County. Impounds Lampasas River.
1217	Lampasas River - headwater of Stillhouse Hollow Reservoir at the 620' contour line, 4.7 miles upstream from confluence of Rock Creek, 2.3 miles downstream from confluence of Stillman Valley Creek to a point in Mills County 2.5 miles west of the Mills-Hamilton County line, 1.7 miles east of FM 57 5.5 miles north of FM 2005 at the 1630 ft. contour
1218	Nolan Creek - Leon River confluence to the head- water. North Fork originates at a point in Bell County on Fort Hood Military Reservation 3.1 miles east of the Bell-Coryell County line 3.2 miles north of FM 439. South Fork originates at point in Bell County 2.4 miles south of US 190 and 3.8 miles east of Coryell-Bell County line.

SEGMENT	DESCRIPTION
1219	Leon River - Little River confluence to Belton Reservoir Dam.
1220	Lake Belton - from Belton Dam to a point .8 mile downstream from SH 236 in Coryell County at the 590' contour line. Impounds Leon River.
1221	Leon River - Belton Reservoir headwater at a point .8 mile downstream from the SH 236 Bridge across the Leon River in Coryell County at the 590' contour line to Lake Proctor Dam.
1222	Lake Proctor - from Proctor Dam to a point in Comanche County 1.5 miles west of FM 1496 and 3.9 miles south of SH 6
1223	Leon River - Lake Proctor headwater at a point in Comanche County 1.5 miles west of FM 1496 and 3.9 miles south of SH 6 to Leon Reservoir Dam.
1224	Leon Reservoir from Leon Dam to a point in East- land County .3 mile downstream from Olden Dam.
1225	Lake Waco - from Waco Dam to a point in McClennan County at the 460' contour line 2.7 miles west of FM 185 and 2.1 miles north of SH 6 on the North Bosque River.
1226	Bosque River - Lake Waco headwater at a point in McClennan County 2.7 miles west of FM 185 and 2.1 miles north of SH 6 on North Bosque River to the Bosque River headwater including North, Middle, and South Forks at a point in Erath County .4 mile north of SH 108 and 1.3 miles northwest of the intersection of SH 108 and FM 219 in Huckabay, Texas on the North Bosque River.
1227	Nolands River - Whitney Reservoir at a point 3.0 miles downstream from the SH 174 Bridge on the Hill-Bosque County line to Pat Cleburne Dam.
1228	Lake Pat Cleburne - from Cleburne Dam to a point in Johnson County 1.2 miles upstream from US 67 and 3.6 miles WSW of the intersection of SH 174 and US 67 in Cleburne, Texas. Impounds Nolands River.
1229	Paluxy River from the confluence with the Brazos River in Somervell County. North Fork ends at a point in Erath County 1.4 miles northeast of the intersection of FM 219 and SH 108 in Huckabay and 4.1 miles southeast of the intersection of SH 108 and FM 1715. South Fork ends at a point .7 mile west of US 281 and 1.1 miles northeast of the end of FM 3025 in Erath County.

SEGMENT	DESCRIPTION
1230	Lake Palo Pinto - from Palo Pinto Creek Dam to a point in Palo Pinto County .3 mile east of FM 919 and .2 mile north of FM 2692. Impounds Palo Pinto Creek.
1231 ,	Lake Graham (including Eddleman Lake) - from Graham Dam to the 1076' contour line .6 mile north of US 380 and 2.0 miles west of FM 1769 in Young County. Impounds Flint Creek. (Lake Eddleman) and Salt Creek (Lake Graham).
1232	Clear Fork Brazos River from the confluence with the Brazos River 1.7 miles upstream from the SH 67 Bridge in Young County to a point in Scurry County 3.5 miles south of US 180 and 1.8 miles east of FM 644.
1233	Hubbard Creek Reservoir - from Hubbard Creek Dam to a point in Shackelford County 1.2 miles west of the Shackelford-Stephens County line and 1.2 miles south of US 180. Impounds Hubbard Creek.
1234	Lake Cisco - from Williamson Dam to a point in Eastland County 2.3 miles north of FM 2945 and 1.0 mile west of FM 2807. Impounds Sandy Creek.
1235	Lake Stamford - from Stamford Dam to a point in Haskell County 4.4 miles upstream from FM 600 and 2.1 miles south of FM 618. Impounds Paint Creek.
1236	Lake Fort Phantom Hill - from Fort Phantom Hill Dam to FM 600 in Jones County approximately .2 mile south of the intersection of FM 3034 and FM 600 and .2 mile north of Jones-Taylor County line. Impounds Elm Creek.
1237	Lake Sweetwater - from Sweetwater Dam to FM 2035 in Nolan County. Impounds Bitter and Cottonwood Creeks.
1238	Salt Fork of the Brazos River from the confluence with the Double Mountain Fork of the Brazos River in Stonewall County to a point in Crosby County 1.8 miles west of SH 207 and 5.5 miles north of the Crosby-Garza County line.
1239	White River - Salt Fork of the Brazos River con- fluence in Kent County to White River Dam.

SEGMENT	DESCRIPTION
1240	Lake White River - from White River Dam to a point in Crosby County 1.8 miles west of Crosby- Dickens County line and 2.6 miles north of FM 2794. Impounds White River.
1241	Double Mountain Fork Brazos River - from the Salt Fork of the Brazos confluence in Stonewall County to the North Fork of the Double Mountain Fork of the Brazos River confluence in Kent County.
1242	Brazos River from the Navasota River confluence to Lake Whitney Dam.
1243	Salado Creek - from Lampasas River confluence in Bell County to the headwaters.
1244	Brushy Creek - from San Gabriel River confluence in Milam County to the headwaters.
1301	San Bernard River Tidal from a point in Brazoria County .9 mile downstream from the Intracoastal Waterway confluence to a point 2 miles upstream from the SH 35 Bridge in Brazoria County.
1302	San Bernard River above tidal from a point in Brazoria County 2 miles upstream from the SH 35 Bridge to a point in Colorado County 2.3 miles south of the intersection of FM 1094 and FM 109 in New Ulm, Texas (Town of New Ulm is in Austin County).
1303	Cedar Lakes - measured from a point in Brazoria County .6 mile northwest of the mouth of the San Bernard River to a point .8 mile south of the con- vergence of the Intracoastal Waterway and the Brazoria-Matagorda County line.
1304	Caney Creek Tidal from the confluence with the Intra- coastal Waterway 2.0 miles downstream from FM 457 Bridge in Matagorda County to a point 2.6 miles southeast of intersection of FM 457 and 521 which is a point in the Gainesmore Community in Mata- gorda County and 7.6 miles downstream from the confluence with Linnville Bayou.
1305	Caney Creek above tidal from a point 2.6 miles southeast of the intersection of FM 521 and 457 which is a point in the Gainesmore Community to a point in Wharton County .3 miles west of FM 102, 1.6 miles northwest of the intersection of FM 2614 and FM 102 and 2.0 miles east of the Colorado- Wharton County line.
1401	Colorado River tidal from the mouth of the river at the Gulf of Mexico 6.7 miles downstream from the Intracoastal Waterway to a point in Matagorda County 1.3 miles downstream from the Missouri Pacific Railroad Bridge.

SEGMENT	DESCRIPTION
1402	Colorado River above tidal from a point in Matagorda County 1.3 miles downstream from the Missouri Pacific Railroad Bridge to Tom Miller Dam including Town Lake in Austin, Travis County.
1403	Lake Austin - from Tom Miller Dam to Mansfield Dam. Impounds Colorado River.
1404	Lake Travis - from Mansfield Dam to Max Starcke Dam. Impounds Colorado River.
1405	Lake Marble Falls - from Max Starcke Dam to Alvin Wirtz Dam. Impounds Colorado River.
1406	Lake Lyndon B. Johnson (formerly Granite Shoals) - from Alvin Wirtz Dam to Roy Inks Dam. Impounds Colorado River.
1407	Inks Lake - from Roy Inks Dam to Buchanan Dam. Impounds Colorado River.
1408	Lake Buchanan - from Buchanan Dam to a point on the Lampasas - San Saba County line approximately .3 mile upstream from the convergence of the Lampasas, Burnet, and San Saba County lines 6.2 miles south of FM 580. Impounds Colorado River.
1409	Colorado River - Lake Buchanan headwater at a point on the Lampasas-San Saba County line approximately .3 mile upstream from the con- vergence of the Lampasas-Burnet and San Saba County lines to the San Saba River confluence 5.8 miles east of SH 16 and 2.6 miles north of US 190 on the Mills-San Saba County line.
1410	Colorado River - from San Saba River confluence to Concho River confluence.
1411	E. V. Spence Reservoir - from Robert Lee Dam to FM 2059 in Coke County. Impounds Colorado River.
1412	Colorado River - FM 2059 near Silver, Coke County to Lake J. B. Thomas (Colorado River Dam).
1413	Lake J. B. Thomas - from Colorado River Dam to a point 2.0 miles upstream from FM 1205 in Borden County.
1414	Pedernales River from its confluence with Lake Travis 8.1 miles downstream from the SH 71 Bridge in Travis County to a point in Kerr County .4 mile west of FM 479 and 2.2 miles south of US 290.

SEGMENT	DESCRIPTION
1415	Llano River from its confluence with Lake LBJ to a point in Kimble County approximately 400 yards upstream from IH 10 near Junction. From this point the North Fork extends to a point in Sutton County .6 mile north of FM 864 and 3.9 miles south of the Schleicher-Sutton County line. The South Fork extends to a point in Edwards County 1.2 miles north of SH 55, 4.9 miles south of the Sutton-Edwards County line and 1.1 miles east of 100° 30' longitude.
1416	San Saba River from the confluence with the Colorado River in San Saba County to a point in Schleicher County .25 mile upstream from the Menard-Schleicher County line and .7 mile north of FM 864 at the confluence of the North and Middle Valley Prongs.
1417	Pecan Bayou from Colorado River confluence in Mills County to the Lake Brownwood Dam.
1418	Brownwood Reservoir - from Brownwood Dam to a point 7.1 miles upstream from FM 2559 in Brown County. Impounds Pecan Bayou.
1419	Lake Coleman - from Coleman Dam to the 1720' contour line 1.5 miles downstream from the con- fluence of Clear Creek, 1.8 miles south of the Callahan-Coleman eounty line in Coleman County. Impounds Jim Ned Creek.
1420	Pecan Bayou above Lake Brownwood from a point 7.1 miles upstream from the FM 2559 Bridge in Brown County and end at a point in Callahan County 5.1 miles east of SH 36 and 2.7 miles south of the intersection of FM 603 and FM 18 on the north Prong of Pecan Bayou.
1421	Concho River from the confluence with the Colorado River in Concho County to the Fork in San Angelo including the South Fork to Lake Nasworthy Dam and the North Fork to San Angelo Dam.
1422	Lake Nasworthy - from Nasworthy Dam to Twin Buttes Dam in Tom Green County. Impounds South Concho River.
1423	Twin Buttes Reservoir (also called Three Rivers project) - from Twin Buttes Dam to a point 1.5 miles upstream from US 67 in Tom Green County. Impounds South and Middle Concho River and Spring Creek.

SEGMENT	DESCRIPTION
1424	South and Middle Concho Rivers and Spring Creek above Twin Buttes. The Middle Concho ends .4 mile east of the convergence of Glasscock-Reagan- Sterling County lines in Sterling County. The South Concho ends .7 mile east of the intersection US 277 and FM 915 in Eldorado-Schleicher County. Spring Creek ends 4.4 miles WSW of where Hwy 163 crosses the Irion-Crockett County Line.
1425	Lake O. C. Fisher - from San Angelo Dam to a point .7 mile upstream from FM 2288 in Tom Green County. Impounds North Concho River.
1426	Colorado River - from Concho River confluence to Robert Lee Dam (E. V. Spence Reservoir).
1427	Onion Creek - from Colorado River confluence to headwaters.
1501	Tres Palacios Creek Tidal from a point 2.3 miles downstream from the FM 521 bridge to a point 1 mile upstream from the confluence of Wilson Creek in Matagorda County.
1502	Tres Palacios Creek above tidal from a point in Matagorda County 1 mile upstream from the con- fluence of Wilson Creek to a point approximately 70 yards north of West Norris Street and 1.2 miles west of SH 71 in El Campo, Wharton County.
1601	Lavaca River Tidal from the mouth of the Lavaca River on the Jackson-Calhoun County line 2.7 miles NNW of the intersection of SH 35 and FM 1593 in Calhoun County to the point of con- fluence of Navidad River approximately .1 mile upstream from FM 616 in Jackson County.
1602	Lavaca River above tidal from the confluence with Navidad River in Jackson County to a point in Lavaca County .6 mile south of FM 532 and 3.4 miles west of SH 95.
1603	Navidad River from the Lavaca River confluence in Jackson County to a point in Fayette County 4.0 miles north of FM 956 and 2.0 miles west of US 77 on the East Navidad River.
1701	Victoria Barge Canal - San Antonio Bay to Victoria Turning Basin.
1801	Guadalupe River Tidal from the mouth of the Guadalupe 7.6 miles downstream from the SH 35 Bridge on the Calhoun-Refugio County line to the Guadalupe-Blanco River Authority Salt Water Barrier 0.4 mile downstream from the confluence with the San Antonio River.

SEGMENT	DESCRIPTION
1802	Guadalupe River - Guadalupe-Blanco River Authority Salt Water Barrier to San Antonio River Confluence
1803	Guadalupe River - San Antonio River confluence to San Marcos River confluence in Gonzales County.
1804	Guadalupe River - San Marcos River confluence to Comal River confluence l.l miles upstream from the IH 35 Bridge in New Braunfels-Comal County.
1805	Canyon Lake - from Canyon Dam to a point 2.5 miles downstream from Rebecca Creek Road in Comal County Impounds Guadalupe River.
1806	Guadalupe River - Canyon Lake headwater at a point 2.5 miles downstream from Rebecca Creek Road in Comal County to the headwater. Main stem ends at the confluence of the North Fork and the South Fork of the Guadalupe River just downstream from the SH 39 Bridge in Kerr County. North Fork ends at the 2300' contour line .7 mile east of the intersection of US 83 and SH 41 in Kerr County (Hw intersection in Real County). South Fork ends approximately 2.1 miles north of the convergence of the Kerr-Real and Bandera County lines and 1.7 miles west of FM 187 in Kerr County.
1807	Coleto Creek from the confluence with the Guadalupe River 2.8 miles downstream from US 77 Bridge in Victoria County to the headwaters (including Colet Creek Reservoir).
1808	San Marcos River - Guadalupe River confluence in Gonzales County to a point 1.2 miles upstream from Loop 82 Bridge in San Marcos-Hays County.
1809	Blanco River - San Marcos River confluence in Hays County to a point approximately .2 mile upstream from Limekiln Road Ford 2.4 miles west of FM 150 in Kyle in Hays County.
1810	Plum Creek - San Marcos River confluence in Caldwell County to headwaters in Hays County .6 mile north of FM 150 and .8 mile west of FM 2770.
1811	Comal River - Guadalupe River confluence in Comal County to the headwater at Klingemann Street in New Braunfels, Texas.
1812	Guadalupe River - Comal River confluence to Canyon Dam.
1813	Blanco River from a point approximately .2 mile upstream from Limekiln Road in Hays County to a point in Kendall County 2.9 miles east of FM 1376 and 2.8 miles south of the Gillespie-Kendall County line.

SEGMENT	DESCRIPTION
1901	San Antonio River - Guadalupe River confluence in Refugio County to a point approximately .2 mile south of Hildebrand Street and approximately .1 mile west of US 81 Business Route in San Antonio.
1902	Cibolo Creek - San Antonio River confluence in Karnes County to the Missouri Pacific Railroad Bridge near Bracken in Comal County.
1903	Medina River - San Antonio River confluence in Bexar County to the USGS-TDWR Station #08180500, .9 mile downstream from Diversion Dam in Medina County.
1904	Lake Medina - from Medina Dam to a point .9 mile west of FM 1283 and 4.8 miles south of SH 16 in Bandera County. Impounds Medina River.
1905	Medina River - Medina Lake headwater at a point .9 mile west of FM 1283 and 4.8 miles south of SH 16 in Bandera County to a point 5.1 miles west of FM 1336 and 7.8 miles north of FM 470 Bandera County.
1906	Leon Creek - Medina River confluence in Bexar County to SH 16 northwest of Leon Valley in Bexar County.
1907	Leon Creek - SH 16 northwest of Leon Valley in Bexar County to the headwaters at a point 5.9 miles west of IH 10 and 1.8 miles south of the Kendall- Bexar County line in Bexar County.
1908	Cibolo Creek - Missouri Pacific Railroad Bridge west of Bracken in Comal County to the headwaters 2.0 miles east of Kerr-Kendall County line and approx- imately .1 mile south of Upper Cibolo Road in Kendall County.
1909	Medina River - USGS-TDWR Station #08180500, .9 mile downstream from Diversion Dam in Medina County to Medina Lake Dam.
1910	Salado Creek - from the San Antonio River confluence in Bexar County to the headwaters.
2001	Mission River Tidal from the mouth at Mission Bay 1.8 miles east of FM 136 in Refugio County to a point 4.6 miles downstream from the US 77 Bridge in Refugio County.
2002	Mission River above tidal from a point 4.6 miles downstream from US 77 Bridge in Refugio County to a point of convergence of Medio and Blanco Creeks in Refugio County.

.

SEGMENT	DESCRIPTION
2003	Aransas River Tidal from the mouth at the FM 136 Bridge on the Refugio-Aransas County line to a point 4.1 miles south of FM 1360 and 11.5 miles east of US 77.
2004	Aransas River above tidal from a point 4.1 miles south FM 1360 and 11.5 miles east of US 77 to the confluence of west Aransas Creek and Poesta Creek near Skidmore in Bee County.
2101	Nueces River Tidal from the mouth at Nueces Bay 5.3 miles north of IH 37 in Corpus Christi to the Salt Water Barrier 1.5 miles south of the IH 37 and US 77 Interchange near Calallen.
2102	Nueces River from the Salt Water Barrier 1.5 miles south of the IH 37 and US 77 Interchange near Calallen to Wesley Seale Dam.
2103	Lake Corpus Christi - from Wesley E. Seale Dam to a point 2.2 miles south of FM 799 and 5.6 miles east of US 281 in Live Oak County. Impounds Nueces River.
2104	Nueces River - Lake Corpus Christi headwater at a point 2.2 miles south of FM 799 and 5.6 miles east of US 281 in Live Oak County to Holland Dam in La Salle County.
2105	Nueces River from Holland Dam in La Salle County to FM 1025 Bridge north of Crystal City in Zavala County.
2106	Frio River - Nueces River confluence in Live Oak County to US 90 west of Knippa in Uvalde County.
2107	Atascosa River - Frio River confluence in Live Oak County to the headwater 1.5 miles east of FM 2790 and 2.5 miles north of IH 35 in Bexar County.
2108	San Miguel Creek - Frio River confluence in McMullen County to the headwater 1.8 miles east of US 81 and 2.5 miles north of FM 462 in Frio County.
2109	Leona River - Frio River confluence in Frio County to the headwater 4.6 miles west of US 83 and 5.8 miles south of 29° 30' latitude in Uvalde County.
2110	Sabinal River - Frio River confluence in Uvalde County to SH 127 near Sabinal in Uvalde County.

SEGMENT	DESCRIPTION
2111	Sabinal River - SH 127 north of Sabinal in Uvalde County to the headwaters .6 mile east of the Real- Bandera County line, 1.7 miles west of FM 187 and 2.3 miles south of FM 337 in Bandera County.
2112	Nueces River - FM 1025 north of Crystal City in Zavala County to the headwater approximately .3 mile south of SH 41 and .3 mile west of the Edwards-Real County line in Edwards County.
2113	Frio River - US 90 west of Knippa-Uvalde County to the headwater 3.4 miles west of US 83, 4.7 miles east of FM 336 and 5.0 miles south of SH 41 in Real County.
2114	Hondo Creek - from the Frio River confluence in Frio County to the headwaters.
2115	Seco Creek - from the Hondo Creek confluence in Frio County to the headwaters.
2201	Arroyo Colorado - from where it enters the Laguna Madre between Willacy and Cameron Counties to Hwy 1016 2 miles south of Mission in Hidalgo County.
2301	Rio Grande Tidal - Gulf of Mexico 2.9 miles south of SH 4 in Cameron County to a point 6.7 miles downstream from the International Bridge in Brownsville.
2302	Rio Grande - from a point 6.7 miles downstream from the International Bridge in Brownsville to Falcon Dam.
2303	Falcon Reservoir (International) - from Falcon Dam to the confluence of the Arroyo Salado from Mexico south of San Ygnacio in Zapata County. Impounds Rio Grande.
2304	Rio Grande - Falcon Lake headwater at the con- fluence of the Arroyo Salado from Mexico south of San Ygnacio in Zapata County to Amistad Dam.
2305	Amistad Reservoir - from Amistad Dam to a point 3.7 miles south of US 90 and 8.8 miles east of the Val Verde-Terrell County line in Val Verde County. Impounds Rio Grande.
2306	Rio Grande - Amistad Reservoir headwater at a point 3.7 miles south of US 90 and 8.8 miles east of the Val Verde-Terrell County line in Val Verde County to the Rio Conchos (Mexico) confluence near Presidio, Presidio County.
2307	Rio Grande - Rio Conchos (Mexico) confluence near Presidio to Riverside Diversion Dam.
2308	Rio Grande - Riverside Diversion Dam to New Mexico.

SEGMENT	DESCRIPTION
2309	Devils River - Amistad Reservoir headwater to River headwater at a point 4.4 miles south of FM 1828, 2.8 miles north of SH 29, and .9 mile east of 100° 45' longitude in Schleicher County.
2310	Pecos River - Amistad Reservoir headwater at the 1117' contour line 1.5 miles north of US 90 Val Verde County to the county road low water crossing near Pandale in Val Verde County.
2311	Pecos River - County Road low water crossing near Pandale to Red Bluff Dam.
2312	Red Bluff Reservoir - from Red Bluff Dam to a point on the Texas-New Mexico State line 5.0 miles north of US 285 on the Loving-Reeves County line. Impounds Pecos River.
2501	Gulf of Mexico - Beginning at the Gulf Shoreline and extending to the limit of Texas' jurisdiction, from Sabine Pass to Brazos Santiago Pass.

,