ECONOMIC IMPACT OF THE SAFE DRINKING WATER ACT (PUB. L. 93-523) ON THE STATE OF TEXAS 14-60034

Prepared For

THE TEXAS WATER DEVELOPMENT BOARD

By

BERNARD JOHNSON INCORPORATED

AUGUST 1977

Originally prepared and published by Bernard Johnson Incorporated for the Texas Water Development Board in August 1977. Reprinted, March 1978, by the Texas Department of Water Resources.

TDWR/LP-13

-

4

TABLE OF CONTENTS

•

	Page
CHAPTER I – SUMMARY AND CONCLUSIONS	I –1
CHAPTER II – INTRODUCTION	II-1
CHAPTER III DRINKING WATER STANDARDS	III-1
CHAPTER IV — NON-COMPLIANT WATER SYSTEM POPULATIONS AND CONCENTRATIONS	IV-1
CHAPTER V – PROCESS EVALUATION	V-1
NITRATE REMOVAL PROCESSES Reverse Osmosis Ion Exchange Selective Ion Exchange Demineralization Denitrification Electrodialysis	V-1 V-1 V-8 V-11 V-11 V-13 V-15
FLUORIDE REMOVAL PROCESSES Reverse Osmosis Demineralization Bone Char (Tri-Calcium Phosphate) Adsorption Activated Alumina Adsorption Chemical Precipitation	V-15 V-15 V-15 V-15 V-17 V-19
COMBINED NITRATE/FLUORIDE REMOVAL PROCESSES	V-19
SUMMARY	V-19
CHAPTER VI — ECONOMIC EVALUATION	VI-1
NITRATE TREATMENT COST ANALYSIS Reverse Osmosis (RO) Ion Exchange - Selective NO, Removal Ion Exchange - Demineralization Special Nitrate Case	VI-2 VI-2 VI-13 VI-13 VI-23
FLUORIDE TREATMENT COST ANALYSIS Reverse Osmosis Demineralization Bone Char (Tri-Calcium Phosphate) Adsorption Special Fluoride Cases	VI-23 VI-23 VI-28 VI-28 VI-28

·

.

• •

and the second second

COST ESCALATION FACTORS	VI-36
COST ANALYSIS DISCUSSION	VI-36
CHAPTER VII — AGGREGATED ECONOMIC IMPACT	VII-1
FLUORIDE GROUP Subgroup 1 Subgroup 2	VII-2 VII-2 VII-5
NITRATE GROUP Subgroup 1 Subgroup 2 Subgroup 3 Subgroup 4	VII-5 VII-5 VII-5 VII-9 VII-9
NITRATE AND FLUORIDE GROUP Subgroup 1 Subgroup 2 Subgroup 3	VII-9 VII-9 VII-13 VII-13

SUMMARY

VII-16

APPENDIX A

Evaluation of Texas Public Water Systems in Terms of Water Quality Using EPA Interim Primary Standards, By Count

APPENDIX B

Cities and Municipalities Site Investigation

BIBLIOGRAPHY

··· ··· ···

· . ,

.

.

LIST OF FIGURES

.

	Page
Figure IV-1	IV-2
Figure IV-2	IV-3
Figure IV-3	IV-4
Figure V–1	V-5
Figure V-2	V-6
Figure V-3	V-9
Figure V-4	V-16
Figure VI-1	VI-7
Figure VI-2	VI-8
Figure VI-3	VI-9
Figure VI-4	VI-15
Figure VI-5	VI-16
Figure VI-6	VI-30
Figure VI-7	VI-31
Figure VI-8	VI-35
Figure VI-9	VI-42
Figure VI-10	VI-43

.

•

•

n.

LIST OF TABLES

	Page
Table III-1	III-2
Table IV-1	IV-5
Table V-1	V-4
Table V-2	V-7
Table V-3	V-12
Table V-4	V-14
Table V-5	V-18
Table V-6	V-20
Table VI-1	VI-6
Table VI-2	VI-10
Table VI-3	VI-12
Table VI-4	VI-14
Table VI-5	VI-17
Table VI-6	VI-18
Table VI-7	VI-19
Table VI-8	VI-20
Table VI-9	VI-22
Table VI-10 Table VI-11	VI-24
Table VI-12	VI-26
Table VI-12	VI-27
Table VI-13	VI-32
Table VI-14	VI-34 VI-37
Table VI-16	VI-37 VI-38
Table VI-17	VI-38 VI-39
Table VI-18	VI-35 VI-40
Table VI-19	VI 40 VI-41
	VI 11
Table VII-1a	VII-3
Table VII-1b	VII-4
Table VII-2	VII-6
Table VII-5	VII-7
Table VII-4	VII-8
Table VII-5	VII-10
Table VII-6	VII-11
Table VII-7	VII-12
Table VII-8	VII-14
Table VII-9	VII-15
Table VII-10	VII-17

GLOSSARY OF TERMS

Feed Water

Product Water

Service Water

Blending Water

Demand Water

Unit Treatment Cost

O&M Costs

Raw water influent which precedes treatment by the physical and/or chemical process.

Effluent water from the specific unit treatment process.

Effluent water from the treatment plant which is distributed for service.

A quantity of water not treated by the specific unit treatment process, but is used to blend with the product water.

The quantity of treated water which is demanded by a specific community.

The cost for treating one thousand gallons of water, expressed in terms of \$/Kgal.

Operation and maintenance cost which includes costs for chemicals, labor, electrical, and power.

.

CHAPTER I

SUMMARY AND CONCLUSIONS

Based upon an evaluation of available data for cities with populations less than 50,000, there are problems of compliance in over 500 water supplies in the State of Texas relative to the National Interim Primary Drinking Water Regulations issued under the Safe Drinking Water Act (Pub. L. 93-523). These water supplies serve an estimated 557,500 people. The problem addressed in this study and report relates to excessive nitrate and fluoride concentrations only. From investigation of this problem and the respective solutions, the following conclusions can be drawn:

- 1. There are a total of 501 water supplies exhibiting excessive fluoride. The fluoride concentration ranges from 1.6 to 8.7 ppm relative to a standard of 1.4 to 1.8 ppm F^- which depends upon location within the State.
- 2. There are a total of 46 water supplies exhibiting excessive nitrate. The nitrate concentrations range from 50 to 150 ppm relative to a standard of 45 ppm as NO_3 .
- 3. There are a total of 7 water supplies which exhibit compliance problems for both nitrate and fluoride.
- 4. Fluoride problems are found predominantly in the Ogallala, Trinity Group, and Carrizo-Wilcox aquifers. Nitrate problems are essentially undefinable relative to a particular aquifer.
- 5. There are numerous applicable water treatment processes that can remove fluoride and nitrate.

- 6. Among the applicable processes, ion exchange demineralization is the most expensive of all on a unit cost basis (\$/Kgal).
- 7. The cost of nitrate removal by reverse osmosis (RO) or selective ion exchange is dependent upon the flow demand and concentration. Selective ion exchange is more economical than RO at a 1 MGD flow rate or higher and a concentration of 86 ppm NO₃⁻. But for higher nitrate concentrations or lower flow rates, RO would most likely be selected.
- 8. The cost of removal of fluoride by either reverse osmosis or tri-calcium phosphate adsorption is also dependent on concentration and flow rate. The economic analysis indicates that as the flow rate and fluoride concentration increases, the use of tri-calcium phosphate adsorption would be preferred.
- 9. All of the fluoride non-compliant water supplies having fluoride concentrations less than 2.5 ppm and populations less than 1,000 (0.15 $\overline{\text{MGD}}$) should consider the use of reverse osmosis rather than tri-calcium phosphate adsorption.
- 10. When both fluoride and nitrate exceed drinking water standards, reverse osmosis is the only process that can remove both contaminants effectively and economically.
- 11. An estimated total initial capital cost of \$73,300,000 would be required based on 1976 dollars to produce compliance with the Interim Primary Standards for cities less than 50,000 population in the State of Texas. This cost will increase annually approximately 10%, along with a compounded population growth rate of 2 percent/year through 1986. Thus if compliance is delayed until 1986, the cost would escalate to \$176,000,000.

 The 1976-based estimate of additional operation and maintenance costs for the State are estimated to be \$15,500,000/year. In 1986, these incremental costs would escalate to \$43,100,000/year. .

CHAPTER II

INTRODUCTION

The U.S. Congress enacted legislation on December 3, 1972, which was signed into law by the President on December 17, 1974, entitled the Safe Drinking Water Act (Pub. L. 93-523). This Act establishes the right of the Environmental Protection Agency to formulate both primary and secondary water quality standards for public water supplies. The primary standards are established to protect the public from adverse health effects. The secondary standards which are not enforceable at the federal level are based primarily on aesthetic criteria such as taste, odor and appearance.

Under this Act, the EPA established and promulgated National Interim Primary Drinking Water Regulations. National Secondary Drinking Water Standards have not been promulgated as of the date of this report.

The Texas Water Development Board (TWDB), in order to develop a preliminary estimate of the economic impact of the Interim Primary Regulations on the State of Texas, contracted with Bernard Johnson Incorporated to conduct a study and prepare a report. The objective of this effort was to establish the technical and economic impact of these regulations. The scope was limited to those cities in the State having a population of less than 50,000. A sampling and analysis program, in addition to a program of site visits, was also included within the scope of this project to establish a first-hand knowledge of individual situations in cities exhibiting compliance problems with these regulations.

Site visits were made to 18 cities and municipalities across the State to establish existing conditions and compliance plans. This information provided additional input information to the cost analysis. A tabulation of the site visits is presented in Appendix B. The determination of the most technically and economically feasible treatment facilities for the non-compliant water supplies in the State is the primary focus of this report. Contained within this report are discussions of the compliance problems, the geographical distribution of these problems, proposed and recommended methods of control and ultimately the total aggregated cost of compliance. These costs are presented in terms of the capital, operation and maintenance, and unit treatment costs and ultimately as the total and incremental economic impact on the State of Texas.

It is important to emphasize that these are incremental costs which must be added to other supply, treatment and distribution costs to obtain the total water supply costs. For example these do not include the cost for disposal of brine and reject water produced by the reverse osmosis and ion exchange processes or costs that would be incurred if pretreatment other than filtration is needed for the reverse osmosis system.

The incremental costs presented in this report are based upon available information and regulations as they existed in late 1976. As regulations develop to further define the scope of impact of the Safe Drinking Water Act on the State of Texas these incremental costs would necessarily need to be adjusted accordingly.

II-2

CHAPTER III

DRINKING WATER STANDARDS

Under the Interim Primary Drinking Water Regulations of the Safe Drinking Water Act (SDWA), maximum limitations have been established for a wide range of organic and inorganic contaminants. A tabulation of the contaminants and their respective maximum limitations is presented on Table III-1.

The Texas Department of Health Resources (TDHR) published most recently in 1974 a report entitled "Chemical Analysis of Public Water Supplies". From that report and supplemental data supplied by the TDHR and the TWDB, the TWDB tabulated data on existing public water supply systems exhibiting non-compliance with the Interim Primary Standards. This listing, which is included as Appendix A to this report, illustrates that the two contaminants which will have the most significant effect on the State of Texas are fluoride and nitrate.

In a majority of cases, the public water supply systems exhibit problems with only one of the parameters. Overall, there are more water supply systems with fluoride problems than with nitrate. The geographical distribution of non-compliance problems is presented in Chapter IV of this report.

The numbers provided by the attached tabulation in Appendix A are the best available at the time of this project. They are used as a basis for estimating the applicability of treatment processes, in addition to the associated treatment cost.

·

CHAPTER IV

NON-COMPLIANT WATER SUPPLY SYSTEM POPULATIONS AND CONCENTRATIONS

According to the data presented in Appendix A, there are a total of 547 public water supply systems in Texas serving cities of 50,000 population and below where drinking waters exceed the SDWA limitations for nitrate and fluoride. Among these supplies, 501 have excess fluoride, 46 have excess nitrate, and 7 have both excess fluoride and nitrate. These water supply systems are distributed more or less evenly throughout the State of Texas, as shown on Figures IV-1 through IV-3. As an overall group, these locations can be divided into population categories as shown on Table IV-1. The population distribution indicates that over 60% of the total populations served by non-compliant water supply systems live in an area where the water supply serves less than 500 people.

In the non-compliant systems, the nitrate (NO_3^{-}) concentration of the water supply ranges from 50 to 150 ppm, with an arithmetic average of 86 ppm. The fluoride (F⁻) concentration of the water supply varies from 1.6 to 8.7 ppm, with an average concentration of 2.6 ppm of F⁻. The TDS content in the non-compliant systems averages 1,250 ppm. The non-compliant water systems and the respective concentrations are tabulated in Appendix A by county.

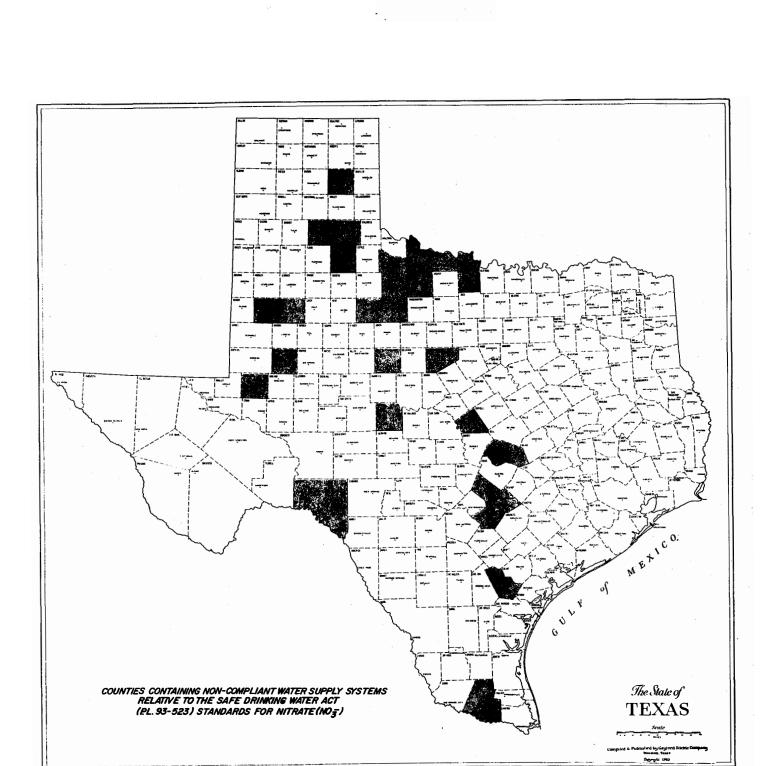


FIGURE IV-1

· . ·

IV-2

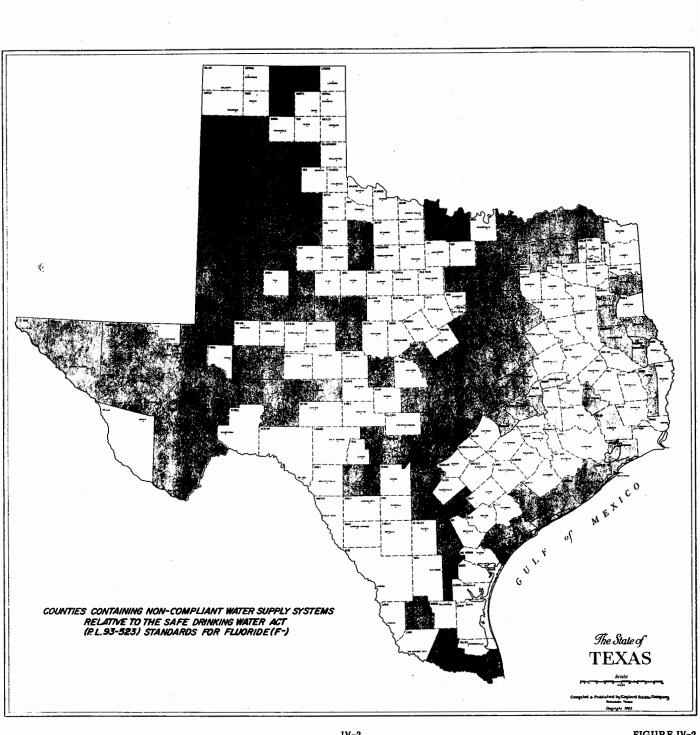
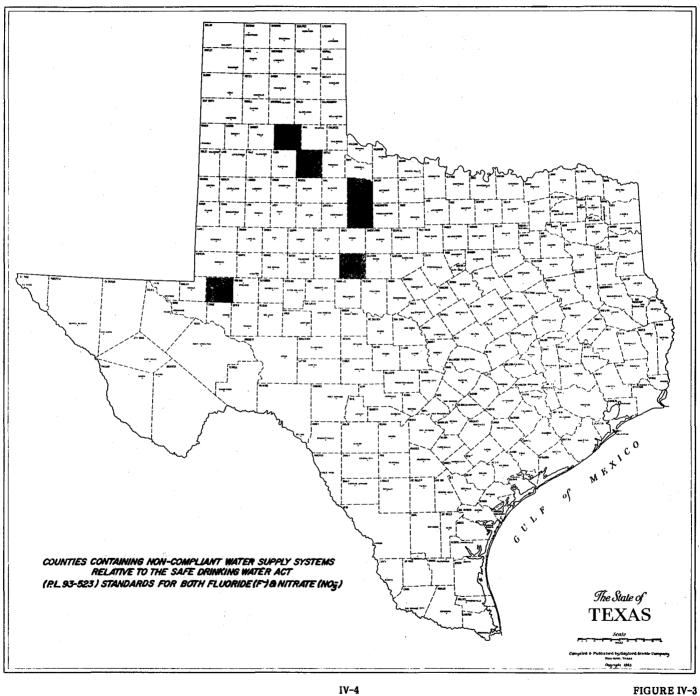



FIGURE IV-2

.

....

.

....

TABLE IV-1

POPULATION DISTRIBUTIONS

Population	Number of Locations	% of Total Locations
16,000 - 10,000	8	1.9
10,000 - 5,000	13	2.4
5,000 - 3,000	15	2.7
3,000 - 1,000	85	15.5
1,000 - 500	69	12.5
500 - 100	240	43.7
≤ 100	117	21.3

CHAPTER V

PROCESS EVALUATION

Both nitrate and fluoride are strongly ionized chemical species. Their salts are very soluble and tend to dissociate into individual ionic components in water. Conventional water treatment processes such as chemical precipitation have therefore failed to remove them effectively. Several physical-chemical treatment processes, i.e., reverse osmosis (RO), ion exchange (IX), and adsorption process have reportedly been successful in removing the contaminants in water treatment systems. Each of these processes possesses unique characteristics and limitations for the particular chemical species removed. It is therefore desirable to consider each of these processes individually in a technical sense for either or both nitrate and fluoride removal.

NITRATE REMOVAL PROCESSES

Through a comprehensive investigation, it has been determined that there are only a few treatment systems which have the technical capability of removing nitrates from raw water supplies. This list includes reverse osmosis, selective ion exchange, demineralization by ion exchange, and biological denitrification. Each of these treatment processes has its individual operating and efficiency characteristics relative to the removal of nitrate. The aspects will be discussed in the following narrative.

Reverse Osmosis

Reverse osmosis (RO) is a process in which water under pressure (on the order of 60-600 psig) is forced through a semi-permeable membrane. These RO membranes have porosities which will prevent the transfer of most dissolved minerals, particulate matter, and organics across the membrane while allowing the water to be transferred through the membrane. A typical RO system can produce a product water recovery rate of 75 percent of the input water and subsequently 25 percent concentrated waste solution (reject). In other words, for

every gallon of raw water input, this system will produce 0.75 gallon of purified water. With a constant operating pressure, the higher the TDS content in the raw feed water, the less purified water will be produced from the RO process.

The most common method of evaluating a RO membrane's ability to separate dissolved materials is to measure the salt rejection which is the ratio of the weight of dissolved material in the reject stream to the weight of dissolved material in the raw feed water. The overall rejection and the rejection selectivity depends on chemical properties of solute, membrane type, and other water characteristics. The amount of salt passing through a unit area of RO membrane may be expressed as:

F salt = $\beta(C_h - C_l) = \beta \Delta C$

where:

F salt - salt flux, g/sq cm/sec

 β - salt permeability coefficient, cm/sec

 C_h - concentration of solute on high pressure side of membrane, g/cc

C₁

- concentration of solute on low-pressure side of membrane (product water side), g/cc

From the equation, normal salt flux is independent of pressure. Theoretically, if the pressure of RO system is increased, the salt will diffuse at a constant rate, while the product water flow rate will increase. Quantitatively, the water flow rate through the membrane is described by:

$$F_{H_2O} = A(\Delta \rho - \Delta \pi)$$

where:

A - constant

 $\Delta \rho$ - pressure exerted on the feed solution P_f less the pressure on product P_p

 $\Delta \pi$ - osmotic pressure of the feed solution (π_{r}) less the osmotic pressure on the product side (πp)

The equation can be simplified for high operating pressure ($\simeq 400$ psig) by putting all of the constants into a coefficient A[/]. The flux of water at constant temperature is therefore approximated

 $F_{H_2O} \simeq (A')(P_{feed}).$

The result of higher feed pressure (P_{feed}) will be a greater production of purified water.

A typical RO membrane's salt rejection ratio for specific solutes is shown in Table V-1, the rejection rate varies somewhat for different commercial brands.

In addition to the property of membranes, certain feedwater characteristics can affect the performance of a RO permeator through chemical interaction with the membrane, such as:

- i) pH should be between 4.0 7.5, to avoid RO membrane hydrolysis,
- ii) <u>Feedwater Temperature</u> should not exceed 30° C, or be lower than 0° C, and
- iii) <u>Total Dissolved Solids (TDS)</u> the TDS content of the feedwater will influence the performance of RO in two ways;
 - a) Generally, if the TDS is less than 2500 ppm, a 75% recovery rate may be expected (Figure V-1). The product water recovery rate decreases as the TDS content increases,
 - b) The salt passage correction factor increases as feedwater TDS content increases (Figure V-2), if a constant purified water recovery rate is maintained.

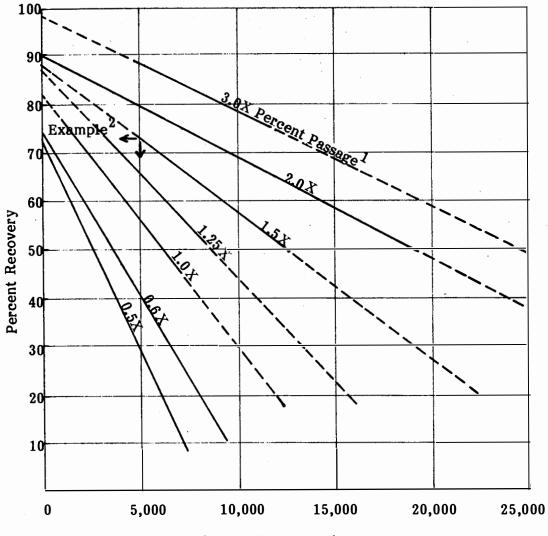
One of the first RO systems for municipal water treatment (0.15 MGD) was installed in 1970's at Greenfield, Iowa. The raw water contains 2,250 ppm TDS, the product water from RO contains only 142 ppm, for a 94% reduction in TDS. Table V-2 also indicates the nitrate reduction from 9.0 to 0.06 ppm, which the system is achieving. Recently, more water treatment plants have installed RO for the treatment of brackish water (containing ≤ 2500 ppm TDS). Residential developments at Key Largo (0.35 MGD) and Fort Pierce (0.15 MGD), Florida are examples of this type of application for RO. To date, however, there has not been a RO plant installed solely for the purpose of nitrate removal.

TABLE V-1

Constituent	Percent Passage	Percent Rejection
NО ₃ -	10%	90%
Cl	10%	90%
so ₄ ⁼	4%	96%
$SO_4^{=}$ PO $_4^{-3}$	2%	98%
F	10% ²	90%
Ca ⁺²	4%	96%
Na ⁺	10%	90%

RO MEMBRANE SALT REJECTIONS¹

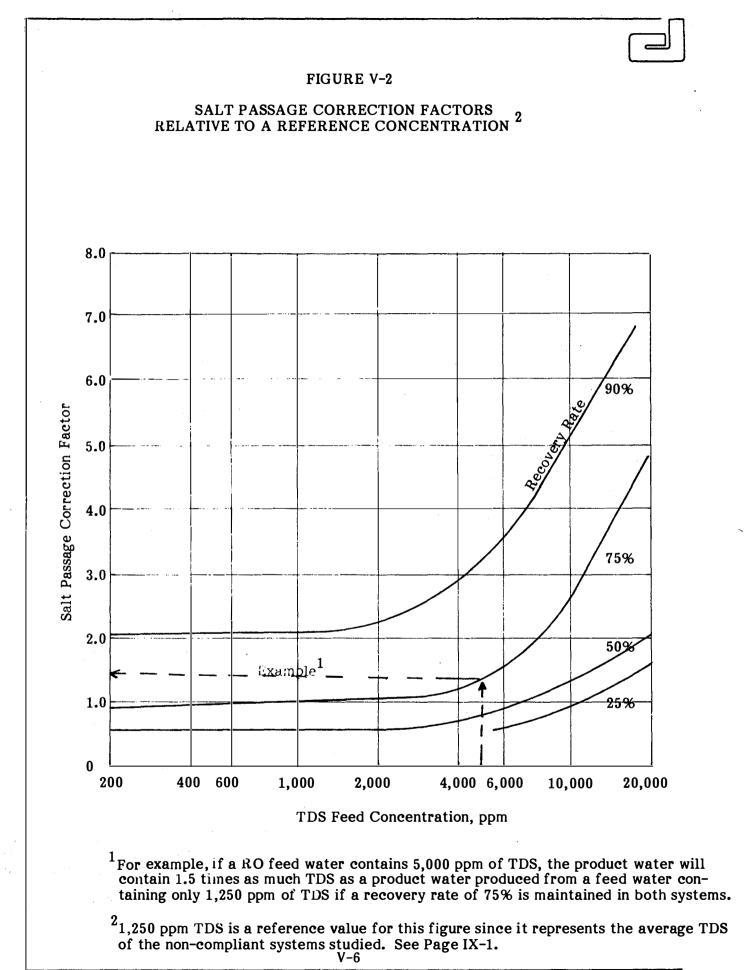
At 75% recovery rate, 25% rejection rate. TDS 2,500 ppm.


2

1

pH dependent, higher pH produces lower passage rate (higher rejection rate) (refer to Figure V-4, page V-16).

FIGURE V-1



TDS Feed Concentration, ppm

¹Refer to Table V-1: RO Membrane Salt Rejection.

²For example, if a RO feed water contains 5,000 ppm of TDS, the product water will contain 1.5 times as much TDS as a product water produced from a feed water containing only 1,250 ppm of TDS if a recovery rate of 75% is maintained in both system

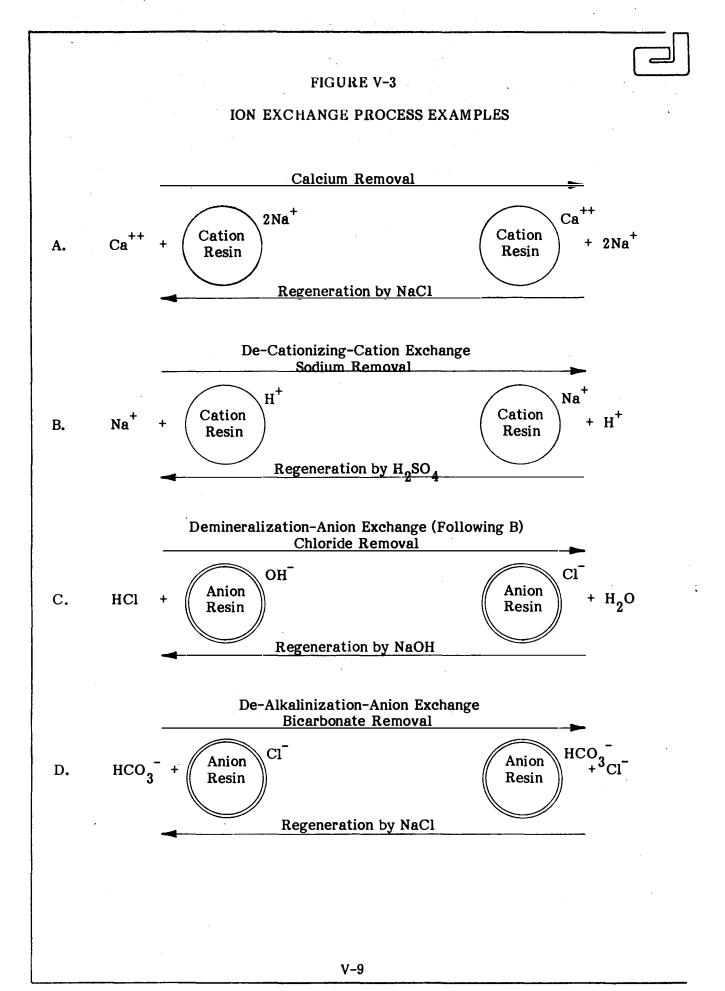
³1,250 ppm TDS is a reference value for this figure since it represents the average TDS of the non-compliant systems studied. See Page IX-1.

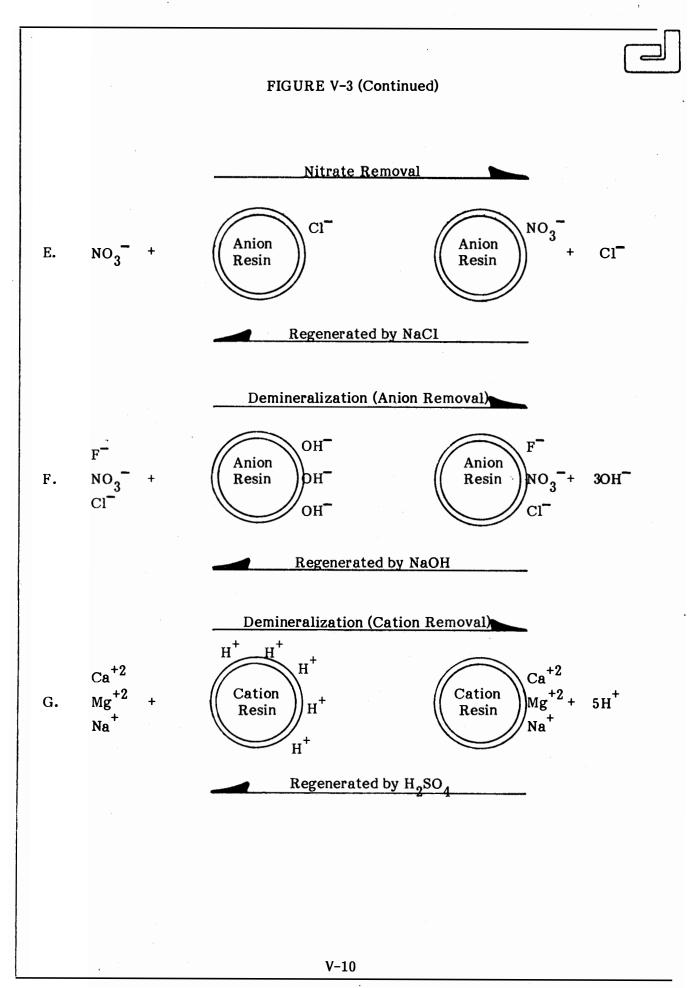
TABLE V-2

RO PRODUCT WATER QUALITY GREENFIELD, IOWA PLANT

	Pretreated Feed	Actual Product
Calcium	150	1.4
Magnesium	45	0.4
Sodium	474	38
Potassium	24	1.8
Bicarbonate	81	65
Sulfate	1,125	17.5
Chloride	335	17.2
Fluoride	<u>1</u>	0.2
Nitrate	9.0	0.06
Silica	7	0.05
Iron	2.2	0.05
Manganese	0.02	0.02
Phosphate	16.2	0.18
Conductance	3,000	220
рН	5.7	7.5
Hardness	560	5.0
TDS	2,250	<u>142</u>

In addition to the beneficial performance of RO in removing TDS, there are certain advantages, such as: corrosion problems are minimal; low temperature operation is possible; and energy requirements are comparatively small.


Ion Exchange


Ion exchange is the reversible interchange of solute ions between a solid ion exchange resin and a solution. To be effective, solid ion exchange resins must contain ions of their own, be insoluble in water, and provide enough space in their porous inner structure for ions to pass freely in and out of the resin. There are both cationic and anionic exchange resins depending on the chemical composition of the material used to make the resin.

In aqueous media, ion exchange resins are able to exchange their cations (or anions) for other cations (or anions). Cation exchange resins have a negatively charged framework to which the cationic exchange ions are attached thereby maintaining electroneutrality. Anion exchange resins carry just the opposite arrangement of electrical charges. An example of various ion exchange processes is presented on Figure V-3.

The performance of the ion exchange resin depends on its exchange capacity, raw water total dissolved solids concentration, and the regenerant used. As the exchange capacity of a resin nears exhaustion, the level of contaminants in the effluent will increase rapidly. Once the contaminant level in the treated water reaches unacceptable levels, regenerant chemicals are used to remove the contaminant materials from the resin and replace them with either the anionic or cationic portion of the regenerant chemical, thereby recovering the ion exchange capacity.

Nitrate can be removed by either of two ion exchange processes depending on the type of exchange resin used, i.e.,

BERNARD JOHNSON INCORPORATED ... HOUSTON ... WASHINGTON ... ATLANTA

Selective Ion Exchange

The nitrate in a raw water supply is replaced by other anions (chloride). The system was originally developed for recovering ammonium nitrate from fertilizer plant effluents by Chemical Separation Corporation of Oak Ridge, Tennessee. The process uses Dowex synthetic anion ion exchange for the adsorption of nitrate.

The first municipal water supply system that adopted the selective nitrate ion exchange process was in Garden City, Long Island, New York. Their groundwater supplies had an undesirably high level of nitrate. After evaluating a prototype of the selective ion exchange plant's performance, it was confirmed that the process could reduce the nitrate content to well below the drinking water standards. Table V-3 summarizes the results of several sets of test runs (Garden City and Oak Ridge).

These runs conclusively demonstrated the ability of the process to significantly reduce NO_3^{-1} levels. However, these removed nitrate ions are all replaced by chloride (Cl) anion. Thus, the TDS in the influent water will not be reduced, but replaced by more chloride ions. If a water already contains high levels of chloride, the effluent may have an objectional level of chloride ions after the nitrate is removed from the water.

Demineralization

The demineralization of water is generally effected in a two-step process, in which the water is passed successively through a cation exchanger resin in the hydrogen (H^+) form, (H^+R^-) where R represents the resin, and an anion exchanger in the hydroxide (OH⁻) form, (R^+OH^-) . On entering the cation exchanger, all cations are exchanged for an equivalent quantity of H^+ ions. The effluent, actually a solution of the acids of anions, enters the anion exchanger where all anions are exchanged for hydroxide (OH⁻) ions that neutralize the equivalent quantity of H^+ formed in the cation exchanger. A single vessel containing a

THE PERFORMANCE OF SELECTIVE NO₃ ION EXCHANGE

Nitrate Removal Test Runs

	Nitrate Nitrogen Levels-mg/l					
		water		d Water		
	Specific	Wet	Specific	Wet		
	Ion	Chemical	Ion	Chemical		
Water Used	Electrode	Analysis	Electrode	Analysis		
Garden City well	29	16.0	3.1	0.14		
Garden Citywith NaNO ₃ added	47	26.0	4.4	0.38		
Oak Ridgewith NaNO ₃ added	62	88.0	18	14.7		
Oak Ridgewith NaNO ₃ added	29		4			
Oak Ridgewith NaNO ₃ added	37	26.4	11	4.2		
Oak Ridgewith NaNO ₃ added	43	30.8	19.0	12.4		

mixture of equivalent quantities of cationic and anionic exchange resins in a mixed-bed, is a more recent development in water demineralization process. The effluent is generally superior in water quality to the feedwater because most of the TDS was removed.

In water treatment, the common constituents that are removed by these cationic and anionic exchangers are summarized in Table V-4.

If water containing nitrate and fluoride is fed through the demineralization process the resultant product water will be low in TDS, nitrate and fluoride. The quality of the effluent depends on the detention time in the demineralization column, the ion exchange capacity, and the quantity of raw water processed.

Denitrification

The investigation on the removal of nitrates from irrigation return waters in the California San Joaquin Valley in 1968 has indicated that biological denitrificates may be an economical way to remove nitrate, and has proved that denitrification filter beds have the ability and efficiency of operation necessary for treatment of a drinking water supply. Under ideal conditions, the denitrification process can be carried out only if the denitrification organisms are supplied with an organic energy source, and only if dissolved oxygen is not available. Methanol (CH₃OH) had been found to be the most satisfactory and least expensive material for the energy source. Careful control of methanol feeding would be required to prevent problems either from underdosage or overdosage. If an overdosage of methanol was added, excess methanol might be expected in the product water. An underdose would not be able to remove NO_3 effectively. Technically, the process is feasible but practicality is very questionable. A significant amount of research would be required to determine the full-scale feasibility of using denitrification for nitrate removal in water supplies destined for human consumption.

V-13

TYPICAL IONS REMOVED IN DEMINERALIZATION

Cations		Anions	
Calcium	(Ca++)	Bicarbonate	(HCO ₃ -)
Magnesium	(Mg++)	Carbonate	(CO ₃ —)
Sodium	(Na+)	Sulfate	(so ₄)
Potassium	(K+)	Chloride	(Cl-)
Iron	(Fe++)	Nitrate	(no ₃ -)
Manganese	(Mn++)	Silicate	(HSiO ₃ -)
Aluminum	(Al+++)	Silicate	(SiO ₃ —)

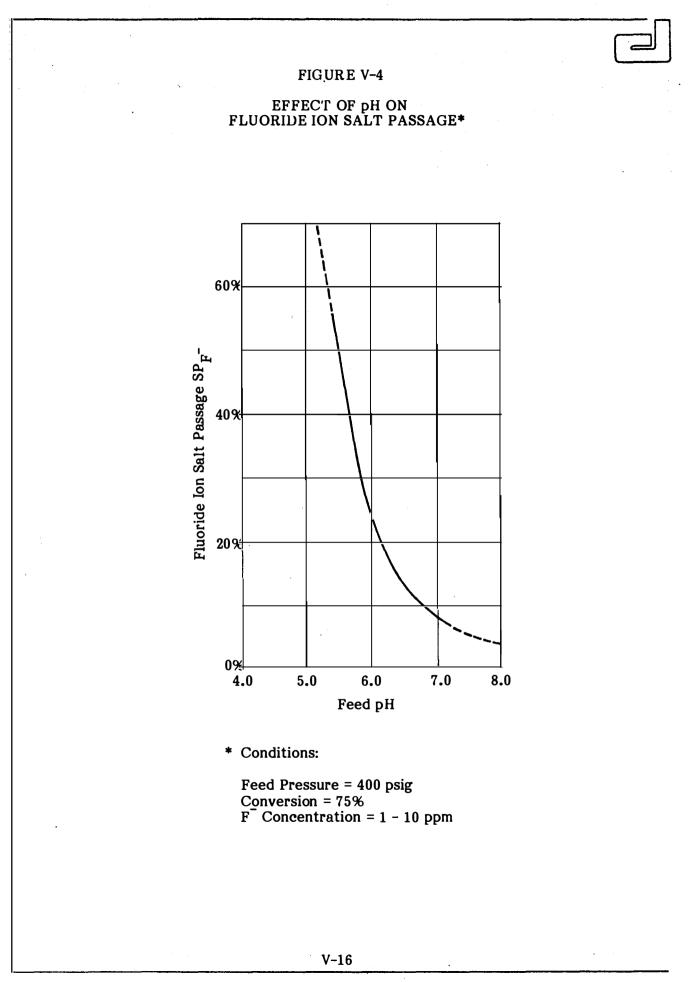
Electrodialysis

The electrodialysis membrane process which uses electrical forces to separate ions was not considered for this study.

FLUORIDE REMOVAL PROCESSES

Fluoride can be removed by a considerable number of processes which involve primarily physical chemical methods. These systems are discussed in the following narrative.

Reverse Osmosis


Fluoride reduction by RO is a function of feedwater pH (see Figure V-4). Other characteristics of the RO membrane have been discussed in detail previously in the Nitrate Removal Processes section.

Demineralization

See the Nitrate Removal Processes section.

Bone Char (Tri-Calcium Phosphate) Adsorption

Bone char is a porous, amorphous solid prepared from bones. This material consists principally of tri-calcium phosphate and carbon. The bone has high porosity and physical stability which are both desirable properties. This is evident in the low loss from attrition and in the long life of the filter bed. The water treatment plant at Britton, South Dakota was the earliest system which utilized bone char (1948). When water containing fluoride is passed through a bed of this material, the fluoride is adsorbed, and the effluent water should be practically free of fluoride. The adsorption mechanism for this reaction apparently is not totally understood even by its developers, but it perhaps involves anion exchange properties of apatites. The carbonate radical of the apatite content of bone, $Ca_3(PO_4)_6 \cdot CaCO_3$ during its first use is replaced by fluoride, forming the insoluble fluoroapatite. Caustic soda

used in regeneration converts the fluoroapatite to hydroxyapatite $Ca_3(PO_4)_2 \cdot Ca(OH)_2$. The hydroxy form then becomes the exchangable material in all subsequent exchange reactions, with the hydroxy radical being replaced by fluoride.

The principal chemical component of bone, tri-calcium phosphate, can also be obtained in a porous, relatively insoluble form. A mesh size of 20-40 is the most suitable particle size used in contact filters for fluoride removal.

According to the operation data available, the initial capacity of tri-calcium phosphate for removing fluoride is between 50-60 grams/ft³ at a flow rate of 4-8 GPM/ft². The subsequent capacity after regeneration is approximately 30 grams/ft³. Replacement, rather than regeneration, is generally considered to be more economical in a smaller unit.

The supply of bone char would be adequate based upon present estimates of demand in the State. Significant demand increases over and above that projected could produce temporary supply problems.

Activated Alumina Adsorption

Calcined (activated) alumina has been tried in field tests in the U.S. Public Health Service Labs, and at the USPHS pilot plant at Bartlett, Texas in the 1950's. These tests indicated that initial fluoride removal capacity was about 30 grams/ft³ (514 grains/ft³). The removal was assumed to take place by adsorption. The adsorption capacity after regeneration by caustic and acid was reduced to 50% of initial capacity.

Table V-5 lists the locations in Southern California where activated alumina or bone char/tri-calcium phosphate has been successfully utilized as a fluoride removing medium.

.

CALIFORNIA DEFLUORIDATION SYSTEMS

Place	Date Installed	Defluoridation Media	No.	Units Capacity gpm
Twentynine Palms (W. D. Fulton)	1959	Bone meal derivative	1	13
Twentynine Palms (County Water Dist.)	1961	Bone char	1	3
Panamint Springs (State Div. of Hwys. Maint. Sta.)	1951	Bone char	3	_
Death Valley National Monument (National Park Service Residen- tial Area)	1955	Tri-calcium phosphate	1	4 1
Fort Irwin	1954	Bone char	2	33 (each)
Desert Center (State Div. of Hwys. Maint.)	1955	Bone char	1	35
Elsinore	1960	Activated alumina	2	25 (each)
Apple Valley (Youngtowne Water Co.)	1961	Tri-calcium phosphate	1	100
Chocolate Mountain	1961	Tri-calcium phosphate	1	100

Chemical Precipitation

Fluorides are removed concurrently with magnesium in a lime softening process. The fluoride is adsorbed by the magnesium hydroxide precipitate. A lime softening water treatment plant in Ohio indicated that the decrease in fluoride was a function of the magnesium removed. Between 45-65 ppm magnesium must be removed to realize a 1 ppm reduction in fluoride. Based upon this relationship, if 1 ppm fluoride is the desired quality of the treated water, 100 ppm of Mg must be removed, when the initial fluoride content is 2.5 ppm.

Because of the large quantities of chemicals required, the process is adaptable primarily to low fluoride waters requiring softening. Moreover, the problems of chemical and sludge handling is complicated.

COMBINED NITRATE/FLUORIDE REMOVAL PROCESSES

There are at least seven public water supply systems in the State where drinking water has both nitrate and fluoride concentrations which exceed drinking water standards. After reviewing the available processes for removing nitrate or fluoride in the previous sections, it is concluded that only reverse osmosis and demineralization can remove both nitrate and fluoride in a single system. It is not considered to be economically justifiable to recommend that an individual system be installed for the removal of each contaminant independently.

SUMMARY

This section has covered all of the technically feasible treatment processes for the removal of nitrate and/or fluoride from drinking water supplies. A summary of the operational characteristics and applicability of the technically feasible systems considered is presented on Table V-6. This technical evaluation will serve as a basis for the forthcoming economic evaluation of these systems. This stepwise approach will provide the required technical and economic evaluation necessary for the selection of the most appropriate treatment systems.

TREATMENT PROCESSES SUMMARIZATION

Process

- **Operational Characteristics**
- 1. Reverse Osmosis

2. Selective Ion Exchange

- 3. Demineralization
- 4. Tri-Calcium Phosphate

- (1) Membrane technique
- (2) Reject dissolved solids
- (3) NO_3 removal 90%
- (4) F⁻ removal 90%
- (5) Good for high TDS water
- (1) A replacement reaction
- (2) Media requires regeneration with chemicals
- (3) Specific resins can replace only NO₃ with Cl
- (4) Best on low TDS water
- (1) Removes all cations and anions
- (2) Media requires regeneration with chemicals
- (1) Replaces only F by OH
- (2) No TDS removal
- (3) Resin either regenerated or replaced

(1) NO₃ selectively removed

Application

(1) Remove NO₃ and F nonselectively

- (1) Removes NO, and F nonselectively
- (1) Selective F⁻removal

CHAPTER VI

ECONOMIC EVALUATION

The cost analysis of each treatment process which has been determined to be technically feasible must subsequently be economically evaluated to provide a unit treatment cost comparison so that the most technically and economically feasible process may be selected. This is particularly important when the systems to be evaluated cover the range of capacities involved in this study. This economic analysis involved consideration of the following factors:

- i) Population, Flow Rate In order to prepare the unit treatment costs as a function of the general trend variation with flow rate, the analysis covered a flow rate range of 5 MGD to 0.01 MGD.
- ii) Financing Interest Rate A $7\frac{1}{2}$ percent annual interest rate with a 20-year return period was used. This is equivalent to 9.8 percent capital recovery factor (annual capital cost of amortization).
- iii) Capital Costs¹ Consists of major process and ancillary equipment capital costs.
- iv) Operation and Maintenance Costs (O&M) This item includes labor, electric power, chemicals, and equipment maintenance/service costs for major process and ancillary equipment.
- v) Feedwater Quality/Product Water Quality The feedwater quality varies in the non-compliant systems. Product water quality depends greatly on both process efficiency and feedwater quality. In order to compare the
- ¹ The year 1976 is the latest year that complete cost data is available on all process systems; therefore, capital costs are based on 1976 dollars in this report in order to provide a valid cost comparison basis.

efficiencies, and the cost of each process, an average raw water quality of 86 ppm NO_3^- , 2.0 ppm F⁻, and a total dissolved solids (TDS) of 1250 ppm was used.

This average influent water quality is representative of the present water of the overall list of non-compliant systems.

vi) Unit Treatment Costs — Expressed as dollars per thousand gallons (\$/Kgal) of service water supplied to the distribution system. This cost is based on the total annual cost which considers the amortization of capital and the O&M costs.

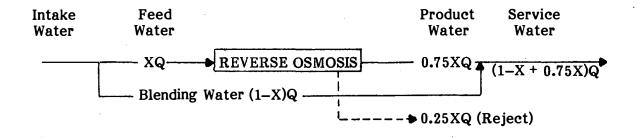
The annual capital amortization costs are converted to unit capital cost (\$/Kgal) by the formula:

 $\frac{\text{Total Capital $ x Capital Recovery Factor}}{\text{Plant size in MGD x } \frac{1000 \text{ Kgal/day}}{1 \text{ MGD}} \text{ x 365 days/yr.}} = $/\text{Kgal}$

The unit costs are applied to the product water supplied.

NITRATE TREATMENT COSTS ANALYSIS

The processes which are considered for cost analysis for nitrate contaminant removals are reverse osmosis, selective ion exchange, and ion exchange demineralization.


Reverse Osmosis (RO)

RO can reduce NO_3^{-} concentrations by 90% if the feedwater has TDS less than 2500 ppm. The design influent nitrate concentration of 86 ppm will be reduced to 8.6 ppm in the RO product water. In order to minimize the treatment costs, a portion of untreated water may be blended with the RO product water to provide a supply water which will meet the nitrate drinking water standard of 45 ppm NO_3^{-} . The percentage of total feedwater that requires RO treatment is calculated as shown on Example VI-1.

EXAMPLE VI-1

RO BLENDING CALCULATION

Assuming that X percent of total flow (Q) will be treated by RO, and that (0.75)(XQ) product water will be produced (75% recovery rate), an amount of (1-X)Q of untreated water blending with (0.75X)Q product water will make a total service water quantity of (1-X + 0.75X)Q.

The X may be solved for as follows for an influent concentration of 86 ppm and a product water concentration of 45 ppm:

 $C_i(1-X) + C_i(0.1)(0.75X) = C_p(1-X + 0.75X) = 86(1-X) + 86(0.1)(0.75)X$ = 45(1-X + 0.75X) X = 0.600 0.75X = 0.450 (1-X) + 0.75X = 0.850

which indicates that for every gallon of influent water containing 86 ppm of NO_3^- , 0.600 gallon has to be treated by RO and blended with raw water to produce 0.85 gallon of water containing 45 ppm NO_3^- .

Based upon this procedure, one can determine (as shown in Example VI-2) the total amount of feed water, RO product water, and blending water if the supply demand and NO_3^- content in the raw water is known. For other selected influent nitrate concentrations, the percentage of total influent water requiring RO treatment, the percent of RO product water, the percent of blending water and the percent of total supply water is presented on Table VI-1. This table demonstrates that the higher the influent concentration, the greater the percentage of water requiring RO treatment.

The total capital cost of an RO facility consists of the capital costs of major process equipment, and ancillary equipment. The major process equipment includes the permeator, cartridge filter, and high pressure pumps. The ancillary equipment includes chemical storage tanks, chemical feeding systems, and an equipment building. The arrangement of the process equipment is shown in Figure VI-1. Major process equipment capital costs and installation in \$/gpd capacity can be calculated as a function of plant product water capacities as shown on Figure VI-2. Figure VI-3 illustrates the ancillary equipment capital costs in \$/gpd as a function of total service water capacity.

For instance, in the previous example, the total capital cost of a 1 MGD supply system would be based on a 0.528 MGD RO product water quantity. For major process equipment, the capital cost would be \$0.70/gpd of product water capacity. For a 1 MGD service water quantity, the ancillary equipment capital cost would be \$0.22/gpd of service water. The capital and O&M cost calculations for this example are illustrated on Table VI-2.

Table VI-3 shows the unit treatment costs for various influent concentrations and demand flows which are obtained following the same computation procedures.

EXAMPLE VI-2

RO SUPPLY CALCULATIONS

A supply volume of 1 MGD is required. The influent nitrate concentration is 86 ppm. The total feed water required will be:

 $1 \text{ MGD x} \quad \frac{1.00}{0.85} = 1.176 \text{ MGD}$

 $1.176 \times 0.600 = 0.705 \text{ MGD} - \text{treatment by RO}$

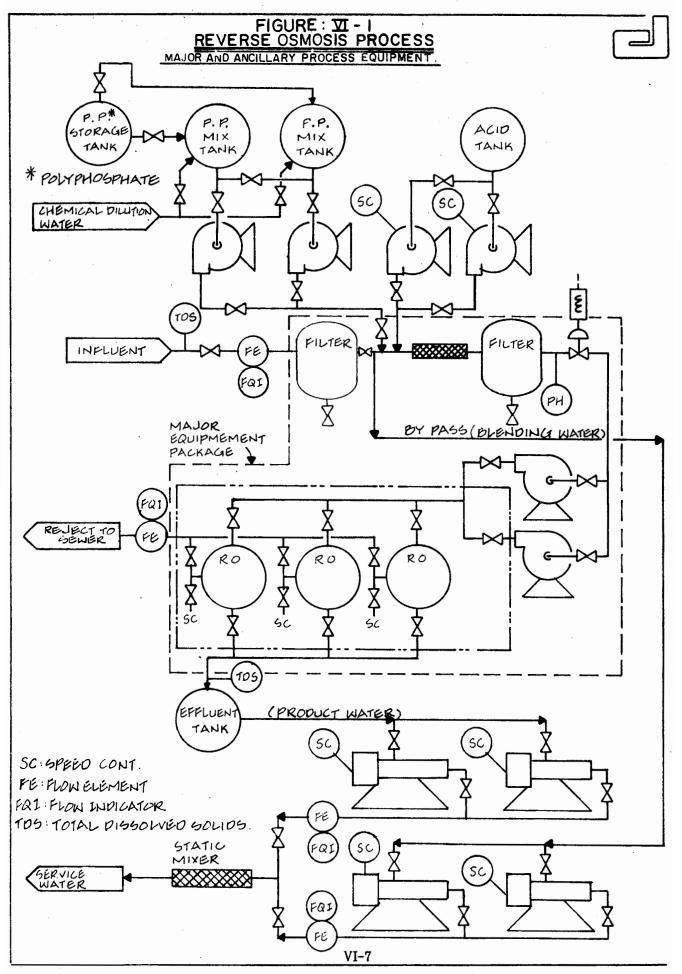
 $0.705 \text{ MGD} \times 0.75 = 0.528 \text{ MGD} - \text{product water from RO}$

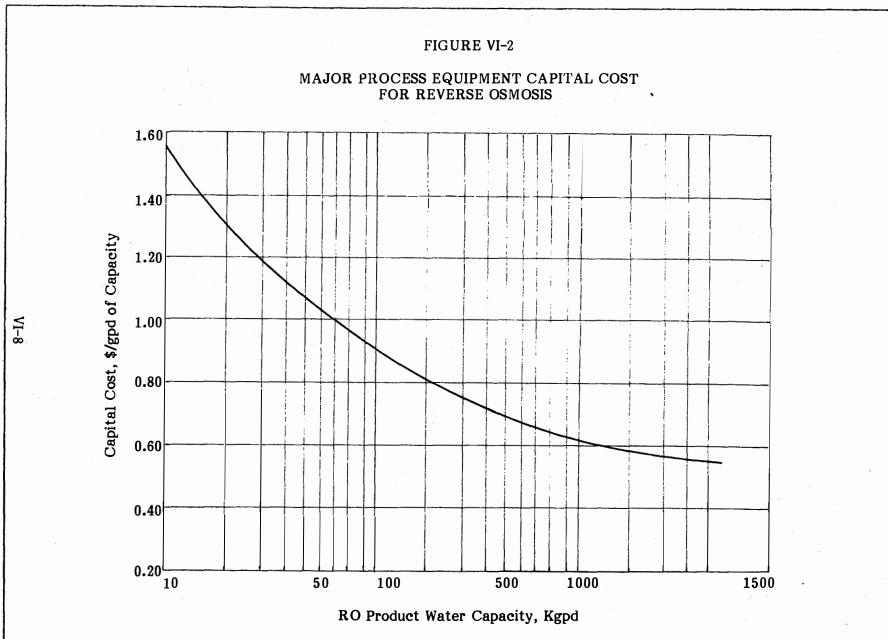
 $0.705 \ge 0.176 \text{ MGD} - \text{reject from RO} (25\%)$

Total amount of water available to supply

1.176 - 0.176 = 1.00 MGD

Bypass water without RO treatment

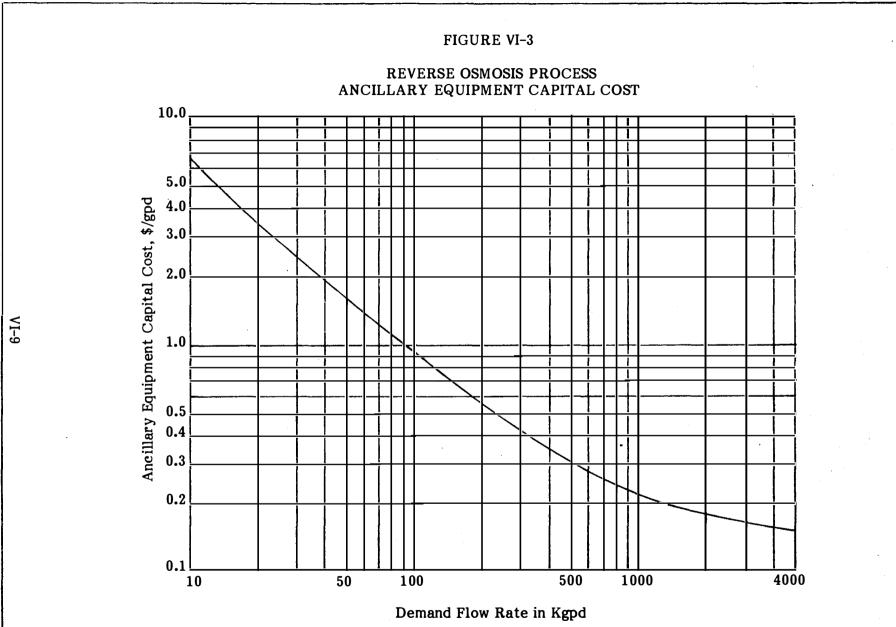

 $1.176 - 0.176 - 0.528 = 0.472 \,\overline{\mathrm{M}\mathrm{GD}}$


Check mixture nitrate concentration:

 $\frac{(0.472 \times 86) + (0.528 \times 8.6)}{1.0} = 45 \text{ ppm}$

WATER PROPORTIONS FOR NITRATE REMOVAL USING REVERSE OSMOSIS

Influent NO ₃	Percent Treatment	Percent Product	Percent Blending	Percent Supply
200	89.2	66.9	10.8	77.8
150	82.4	61.8	17.6	79.3
100	67.7	50.8	32.3	83.1
50	14.3	10.7	85.7	96.4





BERNARD JOHNSON INCORPORATED ... HOUSTON ... WASHINGTON

÷

ATLANTA

EXEMPLARY RO SYSTEM COST ESTIMATE FOR NITRATE REMOVAL, 1 MGD

a. Capital Costs

	1.	Major process equipment capital cost		
		(\$0.70/gpd) (528,000 gpd)	=	\$369,600
	2.	Ancillary equipment capital cost ¹	=	223,000
		Total capital	=	\$592,600
		Capital amortization = $\frac{(\$592,600)(0.098)}{(365)(1000)}$	=	\$0.158/Kgal
b.	0&I	M Costs ²		
	1.	Power Costs (7 kw-hr/Kgal @ 4¢/kw-hr)		\$0.28/Kgal RO product water
	2.	Membrane Replacement		0.15/Kgal RO product water
	3.	Pretreatment (including filter cartridge)		0.15/Kgal RO product water
	4.	Chemical Cleansing		0.07/Kgal RO product water
	5.	Labor (1 man-day/day @ \$60/day)		0.05/Kgal RO product water
				\$0.70/Kgal RO product water
		Process O&M Costs = $\begin{pmatrix} \$ 0.70 \\ Kgal \end{pmatrix} \begin{pmatrix} 0.528 \text{ MGD} \\ 1.00 \text{ MGD} \end{pmatrix}$	=	\$0.370/Kgal
	6.	Ancillary equipment O&M cost (assume 5% of capital cost per year)		
		220,000 x 0.05 365 x 1.00	=	\$0.030/Kgal
		Total O&M costs	=	\$0.400/Kgal
		Total Unit Treatment Cost	=	Capital + O&M
			=	\$0.158 + \$0.400 \$0.558/Kgal
			=	\$0.56/Kgal

TABLE VI-2 (Continued)

Material Cost

\$ 5,000

5,000

Chemical Storage Tanks: Acid tank Polyphosphate tank

RO Process Ancillary Equipment:³

Chemical Feed Pumps (one spare unit each): 6,000 Static inline mixers, 2 pcs. pipe size (8"): 3,000 Flow Measuring Devices, 4 pcs. pipe size (8") 10,000 Water Pumps (4 pumps, 700 gpm) 12,000 **Effluent Tank:** 5,000 Pipe, fitting (size 8"\$), valves etc. 8,000 Instrumentation (pH, TDS) 6,000 Electrical Wiring, Starters, etc. 8,000 Total 68,000 Installed Cost (assume 150% of material cost) 102,000 Building Cost @ \$40/sq. ft. (prefabricated steel bldg., with normal lighting and a/c), size (55 ft. x 55 ft.) 121,000 Grand Total Installed Cost \$223,000

¹Ancillary Equipment listed above.

²An average O&M cost of 1.70/Kgal is estimated for RO product water volumes less than 0.3 MGD since the labor cost is relatively larger vs. the total O&M.

³Refer to Figure VI-1.

.

RO UNIT TREATMENT COSTS FOR NITRATE REMOVAL (\$/Kgal)

Service Water Demand MGD		Influent NO ₃ Concentration, ppm			
	200	150	100	80	50
6	0.79	0.71	0.56	0.47	0.16
5	0.79	0.72	0.56	0.47	0.16
4	0.80	0.74	0.58	0.49	0.17
2	0.81	0.74	0.58	0.49	0.18
1	0.83	0.76	0.61	0.52	0.20
0.5	0.90	0.81	0.66	0.56	0.24
0.1	2.10	1.94	1.59	1.39	0.65
0.05	2.43	2.27	1.92	1.72	0.97
0.01	4.66	4.51	4.12	3.90	3.08

Ion Exchange - Selective NO₃ Removal

For selected service water flow rates, at an influent of 86 ppm NO_3^- , and a 45 ppm NO_3^- effluent concentration, the basic information for major process equipment cost of water treatment by a selective ion exchange process would be as shown on Table VI-4. These capital and O&M factors shown in this table were estimated from basic cost estimate information provided by an independent commercial firm. Figures VI-4 and VI-5 show the ancillary equipment and the capital cost.

The calculation procedures are shown on Table VI-5. Table VI-6 lists the basic cost estimating information for selective ion exchange at various flow rates.

Ion Exchange - Demineralization

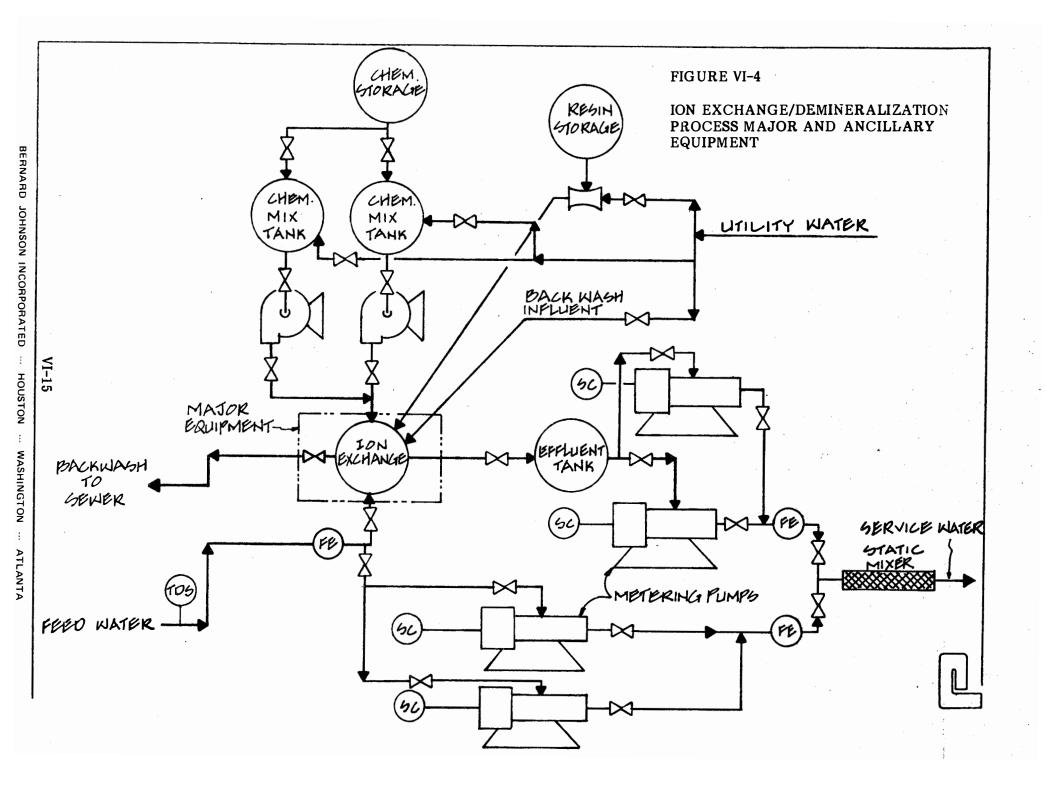
Demineralization will remove a majority of the cations and anions in water. The degree of removal is dependent upon the surface loading rate and the detention time in the process. Both nitrate and fluoride can be reduced by one pass through a dual bed cationic/anionic exchanger system, in addition to other anions and cations.

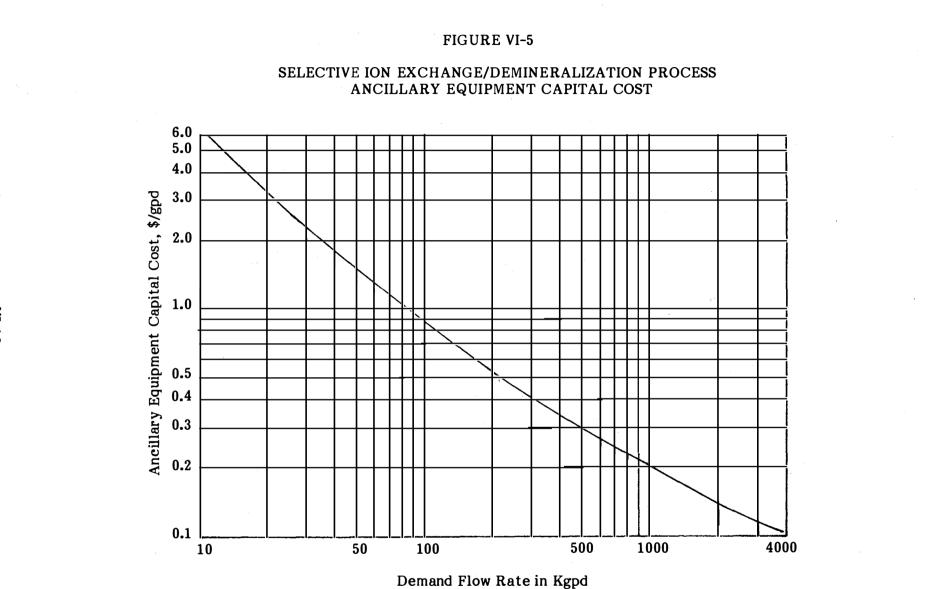
The total capital and O&M costs of the demineralization process equipment was estimated in a similar manner to the selective ion exchange system to compare the unit treatment costs on an equivalent basis. A cost analysis based on the information presented on Table VI-7 was performed for an influent TDS concentration of 1250 ppm, which is approximately 18 meq/l (milliequivalent per liter), and several flow rates as Table VI-8 illustrates.

Table VI-9 lists the unit treatment costs of demineralization systems for various flow rates, an influent total ion content of 18 meg/l, and an effluent total ion content of 1 meg/l. These influent and effluent ion concentrations are representative of the average water conditions in the non-compliant water systems in the state and their respective treated water condition.

BASIC INFORMATION FOR SELECTIVE ION EXCHANGE MAJOR PROCESS EQUIPMENT CAPITAL COST ESTIMATE

Service Water Flow Rate, MGD	0.5	1	3	5	7
NO_3^{-} Influent, ppm	86	86	86	86	86
NO_3^- Effluent, ppm	45	45	45	45	45
No. of CCIX Units	1	1	1	2	2
Treatment Section Dia., inches	42	54	96	84	96
Regenerant Section Dia., inches	12	18	24	24	24
Materials of Const.	316L SS	316L SS	316L SS	316L SS	316L SS
Resin Volume/CCIX ² Unit Ft ³	110	200	650 _{Kasa}	600	650
Equipment Capital ¹ Cost \$1000 <u>+</u> 20%	275	300	350	675	700


The O&M factors for all of the units are as follows:


NaCl Consumption Waste Volume Power Operator Attention Maintenance Costs Resin Attrition	 1.7 lbs/1000 gallons treated 4 gallons/1000 gallons treated 0.7 Killowatt hours/1000 gallons 1 Man-Day/Day 3% per year of Capital Cost 25%/year
Resin Attrition	25%/year
Installation Costs	50% of Capital Cost

¹Equipment capital cost for all flow rates less than 0.3 MGD are estimated at \$190,000. The O&M rates are the same over the entire range.

 2 CCIX - Continuous countercurrent ion exchange

ATLANTA

VI-16

		TABLE VI-5			
		EXEMPLARY SELECTIVE ION EXC COST ESTIMATE FOR NITRATE RE			
a.	Car	pital			
	1.	Major Process Equipment (Installed)		\$450,000	
	2.	Ancillary Equipment ¹ (Installed)		\$197,200	
		Total Capital	=	\$647,200	
b.	Оре	Capital amortization = (647,200) (0.098) (365) (1) (1,000) eration and Maintenance	=	\$0.174/Kgal	
	1.	Resin Volume & Attrition (25%/yr.) - total	volum	e	
		200 ft ³ @ \$80/ft ³			
		<u>(200)(0.25)(80)</u> (365)(1000)	=	\$0.011/Kgal	
	2.	Labor (1 man-day/day @ \$60/day)		0.060/Kgal	
	3.	Power (0.7 kw-hr/Kgal @ 4¢/kw-hr)		0.028/Kgal	
	4.	Regenerant - NaCl (10¢/lb)		0.170/Kgal	
	5.	Maintenance Cost		0.036/Kgal	
		Process O&M Cost		\$0.305/Kgal	
	6.	Ancillary Equipment O&M costs (assume 5% ancillary capital per year):	of of		
		<u>(197,200)(0.05)</u> (365)(1)(1000)	=	\$0.027/Kgal	
	······ ·	Total O&M	=	\$0.332/Kgal	
		Total Unit Treatment Cost	=	Capital + O&M	
			=	\$0.174 + \$0.332 \$0.506/Kgal	
			=	\$0.51/Kgal	

¹Ancillary equipment is the same for demineralization process (refer to Figure VI-4, Figure VI-5, and Table VI-8, page VI-20).

SELECTIVE ION EXCHANGE TREATMENT COSTS FOR NITRATE REMOVAL (\$/Kgal)

Service Water Demand, MGD	Unit Treatment Costs (\$/Kgal) ¹
7	0.31
5	0.33
3	0.35
1	0.51
0.5	0.80
0.1	2.05
0.05	3.51
0.01	20.84

¹Nitrate influent concentration 86 ppm as NO_3^{-1} . Nitrate effluent concentration 45 ppm as NO_3^{-1} .

BASIC INFORMATION FOR DEMINERALIZATION MAJOR PROCESS EQUIPMENT COST ESTIMATE

Service Water	0.5					
Flow Rate, MGD	or less	1	3	5	7	
Feed water, meq/l	18	18	18	18	18	
Effluent water, meq/l	9	9	9	9	9	
Demineralized H ₂ O, gpm	193	386	1158	1930	2702	
Blended H ₂ O, gpm	154	308	924	1540	2156	
No. of Cation CCIX Units	1	1	1	2	3	
Treatment Section Diameter, Inches	30	42	72	66	66	
Regenerant Section Diameter, Inches	18	24	42	42	36	
No. of Anion CCIX Units	1	1	2	2	3	
Treatment Section Diameter, Inches	30	42	54	66	66	
Regenerant Section Diameter, Inches	18	30	30	42	42	
Materials of Construction	316	SS 316	SS 316	SS 316	SS 316	SS
Strong-Acid Gation Resin Volume, ft ³ /CCIX Unit	100	190	700	650	500	
Weak-Base Anion Resin Volume, ft ⁷ /CCIX ¹ Unit	100	270	400	650	500	
Equipment Capitol Cost \$1000 <u>+</u> 20%	450	600	1000	1400	1800	
The O&M factors for all of th	e units a	re as follo	ws:			
H ₂ SO ₄ Consumption			llons blended		•	

$n_0 SO_A$ Consumption	7.4 IDS/1000 gamons biended enfluent
NáOH [*] Consumption	3.6 lbs/1000 gallons blended effluent
Power Consumption	0.8 kilowatt hrs/1000 gallons
Operator Attention	1.5 Man-Day/Day, 1 Man-Day/Day for less than 0.5 MGD
Maintenance Costs	3% per year of capital cost
Resin Attrition	25% per year, cation/anion
Installation Costs	50% of capital cost
Waste	80 gallons/1000 gallons blended effluent
	5 5

 1 CCIX - Continuous countercurrent ion exchange

VI-19

EXEMPLARY DEMINERALIZATION COST ESTIMATE FOR NITRATE REMOVAL¹

The capital costs for a $1 \overline{M}GD$ plant:

a. Capital Costs

2.

1. Major Process Equipment Cost:

Equipment	\$600,000
Installation	300,000
Total	\$900,000
Ancillary equipment cost: ²	\$197,200

		Total Capital Cost	=	\$1,097,200	
		Capital Amortization = <u>(1,097,200)(0.098)</u> (365)(1)(1000)	=	\$0.295/Kgal	
b.	Ор	eration and Maintenance Costs:			
	1.	H ₂ SO ₄ Consumption (@ 3¢/lb)		\$0.222/Kgal	
	2.	NaOH Consumption (@ 8¢/lb)		0.288/Kgal	
	3.	Power (@ 4¢/kw-hr)		0.032/Kgal	
	4.	Labor (1 ź man-day/day @ \$60/day)		0.090/Kgal	
	5.	Cation Resin (@ \$50/ft ³)		0.006/Kgal	
	6.	Anion Resin (@ \$120/ft ³)		0.022/Kgal	
	7.	Maintenance (@ 3% capital/yr)		0.074/Kgal	
		Process O&M Cost	=	\$0.734/Kgal	
	8.	Ancillary Equipment O&M Cost (assume 5% ancillary equipment capital cost per year):	of		
		<u>(197,200)(0.05)</u> (365)(1)(1000)	=	\$0.027/Kgal	
		Total O&M Cost	=	\$0.759/Kgal \$0.76/Kgal	

TABLE VI-8 (Continued)				
	بر ۲۰۰۰ و			
Total Unit Treatment Cost		Capital Amortiza \$0.295 + \$0.759 \$1.054/Kgal \$1.05/Kgal	ation + O&M Cost	
Ancillary Equipment:	•	·		
			Material Cost	
	•			
Chemical Storage Tanks:				
Resin Storage Bin			\$ 6,000	
Reagent Solution Tank			3,000	
Chemical Feed Pumps (one spare unit	each):		6,000	
Static Inline Mixers, 2 pcs. pipe size	(8"Ø):		1,500	
Flow Measuring Devices, 4 pcs. pipe	size (8"ø):		8,800	
Water Pumps (4 pumps, 700 gpm ea.)):		10,000	
Effluent Tank:			5,000	
Pipe, Fitting, (size 8"Ø), valves, etc	•		10,000	
Instrumentation (pH, TDS)			3,000	
Electrical Wiring, Starters, etc.			10,000	
Venturimeter:			1,500	
Total Material Cost			64,800	
Installed Cost (150% of material cost))		97,200	
Building Cost @ \$40/sq. ft. (prefabric lighting and a/c), size: (50 ft. x		, with normal	100,000	
Grand Total Installed Cost			197,200	

¹This estimate would also be applicable for fluoride removal.

 2 Ancillary Equipment listed above (refer to Figures VI-4 and VI-5).

DEMINERALIZATION COST ESTIMATE FOR NITRATE AND FLUORIDE REMOVAL

Flow Rate, MGD	Treatment Cost (\$/Kgal)
7	0.75
6	0.76
5	0.77
4	0.79
3	0.81
2	0.92
1	1.06
0.5	1.38
0.1	4.06
0.05	4.61
0.01	33.28

Special Nitrate Case

A special case exists for isolated rural communities where raw water is supplied by pumping from miles away and also where no treatment facilities are available. To treat the excess nitrate by reverse osmosis, ion exchange, or demineralization would be very costly, compared to a relatively large treatment plant.

The solution for obtaining water of suitable quality could be achieved by other means. The noncompliant supply can be rejected and a better quality raw water which has no excess nitrate can be sought. Bottled drinking water can also be purchased for potable use and the existing water utilized for other household uses.

FLUORIDE TREATMENT COST ANALYSIS

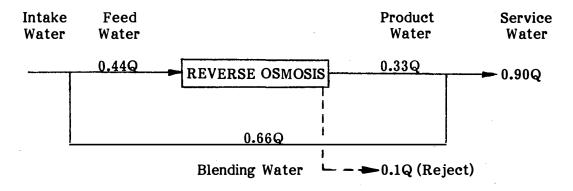
After evaluation and comparisons of the various processes of fluoride removal, it can be concluded that RO, demineralization, and bone char (tri-calcium phosphate) adsorption can remove the fluoride effectively. The process efficiencies and the treatment costs are discussed in the following narrative.

Reverse Osmosis

RO can reduce fluoride by 90% if the feedwater pH is maintained around 7.0, following the same principle of RO operation characteristics and feedwater quality assumptions used for nitrate removal. The percentage of feedwater, product water, and total service water will be as shown on Table VI-10.

An example unit treatment cost calculation for a 1 MGD plant, with influent fluoride of 2 ppm, effluent requirement of 1.4 ppm at pH = 7, and a TDS of 1250 ppm is presented on Example VI-3 and the costs are presented on Table VI-11. Table VI-12 is a summarized list of unit treatment costs of various flow rates and influent fluoride concentrations.

WATER PROPORTIONS FOR FLUORIDE REMOVAL


Influent F ppm	Percent RO Treatment	Percent Blending	Percent RO Product	Percent Service
10	96.6	3.4	72.5	75.9
5	84.2	15.8	63.2	79.0
2	40.0	60.0	30.0	90.0
1.6	17.7	82.3	13.3	95.6

 1 Assumes that 1.4 ppm F⁻ effluent water must be met.

EXAMPLE VI-3

FLUORIDE BLENDING CALCULATION

From Example VI-1 it can be proven that

If the supply demand flow is 1 MGD, the total raw water input required

 $=\frac{1}{0.9} = 1.1 \text{ MGD}$

The product water from RO would be (0.4)(1.1 MGD)(0.75 recovery rate) = 0.33 MGDand 0.44 - 0.33 = 0.11 MGD to waste (reject). The effluent concentration at 90 percent removal would be

(0.10)(2) = 0.2 ppm

The untreated blending water to supply would be

 $(0.6)(1.1) = 0.66 \overline{M}GD$

Check total fluoride concentration in the mixture:

$$\frac{(0.66 \text{ MGD})(2 \text{ ppm}) + (0.33 \text{ MGD})(0.2 \text{ ppm})}{(1.0 \text{ MGD})} = 1.4 \text{ ppm}$$

EXEMPLARY REVERSE OSMOSIS SYSTEM COST ESTIMATE FOR FLUORIDE REMOVAL

Capital Costs a.

	1.	Major Process Equipment Cost			
		(\$0.76/Kgal) ¹ (330,000 gpd)	=	\$250,000	
	2.	Ancillary Equipment Cost ²	=	\$220,000	
		Total Capital	=	\$470,000	
		Capital Amortization = $\frac{(470,000)(0.098)}{(365)(1)(1000)}$	=	\$0.126/Kgal	
b.	0&	M Costs			
	1.	Process O&M Costs			
		$($0.70/\text{Kgal product water})^3 \times \frac{0.33 \text{ MGD}}{1.00 \text{ MGD}}$	=	\$0.231/Kgal	
	2.	Ancillary Equipment O&M Costs ⁴			
		<u>\$220,000 x 0.05</u> 365 x 1,000	=	\$0.030 Kgal	
		Total O&M Costs	=	\$0.261/Kgal	
		Total Unit Treatment Costs	=	\$0.126 + \$0.261	
			- =	\$0.387/Kgal \$0.39/Kgal	

¹See Figure VI-2, page VI-8.

²See Table VI-2, Ancillary Equipment List, page VI-11.

³See Table VI-2, page VI-10.

⁴Assume 5% of ancillary equipment capital cost per year.

FLUORIDE REMOVAL BY RO TREATMENT UNIT TREATMENT COSTS (\$/Kgal)

Service Water				
Demand MGD		Influent Conce	ntration, ppm ¹	
	10	5	2	1.6
6	0.86	0.74	0.34	0.18
. 4	0.88	0.74	0.35	0.19
2	0.89	0.76	0.36	0.19
1	0.92	0.79	0.39	0.22
0.5	0.98	0.84	0.44	0.26
0.1	2.54	1.98	1.09	0.76
0.05	2.63	2.32	1.41	1.11
0.01	4.80	4.48	3.51	3.25

¹Effluent fluoride concentration 1.4 ppm.

Demineralization

The unit treatment costs of an influent water containing 2 ppm fluoride have been discussed in the nitrate demineralization process section (see Table VI-8, pages VI-20 and VI-21).

Bone Char (Tri-Calcium Phosphate) Adsorption

Bone char or tri-calcium phosphate has a greater adsorption (or exchange capacity) than activiated alumina, which has been discussed earlier in this report. We shall exclude the discussion of the unit treatment costs of the activated alumina due to this relative inefficiency.

According to research and operation data, fluoride has been satisfactorily removed at flow rates of 4 to 8 GPM/ft². The regenerated capacity of tri-calcium phosphate is 30 grams/ft³. The density of tri-calcium phosphate is 29 lb/ft³ and the current price is 26.50/100 lb.

Assuming a 1 MGD plant has an incoming fluoride concentration of 2 ppm, the process design and its unit treatment costs are shown on Example VI-4 and Table VI-13.

Table VI-14 presents the unit treatment costs of various demand flow and influent fluoride concentrations based upon the process flow diagram presented on Figure VI-6.

Special Fluoride Cases

An evaluation of unit treatment costs reveals that tri-calcium phosphate is the best process for isolated households to treat the fluoride contaminant. The process can use gravity feed without complicated operation and regeneration requirements. The unit treatment cost is estimated upon the assumption that 4 persons are in the average household, with each person consuming 150 gpd of water. The consumption rate varies throughout the State with this number being assumed as representative of household consumption. The cost curve for a small system fluoride removal is shown on Figure VI-8.

EXAMPLE VI-4

TRI-CALCIUM PHOSPHATE ADSORPTION SYSTEM DESIGN FOR FLUORIDE REMOVAL

 $1 \overline{M}GD = 694.4 GPM$

Fluoride to be removed in grams/day:

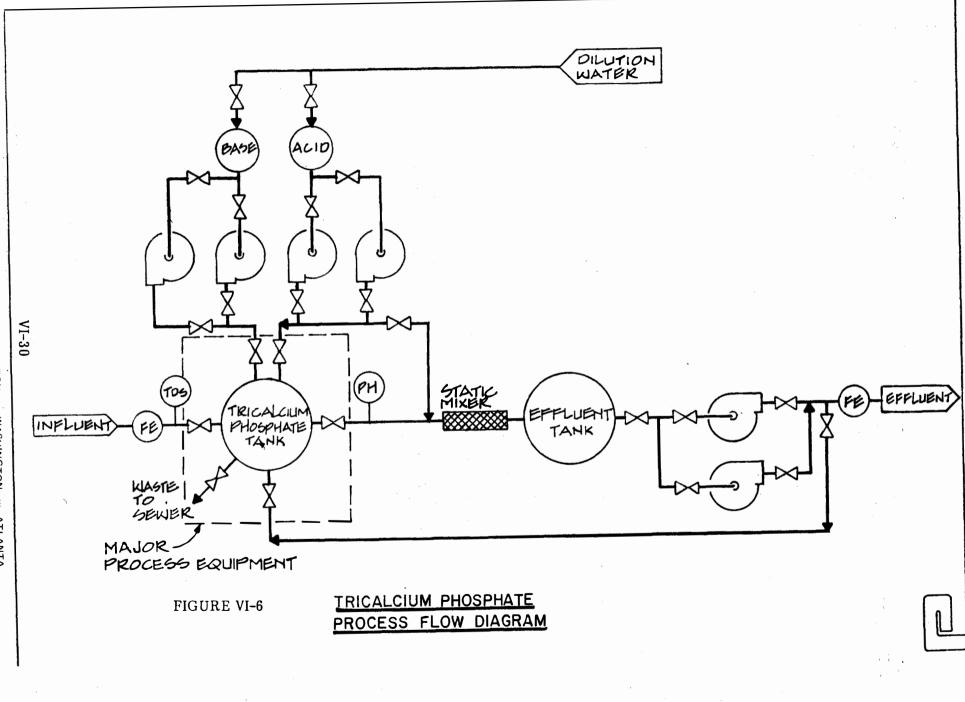
2.0 - 1.4 = 0.6 ppm, or

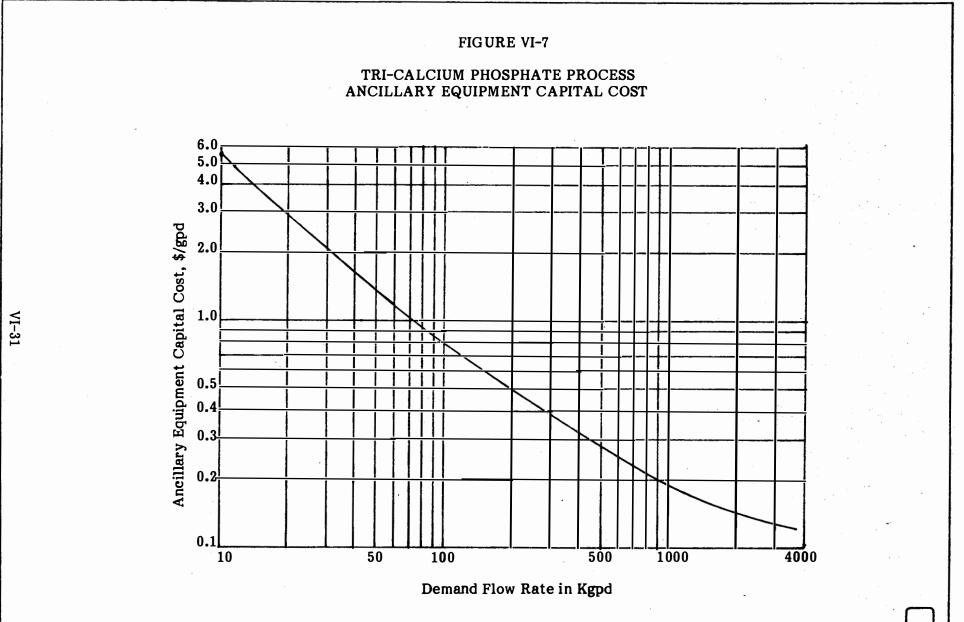
1 x 8.33 x 0.6 x 454 = 2270 grams/day

Tri-calcium phosphate required:

 $(2270 \text{ grams/day})/(30 \text{ grams/ft}^3) = 76 \text{ ft}^3/\text{day}$

Density of tri-calcium phosphate = 29 lb/ft^3


 $76 \times 29 = 2200 \text{ lb/day}$


Surface area required (6 GPM/ft^2)

 $694.4/6 = 115 \text{ ft}^2$

Use 2 vessels @ 10'Ø x 6' S.W.D.

Tri-calcium phosphate process flow diagram and ancillary equipment capital cost versus plant capacity are shown on Figures VI-6 and VI-7, respectively.

ATLANTA

BERNARD

TRI-CALCIUM PHOSPHATE EXEMPLARY COSTS

. (Cap	ital Costs			*
	1.	Major Process Equipment		\$130,000	
:	2.	Ancillary Equipment ¹		\$199,000	
		Total Capital		\$329,000	
		Capital Amortization			
		<u>(329,000)(0.098)</u> (365)(1)(1000)	=	\$0.088/ Kgal	
	0 &1	M Costs			
	1.	Chemicals (\$30/day)		\$0.030/Kgal	
	2.	Labor (1 man-day/day @ \$60/day)		0.060/Kgal	
	3.	Maintenance (3% capital/year)		0.039/Kgal	
	4.	Power (1 kw-hr/Kgal @ 4¢/kw-hr)		0.040/Kgal	
	5.	Media attrition, assumed 100% replaced per month @ \$26.50/100 lb, monthly consumption 2200 lb		0.019/Kgal	
		Process O&M Costs	=	\$0.14 8/Kgal	
	6.	Ancillary O&M Cost ²			
		<u>(198,500)(0.05)</u> (365)(1)(1000)	=	\$0.027/Kgal	
		Total O&M Costs	=	\$0.175/Kgal	
		Total Unit Treatment Costs	= = =	\$0.088 + \$0.175 \$0.263/Kgal \$0.26/Kgal	

TABLE VI-13 (Continued)

Tri-Calcium Phosphate Process Ancillary Equipment List and Estimate

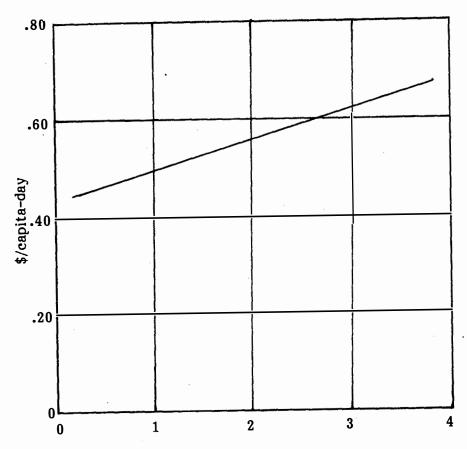
Chemical Storage Tanks:

HC1	\$	6,000
NaOH		6,000
Chemical Feed Pumps (one spare unit each)		6,000
Static Inline Mixers, 1pc., pipe size (8"Ø)		4,000
Flow measuring devices, 2 pcs. (8")		8,000
Water Pumps (2 pumps, 695 gpm ea.) 2 pcs.		8,000
Effluent Tank		6,000
Pipe, Fitting (size 8"Ø), Valves		8,000
Instrumentation (pH, TDS), 4 pcs.		6,000
Electrical Wiring, Starters, etc.		8,000
TOTAL	\$	66, 000
Installed Cost (150% of material cost)	\$	99,000
Building Cost @ \$40/sq. ft. (50 ft. x 50 ft.)(prefabricated steel bldg. with normal lighting and a/c)	_1	.00,000
GRAND TOTAL INSTALLED COST	\$1	99,000

¹Refer to Figure VI-6 for Tri-calcium Phosphate Process major equipment and ancillary equipment, Figure VI-7 for Tri-Calcium Phosphate ancillary equipment capital cost.

²5 percent of ancillary capital per year.

UNIT TREATMENT COSTS FOR TRI-CALCIUM PHOSPHATE PROCESS FLUORIDE REMOVAL (\$/Kgal)


Service Demand MGD	Inf	luent Conce	ntration, PP	<u>M¹</u>
	<u>10</u>	<u>5</u>	<u>2</u>	1.6
6	0.33	0.27	0.18	0.18
4	0.33	0.28	0.19	0.18
2	0.39	0.35	0.22	0.22
1	0.45	0.38	0.26	0.25
0.5	0.55	0.46	0.36	0.35
0.1	1.44	1.21	1.08	1.04
0.05	1.72	.145	1.33	1.28
0.01	4.62	3.89	3.79	3.66

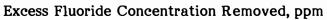

¹Effluent concentration - 1.4 ppm.

FIGURE VI-8

э,

COST ESCALATION FACTORS

The unit treatment costs for each of the processes discussed will increase continually due to inflation and other economic factors. Both the capital and O&M costs will be increased according to the following projected percentage increases:

а.	Capit i. ii.	al Steel Process Equipment	10 percent/year 7.5 percent/year
b.	O&M i. ii. iii. iv.	Chemicals Skilled Labor Power Maintenance	10 percent/year 10 percent/year 15 percent/year 10 percent/year

(The above percentages were obtained through the Engineering News Record and Chemical Engineering and were finalized in coordination with the Texas Water Development Board staff.)

On the forthcoming Tables VI-15 through VI-19, the projected unit treatment costs of the different applicable fluorides and nitrate removal systems are presented on the basis of 1986 costs. Generally speaking, the projected 1986 unit treatment costs will more than double the predicted 1976 costs presented previously.

COST ANALYSIS DISCUSSION

The previous cost analyses have discussed the unit treatment costs of various influent and effluent concentrations of nitrate and fluoride along with varying flow rates. From Figures VI-9 and VI-10, it can be seen that demineralization is the most expensive process for removal of both nitrate and fluoride. In the case of an average influent nitrate concentration of 86 ppm, selective ion exchange is more economical where the flow rate is greater than 1.0 MGD. The tri-calcium phosphate process shows a lower unit treatment cost than reverse osmosis over the entire range of flows considered.

PROJECTED 1986 RO NITRATE UNIT TREATMENT COSTS (\$/Kgal)

Service

Water Demand MGD	Inf	luent Nitrate Co	oncentration, pp	<u>om</u>
	200	150	100	50
6	1.76	1.61	1.24	0.35
5	1.76	1.63	1.24	0.35
4	1.78	1.67	1.29	0.37
2	1.81	1.67	1.29	0.40
1	1.85	1.72	1.35	0.44
0.5	2.00	1.83	1.47	0.53
0.1	4.69	4.39	3.53	1.43
0.05	5.43	5.13	4.26	2.13
0.01	10.40	10.20	9.14	6.78

۰.

• •

.

PROJECTED 1986 DEMINERALIZATION PROCESS UNIT TREATMENT COSTS

,

.

Service Water Demand	
MGD	\$/Kgal
5	1.55
3	1.64
1	2.14
0.5	2.84
0.1	5.95
0.05	9.49
0.01	66.57
Influent nitrate Effluent nitrate	86 ppm 45 ppm
Influent fluoride Effluent fluoride	2 ppm 1.4 ppm

۰.

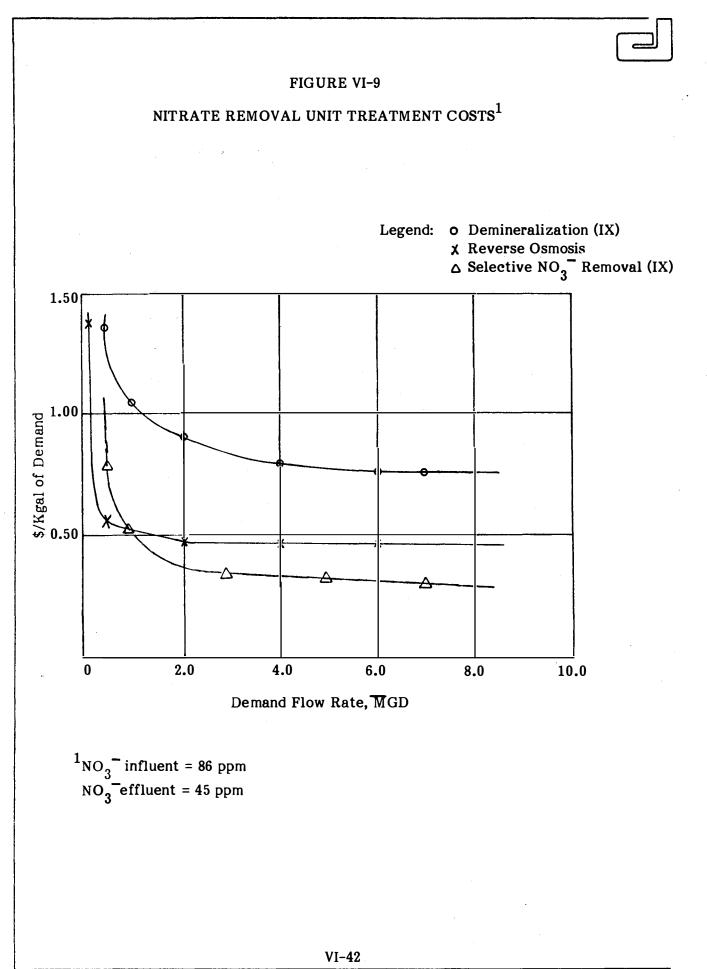
PROJECTED 1986 SELECTIVE ION EXCHANGE NITRATE UNIT TREATMENT COSTS

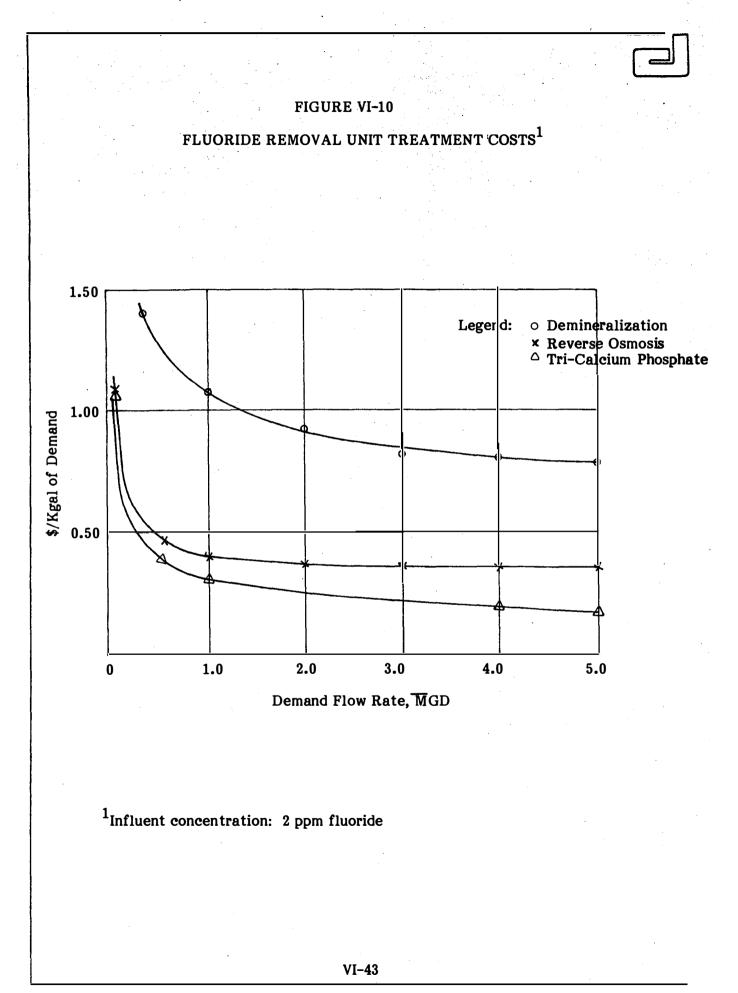
ì

Service Water Demand	2
MGD	(\$/Kgal)
5	0.69
3	0.69
1	0.96
0.5	1.61
0.1	4.12
0.05	7.03
0.01	41.70
Influent nitrate Effluent nitrate	86 ppm 45 ppm

VI-39

PROJECTED 1986 RO FLUORIDE UNIT TREATMENT COSTS (\$/Kgal)


Service Water Demand MGD		Influent Fluoride	Concentration, ppn	<u>n</u>
	10	5	2	1.6
6	1.95	1.65	0.77	0.41
4	1.99	1.65	0.79	0.43
2	2.02	1.69	0.81	0.43
1	2.08	1.76	0.81	0.50
0.5	2.23	1.87	0.99	0.59
0.1	5.11	4.43	2.45	1.71
0.05	5.38	5.19	3.17	2.50
0.01	9.71	8.98	7.90	7.31


VI-40

PROJECTED 1986 TRI-CALCIUM PHOSPHATE UNIT TREATMENT COSTS (\$/Kgal)

Service Demand MGD		Influent Fluoride Concentration, Pl			
	<u>10</u>	<u>6</u>	<u>2</u>	1.6	
6	0.73	0.60	0.39	0.39	
4	0.73	0.62	0.41	0.39	
2	0.86	0.77	0.47	0.47	
1	0.99	0.84	0.57	0.54	
0.5	1.22	1.06	0.82	0.76	
0.1	3.18	2.60	2.32	2.24	
0.05	3.80	3.11	2.86	2.76	
0.01	10.21	8.33	8.13	7.90	

¹Effluent Concentration - 1.4 ppm

BERNARD JOHNSON INCORPORATED ... HOUSTON ... WASHINGTON ... ATLANTA

.

ч.

-

.

CHAPTER VII

AGGREGATED ECONOMIC IMPACT

The preceeding chapters of this report have developed the basic scope and objective of this project. To this point, the full range of applicable processes have been considered for the removal of nitrate and fluoride from water supplies. Subsequently, each of these processes has been evaluated on a technical basis to establish the scope of treatment facilities to receive further consideration. In Chapter VI, the selected processes were subjected to an economic evaluation to ascertain the most cost effective systems. The Chapter VI evaluation took several base case conditions as a framework for the economic comparisons. These base cases are considered to be a suitably sound basis to establish the processes which would be chosen for the system. In the case of low flows (0.5 MGD and below) relative to the average, special consideration had to be taken to assure that the economic projections of capital, O&M, and subsequently the unit treatment cost were properly determined due to the disproportionate and non-linear share of the unit costs created by factors such as labor and equipment. Within this chapter, the total aggregated costs for the State of Texas to comply with the Safe Drinking Water Act are compiled.

According to the information in Appendix A, approximately 90 percent of the total number of non-compliant water systems have populations less than 3,000 people, and 20 percent have less than 100 people. This indicates that a vast majority of non-compliant water systems have average demand supply flows less than 0.5 MGD.

The distribution of non-compliant systems for the purpose of this cost aggregation was divided into three groups initially, i.e., nitrate, fluoride, and both nitrate and fluoride non-compliant. Each of these three groups were subsequently divided within each of the groups by concentration into representative subgroups. These subgroups were arbitrarily selected based upon the involved flow/concentration distributions and cost of treatment. The capital, O&M, and unit treatment costs (UTC) are estimated within each of these subgroups. An estimated 150 gpcd flow rate was utilized to provide a representative estimate of flow.

FLUORIDE GROUP

Subgroup 1

This subgroup includes those non-compliant water supplies where the fluoride concentration averages 2.5 ppm. Tables VII-1a and b present the capital, O&M, and UTC for both reverse osmosis and tri-calcium phosphate adsorption. As indicated by the dashed line, the most economical treatment process switches from RO to tri-calcium phosphate adsorption as the flow increases above 150 Kgal/day at this concentration level.

Based upon these conclusions, this subgroup will require a total capital expenditure of \$56,081,500, \$11,622,700/year in O&M expense and a total annual cost of \$17,119,100. In this subgroup there are a total of approximately 445,000 people served in 391 supply systems for an average of \$126.03/capita, \$0.07/capita-day and \$0.11/capita-day for capital, O&M, and treatment respectively.

FLUORIDE SUBGROUP 1 (2.5 ppm) TRI-CALCIUM PHOSPHATE

	Demand Flow	Major Process Equipment Capital Cost	Ancillary Equipment Capital Cost	Total Capital Cost	Total O&M Cost	Total Annual Cost	UTC
N^1	Kgpd	\$	\$	\$	\$/year	\$/year	\$/Kgal
83	15	25,000	60,750	85,750	8,293	16,700	3.04
55	37.5	25,000	66,250	91,250	13,990	22,930	1.67
97	87.5	35,000	78,470	113,470	25,000	36,120	1.13
26	110	35,000	84,000	119,000	30,700	42,360	1.06
40	150	35,000_	93,750	128,750	40,990	53,604	0.98
23	220	35,000	102,000	137,000	55,850	69,300	0.86
20	300	35,000	111,000	146,000	66,870	81,180	0.74
16	450	67,000	128,500	195,500	42,560	61,720	0.38
8	600	67,000	145,700	212,700	62,035	82,880	0.38
4	750	67,000	163,000	230,000	68,375	90,915	0.33
4	900	67,000	180,000	247,000	81,270	105,500	0.32
.3	1,200	125,000	235,000	360,000	83,700	118,980	0.27
2	1,350	125,000	262,500	387,500	87,040	125,015	0.25
3	1,500	125,000	289,850	414,850	96,620	137,270	0.25
1	1,650	200,000	317,250	517,250	106,200	156,890	0.26
1	1,800	200,000	326,750	526,750	114,890	166,510	0.25
1	1,950	200,000	336,250	536,250	123,575	176,130	0.25
1	2,100	250,000	345,750	595,750	132,260	190,650	0.25
2	2,250	250,000	355,250	605,250	140,950	200,265	0.24
1	2,400	250,000	364,750	614,750	149,640	209,890	0.24
391	75,515	15,154,000	35,891,990	51,045,990	12,341,844	\$17,369,510)

¹Number of Water Supplies

FLUORIDE SUBGROUP 1 (2.5 ppm) REVERSE OSMOSIS

	Demand Flow	Major Process Equipment Capital Cost	Ancillary Equipment Capital Cost	Total Capital Cost	Total O&M Cost	Total Annual Cost	UTC
$\underline{N^1}$	Kgpd	\$	\$	\$/year	\$/year	\$/year	\$/Kgal
83	15	10,800	76,750	87,550	6,903	15,482	2.82
55	37.5	18,375	82,000	100,375	11,765	21,601	1.57
97	87.5	35,040	98,000	133,040	22,785	35,822	1.12
26	110	42,920	104,000	146,920	27,684	42,082	1.05
_ 40_	150	54,000	112,500	166,500	36 _285	52,602	0.96
23	220	70,000	122,000	192,000	51,068	69,884	0.87
20	300	93,000	130,000	223,000	67,820	89 ,6 70	0.82
16	450	129,000	150,000	279,000	45,278	72,620	0.44
8	600	162,000	165,000	327,000	58,620	90,666	0.41
4	750	195,000	180,000	375,000	71,963	108,713	0.40
4	900	228,000	202,000	430,000	85,656	127,800	0.39
3	1,200	288,000	250,000	538,000	113,240	166,000	0.38
2	1,350	315,000	270,000	585,000	126,833	184,200	0.37
3	1,500	350,000	290,000	640,000	140,425	203,150	0.37
1	1,650	374,000	317,000	691,000	154,370	222,100	0.37
1	1,800	408,000	335,000	743,000	167,860	240,700	0.37
1	1,950	430,000	355,000	785,000	181,450	258,400	0.36
1	2,100	455,000	380,000	835,000	195,300	277,125	0.36
2	2,250	480,000	400,000	880,000	208,900	295,140	0.36
1	2,400	520,000	418,000	938,000	222,400	314,300	0.36
381	75,515	22,794,825	43,009,250	65,804,075	12,310,333	\$18,758,794	:
1							

¹Number of Water Supplies

Subgroup 2

For the water supplies exhibiting fluoride concentrations averaging 5.0 ppm a second subgroup was established. Regardless of the flow rate, all systems in the subgroup would use tri-calcium phosphate adsorption rather than RO as indicated by the costs on Table VII-2. The total population served in this subgroup is 80,000 in 80 water systems. The total estimated capital cost would be \$10,609,200 and \$2,576,900/year in O&M costs. The average costs equal to \$132.60/capita, \$0.09/capita/day and \$0.12/capita/day for capital, O&M and treatment respectively.

NITRATE GROUP

Subgroup 1

One of the four nitrate subgroups established covers those water supplies with nitrate concentrations averaging 50 ppm. Table VII-3 presents a comparison between selective ion exchange and RO. The total aggregated capital cost for this subgroup using the selected process of RO is \$2,113,600. The O&M cost is \$234,100/year. The total annual cost is \$441,200. This averages to \$63/capita of capital, \$0.02/capita/day for O&M and \$0.04/capita/day for treatment for the total subgroup population of 33,700 people.

Subgroup 2

The second nitrate subgroup has an influent nitrate content averaging 80 ppm. The costs are presented on Table VII-4. RO is the most cost effective system on a unit cost basis. The capital totals \$2,500,000. The O&M totals \$526,500/year and the total annual cost is \$771,400. This subgroup covers a population of 9,800 people. The equivalent costs are \$255/capita, \$0.15/capita/day and \$0.22/capita/day for capital, O&M and treatment respectively.

FLUORIDE SUBGROUP 2 COST ANALYSIS (5.0 ppm)

				Reverse Os	mosis					Tri-Calcium P	hosphate		
	Demand Flow	Major Process Equipment Capital Cost	Equipment	Total Capital Cost	Total O&M Cost	Total Annual Cost	UTC	Major Process Equipment Capital Cost	Equipment	Total Capital Cost	Total O&M .Cost	Total Annual Cost	UTC
N ¹	Kgpd	\$: \$	\$	\$/year	\$/year	\$/Kgal	\$	\$	\$	\$/year	\$/year	\$/Kgal
27	15	18,000	76,750	94,750	11,280	20,565	3.75	25,000	60,750	85,750	8,950	17,353	3.17
11	37.5	36,000	82,700	118,700	22,750	34,382	2.51	25,000	66,250	91,250	15,357	24,300	1.77
10	87.5	70,000	95,950	165,950	48,230	64,495	2.02	35,000	78,450	113,450	28,510	39,630	1.24
11	110	83,600	102,000	185,600	59,700	77,888	1.94	35,000	83,975	118,975	33,910	45,570	1.13
4	220	147,800	110,000	257,800	114,700 ²	139,970	1.74	35,000	101,825	136,825	59,700	73,100	0.91
3	3 00	189,600	130,400	320,000	67,840	99,200	0.90	45,000	111,150	156,150	64,687	79,980	0.73
6	450	267,100	148,300	415,400	99,400	140,100	0.85	67,000	128,350	195,350	68,832	87,980	0.54
3	600	336,000	166,200	502,200	131,000	180,215	0.82	67,000	145,650	212,650	70,792	91,631	0.42
2	750	408,000	184,100	592,100	162,500	220,525	0.81	67,000	162,950	229,950	84,800	107,335	0.39
2	1,650	805,000	317,000	1,122,000	353,100	463,066	0.76	200,000	317,250	517,250	100,400	211,100	0.35
1	1,800	864,000	333,600	1,197,600	384,600	502,000	0.76	200,000	326,750	526,750	174,000	225,620	0.34
80	15,782.5	9,562,200	8,572,650	18,134,850	4,781,234	\$6,558,841		3,297,000	7,312,175	10,609,175	2,576,938	\$3,570,240	

¹Number of Water Supplies

²Based on the assumption that O&M costs for flows less than 300 Kgal are \$1.70/Kgal of product water and \$0.70/Kgal for flows greater than 300 Kgal, a large variation in total O&M cost occurs at or near this breakpoint.

VII-6

			Sele	ective Ion Excha	inge Process				Re	verse Osmosi	s Process		
	Demand Flow	Major Process Equipment Cost	Ancillary Equipment Cost	Total Capital Cost	Total O삲M Cost	Total Annual Cost	M UTC	lajor Proces Equipment Cost	s Ancillary Equipment Cost	Total Capital Cost	Total O&M Cost	To Annual Cost	UTC
N1	Kgpd	\$,	\$	\$	\$/year	\$/year	\$/Kgal	\$	\$	\$	\$/year	\$/year	K/Kgal
4	22.5	285,000	69,750	354,750	27,300	62,066	7.55	7,500	78,800	86,300	5,500	13,958	1.70
1	45	285, 0 00	74,000	359,000	29,488	64,670	3.94	12,000	84,700	96,700	7,355	16,833	1.03
2	120	285,000	88,200	373,200	36,822	73,396	1.68	17,520	104,600	122,120	13,552	25,520	0.58
1	150	285,000	93,850	378,850	39,733	76,850	1.40	21,000	112,500	133,500	16,028	29, 11 1	0.53
1	525	412,500	161,850	574,350	96,240	152,525	0.80	60,700	157,250	217,950	23,193	44,552	0.23
_2	2,000	450,0 00	271,500	721,500	349,375	420,082	0.58	176,000	362,000	538,000	69, 200	121,924	0.17
11	3,050	3,592,500	1,328,100	4,920,600	1,047,054	\$1,537,660		510,740	1,602,850	2,113,590	234,081	\$441,213	

NITRATE SUBGROUP 1 COST ANALYSIS (50.0 ppm)

¹Number of Water Supplies

NITRATE SUBGROUP 2 COST ANALYSIS (80 ppm)

			Select	ive Ion Exchai	nge Process				Re	verse Osmosis	Process		
	Demand Flow	Major Process Equipment Capital Cost	Ancillary Equipment Capital Cost	Total Capital Cost	Total O&M Cost	Total Annual Cost	UTC	Major Process Equipment Capital Cost	Equipment	Total Capital Cost	Total O&M Cost	Total Annual Cost	UTC
$\underline{N^1}$	Kgpd	\$	\$	\$	\$/year	\$/year	\$/Kgal	\$	\$	\$	\$/year	\$/year	\$/Kgal
8	15	285,000	68,300	353,300	26,848	61,471	11.23	14,400	76,750	91,150	8,336	17,268	3.15
3	30	285,000	71,200	356,200	28,966	63,874	5.83	20,304	80,700	101,004	13,014	22,912	2.09
4	90	285,000	82,500	367,500	35,332	71,348	2.17	47,520	96,700	144,200	31,772	45,903	1.39
2	150	285,000	93,850	378,850	41,922	79,050	1.44	72,000	112,500	184,500	50,520	68,601	1.25
_2	300	285,000	122,200	407,200	58,670	98,576	0.90	130,000	130,400	260,400	96,310	121,830	1.11
19	1,470	5,415,000	1,522,100	6,937,100	644,197	\$1,324,034		770,192	1,728,700	2,498,892	526,478	\$771,350	

¹Number of Water Supplies

Subgroup 3

This nitrate subgroup includes those water supplies with influent nitrate averaging 100 ppm. As shown on Table VII-5, the RO system would again be selected over selective ion exchange. The capital cost for this group totals \$454,200, and the O&M totals \$82,330/year. The total annual cost is \$126,800. For the 1,100 people served, the equivalent costs are \$413/capita, \$0.21/capita/day, and \$0.32/capita/day for capital, O&M, and treatment respectively.

Subgroup 4

This nitrate subgroup covers those water supplies with nitrate concentrations above 150 ppm. As shown on Table VII-6, the RO system is the most cost effective. The capital cost totals \$269,000, and the O&M totals \$63,000/year. The total annual cost is \$89,400. For the 750 people served, the equivalent costs are \$358/capita, \$0.23/capita/day and \$0.32/capita/day for capital, O&M, and treatment respectively.

NITRATE AND FLUORIDE GROUP

For those water supplies which are contaminated by both nitrate and fluoride, RO is the only system which has both the technical and economic advantage. In the treatment process, nitrate is the controlling parameter. Nitrate requires a larger percent reduction to meet the State standard than does fluoride.

Subgroup 1

This subgroup includes those water supplies with influent nitrate averaging 60 ppm. As shown on Table VII-7, the capital cost totals \$254,500, and the O&M cost totals \$63,400/year. The total annual cost is \$88,400. For the 1,990 people served, the equivalent costs are \$128/capita, \$0.09/capita/day and \$0.12/capita/day for capital, O&M, and treatment respectively.

NITRATE SUBGROUP 3 COST ANALYSIS (100.0 ppm)

				Selectiv	ve Ion Exchar	nge Process				Reve	rse Osmos	is Process	,	
		man d low	Major Process Equipment Capital Cost	Ancillary Equipment Capital Cost	Total Capita <u>)</u> Cost	Total O&M Cost	T'otal Annual Cost	UTC	Major Process Equipment Capital Cost	Ancillary Equipment Capital Cost	Total Capital Cost	Total 이상M Cost	Total Annual Cost	UTC
1	N ¹ K	gpd	\$	\$	\$	\$/year	\$/year	\$/Kgal	\$	\$	\$	\$/year	\$/year	\$/Kgal
	2	30	285,000	71,200	356,200	28,526	63,434	5.79	23,500	80,700	104,200	16,050	26,263	2.4 0
	1	45	285,000	74,000	359,000	30,144	65,327	3.98	32,400	84,700	117,100	22,116	33,592	2.05
	1	60	285,000	76,850	361,850	31,875	67,336	3.08	40,020	88,650	128,670	28,115	40,725	1.86
	4 1	135	1,140,000	293,250	1,433,250	119,071	\$259,529		119,420	334,750	454,170	82,332	\$126,840	

¹Number of Water Supplies

VII-10

NITRATE SUBGROUP 4 COST ANALYSIS (150.0 ppm)

			Selectiv	e Ion Exch	ange Proce	ss			Reve	rse Osmos	is Process		
	Demand Flow	Major Process Equipment Capital Cost	Equipment	Total Capital Cost	Total O&M Cost	Total Annual Cost	UTC	Major Process Equipment Capital Cost	Equipment	Total Capital Cost	Total O&M Cost	Total Annual Cost	UTC
N ¹	Kgpd	\$	\$	\$	\$/year	\$/year	\$/Kgal	\$	\$	\$	\$/year	\$/year	\$/Kgal
1	22.5	285,000	69,750	354,750	27,632	62,398	7.60	23,600	78,736	102,336	14,777	24,806	3.02
1	90	285,000	82,500	367,500	35,332	71,348	2.17	70,000	96,611	166,611	48,193	64,520	1.96
2	112.5	570,000	152,250	722,250	62,964	\$133,745		9 3, 600	175,347	268,947	6 2,9 70	\$89,326	

¹Number of Water Supplies

F AND NO₃ SUBGROUP 1 (60 ppm) REVERSE³OSMOSIS PROCESS

	Demand Flow	Major Process Equipment Capital Cost	Equipment	Total Capital Cost	Total O&M Cost	Total Annual Cost	UTC
N1	Kgpd	\$	\$	\$	\$/year	\$/year	\$/Kgal
1	40	11,000	85,000	96,000	11,550	20,960	1.43
1	250	33,500	125,000	158,500	51,875	67,408	0.74
2	290	44,500	210,000	254,500	63,425	\$88,368	

¹Number of Water Supplies

_

Subgroup 2

This subgroup includes those water supplies with influent nitrate averaging 100 ppm. As shown on Table VII-8, the capital cost totals \$355,000, and the O&M cost totals \$62,300/year. The total annual cost is \$97,100. For the 900 people served, the equivalent costs are \$394/capita, \$0.19/capita/day and \$0.30/capita/day for capital,O&M, and treatment respectively.

Subgroup 3

This subgroup includes those water supplies with influent nitrate averaging 150 ppm. As shown on Table VII-9, the capital cost and O&M cost totals \$549,000 and \$168,200/year respectively. The total annual cost is \$232,800. For the 4,200 people served, the equivalent costs are \$157/capita, \$0.11/capita/day and \$0.15/capita/day for capital, O&M, and treatment respectively.

F AND NO, SUBGROUP 2 (100 ppm) REVERSE OSMOSIS PROCESS

	Demand Flow	Major Proces Equipment Capital Cost	s Ancillary Equipment Capital Cost	Total Capital Cost	Total O&M Cost	Total Annual Cost	UTC
N ¹	Kgpd	\$	\$	\$	\$/year	\$/year	\$/Kgal
1	18.75	16,530	80,000	96,530	10,810	20,270	2.96
1	27	23,500	81,000	103,500	13,855	24,000	2.43
1	90	55,700	100,000	155,000	37,670	52,860	1.61
3	135.75	95,730	261,000	355,030	62,335	\$97,130	

¹Number of Water Supplies

FAND NO, SUBGROUP 3 (150 ppm) REVERSE OSMOSIS PROCESS

	Demand Flow	Major Process Equipment Capital Cost	Equipment	Total Capital Cost	Total O&M Cost	Total Annual Cost	UTC
N ¹	Kgpd	· \$	\$	\$	\$/year	\$/year	\$Kgal
1	100	100,000	102,000	202,000	53,280	73,100	2.00
1	540	302,000	155,000	457,000	114,900	159,690	0.81
2	640	402,000	257,000	659,000	168,180	\$232,790	

¹Number of Water Supplies

SUMMARY

The preceeding estimates of total capital, annual O&M, and annual UTC are summarized on Table VII-10. These data indicate that an estimated \$73.3 million in capital, and \$15.5 million per year in O&M costs shall be spent by these non-compliant water supply systems. These systems serve an approximate 557,500 people. The average capital investment amounts to \$131/capita. The average O&M cost equates to \$0.08/capita-day. The total amortized capital, along with the O&M costs, averages to \$0.11/capita-day in treatment cost. These costs will be increased at an average rate of 10 percent per year according to trends in representative cost indices due to economic inflation. Assuming a population growth rate of 2 percent per year and an estimate of \$176 million in capital and \$43.1 million/year in O&M cost, the total annual cost will equate to \$60.2 million/year if construction is delayed until 1986.

÷

SUMMARIZED CAPITAL, O&M, UTC 1976 Costs

Contaminant Groups	Total Capital \$	Total O&M \$/year	Total Annual Cost \$/year
Group 1 Fluoride			
Subgroup 1 ¹	56,081,500	11,622,700	17,119,100
Subgroup 2	10,609,200	2,713,600	3,706,000
Group 2 Nitrate			
Subgroup 1	2,113,600	234,100	441,200
Subgroup 2	2,500,000	526,500	771,400
Subgroup 3	454,200	82,330	126,800
Subgroup 4	269,000	63,000	89,400
Group 3 Fluoride a	and Nitrate		
Subgroup 1	254,500	63,400	88,400
Subgroup 2	355,000	62,300	97,100
Subgroup 3	659,000	168,200	232,800
Total	73,296,000	15,496,430	22,652,500
Total (1986)	176,000,000	43,116,000	60,229,700

 $^1\mathrm{Refer}$ to Pg. VII-3 for combination of most economical system.

VII-17

.

ł

ł

.

.

APPENDIX A

EVALUATION OF TEXAS PUBLIC WATER SYSTEMS IN TERMS OF WATER QUALITY USING EPA INTERIM PRIMARY STANDARDS, BY COUNTY¹

¹Source is as listed in Item 1 in Bibliography and has been reproduced in its entirety.

Appendix Sar-Evaluation of Texas' Public Water Systems in Terms of Water Quality Using EPA Interim Primary Standards, by County $\underline{1}/,\ \underline{2}/$

•

County	No. of County	Name of	Type of	Approximate Population	No. of	Source		E	PA In	terim	Primar	y Standa	rd "Conta	minants"	Consider	ed, 2g/1	
County	Systems Evaluated	System	System <u>3</u> /	Served <u>4</u> /	Connections	of Water <u>7</u> /	or Reservoir	F <u>5</u> /. <u>8</u> /	NO ' <u>5</u> 7	As <u>6</u> /	Ba <u>6</u> /	Cd <u>6</u> /	Cr ⁶ <u>6</u> /	РЪ <u>6</u> /	Hg <u>6</u> /	Se <u>6</u> /	Au 5/
Andrews	1	Andrews	c	10.000	3,248	<u>b</u> /	Ogallala	4.8/1.6		•							
Aransas	21	Lamar WSC	с	250	89	<u>b</u> /	Gulf Coast	1.6/1.6									
Armstrong	2	Claude Hidaen Falls Ranch	C C	992 	445 . 	<u>b</u> / <u>d</u> /	Ogallala 	2.5/1.6 2.4/1.6									
Atasc osa	13	Lvtle	с	1,271	529	<u>b</u> /	Edwards (Balcones Fault Zone	1.7/1.4									
Bailev	3	Maple WSC Muleshoe	C C	285 4,823	69 1,946	<u>b</u> /		3.0/1.6 1.9/1.6									
Bandera	8	WCID #1 - Bandera	с	1,100	575	<u></u> ь/	Trinity Group	2.0/1.6									
		Flying "L" Ranch D UL Medina Children's Home,Inc. Medina WSC	с . с . с	22 125 350	9 12 107	d/ व।/ ठा/	Trinity Group	2.5/1.4-1.6 2.4/1.4-1.6 2.5/1.6									
Baylor	1	Seymour	с	3,500	1,486	<u>b</u> /	Alluvium		50								
Bee	28	El Ranchita Cafe Pawnee's Independent School District	N N	30 	1 3	<u>b/</u>	Gulf Coast Do.		64 45								
Bell	77	WCID #2 - Littleriver	с	900	330	<u>b</u> /	Trinity Group	2.3/1.6									
		Acres WSC Armstrong WSC Barbara Dee Tr. Pk. Beil-Fails-Milam WSC	с с с	363 258 45 1,865	126 254 29 746	व । । ।	Do .	2.4/1.4-1.0 4.7/1.4-1.0 .5.2/1.4-1.0 1.9/1.4-1.0	5 5								
		Big "C" Tr. Pk. Chastain's Lake Way Int. (Chastain's Lakeside MHP)	C C	90 40	30 21	<u>d</u> / <u>d</u> /		5.0/1.4-1.0								,	
		Curtsinger (WS) Deer Park Tr. Pk. Dog Ridge WSC	C C C	25 150 1,000	10 50 375	<u>ब</u> / <u>ब</u> / <u></u> /	 Trinity Group	2.1/1.4-1.0 7.7/1.4-1.0 6.3/1.4-1.0	5								

.

.

See footnotes at end of table.

424-1

	County Systems Evaluated	Name of Systems East Bell WSC Echo Tr. Pk. Fisherman's Haven Tr. Pk. Gohlke Water System Heidenheimer Water Dis- trict-Bell County Imp. Dist. #5 Hideway Mobil Pk. Holland	Type of System <u>3</u> / C C C C C C C C C	Population Served <u>6</u> / 1,250 60 30 12 250	No. of Connections <u>4</u> / 495 28 15 5 73	of Water <u>7/</u> <u>b/</u> <u>d/</u> <u>d/</u> <u>d/</u> <u>b/</u>	'	P <u>5/.8/</u> . ² .7/1.4-1.6 4.5/1.4-1.6 2.5/1.4-1.6	NO 3 57	As <u>6</u> /	Ba <u>6</u> /	Cd <u>6</u> /	Cr ⁶ <u>6</u> /	Рь <u>6</u> /	В <u></u> <u>6</u> /	Se <u>6</u> /	A1 <u>6</u>
Bell (cont'd.)		Echo Tr. Pk. Fisherman's Haven Tr. Pk. Cohlke Water System Heidenhefmer Water Dis- trict-Bell County Imp. Dist. 45 Hideway Mobil Pk. Holland	C C C C	60 30 12 250	28 15 5	191919141 1919191	'	4.5/1.4-1.6									
		Fisherman's Haven Tr. Pk. Gohlke Water System Heidenheimer Water Dis- trict-Bell County Imp. Dist. 45 Hideway Mobil Pk. Holland	C C C	30 12 250	15 5												
		Cohlke Water System Heidenheimer Water Dis- trict-Bell County Imp. Dist. 45 Hideway Mobil Pk. Holland	c c	12 250	5			2.5/1.4-1.6									
		Heidenheimer Water Dis- trict-Bell County Imp. Dist. #5 Hideway Mobil Pk. Holland	c c	250		4/											
		trict-Bell County Imp. Dist. #5 Hideway Mobil Pk. Holland	c		73			4.4/1.4-1.6				,					
		Holland				<u>D</u> /	Trinity Group	1.8/1.4-1.6									
			с	30	12	d/		7.9/1.4-1.6									
				850	326	<u>d/</u> <u>b</u> /	Trinity Group	3.3/1.4									
		J. & R. Water Supply	с	400	170	₫		5.7/1.4-1.6									
		Little Elm Valley WSC	С	625	249	₫/ <u>₽</u> / ₫/		2.1/1.4-1.6									
		Live Oak MHP	с	15	3			3.4/1.4-1.6									
		Mitchell, Gertrude, M. Water System	С	-	-	<u>a</u> /		1.9/1.4-1.6									
		Moffatt WSC	С	561	187	<u>b</u> /	Trinity Group	1.6/1.6									
		Mountain View MHP	с	40	23	<u> </u>		3.4/1.4-1.6									
		Oenaville & Belfalls (). & B. WSC)	С	275	109	_	Trinity Group	2.4/1.4-1.6									
		Parks (Don) Water Supply	с	75	24	<u>व</u> / <u>व</u> /		5.3/1.4-1.6									
		Pecan Utility CoCliff Estates	С	- 60	20			2.4/1.4-1.6			•						
		Pepper's Creek WSC	с	1,500	407	<u>ь</u> /		2.2/1.4-1.6									
		Roadrunner Tr. Pk.	с	35	13	b/ 호/ b/		7.2/1.4-1.6									
		Rocking "E" Mobil Park	с	60	20	<u>b</u> /	-	4.7/1.4-1.6									
		Rogers	С	1,200	437	<u>b</u> /	Trinity Group	2.8/1.6									
		R. & R. Tr. Ct.	с	38	14	<u>d</u> /		6.0/1.4-1.6									
		7 Gables MHP	С	63	25	<u>a</u> /		4.6/1.4-1.6									
		Shady Acres (Spring Creek Water Coop.) Subd.	с	120	40	व/ व/ व/		2.8/1.4-1.6									
		Southshore	с	50	21	데 데 데 데 데 데 이 이 이 이 데 데 데 이 이 이 이 데 데 데 이 이 이 이		3.8/1.4-1.6									
		Southwest Tr. Pk.	с	60	26	<u>a/</u>		5.7/1.4-1.6									
		Stage Coach MHP	с	150	52	<u>b/</u>	—	5.4/1.4-1.6									
		Stonegate MMP	с	69	23	<u>d/</u>		4.3/1.4-1.6									
		Suburbia MRP	с	200	70	<u>d</u> /		5.2/1.4-1.6									
		Taylor's Valley WSC	С	463	185	<u>b</u> /	Trinity Group	2.1/1.4-1.6									
		Tom's MHP	с	35	22	년/ 년/ 년/		3.5/1.4-1.6									
		Trimmer MHP	с	45	20	<u>d</u> /		8.7/1.4-1.6									
		Troy	с	700	290	<u>b</u> /	Trinity	1.9/1.6					•				
		2410 MHP	с	25	8	47	Group	5.9/1.4-1.6									
		Wells Ranch Apts.	c	15	5	<u>a</u> / <u>a</u> /		3.0/1.4-1.6									

Appendix Sar-Evaluation of Texas' Public Water Systems in Terms of Water Quality Using EPA Interim Primary Standards, by County 1/, 2/-Cont'd.

-

.

See footnotes at end of table.

c – د ج v

Appendix Sar-Evaluation of Texas' Public Water Systems in Terms of Water Quality Using EPA Interim Primary Standards, by County 1/, 2/--Cont'd.

.

.

County	No. of County	Name of	Type of	Approximate Population	No. of	Source of	Aquifer		EPA I	nteri	n Pri	лагу	Standar	d "Conta	inants"	Conside	red, mg	3/1
councy	Systems Evaluated		System <u>3</u> /	Served 4/	Connections		or Reservoir	F <u>5</u> /, <u>8</u> /	NO <u>6</u> /3	As <u>6</u> /	8 <u>6</u>		Cd <u>6</u> /	Cr ⁶ <u>6</u> /	Рь <u>6</u> /	на <u>6</u> /	Se <u>6</u> /	A <u>6</u>
Bexar	114	Canyon Lake Forest Utility	с	425	70	4/		3.8/1.4										
		Cozy Cove Tr. Pk.	c	1 20	52	<u><u> </u></u>		1.8/1.4										
		Ramsey Ranch Acres MHP	С	15	6	ā/		3.1/1.4										
		Stillwell Tr. Pk.	с	60	20	/۵		2.8/1.4										
		Summit Onks Water Co.	С	90	29	10101010101010101010101010101010101010		2.6/1.4										
lianco	E	Lake Of The Hills	Ċ	60	20	<u>d</u> /	-	1.7/1.4-1.6							·			
losque	23	Best View Village (Best View WSC)	с	100	32	<u>d</u> /		8.2/1.4-1.6										
		Steele Creek Acres Water System	с	250	80	<u></u> b/		5.2/1.4-1.6										
		Steele Creek Harbor Water Supply	с	30	13	<u>d</u> /		5.3/1.4-1.6										
TREOTIN	46	Hillcrest Village	с	450	135	<u></u> ь/	Gulf Coast	1.6/1.4-1.6										
ra20%	14	Wixon WSC	с	1,900	600	<u>b</u> /		2.0/1.6										
rewster	10	Alpine	с	5,900	1,820	<u>b</u> /	Igneous Rocks	2.9/1.6										
		Roadrunner MUP	c -	36	12	/ه		2.1/1.4-1.6				·						
		Terlingua Ghost Town Tr. Pk.	С			<u>ब</u> / <u>ब</u> /		2.1/1.6										
		Wedin Water CorpMarathon	с	200	65	<u>b</u> /	Alluvium & Bolson	1.9/1.6										
riscoe	4	Caprock Canyon State Park	N			٨/			68									
		Quitaque	C	632	294	<u>d/</u> <u>b</u> /	Other (Ochoa)	4.7/1.6	Ĩ50									
		Silverton	с	1,056	457	<u>b</u> /	Ogallala ·	4.4/1.6										
urleson	19	Summerville Place Subd.	С	150	65	<u>d</u> /	-	1.9/1.4-1.6										
urnet		River Bend Tr. Pk.	с	40	18	<u>d</u> / <u>d</u> /		2.3/1.4-1.6										
		Spring Creek Hills (Spring Creek W. Corp.)	С	50	12	<u>d</u> /		2.5/1.4-1.6										
aldwell	11	Pecan Tr. Pk.	с	200	55	<u>d</u> /			111									
alhoun	11	Sea-Lake Subd. Water System	-			<u>d</u> /												

-

٠

•

.

.

.

See footnotes at end of table.

.

•

6	No. of			Approximate		Source	Aquifer	Ε	PA In	terim Pr	imary St	andard	"Contami	nant	s" Con	sidered,	mg/	1
County	County Systems	Name of System	Type of System: <u>3</u> /	Population	No. of	of	or ,			1	T	1	6			1	T	1
	Evaluated	Jysten	3yster: 3/	Served <u>4</u> /	Connections <u>4</u> /	Water <u>7</u> /	Reservoir	F <u>5</u> /, <u>8</u> /	NO3 5/	As <u>6</u> /	Ba <u>5</u> /	Cđ <u>6</u> /	Cr ⁶		РЪ <u>6</u> /	<u>н</u> я <u>6</u> /	Se <u>6</u> /	Au <u>6</u> /
Cameron	43	Arroyo WSC	c .	800	325	<u></u> <u></u>	Gulf	1.7/1.4-1.6										
							Coast	1.,,1.4-1.0										
		Heart of the Valley	С	50	25	<u>d</u> /	-	1.5/1.4-1.6										
		Highland Tr. Pk. #2	С	100	45	<u>ष</u> / ष_/	Gulf Coast	2.0/1.4-1.6										
		Pleasant Acres Tr. Pk.	с	80	39	<u>d</u> /		3.0/1.4-1.6										
		P. M. P. MHP, Inc.	с	100	45	<u>a</u> /		1.8/1.4-1.6										
		Poff's Travel Tr. Pk.	С	60	30	<u>a</u> /		4.9/1.4-1.6										
		Santa Rosa-Cameron Co. WCID	с	1,500	340	에 에 에 에 에 에 에 에 에 에 에 에 에 에 에 에 에 에 에	Gulf Coast	1.6/1.4-1.6										
		WIN Mobil Home Sales & Service	с	45	35	<u></u> ь/		1.9/1.4-1.6										
		Jetvice					÷											
Castro	5	Dimmit	с	4.327	1,688	ъ/	Ogallala	2.6/1.6										
		Hart	с	1,009	320	<u>b/</u>		1.7/1.6										
Chambers	19	Bavridge Subd.	с	160	46.	/٥		2.4/1.6										
		Cotton Bayou Manor MHP	с	50	24	<u>d</u> / <u>b</u> /		2.4/1.6										
		Mount Belview, WCID	с	1,300	460	ъ/		2.0/1.6										
		Old River County Subd.	č		_			2.0/1.6										
		Staples (C. T.) Subd.	с	75	25	<u>ה</u> ק ק		1.7/1.6	1									
						_	Coast				•							
Clay	6	Belleview	с	355	140	<u>ь</u> /		2.0/1.6										
		· · · · · · · · · · · · · · · · · · ·					(Cisco Group)											
		Byers	с	500	270	5/			505									
					33	<u>b/</u>	Alluvium		59									
		Charlie WSC	с	100	22	<u>b</u> /	Do.		64									
Cochran	3	Bledesoe WSC	С	120	60	<u>b/</u>	Ogallala	2.1/1.6										
		Morton	с	2,850	1,023	<u></u> <u></u>	Do.	4.1/1.6										
		Whiteface	с	394	185	<u></u> <u></u>	Do.	2.8/1.6										
Collin	33	Allen	с	3,700	1,086	ъ/	Woodbine	2.6/1.6										
		Altoga WSC	С	300	104	<u>b/</u>		1.7/1.6										
		Anna	С	750	277.	<u>Б</u> /		1.6/1.6										
		Lebanon WSC	с	522	174	<u></u> b/	Trinity Group											
		Melissa (WSC)	с	405	203	ъ/	Woodbine	1.7/1.6										
		Renner Water Co.	С	485	203	b/ b/	Do.											
		(Preston Highlands) (Preston Villa)				-		3.6/1.6 4.1/1.6										
		(Renner)						1.7/1.6										
		Westminster WSC	с	250	115	<u>b</u> / <u>b</u> /	Woodbine											

.

.

Appendix Sar-Evaluation of rexas' Public Water Systems in Terms of Water Quality Using EPA Interim Primary Standards, by County <u>1</u>/, <u>2</u>/--Cont'd.

•

See footnotes at end of table.

~

County	No. of Countv	Name of	Type of	Approximate Population	No. of	Source of		1	PA Interim	Primary	Standard	"Contar	loants"	Conside	red, m	3/1
county	Systems Evaluated	System	System 3/	Served 4/	Connections		or Reservoir	F <u>5/,8</u> /	NO ₃ As <u>5</u> / <u>6</u> /	Ba <u>6</u> /	Cd <u>6</u> /	Cr ⁶ <u>6</u> /	РЬ <u>6</u> /	Hg <u>6</u> /	Se <u>6</u> /	Au <u>6</u> /
		•														
Collingsworth	2	Dodson	с	260	99	<u>Þ</u> /	Alluvium		53							
Comal	48	Cadillac Canyon	· C	40	16	d/		3.3/1.4								
		Canvon Creek Estates	С	20	4	919191919 919191/ 1		2.9/1.4								
		Canvon Lake Village	С	225	85	/ه		1.7/1.4								
		Deep Acres	С	48	16	<u>a</u> /	_	4.3/1.4								
		Horseshoe Fails	С	130	49	Б/	Edwards	4.6/1.4								
						-	(Balcones						•			
				•			Fault Zone)									
		Mount Lookout Development	С	60	22	/٥	_	3.6/1.4								
		North Point Subd.	C .	140	37	<u>a</u> /	_	2.2/1.4								
		Scenic Heights Subd.	С	60	21	/۵		4.0/1.4								
		Triple Peak Ranch Estates	C	70	25	9191 91 91	—	4.3/1.4								
Conchu	5	Eola WSC	с	150	57	<u>b</u> /	Other (Leona)		1 36							
		Lowake Steak House	. N	-	· _	d/			140							
		Original Lowake Inn Steak	N		—	<u>a/</u> <u>a</u> /	-		130							
		House														
Coryell	18	Bluestem Subd.	с	150	55	<u>d</u> /	_	3.1/1.4-1.6								
		Duren Ir. Pk.	c ·	100	28	<u>a</u> /	_	3.1/1.4-1.6		•						
		Evant WSC	с	1,000	235	<u>ब</u> / <u>ब</u> / <u>म</u> /	Trinity Group	1.7/1.6								
		Flat WSC	c	300	135	ъ/	Do.	2.4/1.4-1.6								
		Fort Gates WSC	c	900	302	5/	Do.	1.7/1.4								
		Gatesville	с	5,500	2,3\$3	5/	Do.	2.2/1.4								
		Gatesville State School	с	455		८ ८ ८	-, U. Leon	2.0/1.4								
		for Boys-Mountain View				-	River	,								
							Diversion									
		Levita WSC	с	-1 20	37	<u>b</u> /	Trinity .	4.3/1.4								
,		Mountain WSC	с	850	204	<u>व</u> / <u>व</u> /	Group	1.5/1.4								
		Oak Villa MHP	с	300	100	<u>a</u> /		4.3/1.4-1.6								
		Oglesby	с	450	185	<u></u> ь/	Trinity Group	1.8/1.6								
		Tanglewood Tr. Pk.	с	20	4	<u>a</u> /	- Croup	3.1/1.4-1.6	•							
Crockett	3	WCID #1 - Ozona	с	140	30	<u>b</u> /	Edwards- Trinity	2.5/1.4								

.

.

•

Appendix Sar-Evaluation of Texas' Public Water Systems in Terms of Water Quality Using EPA Interim Primary Standards, by County 1/, 2/--Cont'd.

.

See footnotes at end of table.

A5a-5

•

,

6 - -	No. of	New of	T	Approximate	No. of	Source	Aquifer		EPA Int	teria i	Timary	Standar	d "Contar	inants"	Conside	ered, m	g/1
County	County Systems Evaluated	Name of System	Type of System _3/	Population Served <u>4</u> /	No. of Connections <u>4</u> /	of Water <u>7</u> /	or Reservoir	р <u>5</u> /, <u>8</u> /	NO 3 57	As <u>6</u> /	Ba <u>6</u> /	54 6/	Cr ⁶ <u>6</u> /	Рь <u>6</u> /	88 <u>6</u> /	Se <u>6</u> /	Au <u>6</u> /
rosby	5	Crosbyton	с	2,500	829	<u>a</u> /	White River Res.	2.0/1.6									
		Lorenzo	С	1,209	466	ъ/	Ogallala	2.8/1.6									
		Ralls	с	2,200	860	<u>b</u> / <u>a</u> /	White River Res.	1.8/1.6									
		White River MWD	с	10,000		<u>a</u> /	Do.	1.9/1.6									
ulberson	6	Van Horn	с	2,750	802	<u>b</u> /	Alluvium & Bolson	2.2/1.6									
allas	40	FWSD #15-Buckingham Estates	с	250	61	<u>d</u> /		3.6/1.6									
		WCID #7 - Kleberg	с	8,000	2,500	<u>e</u> /	Purchased from Dallas 10/	3.2/1.6									
		Addison	с	300	135	d/		2.3/1.6									
		Clover Haven	с	·		<u>d</u> / <u>b</u> /	Woodbine, Trinity Group	4.5/1.6									
		Coppell	с	2,350	318	<u>b</u> /	Trinity Group	2.6/1.6									
		Danieldale Desoto	c c	300 10,000	105 3,000	<u>d</u> / <u>b</u> /	Trinity Group	2.2/1.6 <u>9</u> / 1.8/1.6									
		Grand Prairie Community Water Service	с	120	40	<u>c</u> /	Woodbine, Purchases	2.2/1.6 <u>9</u> /									
		Highland Park	c .	10,133	3,500	<u>a</u> /	from Dallas <u>10</u> / Purchased from Dallas	3.9/1.6	ni) Nije P								
	·	Hutchins	с	2,400	675	<u>c</u> /	Co. MHD Hoodbine,-	2.3/1.6									
		Lancaster	c	14,000	4,234	<u>c</u> /	Woodbine, Trinity Group	2.0/1.6			. •						
		Meadow Lake Community / Water Service	с	150	38	<u>d</u> /		4.5/1.6 <u>9</u> /	1								
		Neuhoff	с	600		<u>d</u> /		3.9/1.6									
		Pleasant Grove Community Water Service (Well \$67)	с	1,300	430	<u>ब</u> / <u>ब</u> /		3.9/1.6 <u>9</u>	/ .								
		Wilmer	С	2,500	635	<u>b</u> /	Trinity Group	2.3/1.6							4		
awson	4	Ackerly	с	348	104	<u>ь/</u>	Ogallala	4.4/1.6	3)								•
		Welch WSC	с	290	101	<u></u> 5/	Do.	3.5/1.6		-							

Appendix 54--Evaluation of Texas' Public Water Systems in Terms of Water Quality Using EPA Interim Primary Standards, by County 1/, 2/ — Cont'd.

See footnotes at end of table.

A5a-6

County	No. of County	Name of	Type of	Approximate Population	N- 6	Source	Aquifer	EF	PA Inte	rim P	Timery	Standard	"Contami	nants"	Conaide	red, m	g/1
County	Systems Evaluated	System	System 3	Served 4/	No. of Connections <u>4</u> /	01 Water <u>7</u> /	or Reservoir	F <u>5</u> /, <u>8</u> /	NO3 5/	A⊴ <u>6</u> /	Ba <u>6</u> /	Cd <u>6</u> /	Cr ⁶ <u>6</u> /	Рь <u>6</u> /	Н д <u>6</u> /	Se <u>6</u> /	Au <u>6</u> /
Deaf Smith	2	Hereford Hereford Housing Project	c c	16,000 500	4,821 100	<u>b</u> /	Ogallala Do.	2.0/1.6 1.9/1.6			•						
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,													
Selta	5	Ben Franklin WSC	с	210	70	<u>b</u> /	Other (Navarro)	3.1/1.6									
Dentor	÷3	Flower Mound (Well No.1)	с	1,600	415	<u>b</u> /	Trinity Group	3.2/1.6									
		Lakewood Village Util. Co.		15	5	<u>b/</u>		3.1/1.6									
		Morris Terrace	С	-		<u>a</u> /	-	1.9/1.6									
		North Lake Highlands #2	с			<u>ש</u> ו שו שו	Trinity G r oup	1.7/1.6									
		Vacation Village Estates	С	300	100	<u>ब</u> / <u>ब</u> /	-	2.5/1.6									
		Wynnewood Haven Water System	с			<u>ā</u> /		3.1/1.6									
E. Kons	3	McAdoo WSC	с	135	53	ъ/	Ogallala	1.8/1.6									
		Spur	с	1,747	824	<u>b</u> / <u>a</u> /	White River Res,	1.7/1.6									
Donley	4	Sherwood Shores #9	с	680	254	<u>b</u> /	Ogallala	2.0/1.6									
Eastland	10	Rising Star	с	1,009	550	<u>b</u> /	Trinity Group		58						•		
Ector	66	Barnet Water Supply	с			리 리 리 (1.6/1.6									
		B. & H. MHP (Broadwell)	с			<u>a</u> /			51								
		Beasley's MHP	с	_		<u>a</u> /	_	2.4/1.4-1.6									
		Belle MHP	С	215	91	<u>c</u> /	Edwards- Trinity (Plateau), Colorado MUD pur- chased Odessa	2.5/1.4-1.6									
		Big "T", Texaco Camp- ground	с		-	<u>d</u> /		2.9/1.4-1.6									•
		Brett's Tr. Pk.	С			<u>d</u> /	-	1.7/1.4-1.6									
		Canyon Dam (#1 Mobil Ranch?)Tr. Pk. #1	с		-	<u>d</u> / <u>d</u> /	-	4.1/1.4-1.6									
		Coliseum Tr. Pk.	С		-	<u>व</u> / <u>व</u> /	-	2.3/1.4-1.6									
		Colvin's High Sky Lodges	с		-	<u>a</u> /	_	2.0/1.4-1.6									
		D. & M. MHP	с		-	d/		2.8/1.4-1.6									

.

Appendix Sar-Evaluation of Texas' Public Water Systems in Terms of Water Quality Using EPA Interim Primary Standards, by County <u>1</u>/, <u>2</u>/—Cont'd.

÷

.

. .

• •

See footnotes at end of table.

152-1

.

County	No. of County	Name of	Type of	Approximate Population	No. of	Source of	Aquifer or	EP	A Int	eria P	rimary	Standard	"Contam	inants"	Consid	ered, m	ig/ 1
county	Systems Evaluated	System	System 3/	Served 4/	Connections		Reservoir	F <u>5</u> /, <u>8</u> /	NO 3 57	As <u>6</u> /	Ва. <u>6</u> /	Cd <u>6</u> /	сгб <u>6</u> /	Ръ <u>6</u> /	на <u>6</u> /	Se <u>6</u> /	Au <u>6</u> /
Ector (cont	'd.)	De Villa Tr. Pk.	С		_	d/		1.6/1.6									
		Eaves Tr. Pk.	č	_		<u>d</u> /		3.6/1.4-1.6	53								
		Elm Tr. Pk.	c					2.3/1.4-1.6	45								
		Flying "W" MHP	с	80	22	ā/		2.8/1.4-1.6						•			
		Gene's MHP	С	_	-	<u>a</u> /	· _ ·	1.6/1.6									
		Goldsmith	с	400	156	14/ 14/ 14/ 14/ 14/ 14/	Edwards- Trinity (Plateau)	2.0/1.6									
		Gregg's Tr. Pk.	С			d/	-	1.7/1.4-1.6									
		Hughes Tr. Pk.	С		_	<u>a</u> /	_	2.1/1.4-1.6									
		Jones MAP	С	24	11	<u>a</u> /		2.6/1.4-1.6									
		Moffitt's Mobile Courts	С			<u>व</u> / व/ व/	_	1.9/1.4-1.6									
		M. G. Tr. Pk.	С	_		d/	_	2.3/1.4-1.6									
		Northgate Park	с		·	<u>a</u> /	_	3.2/1.4-1.6									
		Orchard Water System	С	180	50	ब/ ब/ <u>ब</u> /	Edwards- Trinity (Plateau)	1.7/1.4-1.6									
		Ponderosa Tr. Pk.	с	40	15	d/	_	2.1/1.4-1.6									
		Radio City Tr. Pk.	С			<u>a</u> /	-	3.2/1.4-1.6									
		Sam's Tr. Pk.	С			<u>a</u> /	_	1.8/1.4-1.6									•
		Sunset Tr. Pk.	С	_		<u>a</u> /		1.9/1.4-1.6									
		Tisdale Tr. Pk.	с	—		<u>a</u> /		2.9/1.4-1.6									
		Todd & Todd Real Estate- Project 82	С	234	78	이 때 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이		2.9/1.4-1.6									
		University Tr. Pk.	с	30	10	<u>a</u> /	-	2.2/1.4-1.6									
		Vega Tr. Pk.	с	25	7	d/	_	2.3/1.4-1.6									
		Vick's Tr. Pk.	С	_	_	<u>a</u> /		1.7/1.4-1.6									
	•	Victory Village Tr. Pk.	с			<u>a</u> /	-	1.9/1.4-1.6									
		Wagon Yard Tr. Pk.	С			<u>a</u> /	_ ·	2.3/1.4-1.6									
		Well's Tr. Pk.	с			<u>a</u> /	_	1.6/1.6									
		Westover MHP	С			ৰাৰাৰাৰাৰাৰা ৰাৰ	_	2.2/1.4-1.6									
		William's Tr. Pk.	С	-		<u>a</u> /		1.8/1.4-1.6									
		Wilson's Mobile Villa	С		_	<u>d/</u>	_	1.6/1.6									
		Wright's Tr. Pk.	С		-	<u>d</u> /	_	1.8/1.4-1.6									
Ellis	30	Avalon WSC	С	180	60	વાવાવાવાવાવા	Woodbine	5.0/1.6									
		Bardwell	С	277	135	<u>b/</u>	Do.	7.9/1.6									
		Boyce WSC	C	515	192	<u>b/</u>	Do.	4.5/1.6									
		Bristol WSC	с	500	149	<u>b/</u>	Do.	5.1/1.6									
		Ferris	С	2,200	800	<u>b/</u>	Do.	5.0/1.6									
		Howard Water Co. 🖌	С		_	<u>d/</u>	_	5.8/1.6									
		Italy	C	1,400	539	<u>Þ/</u>	Woodbine	3.5/1.6									
		Maypear	C	500	225	5/	Do.	2.0/1.6									
		Milford	с	675	29 5	<u>b</u> /	Woodbine, Trinity	2.3/1.6									

•

.

-

Appendix 5a--Evaluation of Texas' Public Water Systems in Terms of Water Quality Using EPA Interim Primary Standards, by County 1/, 2/--Cont'd.

See footnotes at end of table.

A5a~8

.

System System<	County	No. of County	N E		Approximate		Source	Aquifer ·		EFA 100	erua r	THATY	Standard	i "Contama	TUNUCS.	00111	erea, s	18/1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	county	Systems	Name of System	Type of System <u>3</u> /	Population Served <u>4</u> /			or Re ser voir		NO 3 5/3	As <u>6</u> /	Ba <u>6</u> /	Cd <u>6</u> /		Pb <u>6</u> /	Hg <u>6</u> /	Se <u>6</u> /	Au <u>6</u> /
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ellis (cont'	'd.)	Nash-Forreston WSC	C .	1,200	296	<u>b</u> /		2.0/1.6									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				С	250	135	<u>b</u> /	Woodbine	2.1/1.6									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				с	800	300	h/	Do.	4 6/1 6									
Service Rocket: WSC C 3,000 1,018 b/ Group Trinity 2.2/1.6 South Ellis Go. WSC C 1,000 235 b/ Group 2.2/1.6 11 Paso 53 WCD - Westway C 1,000 210 b/ b/ b/ b/ Gasign Space 2.0/1.6 Bonatz RHP Bockeron Apts. C 225 76 b/ b/ b/ Gasign Space 1.7/1.6 Bockeron Apts. C 14 4 - 1.9/1.6 - 1.9/1.6 Bockeron Apts. C 14 4 - 1.9/1.6 - 1.9/1.6 Bockeron Apts. C 14 4 - 1.9/1.6 - 1.9/1.6 Bockeron Apts. C 10 16 - 2.9/1.6 Soug Narber Motel 6 C 10 15 1/ 2.9/1.6 Value* SMRP C 15 5 1/ 4/ 4/ 4/ 4/ 5/ 4/ 5/ 5/ 5/ 5/ 5/ 5/ 5/ 5/ 5/ 5/ 5/ 5/ 5/			Red Oak				5/											
South Ellis Co. WSC C 1,000 235 b/ $-$ 2.2/1.6 Ell Paso 53 WCD - Westuay C 1,000 210 b/ Alluvium 2.0/1.6 Bonanza MUP C 225 76 b/ Do. 1.7/1.6 Borderland Addn. C 60 25 d/ $$ 1.9/1.6 Borderland Addn. C 60 25 d/ $$ 1.9/1.6 Borderland Addn. C 200 175 d/ $$ 1.9/1.6 Borderland Addn. C 200 175 d/ $$ 2.2/1.6 Tr. Town Uriostel's MUP C 15 5 d/ $$ 2.2/1.6 Chilon C 40 25 d/ $$ 2.2/1.6 Chilon C 15 5 d/ $$ 2.2/1.6 Chilon C 1.287 300 b/ Trintry 2.1/1.6 Croup C 10 b/ Do. 2.3/1.6 Croup C 200 175 b/ Croup 2.3/1.6 Chilon C 2 600 175 b/ Croup 2.3/1.6 Chilon C 2 1.287 300 b/ Trintry 2.3/1.6 Croup C 2.3							<u>5</u> /											
South Ellis Co. WSC C 1,000 235 b/ - 2.2/1.6 South Ellis Co. WSC C 1,000 210 b/ Alluvius 2.0/1.6 Bonaras MPP C 225 76 b/ Do. 1.7/1.6 Borderland Addn C 602 d/ - 1.9/1.6 Buckaroo Apris. C 14 4 d/ - 3.4/1.6 Buckaroo Apris. C 14 4 d/ - 3.4/1.6 Buckaroo Apris. C 10 18 d/ - 2.1/1.6 South Hore Wile C - 19 d/ - 2.1/1.6 Tr. Tem Uriocic's MMP C 15 5 d/ - 2.3/1.6 C 15 5 d/ - 2.3/1.6 Calls 11 Cego - Durango WSC C 600 175 b/ Trinity 2.1/1.6 Chilcon C 600 230 b/ Lott WSC C C 1.287 300 c/ Trinity 2.1/1.6 Croup. C 1.00 46 b/ Trinity 2.1/1.6 Croup. C 1.00 46 b/ Trinity 2.1/1.6 Croup. C 2.00 775 b/ Trinity 2.1/1.6 Croup. C 2.300 72 b/ Trinity 2.1/1.6 Croup. C 2.3/1.6 Petry WSC C C 180 46 b/ Trinity 2.1/1.6 Croup. C 2.3/1.6 Petry WSC C C 2.200 775 b/ Trinity 2.1/1.6 Croup. C 2.3/1.6 Petry WSC C C 2.200 775 b/ Trinity 2.1/1.6 Croup C 2.3/1.6 Petry WSC C C 2.200 775 b/ Trinity 2.1/1.6 Croup C 2.3/1.6 Petry WSC C C 2.200 775 b/ Toinity 2.1/1.6 Croup C 2.3/1.6 Petry WSC C C 2.200 775 b/ Toinity 2.1/1.6 Croup C 2.3/1.6 Petry WSC C C 2.200 72 b/ Toinity 2.1/1.6 Croup C 2.3/1.6 Croup			Rockett WSC	С	3,000	1,018	<u></u> <u></u>		2.4/1.6									
Bonanza MHP C 223 76 b/ Do. Borderland Addn. C 60 25 d/ 1.9/1.6 Borderland Addn. C 60 25 d/ 1.9/1.6 Borderland Addn. C 200 175 d/ 1.9/1.6 Borderland Square MRP, Inc. C 200 175 d/ 1.9/1.6 Casilght Square MRP C 19 d/ 1.9/1.6 Shug Harber Motel 5 C 40 25 d/ 2.9/1.6 Tr. Town Urioste's SMP C 15 5 d/ 2.9/1.6 Chilton C 600 175 b/ Do. 2.3/1.6 Chilton C 600 123 b/ Do. 2.3/1.6 Casilght SSC C 160 46 b/ Do. 3.1/1.6 Perry WSC C 160 123 b/ Do. 3.1/1.6 Tri-County WSC C 130 25 b/ Do. 3.1/1.6 Wooteville WSC C 130 23 b/ Do. 3.1/1.6 Tr			South Ellis Co. WSC	с	1,000	235	<u>b</u> /	•	2.2/1.6									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	El Paso	53			-		<u>b</u> /		2.0/1.6									•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							<u>b</u> /	Do.										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				С	60	25	<u>a</u> /		1.9/1.6									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					14	4	बे/	-	3.8/1.6									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. с	200	175	<u>a</u> /											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Leonard MHP	С	30	8	<u>a</u> /	-										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Mahorney MHP	с	_	19	<u>a</u> /					•						
Yalls 11 Cego - Durango WSC C 600 175 b/ Trinity Group 2.1/1.6 Chilton C 600 250 b/ Do. 2.3/1.6 Chilton C 600 250 b/ Do. 2.3/1.6 Lott WSC C 1,287 300 c/ Trinity 2.3/1.6 Mooreville WSC C 160 46 b/ Trinity 2.5/1.6 Perry WSC C 160 46 b/ Do. 3.1/1.6 Tri-County WSC C 2.200 775 b/ Do. 3.1/1.6 Westphalia WSC C 180 60 b/ Do. 3.1/1.6 Gober WSC C 180 60 b/ Do. 3.0/1.6 Ector C 519 253 b/ Do. 1.7/1.6 Honey Grove C 2,000 935 b/ Do. 1.7/1.6 Leonard C 1,475 752 b/ Do. 1.6/1.6 Leonard C			Tr. Town	с	40		<u>ā</u> /											
Chilton C 600 250 b/ Croup Chilton C 600 250 b/ Do. 2.3/1.6 Lott WSC C 1,287 300 c/ Trinity 2.5/1.6 Group, City Lake Mooreville WSC C 160 46 b/ Trinity 2.5/1.6 Group 0. 3.1/1.6 Tri-County WSC C 2,200 775 b/ Do. 3.1/1.6 Tri-County WSC C 2,200 775 b/ Do. 3.1/1.6 Westphalla WSC C 300 72 b/ Trinity 2.8/1.6 Group Croup 2.3/1.6 Group 0. 3.1/1.6 J/ Trinity 2.5/1.6 Group 0. 3.1/1.6 J/ Trinity 2.8/1.6 Group 0. 1.7/1.6 Honey Grove C 2,000 935 b/ Do. 1.7/1.6 Honey Grove C 2,000 935 b/ Do. 1.7/1.6 Honey Grove C 1.475 752 b/ Do. 1.6/1.6 Self's WSC C 120 42 b/ Trinity 7.7/1.6							<u>d</u> /	-	2.2/1.6									
Lott WSC C C 1,227 300 C/ Trinity 2.3/1.6 Group, City Lake Mooreville WSC C 160 46 b/ Trinity 2.5/1.6 Perry WSC C C 480 123 b/ Do. 3.1/1.6 Tri-County WSC C C 2.200 775 b/ - 2.1/1.6 Westphalia WSC C 300 72 b/ Trinity 2.8/1.6 Group annin 34 Dial WSC C C 180 60 b/ - 3.0/1.6 Ector C 319 253 b/ Woodbine 2.9/1.6 Gober WSC C C 250 88 b/ Do. 1.7/1.6 Honey Grove C 2.000 935 b/ Do. 2.0/1.6 Ladonia WSC C 900 355 b/ Do. 2.0/1.6 Ladonia WSC C 120 42 b/ Trinity 1.7/1.6 Leonard C 1.475 752 b/ Do. 1.6/1.6 Self's WSC C 120 42 b/ Trinity 1.7/1.6	Falls	11							2.1/1.6									
Group, City Lake Mooreville WSC C 160 46 b/ Group Trinity 2.5/1.6 Perry WSC C 480 123 b/ C Do. 3.1/1.6 Perry WSC C 2.200 775 b/ D/ C Do. 3.1/1.6 Westphalia WSC C 180 60 b/ C							<u>ь</u> /	Do.	2.3/1.6									
Mooreville WSC C 160 46 b/ Trinity Group 2.5/1.6 Perry WSC C 480 123 b/ Do. 3.1/1.6 Tri-County WSC C 2.200 775 b/			Lott WSC -	С	1,287	300	<u>c</u> /	Group,	2.3/1.6									
Perry WSC C C 480 123 b/ Do. 3.1/1.6 Tri-County WSC C 2,200 775 b/ 2.1/1.6 Westphalia WSC C 300 72 b/ Trinity 2.8/1.6 Group annin 24 Dial WSC C 180 60 b/ 3.0/1.6 Ector C 519 253 b/ Woodbine 2.9/1.6 Gober WSC C C 250 88 b/ Do. 1.7/1.6 Honey Grove C 2,000 935 b/ Do. 2.0/1.6 Ladonia WSC C C 900 355 b/ Do. 2.0/1.6 Ladonia WSC C C 1.475 752 b/ Do. 1.6/1.6 Self's WSC C C 120 42 b/ Trinity 1.7/1.6			Mooreville WSC	с	160	46	<u>b</u> /	Trinity	2.5/1.6									
Group Group Group Gannin 24 Dial WSC C C 180 60 b/ 3.0/1.6 Ector C 519 253 b/ Woodbine 2.9/1.6 Gober WSC C 2,000 935 b/ Do. 1.7/1.6 Honey Grove C 2,000 935 b/ Do. 2.0/1.6 Ladonia WSC C 900 355 b/ Do. 2.7/1.6 Leonard C 1,475 752 b/ Do. 1.6/1.6 Self's WSC C 120 42 b/ Trinity 1.7/1.6 Group			Perry WSC	с	480	123	ъ/	-	2 1.11 6									
Group Group Group Gannin 24 Dial WSC C C 180 60 b/ 3.0/1.6 Ector C 519 253 b/ Woodbine 2.9/1.6 Gober WSC C 2,000 935 b/ Do. 1.7/1.6 Honey Grove C 2,000 935 b/ Do. 2.0/1.6 Ladonia WSC C 900 355 b/ Do. 2.7/1.6 Leonard C 1,475 752 b/ Do. 1.6/1.6 Self's WSC C 120 42 b/ Trinity 1.7/1.6 Group							ភ្វ័/											
Sannin 24 Dial WSC C 180 60 b/ — 3.0/1.6 Ector C 519 253 b/ Woodbine 2.9/1.6 Gober WSC C 250 88 b/ Do. 1.7/1.6 Honey Grove C 2,000 935 b/ Do. 2.0/1.6 Ladonia WSC C 900 355 b/ Do. 2.0/1.6 Leonard C 1,475 752 b/ Do. 1.6/1.6 Self's WSC C 120 42 b/ Trinity 1.7/1.6							<u>,</u>	Trinity										
Group	Fannin	24	Dial WSC	с	180	60	ъ/	•	3.0/1.6									
Group			Ector	С			ธี/	Woodbine										
Group			Gober WSC				، آ										•	
Group							5/											
Group							Š/											
Group							<u>ب</u>		1.6/1 6									
Group							<u>ب</u>											
ee footnotes at end of table.				č	120	42	<u>u</u> /		1.//1.0									
	ee footnote	s at end of	table.													·		
														•				

Appendix 5a--Evaluation of Texas' Public Water Systems in Terms of Water Quality Using EPA Interim Primary Standards, by County $\underline{l}/, \underline{2}/-$ Cont'd.

A 5a-9

County	No. of County	Name of	Type of	Approximate Population	No. of	Source of	Aquifer		EPA In	terim	Primar	y Standa	rd "Conta	minants"	Consid	ered, m	g/1
county	Systems Evaluated	System	Type of System <u>3</u> /	Served <u>4</u> /	Connections <u>4</u> /	Water <u>7</u> /	or Reservoir	F <u>5</u> / , <u>8</u> /	NO 5/3	As <u>6</u> /	Ba <u>6</u> /	Cd <u>6</u> /	ст ⁶ <u>6</u> /	Pb <u>6</u> /	Н <u></u> 6/	Se <u>6</u> /	Au <u>6</u> /
annin (con	t'd.)	White Shed WSC	с	1,200	400	<u>a</u> /		1.6/1.6									
loyd	3	Dougherty Flovdada Lockney	c c c	100 4,160 2,094	35 1,523 801	<u> ס</u> פן	Ogallala Do. Do.	3.9/1.6 3.6/1.6 2.6/1.6									
oard	2	Thalin WSC	С	210	69	<u>d</u> /			73								
Gaines	4	Loop WSC Seagraves Seminole	c c c	300 2,785 5,007	104 831 2,186	<u> </u> 	Ogallala Do. Edwards- Trinity (High Plains) & Ogallala	5.0/1.6 4.7/1.6 4.2/1.6									
alveston	38	Bermuda Beach & Spanish Grant	С	150	50	<u>a</u> /	Galveston Co. Wtr. Auth.	1.6/1.6									
		Pine Oak Tr. Cr. San Leon-Fiesta Estates	c c	60 80	20 15	<u> </u>	Gulf Coast	3.0/1.6 1.7/1.6									
Garza	4	Caprock W SC Post	C C	40 3,854	17 1,392	<u>d</u> / <u>a</u> /	 White River Res.	1.6/1.6 1.9/1.6									
Gray	5	McLean	с	1,000	563	<u></u> ь/	Ogallala		47								
Grayson	34	Bells Elmont-Farmington WSC	c c	778 216	250	<u>b</u> / <u>b</u> /	Woodbine Trinity Group	1.6/1.6 1.7/1.6									
		Gunter WSC Oak Ridge-South gale WSC Tom Bean Van Alstyne Wright (W.O.) MHP	с с с с	1,500 1,050 540 1,986	408 350 230 784	विविविवि भूम	Woodbine Woodbine Do.	2.3/1.6 2.7/1.6 1.9/1.6 2.0/1.6 4.5/1.6									
Guadalupe	12	Featherland Egg Farms	N		_	<u>d</u> /			75								
lale	6	Abernathy	c	3,000	3, 150	<u>Þ</u> /	Ogallala & Edwards- Trinity (High Plains)	2.3/1.6									
		Cotton Center WSC Hale Center	c c	230 1 ,9 64	64 730	<u>b</u> / <u>b</u> /	 Ogallala	2.0/1.6 3.2/1.6									

•_

•

Appendix Sa—Evaluation of Texas' Public Water Systems in Terms of Water Quality Using EPA Interim Primary Standards, by County <u>1</u>/, <u>2</u>/—Cont'd.

See footnotes at end of table.

on - e

:

County	No. of County	Name of	T	Approximate		Source	Aquifer	EP	A Int	eria P	rimary	Standard	"Contani	nants"	Conside	red, m	g/1
County	Systems Evaluated		Type of System <u>3</u> /	Population Served <u>4</u> /	No. of Connections <u>4</u> /	of Water <u>7</u> /	or Reservoir	F <u>5</u> /, <u>8</u> /	NO <u>5</u> /3	As <u>6</u> /	Ba <u>6</u> /	Cd <u>6</u> /	Cr ⁶ <u>6</u> /	РЪ <u>6</u> /	Нд <u>6</u> /	Se <u>6</u> /	Au <u>6</u> /
Hale (cont'	d)	Halfway WSC	с	75	59	ъ/	Ogallala	2.3/1.6									
		Petersburg	С	1,400	485	<u>ь/</u>	Do.	3.3/1.6									
H111	6	Lakeview WSC	с	275	126	ь/	Alluvium		50								
		Turkey	с	800	310	<u></u> <u></u> b/	Do.		47								
Hanstord	1	Hi-Plains Utility Co.	с	1,700	623	d/		2.3/1.6-1.8									
		Morse (Water Co.)	с	150	58	ī-	Ogallala	2.3/1.8									
		Spearman	С	4,000	1,458	년/ 년/ 년/	Do.	1.6/1.6									
Harrison	23	Gill WSC	с	780	260	<u>d</u> /		1.9/1.6									
Riskell	7	Haskell	с	3,600	1,599	ъ/	Alluvium	1.8/1.6	140								
		O'Brien	С	286	60	Б/	Do.	1.0/1.0	113								
		Paint Creek WSC	С	600	170	b /	Do.	2.5/1.6	86								
		Rochester	С	500	2 30	<u>Б</u> /	Do.	,	62								
		Rule	С	1,050	450	Б/	Do.		70								
		Weinert	С	265	105	ולוקוקוקוק ולוקוקוקוק	Do.	1.7/1.6	53								
Hays	22	Cypress Creek Acres	с	20	8	d/		2.8/1.4									
		Dripping Springs WSC	с	520	140	<u>ब</u> / <u></u> /	Trinity Group	2.5/1.4									
		Goforth SWC	С	700	247	<u>b</u> /	Edwards (Balcones Fault Zone)	1.4/1.4									
		Green Pastures Water Co.	. с	120	65	d/		2.3/1.4									
		Kyle	С	-2-500	651	d/ b/	Edwards	3.7/1.4									
						-	(Balcones Fault Zone)		-								
		Moss Cliff Restaurant	N	100	1	d/			73								
		Sunny Acres MHP	с	45	17	<u>a</u> /			66								
Hidalgo	42	A. & A. Water Co.	с	400	100	<u>d</u> /		2.2/1.4									
	•	Clark's MH Homesties	С	100	26	व/ व/ व/	-		115								
		Clearview MHP	с	40	16	<u>d</u> /			81								
		Penitas Tr. Pk.	с	90	56	<u>a</u> /		1.5/1.4									
H i 1 1	30	Arrowhead Lodge	с	350	106	4/ 6/	. –	2.0/1.6									
		Birome WSC	с	1,000	260	<u>Þ/</u>	Trinity Group	2.1/1.6									
		Blackland Water Co.	с		100	<u>a</u> /		5.3/1.6			•						

Appendix Sar-Evaluation of Texas' Fublic Water Systems in Terms of Water Quality Using EPA Interim Primary Standards, by County $\underline{1}/, \underline{2}/-$ -Cont'd.

.

•

.

•

See footnotes at end of table.

λ5a−i }

County	No. of County	Name of	Two of	Approximate	N	Source			EPA Inte	erim P	rimary	Standard	Contag	inants"	Conside	red, m	g/1
county	Systems Evaluated	System	Type of System <u>3</u> /	Population Served <u>4</u> /	No. of Connections <u>4</u> /	of Water <u>7</u> /	or Reservoir	F <u>5</u> /, <u>8</u> /	NO 5/3	As <u>6</u> /	Ba <u>6</u> /	Cd <u>6</u> /	Cr ⁶ <u>6</u> /	Ръ <u>6</u> /	На <u>6</u> /	Se <u>6</u> /	Au <u>6</u> /
ii! (cont'd.	<u> </u>	Brandon-Irene WSC	с	1 100	216		T=1-1-										
iri. co nt u.				1,100	346	<u>b</u> /	Trinity Group	1.8/1.6									
		Covington	С	300	200	ь/	Do.	2.3/1.6									
		Gilmore Acres (Water	С	100	44	<u>p</u> /	Trinity	5.2/1.6									
		Supply)	-				Group										
		Hillsboro .	C.	11,000	2,971	<u>b</u> /	Trinity Group, Woodbine	2.0/1.6									
		Mertens	С	228	76	ъ/	Woodbine	3.1/1.6									
		Mount Calm	С	375	175	<u>b</u> /	Trinity	2.4/1.6									
		Whitney	с	2,400	807	<u>b</u> /	Group Do.	3.3/1.6									
ocklev	7	Anton	с	1,050	426	h/	Ogallala										
		Ropesville	č	483	193	÷,	Do.	1.7/1.6									
		Sundown	č	1,500	514	<u><u></u>,</u>		4.6/1.6									
		Witharral WSC	c	250	74	4 4 4 4 4 4 4 4 4	Do,	3.7/1.6									
		WICHALLAN MOC	Ľ	200	/4	<u>b</u> /	Do.	4.4/1.6									
opkins	10	Miller Grove WSC	с	528	176	<u>b</u> /		2.6/1.6									
משודנ!	5	Hillside Tr. Pk.	с	98	· 38	<u>d</u> /		2.1/1.6									
udspeth	5	WCID-Ft. Hancock	с	50 0	156	<u>b</u> /	Alluvium & Bolson	2.2/1.6									<i>'</i> .
		WCID #1 - Sierra Blanca	с	900	250	ь/	Do.	1 (1) (
		Sierra Blanca Corp.	Ċ	40	16	<u> פ</u> ב	Do.	1.6/1.6 4.4/1.6									
unt	25	Celeste	с	90 0	290	h/	Woodbine									·	
		Lone Oak	č	650	225	<u></u> <u></u> <u></u>	Other (Midway)	1.6/1.6 4.9/1.6									
		Mulberry Cove Estates	с	100	40	41	(HIGWAY)	:									
		North Hunt WSC	č	1,500	654	<u>d</u> / <u>d</u> /		4.3/1.6									
		Noten Hunt Hoo		1, 500	034	<u>a</u> /		3.1/1.6									
utchinson	8	Bug Bee Shores	С	135	45	<u>d</u> /		1.8/1.8					. •				
ackson	5	WCID #2-Vanderbilt	С	450	120	<u>b</u> /	Gulf Coast	1.7/1.6									
		Ganada	с	1,640	619	<u>b</u> /	Do.	1.7/1.4									
asper	13	Holly Huff WSC	с	450	150	<u>b</u> /	Gulf Coast	1.6/1.6									

÷

.

.

Appendix 5ar-Evaluation of Texas' Public Water Systems in Terms of Water Quality Using EPA Interim Primary Standards, by County <u>1</u>/, <u>2</u>/--Cont'd.

See footnotes at end of table.

County	No. of County	Name of	Type of	Approximate Regulation	No. of	Source of	Aquifer or		EPA Int	eria P	risary	Standa	rd "	Contan	inan	ts" (onsid	ered	, ng/]	L ·	
Count y	Systems Evaluated	System	System	Population Served <u>4</u> /	Connections		Reservoir	P <u>5</u> /, <u>8</u> /	NO 3	As <u>6</u> /	Ва <u>6</u> /	Cd <u>6</u> /		Cr ⁶ <u>6</u> /		РЬ <u>6</u> /	8g <u>6</u> /	5 6		Au <u>6</u> /	
•		•	·				• • • • • • • • • • • • • • • • • • • 							•							
. Davis	81.•	Ft. Davis WSC	с	700	154	<u>b</u> /		2.7/1.6										-			
in long	÷	WCID #2-Hebbronville	с	4, 500	1,300	<u>b</u> /	Gulf Coast	2.3/1.4													
in wells	15	Green Acres WSC	С	26	6	<u>b</u> /	Gulf Coast	2.2/1.4													
ohnson	24	Alvarado	с	2,200	811	<u>b</u> /	Trinity Group	2.9/1.6													
		Bethesda WSC	с	9,000	2,600	<u>b</u> /	Do.	2.3/1.6						λų.							
lirnes	5	Karnes City	с	2,926	1,017	<u></u> b/	Gulf Coast	2.6/1.4													
endali	12	WCID #1-Comfort	с	1,100	403	<u>b</u> /	Trinity Group	1.8/1.6													
		Camp Alzafar Tr. Pk. Foothills M H Ranch	c c	405 200	135 100	<u>b</u> / <u>d</u> /	 	1.7/1.6 4.1/1.6													
	34	Cedar Springs Center Point Water Works Erlund (O.J.) Water System	C S C C	80 306 9	31 110 3	<u>ь/</u> <u>d</u> / <u>d</u> /		1.9/1.6 2.0/1.6 1.6/1.6													
		Hill Country MHP Kerrville Hills Ran- chettes	c c	24 12	13 6	<u>d</u> / <u>b</u> /	Ξ.	1.8/1.6 1.7/1.6													
		Royal Oaks Water Co. Westwood Park Tr. Pk. (Water System)	c c	75 35	30 17	<u>ब</u> / ब्र/		1.6/1.6 1.8/1.6													
.กง:x	5	WCID ∮l-Benjamin Goree Knox City Munday	с с с	320 534 1,536 1,726	140 200 - 580 650	ש ש ש	Alluvium Do. Do. Do.	1.9/1.6 2.3/1.6 1.9/1.6	82 59						'						
.amar	12	Cunningham WSC Forest Hills WSC MJC WSC Pattonville	с с с	255 120 360 400	85 35 120 116	1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4		3.8/1.6 2.0/1.6 3.8/1.6 4.0/1.6													
		Petty WSC Reno WSC	c c	196 631	56 106	<u> ७</u> / <u>ब</u> /	Chalk) 	1.9/1.6 3.1/1.6													

Appendix Sar-Evaluation of Texas' Public Water Systems in Terms of Water Quality Using EPA Interim Primary Standards, by County 1/, 2/--Cont'd.

•

.

A5a-1 }

County	No. of County	Name of	T	Approximate		Source		EP	A Int	erim P	rimary	7 Standa	rd "Co	ntami	nants"	Conside	ered,	ng/1	
Sounty	Systems Evaluated	System	Type of System <u>3</u> /	Population Served <u>4</u> /	No. of Connections <u>4</u> /	of Water <u>7</u> /	or Reservoir	P <u>5</u> /, <u>8</u> /	^{NO} 3 <u>5</u> /3	As <u>6</u> /	Ba <u>6</u> /	Cd <u>6</u> /		r 6 /	Рь <u>6</u> /	Нg <u>6</u> /	Se <u>6</u> /	Au <u>6</u> /	
ъ	8	Earth MWS	с	1,223	427	ъ/	Ogallala	2.0/1.6										•	
		Littlefield	С	7,300	2,518	<u>ь</u> / ь/	Do.	1.8/1.6											
		Olton	С	1,782	766	b /	Do.	2.5/1.6											
		Spade WSC	С	150	63	<u>Б</u> /	Do.	2.2/1.6											
		Springlake	С	210	87	14 4 4	Do.	2.1/1.6											
mpasas	19	Allen Estates-Section II	с	12	3	<u>d</u> /		4.3/1.6											
		Big T's MHP	С	40	12-45	d/		2.3/1.6											
		Brookdale Villa MHP	С	30	8-12			3.6/1.6											
		Circle "T" MHP	С	25	7			3.4/1.6											
		Lightfoot Tr. Pk.	С	50	15	ā',		3.9/1.6											
		Oak Springs (Spring Creek W. Coop.)	с	150	50	व/ व 		2.6/1.6											
		Put's MHP	с	80	25														
		Quiet Haven MHP	c	40	12-20	<u>a</u> /			64										
		S. & M. MHP	c	30	12-20	<u>a/</u> ,		2.9/1.6								~			
		Sioux City MHP	c	100	33	<u>व</u> / व ब		2.8/1.6 2.2/1.6											
		Thumpson's MHP	с	100	37	4/													
		Triple "J" MHP	c	200	70	<u>ब</u> / व/		3.6/1.6 2.7/1.6											
v	6	290 WSC	С	175	60	<u>b</u> /	Queen City, Purchased Giddings	1:5/1.4			·						-		
berty	25	Cleveland	с	5,627	1,948	<u>b</u> /	Gulf Coast	1.8/1.4-1.6											
mestone	15	Prairie Hill WSC	с	1,000	260	<u>d</u> /		·1.9/1.6											
ve ()ak	12	Lake Vista Utility Co.	С	1,000	210	<u>d</u> /		1.5/1.4											
<u>äno</u>	20	A. 6 D. Acres Edgewater Cottages Tr. Pk.	C C	30 100	12 45	<u>ब</u> / <u>ब</u> /		2.1/1.4-1.6 1.8/1.4-1.6											
		Marsh Mobile Manor	с	60	17	٨/		3.1/1.4-1.6											
		Stovers MHP	c	50	30	<u>व</u> / <u>व</u> /		2.4/1.4-1.6											
bock	37	WCID #1-Buffalo Springs	с	350	319	<u>d</u> /		2.3/1.6											
		Alexander (F.L.) Water System	С	30	12	<u>d</u> /	-	3.6/1.6						90 - A					

· · ·

.

· .

Appendix Sa,—Evaluation of Texas' Public Water Systems in Terms of Water Quality Using EPA Interim Primary Standards, by County 1/, 2/—Cont'd.

.

1 .

∧5u-14

County	No. of County	N		Approximate		Source			EPA Into	erim P	rimary	Standard	"Contam	Lnants" (Conside	red, mg	;/1
county	Systems Evaluated			Population Served <u>4</u> /	No. of Connections <u>4</u> /	of Water <u>7</u> /	or Reservoir	P <u>5/,8</u> /	NO3	As <u>6</u> /	Ba <u>6</u> /	Cd <u>6</u> /	Cz ⁶ <u>6</u> /	Рь <u>6</u> /	Hg <u>6</u> /	Se <u>6</u> /	Au <u>6</u> /
								,				1		•			
bbock cont'd.)		Applegate, Shady Acres Tr. Pk.	с	700	275	<u>b</u> /		4.8/1.6									
		Big "Q" Mobile Park	С	195	65	<u>ब</u> / ब/	_	6.6/1.6									
		Buster's MHP	С	25	7	<u>d</u> /		6.0/1.6									
		Executive Mobile Home Village	С	252	84		-	5.7/1.6									
		Family Com. Housing MHF		140	52	<u>d</u> /	~	2.1/1.6									
		Green Acres MHP	C	15	10	<u>d</u> /	_	4.0/1.6	•								
		Herford Sh. Water System	с	200	35	व/ व/ व/	Ogallala	4.4/1.6									
		Idalou	С	2,000	710	<u>b</u> /	Do,	2.9/1.6									
		Jones Tr. Pk.	С	24	8	/ه		2.3/1.6									
		Lubbock Christian College	с	1,000	15	<u>d</u> / <u>b</u> /	-	4.5/1.6									
		McKinley Water System	с	175	50	d/	_	4.0/1.6									
	•	Mathis Tr. Pk.	с	126	42	ā'/	_	5.5/1.6									
		New Deal WSC	с	500	145	b /	Ogallala	2.8/1.6									
		Pecan Grove MHP	С	99	33	ā'/		4.2/1.6									
		Ponderosa Tr. Pk.	С	27	9	ā/	_	6.1/1.6									
•		Porter Water Co.	С	280	93	5/		1.9/1.6			•						
		Shallowater	С	1,800	495	<u>5</u> /	Ogallala	4.3/1.6									
		Sky-Vue MHP	с	56	21	קוקוקוקוקוקו וקוקוקוקוקוקו	-	1.9/1.6		•							
		South 87 MHP	С	30	12	/۵		4.6/1.6									
		Stahl No. 1	С			위키키키	'	2.0/1.6								•	
		Sycamore MHP	С	37	16	<u>ā</u> /	-	2.4/1.6					•				,
		Texas Boys Ranch	С	13	1	<u>a</u> /		2.6/1.6									
		Town & Country Mobile Estates	. c	300	113	<u>ā</u> /	-	5.1/1.6									
		Vagabond Trailer Court	С	104	49	Ь/	_	5.0/1.6									
		Vista Villa MHP	С	36	13	<u>a</u> /	—	4.6/1.6									
		Western Terrace MHP	Ċ	36	12	<u>م</u> /		5.8/1.6									
		Wolffort	С	1,114	412	~ ~ ~ ~ ~	Ogallala	5.2/1.6									
		Yellowhouse Canyon- WCID	С	336	112	<u></u> 6/		3.6/1.6									
		Yellowhouse Water System	с	350	59	<u>4</u> /		4.3/1.6									
nn	7	Grassland WSC	с	60	27	ъ/	Ogallala						•				
,	•	New Home	č	252	97	ť	•	5.5/1.6					•				
		Wells Coop. Gin	N	70	14	# /	Do.	5.3/1.6	1.0-								
		Wilson	ĉ	433	181	व 	Ogallala	1.20.6	102								
			-		6V6	<u>~</u> ′	-Perrere	4.3/1.6									

.

•

-

Appendix 5a.--Evaluation of Texas' Public Water Systems in Terms of Water Quality Using EPA Interim Primary Standards, by County $\frac{1}{2}$ /

.

See footnotes at end of table.

•

.

County	No. of County	Name of	T	Approximate			Aquifer	1	EPA Int	erim P	rimary	Standard	"Contami	nants" (Conside	red, m	g/1
county	Systems Evaluated		Type cf System <u>3</u> /	Population Served <u>4</u> /	No. of Connections <u>4</u> /	of Water <u>7</u> /	of Reservoir	F <u>5</u> /, <u>8</u> /	NO 5/3	As <u>6</u> /	Ba <u>6</u> /	Cd <u>6</u> /	Cr ⁶ <u>6</u> /	РЬ <u>6</u> /	Hg <u>6</u> /	Se <u>6</u> /	Au <u>6</u> /
		·			_	-			<u> </u>	-	. –	-				<u> </u>	<u>1 </u>
Culloch	6	Brady Race Track	с	(?)5,600	(?)2,500	<u>d</u> /		2.7/1.6									
IcLennan	49	Axtell WSC	с	450	239	<u></u> b/	Trinity Group	2.3/1.6									
		Brettwood Estates Corp.	с	48		Ъ/	·	1.9/1.6						•			
•		Bruceville Water System	Č	250	97	<u>b</u> /	Trinity	2.6/1.6									
			-			<u>-</u> /	Group	2.0/1.0									
		China Springs-Community Water Co.	с	132	44	<u>b</u> /	Do.	2.1/1.6									
		Eddy	С	400	220	ъ/	Do.	2.0/1.6									
		Elk-Oak Lake WSC	С	700	200	<u>b/</u>	Trinity	1.9/1.6									
						<u></u>	Group	1.7/1.0									
		Elm Creek WSC	с	500	149	٨.		2.4/1.6									
		Friendly Oaks Water	č			<u>ब</u> / <u>ब</u> /	-	2.2/1.6									
		System	-			<u>~</u> /											
		н. 6 H. WSC	с	650	140	<u>b</u> /	Trinity Group	1.8/1.6									
		Harris Creek Water Co.	с			ь/	Trinity	1.6/1.6									
		•				<u>e</u> /	Group	1.0/1.0									
		Leroy-Tours-Gerald WSC	с	1,000	250	ь/	Do.	1.7/1.6									
		Lorena WSC	с	600	215	<u>b</u> / <u>b</u> /	Do.	1.6/1.6									
		M. S. WSC	с	520	131	<u>,</u>	Do.	1.6/1.6									
		Mart	Ċ	3,000	1,010	<u>ь</u> ́/	Do.	2.0/1.6									
		Moody	c	1,285	500	5/	Do.										
		Riesel MUD	ċ	620	260	5/	Do.	2.1/1.6									
		Rolling Hills Country	č			विविवि <u>वि</u>	Do.	2.3/1.6									
		Club. Inc.				9	50.	3.2/1.6									
		Speegleville Water	с			<u>d</u> /											
		System		-	-	<u>=</u> /		2.1/1.6									• .
		Spring Valley WSC	с	350	120	ь/	Trinity	2.11.1									
		opting faite, woo	C C		120	<u>u</u> /		2.1/1.6									
		Valley View Water Co.	с			h/	Group										
		tarry tree water 60.	v			<u>b</u> /	Do.	1.8/1.6									
		Western Hills Water System	с			<u>d</u> /	-	1.7/1.6									
adison	7	Midway WSC	с	225	94	<u>b</u> /	Other (Teg ua)	1.6/1.6									
		· · · ·															
lartin	3	Flower Grove Co-op Gin	N	90	9	<u>d</u> / c/			101								
		Stanton	с	2,270	702	<u>c</u> /	Ogallala, Colorado River MUD	3.2/1.6	_								

•

-

.

.

Appendix 5a.--Evaluation of Texas' Public Water Systems in Terms of Water Quality Using EPA Interim Primary Standards, by County 1/, 2/--Cont'd.

See footnotes at end of table,

16-د ۷

County	No. of	Name of	T	Approximate	No. of	Source of			EPA Int	erim 1	Primary	Standard	"Contam	inants"	Consid	ered, 1	mg/1
count y	County Systems Evaluated		Type of System <u>3</u> /	Population Served <u>4</u> /	No. of Connections <u>4</u> /		or Reservoir	F <u>5</u> /, <u>8</u> /	NO <u>5</u> /3	As <u>6</u> /	Ва <u>6</u> /	Cd <u>6</u> /	ст ⁶ <u>6</u> /	РЬ <u>6</u> /	Нд <u>6</u> /	Se <u>6</u> /	Au _ <u>6</u> /
e gorda	20	Holiday Harbor Subd. Water System	с	52	14	<u>b</u> /	Gulf Coast	2.0/1.6									
. 131	11	Buckholts	c	350	170	<u>b</u> /	Trinity Group	3.2/1.6									
Пя .	2	Priddy	с	250	73	<u>b</u> /	Trinity Group	1.7/1.6									
tchell	5	Loraine	с	700	345	<u>b</u> /	Santa Rosa	2.0/1.6									
ntugue	8	Ringold WSC	C	275	86	<u>d</u> /		3.3/1.6									
'ley	3	Flomont WSC Matador	c c	180 1,091	62 446	ף/ קק ק	Alluvium	2.0/1.6	80 63	-							
		Roaring Springs	č	398	143	<u>b</u> /	Do.	1.9/1.6	03								
ogdoches	23	Lilbert-Looneyville WSC	с	252	84	<u>b</u> /	Carrizo- Wilcox	4.3/1.6									
		Nacalina Subd.	с	30	12	<u>b</u> /	Other (Alluvium)	3.6/1.6									
ivarro	17	Blooming Grove Frost	с с	750 548	350 265	<u>b/</u>	Woodbine Do.	6.2/1.6 4.6/1.6						•			
alan	5	Roscoe	C.	1,720	560	<u>b</u> /	Santa Rosa	1.8/1.6									
nees	20	Bruni	с			<u>b</u> /	Gulf Coast			0.05	8						
- hiltree	3	Farnsworth Water Service Perryton Waka WSC	e C C C	115 7,850 110	46 2,821 44	אן או או	Ogallala Do. Do.	2.1/1.6 2.1/1.6 1.7/1.6									• •
ldham	4	Vega	С	935	445	<u>b</u> /	Ogallala	2.3/1.6									
arker	23	Whitt WSC	C	140	42	<u>b</u> /	Trinity Group	2.1/1.6						•	•		
ITMer	3	Bovina Farwell Friona	C C C	1,428 1,393 3,600	601 514 1,334	b/ b/ b/	Ogallala Do. Do.	1.9/1.6 2.7/1.6 2.1/1.6									,
ecos.	5	Fort Stockton	C	8,400	2,666	<u>b</u> /	Alluvium & Bolson, Edwards- Trinity (Plateau)	1.5/1.4									

Appendix Sar-Evaluation of Texas' Public Water Systems in Terms of Water Quality Using EPA Interim Primary Standards, by County <u>1</u>/, <u>2</u>/--Cont'd.

.

.

•

See footnotes at end of table.

	County			Approximate		Source	Aquifer		EPA Int	erim F	rimary	Standard	"Contami	nants" (Conside	red, #	g/1	
County	County Systems Evaluated	Name of Systean		Population Served <u>4</u> /	No. of Connections <u>4</u> /	of Water <u>7</u> /	or Reservoir	F <u>5</u> /, <u>8</u> /	NO 5/3	As <u>6</u> /	Ba <u>6</u> /	Cd <u>6</u> /	Cr ⁶ <u>6</u> /	РЬ <u>6</u> /	8g <u>6</u> ∕	Se <u>6</u> /	Au <u>6</u> /	
otter	2	Bushland WSC	с	125	51	<u></u> b/	Ogallala	2.5/1.6-1.	8									
and a 11	10	Canyon	с	9,600	2,550	<u>b</u> /	Ogallala, Santa Rosa	3.1/1.6										
		Country Estates MHP	с	160	70	ъ/	Ogallala	3.0/1.6										
		Lake Tanglewood Subd.	с	400	50			4.1/1.6										
		Pioneer Village	c	80	60	<u>ā</u> /		2.3/1.6										
		Siesta Plaza MHP	с	490	150	व व व व व व व व		2.5/1.6										
leagan	2	Big Lake	с	2,490	900	<u>b</u> /	Edwards- Trinity (Plateau)	2.6/1.4										
ed River	8	Detroit	с	697	250	<u> </u>		3.2/1.6										
eeves	5	Pecos	С	13,900	3,735	<u>ь</u> /	Santa Rosa	1.5/1.4										
efugio	8	WCID #1-Tivoli	с	780	260	वि वि	Gulf Coast	2.7/1.6										
		Bayside Water Supply	с	215	48	<u>b</u> /	Do.	3.8/1.6										
		Refugio	С	4,300	1,475	<u></u> 5/	Do.	1.6/1.6										
obertson	9	Wheelock WSC	с	250	70	<u></u> ь/	Carrizo- Wilcox	1.6/1.6										
unnels	4	Miles	с	650	280	<u>b</u> /	Other (Clearfork Group)	1.6/1.6										•
usk	21	Pleasant Hill WSC Price WSC	c c	375 600	125 200	<u>b</u> / <u>b</u> /	Other (Midway)	2.5/1.6 1.9/1.6										
an Augustine	e 1 1	Anthony Harbor El Pinon Estates Water System	C C	120 33	40 11	<u>b/</u>		2.2/1.6 1.7/1.6										
		Lakewood Subd.	с	150	50	<u>b</u> /	-	1. 9/1 .6										
an Jacinto	14	Shepherd	с	1,500	500	<u></u> b/	Gulf Coast	2.5/1.4										
chleicher	1	Eldorado	с	1,600	700	<u>b</u> /	Edwards- Trinity (Plateau)	2.2/1.4										

Appendix 5ar-Evaluation of Texas' Public Water Systems in Terms of Water Quality Using EPA Interim Primary Standards, by County <u>1</u>/, <u>2</u>/--Cont'd.

See footnotes at end of table.

.

•

.

	No. of	News		Approximate Population	No. of	Source of	Aquifer or	E	PA Inte	ria P	rimary	Standa	d "Conta	inants"	Conside	red, mg	/1	
County	County Systems Evaluated	Name of System		Served <u>4</u> /	Connections		Reservoir	F <u>5/,8</u> /	NO <u>5</u> /3	Ав <u>6</u> /	Ba <u>6</u> /	Cd <u>6</u> /	Cr ⁶ <u>6</u> /	Рь <u>6</u> /	Hg <u>6</u> /	Se <u>6</u> /	Au <u>6</u> /	
urry	5	Key MHP	с	140	38	<u>d</u> /		2.0/1.6										
nelby	18	Joaquin	с	823	283	<u>b</u> /	Carrizo- Wilcox	2.2/1.6										
		Paxton WSC	с	324	108	b/		1.8/1.6										
		Shelby Beach Marina & Subd.	С	135	45	<u> </u>		2.0/1.6										
		Tenaha	с	1,094	400	₽	Carrizo- Wilcox	1.6/1.6										
onewall	2	Aspermont Swenson WSC	C C	1,860 90 ·	590 26	<u>b/</u>	Alluvium Do.		62 51									
			~					•										
isher	4	Нарру	c	772	270	<u>b/</u> b/	Ogallala	2.7/1.6										
		Kress Tulia	с с	560 5,250	270 2,022	<u>b</u> /	Do. Do.	2.0/1.6 1.7/1.6									-	
rrant	64	Dalworthington Gardens	с	975	320	<u>b</u> /	Trinity Group	2.4/1.6										
		Eagle's Nest	с		·	d/		2.9/1.6				•						
		Everman	С	5,600	1,559	<u>ब/</u> <u>द</u> /	Trinity Group, Purchased Ft. Worth <u>11</u> /	1.6/1.6										
		Haslet	С	300	108	<u>b</u> /	Trinity - Group	1.6/1.6										
		Keller Rural WSC	С	3,500	1,015	ъ/	Do.	2.1/1.6									•	
		Pantego	С	2,612	864	Б/	Do.	1.8/1.6										
		Pelican Bay MHP	С	480	160	<u></u> 5/		1.8/1.6										
		Pleasant Acres MHP	С	20	8	<u>a</u> /		1.9/1.6										
		Post Oak Water Co.	С	40	10	 		1.7/1.6										
		Westside WSC	С	150	52	<u>Þ</u> /	Trinity Group	1.6/1.6										
ylor	14	WCID #1-Tuscola	с	735	225	<u></u> b/	Other (Alluvium)		49									
		Ovalo	с	125	- 39	<u>ь</u> /	Do.	1.7/1.6	90									
rry	3	Brownfield	с	9, 752	3,449	<u>c</u> /	Ogallala, Lake Meredith		51									
		Meadow	с	498	211	h/	Ogallala	6 0 / 1 6										
		Wellman WSC	c	300	68	<u>ь/</u> <u>ь</u> /	Do.	4.9/1.6 4.0/1.6										

•

Appendix $5a_7$ -Evaluation of Texas' Public Water Systems in Terms of Water Quality Using EPA Interim Primary Standards, by County <u>1</u>/, <u>2</u>/--Cont'd.

See footnotes at end of table.

A state of the sta

County	No. Dí County	No. 6		Approximate		Source	Aquifer	EPA	Inte	rim Pi	imary S	Standard	"Contami	nants" C	onsider	ed, mg	/1
County	Systems Evaluated			Population Served <u>4</u> /	No. of Connections <u>4</u> /	of Water <u>7</u> /	or Reservoir	F <u>5</u> /, <u>8</u> /	NO 5/3	As <u>6</u> /	Ba <u>6</u> /	Cd <u>6</u> /	Cr ⁶ <u>6</u> /	Рь <u>6</u> /	Ц; <u>6</u> /	Se <u>6</u> /	Au <u>6</u> /
avis	nj	Apache Shores	с	375	125	<u>b</u> /	Trinity	2.6/1.4-1.6									
		Camelot Addn.	с	126	43	ъ/	Grcup Do.										
		Cross Creek Suba.	c	45	16		<u> </u>	1.6/1.4-1.6									
		Draper Subd.	c	45	15	<u>,</u>		2.9/1.4-1.6 2.1/1.4-1.6									
		Gill MAP	č	41	19			2.9/1.4-1.6									
		Jonestown Imp. (Dis- trict) Corp.	c	. 675	270	שן קוסן שן קוסן אן שן אן אן	Trinity Group	3.5/1.6									
		Lakeview (Hills) Estates	с			d/		3.7/1.4-1.6									
		Malone Addn.	С			ā/		2.3/1.4-1.6									
		Manor	С	940	315	4/ 4/ 4/	Trinity Group	3.8/1.6									
		Mt. Chalet Subd.	С	15	5	<u>d</u> /	·	3.1/1.4-1.6									
		Mystic Oaks Estates	С	156	39	ď/		4.4/1.4-1.6									
		Onion Creck Neudows	С	352	88	<u>a</u> / <u>b</u> /	Edwards (Balcones Fault Zone)	3.8/1.4-1.6									
		Panoramic Hills Water Coop.	с		·	<u>ь</u> /		1.6/1.4-1.6	+~		•						
		St. Stephens School	с	250	27	<u>c</u> /	Trinity Group, Lake Austin	2.4/1.4-1.6								·	
		San Leanna Water Corp.	с	200	60	<u></u> b/	Edwards (Balcones Fault Zone)	1.8/1.4									
		Signal Hills	с	35		d/											
		Slaughter Creek Acres	c	323	58	<u><u> </u></u>	Trinity Group	6.4/1.4-1.6 2.5/1.4-1.6									
		Spring Valley Subd.	С	135	50	/٥		4.5/1.4-1.6									
		Twin Creek Park Subd.	С	168	56	<u>a</u> /		2.3/1.4-1.6									
		Val Verde Beach	С			<u>व</u> / व/ व/		3.7/1.4-1.6									
		West Oak Water Co.	с			<u>d</u> /		3.8/1.4-1.6									
pton	2	Rankin	С	1,190	453	<u>b</u> /	Edwards- Trinity (Plateau)	2.1/1.4									
valde	ห	Knippa WSC	с	365	130	<u>b</u> /	Edwards (Balcones Fault Zone)	3.6/1.4									

Appendix Sar-Evaluation of Texas' Public Water Systems in Terms of Water Quality Using EPA Interim Primary Standards, by County 1/2, 2/2--Cont'd.

See footnotes at end of table.

•

.

.

.

ASa-2

C	No. of	Name of		Approximate		Source	Aquifer	EPA	Inte	rim	Prim	ary	Star	ndard	Co	ontag	inan	ts"	Consid	ered,	mg/	1		
County	County Systems Evaluated	System		Population Served <u>4</u> /	No. of Connections <u>4</u> /	of Water <u>1</u> /	or Reservoir	P <u>5</u> /, <u>8</u> /	NO3	As <u>6</u> /		Ba <u>6</u> /		Cd 6/		Cr ⁶ <u>6</u> /		РЬ <u>6</u> /	Нg <u>6</u> /		e /	Au <u>6</u> /		
al Verde	5	Rough Canyon Marina	N	195	65	<u>d</u> /			67															
iard	7	Avery & Walker Water Co.	с	550		d/		2.7/1.4																
		Barstow	С	650	241	<u>ъ</u> /	Santa Rosa	3.8/1.4																
		Grandfalls	С	7 36	237	مامامام \ \ \ \	Alluvium	2.0/1.4																
		Ward Rural WSC	С	135	41	<u></u> <u></u>	Santa Rosa	3.5/1.4																
		Wickett	с	610	270	<u></u> <u></u> /	Alluvium	2.0/1.4																
lichita	8	Perkins Scout Reserva- tion	N	300		<u>d</u> /	·		80														. •	
lilbarger	6	Thirsty WSC (Box System)	с	150	52	ь/	Alluvium		52															
-		Do. (Hinds-Wildcat	с	150	52	<u>ь</u> / <u>ь</u> /	Do.		52															
		Comm.) Do. (Lockett System)	с	600	185	ь/	Do.		84															
		Vernon	c	13,000	4,822	<u>ь</u> / <u>ь</u> /	Do.		49															
lilliamson	36	Andice	с	45	15	<u></u> ь/	Trinity Group	3.0/1.6																
		Bartlett	С	1,700	650	ь/	Do.	3.9/1.4			•		·											
		Bushy Bend Park Subd.	С	165	55	<u>a</u> /		2.0/1.4-1.6																
		Florence	С	1,000	300	<u>שן</u> אשן אשן	Trinity Group	2.5/1.6						-										
		Granger	С	1,250	543	Ъ/	Do.	3.0/1.4																
		Hernando's Hide-A-Way	С	30	8	<u>آ</u>	— .	5.2/1.4-1.6																
		High ChaparallMAP	С	220	55	ā/		2.8/1.4-1.6																
		Hutto	С	545	200	년 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Edwards (Balcones Fault Zone)	4.3/1.6																
		Jonah WSC	с	620	417	h/	Do.	2.8/1.6																
		Leander WSC	č	624	208	<u>ե</u> / Ե/	Trinity	2.0/1.6																
		Beander #50	ŭ	024	200	<u>e</u> /	Group	2.0/1.0																
		McSheppard Ranches	с	10	3	d/		4.6/1.4-1.6																
		Noack WSC	Ċ	145	52	<u>d</u> / <u>b</u> /	Other (Alluvium)	4.0/1.4-1.0	53															
		Southern Hills Subd.	с	18	6	d/		3.2/1.4-1.6																
		South San Gabriel Ranche		30	13	ā',		2.9/1.6																
		Taylor	c	.9,616	3,600	9 9 9 9 9	Trinity Group	3.7/1.4-1.6																
		Thrall	С	619	236	<u></u> b/	Other (Nava sr o		75															
		Timberline West	с	80	28	<u>a</u> /	Group)	3.6/1.4-1.6																

Appendix 5a--Evaluation of Texas' Public Water Systems in Terms of Water Quality Using EPA Interim Primary Standards, by County <u>1</u>/, <u>2</u>/ -- Cont'd.

.

. ·

•

.

See footnotes at end of table.

.

	No. of			Approximate		Source	-	E	PA Inte	rim Pr	imary S	tandard	"Contami	nants" C	onsider	ed, ng	/1
County	County Systems Evaluated	Name of System		Population Served <u>4</u> /	No. of Connections <u>4</u> /	of Water <u>7</u> /	or Reservoir	F <u>5</u> /, <u>8</u> /	NO3 5/3	As <u>6</u> /	Ba <u>6</u> /	Cd <u>6</u> /	с г б <u>б</u> /	РЬ <u>6</u> /	нg <u>6</u> /	Se <u>6</u> /	Au <u>6</u> /
illienson (cont'd.)		Walburg	С	100	34	<u>b</u> /	Edwards (Balcones Fault Zone)	3.7/1.6									
		Wier	С	100	45	<u></u> b/	Do.	3.4/1.6									
inkler	2	Wink	с	1,023	340	<u>b</u> /	Alluvium	2.2/1.4									
oakum	3	Denver City Plains	с с	4,400 1,290	1,447 479	<u>b/</u>	Ogallala Do.	2.3/1.6 3.6/1.6									

Appendix 5a--Evaluation of Texas' Public Water Systems in Terms of Water Quality Using EPA Interim Primary Standards, by County <u>1</u>/, <u>2</u>/--Cont'd.

1/ Quality evaluation based on data secured from records of Texas Department of Health Resources as of 5-14-76.

2/ EPA Interim Primary Standard "contaminants" and the maximum permitted levels, except flouride, which are applicable to "community water systems" and were used in this evaluation are as follows:

Contaminant

Maximum Level, mg/1

Arsenic (As)	
Barium (Ba)	
Cadmium (Cd)	0.010
Chromium (Cr ⁶)	0.05
Lead (Pb)	
Mercury (Hg)	
Selenium (Se)	0.01
Silver (Au)	0.05
Nitrate (NO ₂)	45.00
(as N)	10.00

*The maximum contaminant level for pitrate applies to both community and non-community systems.

Maximum fluoride contaminant levels vary with the annual average of the maximum daily air temperature at the location of the community system. The limits for Texas are as follows:

Temperature (^O F)	Level, mg/1
< 70.6	1.8
70.7 - 79.2	1.6
79.3 - 90.5	1.4

2/ C denotes a community water system which supplies at least 15 service connection used by year-round residents or serves at least 25 yearround residents. N denotes a non-community system which is a public water system that is not a community water system or one which basically serves transients. 4/ Data secured from files of the Texas Department of Health Resources.

- 5/ The system's reported concentration level as reported by the Texas Department of Health Resources (TDHR) or an approved laboratory sanctioned by the TDHR as reported in their prepared tabulations entitled, <u>Community Water Systems In</u> Texas Which Exceed The Maximum Contaminant Level For Fluorides As Set By The "National Interim Primary Drinking Water Regulations" and/or <u>Community Water</u> Systems In Texas Which Exceed The Maximum Contaminant Level For Nitrates As Set By The "National Interim Primary Drinking Water Regulations", May 17, 1976.
- 6/ Data presently available only on interstate carrier systems, of which there are 57 in the State. Quality evaluation for these systems are based on data given in <u>Chemical Analysis of Interstate Water Supply Systems</u>, U. S. Environmental Protection Agency, October 1973.

7/ The source of water for each system was furnished by the Board's Economics, Water Requirements and Uses Division and are as follows:

- a/ A surface water source.
- $\overline{\mathbf{b}}$ / A ground-water source
- c/ A combination of surface and ground-water sources
- \overline{d} / Source of water could not be determined.

8/ The maximum permitted level in the county for the system.

- 9/ F Level from old chemical analysis and system is not now designated as being in violation of EPA standards by the Texas Department of Health Resources.
- 10/ Surface water purchased from the City of Dallas system and water may be from one, several, or all of the following reservoirs (from 1968 Texas Water Plan): Garza-Little Elm, Grapevine, North Lake, White Rock, Lavon Enlargement, and Ray Hubbard. Water applied to system by North Texas Municipal Water District and Sabine River Authority.
- 11/ Surface water purchased from the City of Fort Worth system and water may be from one, several, or all of the following reservoirs (from 1968 Texas Water Plan): Benbrook, Bridgeport enlargement, Eagle Mountain, Lake Worth, Mountain Creek, and Joe B. Hoggett (Gedar Creek). Water supplied to system by Tarrant County Water Control and Improvement District.

APPENDIX B

CITIES AND MUNICIPALITIES SITE INVESTIGATION

.

`

×

APPENDIX B

· ·

CITIES AND MUNICIPALITIES SITE INVESTIGATION

City/Municipality	Population	Water Source	Treatment	Consumption (GPCD) ¹
Α	23,000	18 Wells/Lake	Clarification, Filtration and Chlorination	a 256 (Max.) 79 (Min.)
В	14,050	4 Wells	Aeration/Chlorination	141 (Max.) 66 (Min.)
С	12,500	46 Wells	Chlorination	400 (Max.) 187 (Min.)
D	11,000	4 Wells	Chlorination	339 (Max.) 131 (Min.)
E	10,311	River	Clarification, Filtration and Chlorination	n 352 (Max.) 212 (Min.)
F	10,308	14 Wells	Chlorination	271 (Max.) 100 (Min.)
G	8,600	5 Wells	Chlorination	372 (Max.) 116 (Min.)
н	8,500	9 Wells	Chlorination	231 (Max.) 82 (Min.)
I	7,000	13 Wells	Chlorination	331 (Max.) 103 (Min.)
J	3,000	18 Wells	Chlorination	311 (Max.)
К	2,647	3 Wells	Chlorination	410 (Max.) 88 (Min.)
L .	2,500	4 Wells	Chlorination	
М	2,300	3 Wells	Chlorination	87 (Ave.)
N	1,536	4 Wells	Chlorination	133 (Max.) 74 (Min.)
0	1,500	3 Wells	Hypochlorination	

	<u></u>			
City/Municipality	Population	Water Source	Treatment	Consumption $(GPCD)^1$
Р	1,120	15 Wells	None	249 (Max.) 90 (Min.)
Q A	1,050	4 Wells	Chlorination	243 (Max.) 81 (Min.)
R	800	1 Well	Chlorination	
¹ Consumption minimum mor	in gallons pe hthly consump	r capita per day ption for the year	(GPCD) based on the 1976.	ne maximum and
			. (

'n

BIBLIOGRAPHY

I

- 1. "Appendix 5a Evaluation of Texas Public Water Systems in Terms of Water Quality Using EPA Interim Primary Standards, By County", compiled by Texas Water Development Board from file of Texas Department of Health Resources.
- 2. "Method and Cost of Removal of Water Contaminants", Texas A&M University Engineering Extension Service.
- 3. "Chemical Analysis of Public Water Systems", Texas State Department of Health, Domestic Water Supply Branch (1974).
- 4. "Water Treatment Plant Design", American Water Works Association Inc., New York, 1971.
- 5. American Water Works Association", Water Quality and Treatment", McGraw-Hill, New York, 3rd Edition, 1971.
- 6. Bingham, E.C., et. al., "A Close Cycle Water System for Ammonium Nitrate Producers", presented at 32nd annual meeting of International Water Conference, Pittsburg, Penn-sylvania, November, 1971.
- 7. Boruff, C.S., et. al., "Adsorption of Fluoride from Salt by Alum Floc", Industrial and Engineering Chemistry, Vol. 29, 1154 p. (1937).
- 8. Buckley, J.D., "Reverse Osmosis: Moving from Theory to Practice", Consulting Engineer, Vol. 45, NO. 5, 55 p. (1975).
- 9. Burwell, A.L., et. al., "Fluoride Removal from Drinking Water Small Installation Using Virgin Bone Black", Oklahoma Geological Survey Circulation #25, 1-41 p. (1945).
- Culp, R.N., et. al., "Fluoride Reduction at La Crosses, Kansas", Jour. A.W.W.A., Vol. 50, 423 p. (March, 1958).
- 11. DeGarmo, E.P., "Engineering Economy", McMillan, New York, 1971.
- 12. Fair, G.M., et. al., "Water and Waste Water Engineering", Vol. 2, John Wiley & Sons, New York, 1968.
- Gregg, J.C., "Nitrate Removed at Water Treatment Plant", Civil Engineering ASCE, 52 p. (April, 1973).
- 14. Harman, J.A., et. al., "Defluoridation of Drinking Water in Southern California", Jour. A.W.W.A., Vol. 57, 245 p. (1965).
- Kamp, E.C., "Design Factors in Reverse Osmosis", Chemical Engineering, 46 p. (April 2, 1973).
- 16. Kempf, C.A., et. al., "Studies on the Removal of Fluorine from Drinking Water in the State of Iowa", Proceedings of the Iowa Academy of Science, Vol. 34, 191 p. (1936).

- 17. Kremen, S.S., "Reverse Osmosis Makes High Quality Water Now", Environmental Sciences and Technology, Vol. 9, 314 p. (April, 1975).
- 18. Maier, F.J., "Partial Defluoridation of Water", Public Works, 90 p. (November, 1960).
- 19. Maier, F.J., "Defluoridation of Municipal Water Supplies", Jour. A.W.W.A., Vol. 44, 879 p. (August, 1953).
- 20. Maier, F.J., "Methods of Removing Fluoride from Water", Jour. Public Health, Vol. 37, 1559 p. (1947).
- 21. McKee, R.H., et. al., "Removal of Fluoride from Drinking Water", Industrial and Engineering Chemistry, Vol. 26, 849 p. (1934).
- 22. Moore, D.H., "Greenfield, Iowa, Reverse Osmosis Desalting Plant", Jour. A.W.W.A., Vol. 64, 781 p. (1972)
- 23. St. Smant, P.P., et. al., "Treatment of High Nitrate Water", Jour. A.W.W.A., Vol. 61, 659 p. (1969).
- 24. Steel, E., "Water Supply & Sewerage", McGraw-Hill, New York, 1960.
- 25. Turky, R.L., et. al., "Cleaning Water by Reverse Osmosis", Plant Engineering, October 31 December 12, 1974.

Personal Communication:

- 1. Chemical Separation Company, Oak Ridge, Tennessee, "Estimate on the Capital Cost and O&M Cost of Nitrate and Fluoride Removal by Demineralization Process" (March 3, 1977).
- 2. Chemical Separation Company, Oak Ridge, Tennessee, "Estimate on the Capital and O&M Costs of Selective Nitrate Removal" (February 8, 1977).
- 3. Nalco Chemical Company, Sugarland, Texas, "Fluoride Removal by Means of Tri-Calcium Phosphate" (January 18, 1977).
- 4. DuPont Permasep, Willmington, Delaware, "Reverse Osmosis Engineering Design", (December, 1976).
- 5. Permutit Company, Paramus, New Jersey, "Estimate on the Tri-Calcium Phosphate Process Tank and Accessory Equipment".

UNICTION

REDNARD INUNISON INCORDORATED

MACHINICTON