STATE BOARD OF WATER ENGINEFRS
C. S. Clark, Chairman
A. H. Dunlap, Member
J. W. Pritchett, Member

SAN SABA COUNTY, TEXAS

Records of wells an? springs, drillers' logs, water analyses, and map showing locations of wells and springs

Work. Projects Administration Project 10444

Analyses made and report mimeographed by WORK: PROJECTS ADMINISTRATION

Project 10443

Sponsored by the State Board of Water Engineers with the United States Department of the Interior, Geological Survey, and the Bureau of Industrial Chemistry of The University of Texas cooperating.

This publication contains data obtained in the course of a survey in San Saba County, Texas, consisting of records of wells and springs, logs of wells and test holes, and analyses of water from wells and springs. The locations of all wells, springs, and test holes listed are shown on the map on page 50.

This survey was a part of the Statewide inventory of water wells sponsored by the State Board of Water Engineers in cooperation with the United States Department of the Interior, Geological Survey. It was started August 27, 1938, and completed March 18, 1939. G. H. Shafer was project superintendent. The office of the Vorks Projects Administration in Austin gave valuable aid to the project, and the city of San Saba and the San Saba County Commissioners' Court cooperated by furnishing transportation for the workers.

A number of the larger springs in the county were measured with a current meter by L. W. Albert, Hydrographer, Surface-Water Division, United States Geological Survey.

The analyses were made by chemists employed on Works Projects Administration project 10443 under the direction of Dr. E. P. Schoch, Director of the Buread of Industrial Chemistry of The University of Texas, and E. W. Lohr, Chemist, of the Quality of Water Division of the Geological Survey; the Bureau of Industrial Chemistry furnished laboratory space and equipment. This release was typed by typists employed on that project.

The records serve as a guide to land owners, well drillers and others who need information regarding springs and wells, the depth to ground water in different parts of the county, and the quantity and chemical character of water yielded by both springs and wells. They afford a basis for the more intensive investigation that is now being carried on by the State Board of Water Engineers in cooperation with the Geological Survey. The purpose of this investigation is to determine the distribution and extent of the available ground-water supplies.

Records of wells and springs in San Saba County, Texas (All wells are drillod unless othorwise noted in "Romarks" column.) (Sce "Logs of W. P. A. tost wells" for all records of tost wells,)

No.	Distance from San Saba	Omincr	Drillcr	To, 20graphic si tuation	$\begin{array}{\|l} \text { Dato } \\ \text { com- } \\ \text { nle- } \\ \text { tod } \end{array}$	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { woll } \\ \text { (ft. }) \end{gathered}$	$\begin{aligned} & \text { Diam- } \\ & \text { etor } \\ & \text { of } \\ & \text { well } \\ & \text { (in.) } \end{aligned}$	Height or measuring point above ground (ft.) al
d] 1	$\begin{aligned} & 26 \frac{1}{2} \text { milos } \\ & \text { northwest } \end{aligned}$	C. L. B. Tylor	$\begin{gathered} \text { Prairic } 0 i 1 \text { \& Cas } \\ \text { Co. } \end{gathered}$	$5-$	--	1,325	--	-
	$\begin{aligned} & 26 \text { miliss } \\ & \text { northwest } \end{aligned}$	$\begin{aligned} & \text { Mrs. T. J. } \\ & \text { Singloton } \\ & \hline \end{aligned}$	--	$\begin{aligned} & \text { Gcntlo } \\ & \text { slone } \end{aligned}$	1908	$11^{\prime \prime}$	--	1
	$\begin{gathered} \text { aut mes } \\ \text { northwest } \end{gathered}$	Mrs. J, E. Deeds	Donald Dyer	do.	1929	41	6	0.4
	$\begin{aligned} & 25 \text { miles } \\ & \text { northwest } \end{aligned}$	Great Southern Life Inse CO_{b}.	H. H. Virdell	Flat	1938	240	6	0.7
	$23 \frac{1}{2}$ miles northwest,	--	-*	$\left[\begin{array}{l} \text { Benk of } \\ \text { orerg } \end{array}\right.$		Spring	--	-~
	$\begin{aligned} & 23 \text { miles } \\ & \text { northwest } \end{aligned}$	Garret Burk	--Woolsey	$\begin{aligned} & \text { fill } \\ & \text { side } \end{aligned}$	1925	501	--	0.3
	$\begin{aligned} & 24 \text { miles } \\ & \text { northwest } \end{aligned}$	-- Hardeman	--	do.	--	--	--	--
	$\begin{aligned} & 23 \text { miles } \\ & \text { northwest } \end{aligned}$	G. R. Armentrout	J. M. Virdell	$\begin{aligned} & \text { Gentle } \\ & \text { slope } \end{aligned}$	1918	287	6	1
10	$22 \frac{1}{2}$ miles northwest	N. J. Hall	do.	do.	1928	$5 \times$	5	1.4
	$\begin{aligned} & 20 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	Town of Fall	Texas Relief Commission	Top of ridge	1934	178	6	--
d] 13	do.	--	--	$\begin{aligned} & \text { Slope to } \\ & \text { creok } \end{aligned}$		--	6	0.8
	$\left\{\begin{array}{l} 20 \text { miles } \\ \text { west } \end{array}\right.$	-- Parker	Woolsey Bros.	Hilltop	--	563	6	--
	$\begin{aligned} & 19 \mathrm{miles} \\ & \text { west } \end{aligned}$	W. J. Lewis	Newby \& Virdell	$\begin{aligned} & \text { Edge of } \\ & \text { draw } \end{aligned}$	1223	236	--	--
16	$\begin{aligned} & 17 \frac{1}{2} \text { miles } \\ & \text { West } \end{aligned}$	W. H. Gibbons	J. C. Virdell	$\begin{aligned} & \text { Top of } \\ & \text { ridge } \end{aligned}$	1921	1,536	6	--
d 17	do.	do.	do.	Flat		1,022	$\begin{gathered} 6- \\ 5 / 8 \end{gathered}$	I
18	$\begin{aligned} & 19 \text { miles } \\ & \text { mest } \\ & \hline \end{aligned}$	$\begin{gathered} \text { M. M. Leach \& } \\ - \text { Hall } \\ \hline \end{gathered}$	--	Beã of creck		Spring	--	--
19	do.	do.	J. C. Virdell	$\begin{array}{\|l\|} \hline \text { Edge oi } \\ \text { bluff } \\ \hline \end{array}$		770	6	0.2
20	$\begin{aligned} & \text { i81 } \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	do.	--	$\begin{aligned} & \text { In } \\ & \mathrm{valley} \end{aligned}$		Spring	--	--
21	do.	do.	--	$\begin{aligned} & \text { Eago or } \\ & \text { lako } \end{aligned}$	--	279	--	--
22	20 milos northwest	I. TV. Horne	Woolsoy \& Knutson	$\begin{aligned} & \text { Genvio } \\ & \text { s?ope } \end{aligned}$	--	200	--	--
23	$\begin{aligned} & 19 \frac{1}{2} \text { miles } \\ & \text { northwest } \end{aligned}$	Ben Lucas	-- Pome 11	do.	1928	190	6	1.4
$\text { d } 24$	$\begin{aligned} & 19 \text { milos } \\ & \text { northwest } \end{aligned}$	Lakoviow Community	Woolsey Bros.	$\begin{aligned} & \text { In } \\ & \text { valloy } \end{aligned}$	1934	782	$\begin{gathered} 6- \\ 1 / 8 \end{gathered}$	--
25	$\begin{aligned} & 17 \frac{1}{2} \text { miles } \\ & \text { northwest } \end{aligned}$	Nirs. J. W. King	J. M. Virciell	Edgo of oreok	01	166	6	0

e./ Measuring point was usuelly top of casing, top of well curb or top of pipe clamp; it was above ground level unloss indicated by (-) sign for bclon ground level.
b/ B, bucket; C, cylinder; W, windmill; T, turbine; G, gascline; E, clectric; H, hana; number indicates horsopower.
c/ D, domestic; S, stock; I, irrigation; Ind, industrial; F, public; N, not uscd

Records obtained by George H. Shafer, Project Superintendent (Chemical analysis from these wells are in the table of analysis.)

ITO.	$\begin{aligned} & \text { Wete } \\ & \text { Depth } \\ & \text { below } \\ & \text { measu } \\ & \text { ing p } \\ & \text { (ft. }) \end{aligned}$	level Date of measure- oint ment	Pump and power b/	$\begin{array}{\|c\|} \hline \text { Use } \\ \text { of } \\ \text { water } \\ \text { c/ } \end{array}$	Remarks
1	--	\| --	None	N	0 l test. Reported altitude, 1,368 feet. See log.
2	64.7	$\begin{aligned} & \text { Oct. 18, } \\ & 1938 \end{aligned}$	C, H	D,S	Reported strong supply.
3	34.7	do.	C, H	\bar{N}	Reported 150 feet deep with first water at 22 feet and second at 125 feet measured only 41 feet deep, pro-
4	68.6	do.	C, TW	D	Reported strong supply. bably caved.
5	Flows	do.	None	D, S	Reported flow, I gallon an hour from sandstone and clay. Temperature, 69° F. Known as "Chamberlain Fol-
6	169.7	do.	C, 7	D, S	Reported strong supply. low Spring. ${ }^{\text {a }}$
8	--	--	$\begin{gathered} C, T i, G \\ 1 \frac{1}{2} \end{gathered}$	S	Estimated yield, one gallon a minute.
9	97.8	$\begin{array}{\|l\|} \hline \text { Oct. } 14, \\ 1938 \\ \hline \end{array}$	C, 家	D, S	Struck water at loo feet. Pump set at 14 feet. Cased to 4^{4} feet. Reported weak supply.
1	21.6	ao.	B, H	D	Struck water at 67 feet; black shale from 67 to 500 feet. Reported weak supply.
12	--	--	C, 䛔	P,S	Reported strong supply. See lag.
10	15.6	$\left\|\begin{array}{l} \text { oct. } 14, \\ 1938 \end{array}\right\|$	C, ${ }^{\text {F }}$	D, S	Located 81 feet east of well 12.
14	90	e/	C, T, G,	D, S	Reported strong supply from 55: feet. Cased to 16 feet.
15	60	c/	C, W, G,	D, 5	Reported yield, 2' gallons a minute for one hour with little drawdown. Struck iisst water at 150 feet,
16	$20 n+$	e/	C, ${ }^{-}$	S	Stcel casing. Report- second water, 191 to 197 feet ed strong supply.
17	50.7	$\begin{aligned} & \text { Oct. 24, } \\ & 1938 \end{aligned}$	C, 7	S	Oil tost, now producing mater. Reported altitude, 1,64' feet. See log.
18	--	do.	None	S	Water from gravel in creek bed and bank. Reported weak supply. Temperature, $68^{\circ} \mathrm{F}$.
19	73.7	do.	C, W	5	Cased to 190 feet. Seo log.
20	Flows	do.	None	S, I	Water from many seeps in limestone. I/ Measured flow; I, 1×0 gallons a minute. Tomporature, $72^{\circ} \mathrm{F}$. Supplics wator for 23 acre lakc. Known as "The Big Spring."
21	Flows	do.	C, VT	D,S	Jistimated flow, 20 gallons a minute. Reported ceases flow in dry season.
22	105	c/	C,	D	Struck wator at 80 foet. Rcportod woak supply.
23	12. 8	$\begin{aligned} & \hline \text { oct. 17, } \\ & 1938 \\ & \hline \end{aligned}$	B, F	D, S	Reported weak supply.
24	$20 \pm$	d/	C, ${ }^{\text {a }}$	N	Reported wok supply. Sce log.
25	5.9	$\begin{aligned} & \text { Oct. } 17, \\ & 1938 \\ & \hline \end{aligned}$	C, V	D, \bar{S}	10 feet of galvanizod casini, at top. R ported strong supply.

i/ No water sample colloctod for analysis.
!/ Vigter lavel roported.
f/ Current moter measur ment by cngineers of Geological Survey, U.S.D.I.
© Toir moasurement by project suporintendent.

Records of wells and springs in San Saba County--Continued

No.	$\begin{aligned} & \text { Distance } \\ & \text { from } \\ & \text { San Saba } \end{aligned}$	Owner	Driller	Topographic situation	Date com-pleted	Depth of well (ft.)	$\begin{aligned} & \text { piam- } \\ & \text { eter } \\ & \text { of } \\ & \text { well } \\ & \text { (in.) } \end{aligned}$	Height of measuring point above ground (ft.) a/
26	16 $\frac{1}{2}$ miles northwest	Geo. Wilton	--	Eage of creek	01d	100	6	1.5
27	$\begin{aligned} & 16 \text { miles } \\ & \text { nor thwest } \end{aligned}$	Mrs. Mary Winkel	--	In valley	1918	10	60	$0.8{ }^{\text {² }}$
28	$\begin{aligned} & 17 \frac{1}{2} \text { miles } \\ & \text { northwest } \end{aligned}$	-- Christian	--	Flat	--	$200+$	10	0.9
29	19! miles nor thwest	A. B. Swinney	-- Hanna	Gentle slope	--	115	6	0
30	do.	Mrs. M. F. Fushing	Webb \& Webb Co.	$\begin{aligned} & \text { Top of } \\ & \text { ridge } \\ & \hline \end{aligned}$	1926	750	--	--
31	$\begin{aligned} & 20 \frac{1}{2} \text { miles } \\ & \text { northwest } \end{aligned}$	$\begin{gathered} \text { Bowser School } \\ \text { Dist. } \end{gathered}$	Wiley Knutson	do.	1926	175	6	--
d/32	$\begin{gathered} 21 \text { miles } \\ \text { northwest } \end{gathered}$	Ed. Cowart	Ed. Cowart	do.	--	955	6	--
33	do.	do.	do.	do.	1958	196	6	1
34	$\left\|\begin{array}{l\|} 18 \text { miles } \\ \text { northwest } \end{array}\right\|$	C. J. Cummings	Coline Oil Co.	In draw	1918	1,380	--	--
a/ 35	$\begin{aligned} & 17 \frac{1}{2} \text { miles } \\ & \text { northwest } \end{aligned}$	-- Graves	John Groce	--	--	1,000	--	--
36	$\begin{aligned} & 16 \text { miles } \\ & \text { northwest } \end{aligned}$	$\begin{gathered} \text { Iocker School } \\ \text { Dist. } \end{gathered}$	Texas Relief Commission	Slope	1934	360	\cdots	--
37	$\begin{aligned} & 17 \text { miles } \\ & \text { northwest } \\ & \hline \end{aligned}$	H. L. Locker	-- Collins	$\begin{aligned} & \text { Top of } \\ & \text { ridge } \end{aligned}$	01a	249	--	3
38	do.	--	--	$\begin{aligned} & \text { Hill- } \\ & \text { side } \end{aligned}$	--	109	--	1.3
39	$\begin{array}{\|l\|} \hline 16 \text { miles } \\ \text { northwest } \end{array}$	E. A. Taylor	S. E. Owens	$\begin{aligned} & \text { Gentle } \\ & \text { slope } \end{aligned}$	1900	118	8	0.9
40	$17 \frac{1}{2}$ miles northmest	J. M. Hatherly	$\begin{gathered} \hline \text { Royal Duke Oil } \\ \text { Co. } \\ \hline \end{gathered}$	do.	1918	1,888	--	--
41	15 miles northwest	Jason Procter	--	$\begin{array}{\|c\|} \hline \text { Bottom } \\ \text { of draw } \end{array}$	--	15	60	3
42	$13 \frac{1}{2}$ miles northwest	I. A. Ivy	Wiley Knutson	$\begin{aligned} & \text { Near } \\ & \text { draw } \end{aligned}$	1930	100	--	0.4
43	12 $\frac{1}{2}$ miles northwest	Mrs. Hattie Carter	--	Slope	--	101	10	1.6
44	do.	J. F. Templeton	--	Bottom of draw	--	9	--	\%
45	do.	W. E. Carroll	Wiley Knutson	$\begin{aligned} & \text { Top of } \\ & \text { ridge } \end{aligned}$	1229	144	6	1.7
a/ 46	$\begin{aligned} & 12 \text { miles } \\ & \text { northwest } \\ & \hline \end{aligned}$	W. C. Locker	-- Van Rossum	Slope	1933	605	--	--
d/ 47	$\begin{array}{\|l\|} \hline 10 \mathrm{miles} \\ \text { northwest } \\ \hline \end{array}$	Town of Algerita	Texas Relief Commission	$\begin{aligned} & \text { Top of } \\ & \text { ridge } \\ & \hline \end{aligned}$	1934	400	6	--
48	$\begin{array}{\|l\|} \hline 11 \text { miles } \\ \text { northwest } \\ \hline \end{array}$	R. Turner	--	do.	--	$200+$	8	0.2
49	$\begin{array}{\|l\|} \hline 15 \text { miles } \\ \text { northwest } \\ \hline \end{array}$	J. R. Severs	--	Slope	--	125	--	--
50	15늘 miles northwest	L. B. Skelton	--	do.	01d	120	6	1.2
51	$\begin{aligned} & 14 \frac{1}{2} \text { miles } \\ & \text { northwest } \end{aligned}$	Mrs. W. W. Edmondson	--	Top of ridge	--	110	--	2.3
52	do.	Jess B. Coffee	--	do.	--	150	--	--

Gaorge H. Shafer, Project Superintondont

	Wator lovel				
No.	Depth below measur ing po (ft.)	Date of measure- r- ment oint	$\begin{gathered} \text { pump } \\ \text { and } \\ \text { power } \\ \text { b/ } \end{gathered}$	Use of water c/	Romarks
26	18.6	$\begin{array}{ll} \text { Nov. } \\ 1938 \end{array}$	C, ${ }^{\text {m }}$	S,I	Reportod 46.4 feet drawdown arter pumping $2 \frac{1}{2}$ to 3 gallons a minute for 35 minutos.
27	6.5	do.	C, ${ }^{\text {, }}$	D,S	Dug well. Reported strons supply.
28	65.5	do.	B, H	D, S	Throe feet of steel casing at top. Reported weak supply.
29	98.2	$\begin{aligned} & \text { Oct. } 19, \\ & 1938 \end{aligned}$	C, W	D	Reported wak supply.
51	Flows	do.	None	D, S	Estimated flow, 2^{n} gallons a minute. Water from limestone at $2 M$ feet. Reported altitude, 1,340 feet.
31	--	--	C, T	P	Reported dry after pumping three hours. see \log. Struck water at 165 feet. Cased to bottom.
52	90	e/	None	N	Water from limestone, 175 to 270 feet. Galvanized casing surface to 140 feet.
33	107.4	$\begin{aligned} & \text { Oct. 19, } \\ & 1938 \end{aligned}$	B, H	N	12 feet of gal vanized iron casing. Water from 160 feet.
34	Flows	$\begin{aligned} & \text { Oct. } 12, \\ & 1938 \end{aligned}$	None	D, S	Estimated flow, one gallon a minute. Reported altituat 1,362 feet. See log.
35	--	--	None	N	Oil test. Reported altitude, 1,350 feet. See log.
36	--	--	$\begin{gathered} \mathrm{C}, \mathrm{TM}, \mathrm{G} \\ 1 \frac{1}{2} \end{gathered}$	S,P	Reported strong supply.
3 ?	90.8	$\begin{aligned} & \text { Oct. } 12, \\ & 1938 \end{aligned}$	C, ${ }^{\text {, }}$	--	Reported weak supply.
38	64.1	$\begin{aligned} & \text { Oct. 13, } \\ & 1938 \end{aligned}$	B, H	D, S	DO.
39	75.1	do.	B,H	D	Cased to bottom. Reported weak supply.
40	Flows	do.	None	S	Oil test. Estimated fion, 8 gallons a minute. Report ed altitude, 1,375 feet. See log.
41.	9.5	do.	B, H	S	Dug well. Reported weak supply.
42	55.1	$\begin{aligned} & \text { oct. 12, } \\ & 1938 \end{aligned}$	C,7]	D	Reported weak supply.
43	86.1	do.	B, H	D, S	Reported very weak supply.
44	3.2	do.	B, H	D, S	Dug well. Reported weak supply.
45	65.1	$\begin{aligned} & \text { oct. 13, } \\ & 1938 \end{aligned}$	$\overline{\mathrm{B}, \mathrm{H}}$	D, 5	Reported weak supply.
46	--	--	None	N	Oil test. Filled to $18 \frac{1}{2}$ feet; dry.
47	--	--	None	N	Filled and abondoncd.
48	179.5	$\begin{aligned} & \text { Oct. 31, } \\ & 1938 \end{aligned}$	None	N	Throe feet of stoel casing at top. Reported weak supply.
49	90	ㅇ/	C, E	D,S	Reported weak supply.
51	80.1	$\begin{aligned} & \text { Sept. } 2 n, \\ & 1938 \end{aligned}$	B, H	D	Do.
51	70.4	do.	None	N	
52	--	--	C,	D	Reportod veak supply.

Records of wells and springs in San Saba County--Continued

$\mathrm{I}^{\top} \mathrm{O}$ 。	$\begin{aligned} & \text { Distance } \\ & \text { from } \\ & \text { San Saba } \end{aligned}$	Owner	Driller	Topographic situation	Date com- ple- ted	Depth of well (ft.)	Diameter of well (in.)	$\begin{gathered} \text { Height of } \\ \text { measuring } \\ \text { point } \\ \text { above } \\ \text { ground } \\ \text { (ft.) a/ } \\ \hline \end{gathered}$
	$\left\|\begin{array}{c} 13 \frac{1}{2} \text { miles } \\ \text { northwest } \end{array}\right\|$	A. J. Toda	--	In draw	012	8	48	1.5
	$\begin{gathered} 13 \text { miles } \\ \text { northwest } \end{gathered}$	J. R. Means	--	do.	1910	16	24	1
$\sqrt{55}$	$\begin{aligned} & 2 \mathrm{miles} \\ & \text { northwest } \end{aligned}$	Spring Creek Community	Texas Relief Cormission	$\begin{aligned} & \text { Top of } \\ & \text { ridge } \\ & \hline \end{aligned}$	1934	$400+$	+	0.4
55	do.	Buck Hardeman	---	Slope	--	101	--	1.3
57	In miles	M, Touchon	--	Bank of creek	--	12	36	1
$\mathrm{a}^{7 \times 5}$	$\begin{aligned} & 14 \text { miles } \\ & \text { north } \end{aligned}$	J. W. Smith	-- Hubbard	Flat	1938	70	--	--
59	$\begin{aligned} & 11 \mathrm{l} \text { miles } \\ & \text { north } \end{aligned}$	M. R. Weatherby	--	do.	--	80	6	1.4
d 60	$\begin{aligned} & \text { Il miles } \\ & \text { morth } \end{aligned}$	W. B. Reagan	--	$\begin{aligned} & \text { Top of } \\ & \text { ridge } \end{aligned}$	--	138	6	n
61	do.	J. M. Parwer	--	Slope	--	78	6	1.6
$\sqrt[3]{62}$	$\begin{aligned} & 10 \mathrm{miles} \\ & \text { inorth } \\ & \hline \end{aligned}$	--	--	Rivor bottoms	--	49	6	0.4
	$9 \frac{1}{2} \text { miles }$	Flatrock School	--	Slope	--	47	50	2
	$\begin{aligned} & 9 \text { miles } \\ & \text { north } \end{aligned}$	Jim MeConnell	--	do.	--	25	50	1.7
	$\begin{aligned} & 3 \frac{1}{3} \text { miles } \\ & \text { north } \end{aligned}$	T. J. Edmondson	--	$\begin{aligned} & \text { Gentlo } \\ & \text { slope } \end{aligned}$	--	35	66	2.2
	$\begin{aligned} & 7 \frac{7}{2} \text { miles } \\ & \text { north } \end{aligned}$	A. Hanna	Jack Lowe	$\begin{aligned} & \text { Top oi } \\ & \text { ridgo } \end{aligned}$	1931	300	6	0.6
	$\begin{aligned} & 9 \text { miles } \\ & \text { mortheast } \end{aligned}$	E. H. Mijller	--	$\begin{aligned} & \text { Bank } 0 f \\ & \text { river } \end{aligned}$	--	41.	36	1.2
1168	$\begin{array}{\|l\|} \hline 11 \text { miles } \\ \text { nor theast } \\ \hline \end{array}$	T. J. Burnham	--	do.	--	80	6	--
60	$\begin{aligned} & 10 \text { miles } \\ & \text { northeast } \end{aligned}$	Mrs. E. Q. Magee	-- Hawkins	River bottons	1932	41	$25 \frac{1}{2}$	0.5
	$\begin{aligned} & 10 \frac{1}{2} \text { miles } \\ & \text { northeast } \end{aligned}$	C, Burnham	-- Simps on	do.	1822	39	6	${ }^{7} .7$
371	$\begin{aligned} & \text { milos } \\ & \text { northeast } \end{aligned}$	Mas. Julia A. Moore	Cayce Petroleum Co. \qquad	--	1821	1,642	10	--
$d / 72$	$6 \text { miles }$	W. B. Leverett	$\begin{aligned} & \text { Texas-ilexia } \\ & \text { Drilling Co. } \end{aligned}$	--	1522	1,003	--	--
	miles inortheast	M. J. Fox Est.	Tom Fox	Slope	--	48	36	0.5
14	do.	W. B. Taft	-- Bennett	Flat	1924	40	24	0.7
	$\begin{aligned} & 5 \text { miles } \\ & \text { northeast } \end{aligned}$	A. J. Waiker	A. J. Walker	$\begin{aligned} & \text { Rivor } \\ & \text { bottoms } \end{aligned}$	1894	30	36	2
	$\begin{aligned} & \text { bi miles } \\ & \text { east } \end{aligned}$	do.	${ }^{--}$	$\begin{aligned} & \text { Creck } \\ & \text { bottoms } \end{aligned}$		Spring	--	--
	$\begin{aligned} & 7 \text { miles } \\ & \text { least } \end{aligned}$	-- Munseli	$\begin{gathered} \text { Cayco Petroleum } \\ \text { Co. } \end{gathered}$	--	--	798	--	--
	$\begin{aligned} & 8 \text { miles } \\ & \text { cast } \end{aligned}$	R. E. Senterfitt	J. C. Virdell	Hilltop	1938	232	--	--
86	$\begin{aligned} & 7 \text { miles } \\ & \text { east } \end{aligned}$	J. O. Cagle	-- R. R.	do.	1914	165	6	0,3

Goorgo H, Shafor, Projoct Suporintondont

	Water level				Remarks
No.	$\begin{aligned} & \text { Depth } \\ & \text { below } \\ & \text { measu } \\ & \text { ing p } \\ & \text { (ft. } \end{aligned}$	Date of measure- r- ment oint	$\begin{gathered} \text { Fump } \\ \text { and } \\ \text { power } \\ \text { b/ } \end{gathered}$	Use of water c/	
53	5.5	$\begin{aligned} & \text { Sept.2n, } \\ & 1938 \end{aligned}$	B, H	D, 5	Dug well. Reported strone supply.
54	8	do.	B, H	D,S	DO\%
55	134.7	$\begin{aligned} & \text { Sept. } 16, \\ & 1938 \\ & \hline \end{aligned}$	C, 7	N	Reported too salty for use.
56	63.9	do.	None	N	Reported weak supply.
57	10.1	do.	B, H	D	Dug well. Water from alluvium.
58	--	--	--	--	Drilling in black skale at fu feet when visited, Sept. 19, 1938.
59	26.6	$\begin{aligned} & \text { Sept.19, } \\ & 1938 \\ & \hline \end{aligned}$	C, 7	D, S	Estimated yield, 3 to 4 gallons a minute.
60	70.5	$\begin{aligned} & \text { Sept. } 15, \\ & 1938 \end{aligned}$	B,H	D, S	Reported strong supply.
61	34.2	$\begin{aligned} & \text { Sept. } 7, \\ & 1938 \end{aligned}$	B, H	D, S	Galvanized casing top to bottom. Reported weak supply
62	43.3	do.	None	N	Cased to bottom. Broken mill over well.
63	44.8	do.	C, H	D, P	Dug well. Water from sandstone.
64	25.3	$\begin{aligned} & \text { Sept.15, } \\ & 1938 \end{aligned}$	C, H	D,s	Due woll. Reported strong supply.
65	26.4	do.	$\begin{gathered} \mathrm{C}, \mathrm{H}, \mathrm{G} \\ 6 \end{gathered}$	D, S	Dug, well. Measured yield, 15 gallons a minute.
66	104+	do.	C, W	D, S	Water level measurement cuestionable. Measured yield, 2 gallons a minute.
67	30.4	$\begin{aligned} & \text { Sept. } 7, \\ & 1938 \end{aligned}$	None	N	Dug well. Water from alluviun.
68	$58+$	do.	None	N	Galvanized casing top to bottom. Reported water from black slate.
69	25.8	do.	C, $\overline{\text {, }}$	D,S	Dug mell. Estimated yield, 1 to 2 gallons a minute.
70	26.1	do.	C, 7	D, S	Estimated yield, 1 to 2 gellons a minute. Reported water level was 45 feet below surface before well was
71	--	--	None	N	Oil test. Reported altitude, 1,250 feet. See log.
72	--	--	None	N	Oil test. See log.
73	45.0	$\begin{aligned} & \text { Sept. } 6, \\ & 1938 \end{aligned}$	C, TV	D,S	Dug well. Water from sand and gravel. Reported supply increased after slight earthqueke in 1931.
74	39.2	$\begin{array}{\|l\|} \text { Sept.15, } \\ 1938 \end{array}$	C, 717 H	D, S	Dug well. Struck black slate at 40 feet.
82	14.4	$\begin{aligned} & \text { Aug. } 30, \\ & 1938 \\ & \hline \end{aligned}$	C,G,	D,S,I	Dug, well. Brick curb; wood casing. Water from quicy sand at 31) feet. Reported flowed clear water during
83	Flows	$\begin{aligned} & \text { Sept. 6, } \\ & 1938 \\ & \hline \end{aligned}$	Wone	N	Estimated flow, 5 to lo gallons a flood of 1938, minute from one opening in sand. Temperature, 69° F.
84	Flows	$\begin{aligned} & \text { Nov. } \\ & 1938 \end{aligned}$	None	S	Oil test. Reported altituaie, l, 400 feet. See log.
85	65	E/	C, $7, \mathrm{H}$	D	Reported weak supply; was dry when drilled.
36	27.1	$\begin{aligned} & \text { Mar. } 13, \\ & 1935 \end{aligned}$	C, H	D, S	Galvanized casing top to bottom. Located $\frac{1}{4}$ mile east of well 84.

Records of wells and springs in San Saba County－－Continued．

No．	Distance from San Saba	Owner	Driller	Topo－ graphic situa－ tion	Date com－ ple－ ted	$\left\lvert\, \begin{gathered} \text { Depth } \\ \text { of } \\ \text { well } \\ \text { (ft. }) \end{gathered}\right.$	Diam－ eter of well （in．）	Height of measuring point above ground （ft．）a／
87	$\begin{aligned} & 5 \text { miles } \\ & \text { east } \end{aligned}$	F．B．Hall	－－	Creek bottoms	01d	16	30	0
38	$\begin{aligned} & 6 \mathrm{miles} \\ & \text { east } \end{aligned}$	－－Squires	－－	$\begin{aligned} & \text { Top of } \\ & \text { ridge } \end{aligned}$	－－	$200+$	－－	1.8
89	$\begin{aligned} & 5 \text { miles } \\ & \text { east } \end{aligned}$	Tom Grozier	－－	$\begin{aligned} & \text { Gentle } \\ & \text { slope } \end{aligned}$	－－	116	－－	0.3
90	$\begin{aligned} & 3 \frac{1}{2} \text { miles } \\ & \text { east } \end{aligned}$	－－Dalton	－－	$\begin{array}{\|l\|} \hline \text { Creek } \\ \text { bottoms } \end{array}$		$\begin{aligned} & \text { Spring } \\ & \hline \end{aligned}$	－－	－－
91	$\begin{aligned} & 3 \text { miles } \\ & \text { southeast } \end{aligned}$	－－Kirkpatrick	－－	do．		Spring	－－	－－
92	$\begin{aligned} & 2 \frac{3}{2!i l e s} \\ & \text { least } \end{aligned}$	Jim McConnell	－－	$\begin{array}{\|l\|} \hline \text { River } \\ \text { bottoms } \\ \hline \end{array}$		Spring	－－	－－
93	$\begin{aligned} & 2 \frac{1}{4} \text { miles } \\ & \text { east } \end{aligned}$	Mrs．J．M．Carter	－－Carter	$\begin{array}{\|l\|} \hline \text { In } \\ \text { valley } \\ \hline \end{array}$	1910	21	50	1.1
d 94	$\begin{aligned} & 4 \text { miles } \\ & \text { southeast } \end{aligned}$	Tom Murray	－－	Slope	－－	$200+$	－－	0.6
95	$\begin{aligned} & 3 \frac{1}{2} \text { miles } \\ & \text { south } \end{aligned}$	H．C．Galloway	－－Clark	do．	1916	600	6	－－
96	$\begin{aligned} & 1 \frac{1}{2} \text { miles } \\ & \text { south } \end{aligned}$	W．M．Moore	do．	$\begin{aligned} & \text { Top of } \\ & \text { ridge } \end{aligned}$	1916	$300+$	8	0.8
97	$\begin{aligned} & \frac{3}{2} \text { mile } \\ & \text { south } \end{aligned}$	－－Weatherby	－－	Slope	－－	150	－－	－－
98	$\frac{1}{2}$ mile southeast	City of San Saba	－－	$\begin{array}{\|l\|} \hline \text { Edge of } \\ \text { creek } \end{array}$		Spring	－－	－－
399	$\begin{aligned} & 3 \mathrm{mile} \\ & \text { east } \end{aligned}$	T．S．Aylor	－－	$\begin{array}{\|l} \text { Near } \\ \text { creek } \end{array}$	1918	48	6	0.5
$\underline{1}$	$\begin{aligned} & \frac{1}{2} \mathrm{mile} \\ & \text { east } \\ & \hline \end{aligned}$	do．	－－	do．	1918	26	6	0.6
151	$\begin{aligned} & 1 \text { mile } \\ & \text { west } \\ & \hline \end{aligned}$	Nrs．Mary Sanderson	J．C．Virdell	Slope	19\％	66	6	2.3
152	do．	do．	do．	do．	1937	325	6	1.4
153	$\begin{aligned} & \text { I⿱亠䒑女灬 miles } \\ & \text { northwest } \end{aligned}$	do．	do．	do．	1537	225	8	－－
154	$\begin{aligned} & 1 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	Rufe Thomton	Clark \＆Thornton	$\begin{array}{\|l\|} \hline \text { Edge of } \\ \text { bluff } \end{array}$	1915		－ 6	0.6
d／155	do．	do．	Rufe Thornton	do．	－－	85	6	－－
156	do．	J．W．Patterson	－－	do．	O1d	71	－－	0.3
357	$\begin{aligned} & 1 \frac{3}{2} \text { miles } \\ & \text { north } \end{aligned}$	H．D．Mioore	－－	Slope	1924	32	50	0.9
158	$\begin{aligned} & 2 \text { miles } \\ & \text { north } \end{aligned}$	Bill Letbetter	－－	do．	－－	27	30	3.3
159	$\begin{array}{\|l\|} \hline 3 \text { miles } \\ \text { northeast } \end{array}$	C．E．Whitman	－－－	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Bank of } \\ \text { creek } \end{array} \\ \hline \end{array}$	1895	13	24	2
160	$\begin{array}{\|l\|} \hline 4 \text { míles } \\ \text { northeast } \end{array}$	S．D．Edmondson	S．D．Edmondson	Slope	O1d	19	36	2.4
161	$\begin{aligned} & 4 \frac{1}{4} \text { miles } \\ & \text { northeast } \end{aligned}$	do．	do．	do．	Old	8	36	1.6
162	$\begin{aligned} & 3 \frac{1}{2} \text { miles } \\ & \text { north } \end{aligned}$	Mrs．－－Murray	W．Murray	Bed of draw	－－	16	36	3
163	do．	Jim Nurray	－－	$\begin{array}{\|l\|} \hline \text { Head of } \\ \text { draw } \end{array}$		Spring	－－	－－

-10
George $H_{\text {, Sharer, Froject Superintendent }}$

Records of wells and springs in San Saba County－－Continued

IVo．	$\begin{aligned} & \text { Distance } \\ & \text { from } \\ & \text { San Saba } \end{aligned}$	Owner	Driller	Topo－ graphic situa－ tion	Date com－ ple－ ted	$\left\lvert\, \begin{gathered} \text { Depth } \\ \text { of } \\ \text { well } \\ (f t .) \end{gathered}\right.$	Diam－ eter of well （in．）	Height of measuring point above ground （ft．）al
164	$\begin{aligned} & 3 \frac{1}{2} \text { miles } \\ & \text { north } \end{aligned}$	Jim Walker	－－	Bank of creek	－－	14	36	－－
	$\begin{aligned} & 3 \text { miles } \\ & \text { north } \end{aligned}$	Ida Rylander	－－	$\begin{aligned} & \text { Top of } \\ & \text { ridge } \\ & \hline \end{aligned}$	1892	29	24	2
166	$\begin{aligned} & 4 \text { miles } \\ & \hline \text { north } \\ & \hline \end{aligned}$	G．W．Finorp	G．W．Thorp	Creek bottoms	1933	9	60	2.5
170	$\begin{aligned} & 5 \text { miles } \\ & \text { northwest } \end{aligned}$	W．M．Ferry	W．M．Perry	Slope	1925	45	－－－	1.9
	$\begin{aligned} & 6 \text { miles } \\ & \text { north } \end{aligned}$	T．J．Terry	－－	do．	1522	28	60	1.6
172	$\begin{aligned} & 6 \frac{1}{\text { miles }} \\ & \text { north } \end{aligned}$	I．T．Watkins	Hall \＆Bryant	Creek bottoms	1928	1，160	10	－－
	$\begin{aligned} & 8 \frac{1}{2} \text { miles } \\ & \text { north } \end{aligned}$	W．E．Johnson	－－	In draw	1890	50	36	$\overline{0}$
174	$\begin{array}{\|l\|} 7 \\ \text { northwest } \\ \text { nor } \end{array}$	F．C．Smith	C．Newby	$\begin{aligned} & \text { Hill- } \\ & \text { side } \\ & \hline \end{aligned}$	1928	167	6	1.5
175	8：$\frac{1}{2}$ miles northwest	G．T．Feazle	do．	Hilltop	1920	62	6	0.8
176	$\begin{aligned} & 7 \frac{1}{2} \text { miles } \\ & \text { nor thwest } \\ & \hline \end{aligned}$	R．T．Harkey	－－	In dram	1898	150	6	1
177	$\begin{array}{\|l\|} 7 \text { miles } \\ \text { northwest } \end{array}$	H．C．McFee	H．C．MoKee	do．	1913	30	30	2.6
185	$\begin{aligned} & 23 \text { miles } \\ & \text { west } \end{aligned}$	$\begin{aligned} & \text { Mrs. } \\ & \text { Curtsinger } \end{aligned}$	－－	Slope	01 d	$90+$	8	$\overline{0}$
186	$\begin{aligned} & 2 \frac{1}{\text { miles }} \\ & \text { west } \end{aligned}$	J．W．Franklin	${ }^{--}$	do．	1928	38	6	2.7
187	$\begin{aligned} & 3 \text { miles } \\ & \text { west } \end{aligned}$	R．A．Grimes	J．C．Virdell	In drav	1902	236	5	1.5
188	$\begin{aligned} & 3 \frac{3}{\tan } \mathrm{miles} \\ & \text { west } \end{aligned}$	do．	－－	Bed of creek		Spring	－－	－－
189	$\begin{aligned} & 33 \text { miles } \\ & \text { southwest } \end{aligned}$	J．C．Taylor	－－	In draw		Spring	－－	－－
190	$\begin{aligned} & 3 \frac{2}{2} \text { miles } \\ & \text { west } \end{aligned}$	J．H．Burke	J．C．Virdell	$\begin{aligned} & \text { Top of } \\ & \text { ridge } \\ & \hline \end{aligned}$	1953	1，300	$4 \frac{1}{2}$	0
	$\begin{aligned} & \text { 6⿳亠丷厂彡2 miles } \\ & \text { west } \end{aligned}$	Ona \＆Jesse Cook	do．	Flat	1534	84	5	1.3
195	$\begin{aligned} & 7 \text { milos } \\ & \text { wost } \end{aligned}$	R．B．Bagley	do．	Slope	1932	244	6	0
196	8 miles southwest	C．E，Martin	do．	do．	1934	102	6	0.1
197	7 $\frac{4}{2}$ miles southwest	Will Martin	－－	Creck bottons		Spring	－－	－－
198	$\begin{aligned} & 6 \frac{1}{2} \operatorname{miles} \\ & \text { southwest } \end{aligned}$	Jack Lusty	－－Sharp	do．	01a	11	36	2.2
199	6 miles southwest	Leo Lusty	Leo Lusty	do．	1929	11	36	2.4
200	5를 miles west	C．A．Maas	－－	do．	1885	23	72	2.3
201	$\begin{aligned} & 5 \frac{1}{2} \text { miles } \\ & \text { southwest } \end{aligned}$	ㅍ．G．Alexander	E．G．Alexander	do．	1923	17	36	2.7
	$\begin{array}{\|l\|} \hline 6 \frac{1}{2} \text { miles } \\ \text { southmest } \\ \hline \end{array}$	－－Gervin	－－	Edge or valley	－－	143	6	0.3
203	$\begin{aligned} & 7 \text { miles } \\ & \text { southwest } \end{aligned}$	do．	－－	Slope	－－	105	6	1

George H. Shafer, Project Superintendent

No.	Wate Depth below measu ing p (ft.)	r level Date of meas ure- r- ment oint	Pump and power b/	Use of water c/	Remarks
164	9.9	$\begin{aligned} & \text { Sept.14, } \\ & 1938 \end{aligned}$	B, \#\#	D	Dues woll. Roported weak supily.
$\overline{165}$	23.8	$\begin{aligned} & \text { Sept.15, } \\ & 1938 \end{aligned}$	B, H	D, S	Dag well; origmally cisterm. Water from sandstone.
166	10.7	$\begin{aligned} & \text { Sept.19, } \\ & 1938 \end{aligned}$	B, EI	D,S	Dug well; wood curb and casing. Water from gravel above clay.
170	23.9	$\begin{aligned} & \text { Sept.16, } \\ & 1938 \\ & \hline \end{aligned}$	B, H	D	Dug well; sandstomo curb and casing. Struck water in sandstone at 38 feet; shale at 40 feet.
171	21.7	$\begin{aligned} & \text { Sept.19, } \\ & 1938 \\ & \hline \end{aligned}$	C, 7	D,S	Dug well; sandstono curb and casing. Water from winito rock.
172	Flows	do.	None	N	Oil tost. Measurod flow, 6 gallons a minute from white limestone. Reportod struck water at 3 and at
173	9.9	do.	B, H	D,S	Dug woll. Reported. 60 fuct. Which is now cascd of supplies eight familios during dry soasons.
174	116.3	$\begin{aligned} & \text { oct. } 31, \\ & 1938 \end{aligned}$	Vone	V	Struck wak supply of wator ir sandstone at l27 feet. Three other wells on farm; all have weak supply.
175	54.7	do.	B, H	D, S	Woak supply of water fron sandstons, 60 to ro feet; shale, 71 to 80 feet. Filled to 62 fect.
176	32.4	do.	$\begin{gathered} \mathrm{C}, \mathrm{H}, \mathrm{G}, \\ 1 \frac{1}{2} \\ \hline \end{gathered}$	D, \bar{S}	Reported weak supply from sandstone.
177	11.3	do.	B, H	D, S	Dug well. Struck wak supily of water in sandston at 18 fect.
185	45.8	$\begin{aligned} & \text { Fiov. } 18, \\ & 1938 \end{aligned}$	C, ${ }^{\text {iT }}$	S	Roportod reak supply from shole.
183	13.0	do.	C, ${ }^{\text {P }}$	D, S	Reported flows about one gailon a minute at times.
187	150	$\begin{aligned} & \text { Nov. 21, } \\ & 1938 \end{aligned}$	C, W	D, S	Dug well, surface to f' fee ; drilled to bottom. Galvanized casing.
188	Flows	$\begin{aligned} & \text { Dec. } 21, \\ & 1938 \end{aligned}$	None	5	Estimated flom, 5 to 6 gallons a minute from six openings in limestone. Temperature, 66° F. Known as "Flat
189	Flows	do.	None	S	Estimated flow, one galion a minute from seeps in Iimestone. Temperature, $55^{\circ} \mathrm{F}$.
191	8.1	do.	None	N	Galvanized casing. Reported flows slightly during wet seascn.
194	Flows	$\begin{array}{ll} \hline \text { Dec. } \\ 1938 & \\ \hline \end{array}$	B, H	D,S	Galvanized casing. Estimated flow, one gallon a minute. Temperature, 69° F.
195	Flows	$\begin{array}{ll} \hline \text { Dec. } 2, \\ 1938 \\ \hline \end{array}$	C, ${ }^{\text {r }}$	--	Estimated flow, one gellon a minute from white sand; 240 to 244 feet.
196	4.3	$\begin{aligned} & \text { Dec. I3, } \\ & 1938 \end{aligned}$	C, ${ }^{7}$	D,S	4^{n} feet of casing at top. Seported strong supply irom limestone.
197	Flows	$\begin{array}{ll} \hline \text { Dec. } 22 \\ 1938 \\ \hline \end{array}$	None	D, S	Estinated flow, one gallon a minute from several openings in limestone. Temperature, $67^{\circ} \mathrm{F}$.
198	8.8	do.	B, H	D,S	Due well; rock curb and casing. Reported strong supply from limestone.
199	5.7	do.	B, H	D, S	Do.
200	11.4	do.	C,	D, S	Dug well; concrete curb. Water from sand and gravel.
21	14.3	$\begin{aligned} & \text { Dec. } 13, \\ & 1838 \end{aligned}$	C, 7	D,S	DO.
22	79.3	do.	C, W	D,S	Reported weak supply from limestone.
213	28.8	do.	C, T	5	Iron casing. Reported meak supply from limestone.

Records of wells and sprinss in San Saba County--Continued

NO,	$\begin{aligned} & \text { Distanco } \\ & \text { from } \\ & \text { San Saba } \end{aligned}$	Owner	Driller	Topographic situation	Date com-pleted	$\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { well } \\ & \text { (ft. }) \end{aligned}$	Diam- cter of well (in.)	Height of measur ing point above ground (ft.) a/
204	$\begin{aligned} & 7 \frac{1}{2} \text { mi les } \\ & \text { southwest } \end{aligned}$	Canning \& Wimberly	--	Bed of creck		Spring	--	- -
205	$\begin{aligned} & 9 \frac{1}{2} \text { miles } \\ & \text { wost } \end{aligned}$	T. G. NucGregor	--	do.		Spring	--	--
206	do.	J. R. Polk	-- Smith	In valley	1937	34	36	2.1
207	$\begin{aligned} & 10 \mathrm{miles} \\ & \text { west } \end{aligned}$	W. B. McCutchen	W. B. McCutchen \& Sons	Flat	1934	25	--	2.1
a/209	do.	T. G. MeGrogor	J. M. Virdell	Slopo	1832	700	--	--
210	$8 \frac{1}{2} \text { miles }$	J. A. Gaddy	L. L. Brom	do.	1926	34	36	1.3
211	$\begin{aligned} & 10 \frac{1}{2} \text { miles } \\ & \text { northwost } \end{aligned}$	N. McDaniel	--	$\begin{aligned} & \text { Head of } \\ & \text { draw } \end{aligned}$		Spring	--	--
212	$\begin{aligned} & 11 \text { miles } \\ & \text { west } \end{aligned}$	Mrs. E. M. Hayes	C. Newby	$\begin{aligned} & \text { Top of } \\ & \text { ridge } \end{aligned}$	1925	53	6	--
214	do.	玉. M. Hayos	--	Bed of creak		Spring	--	--
215	$\begin{aligned} & 12 \mathrm{milos} \\ & \text { west } \\ & \hline \end{aligned}$	Mrs. B. F. Mann	Woolsey Bros.	$\begin{aligned} & \text { Top of } \\ & \text { ridge } \\ & \hline \end{aligned}$	1933	72	8	--
216	$\begin{aligned} & 12 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	Jason Rogors	Mann Bros.	do.	1936	65	--	0
217	$\begin{aligned} & 13 \frac{1}{3} \text { miles } \\ & \text { most } \end{aligned}$	Fi, D. Brom	Woolsey \& Knutson	$\begin{aligned} & \hline \text { In } \\ & \mathrm{valley} \end{aligned}$	--	626	6	0.2
218	$\begin{aligned} & 14 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	City of Richland Springs	--	Creek bottoms	--	Spring	--	--
219	$\begin{aligned} & 15 \mathrm{miles} \\ & \text { west } \end{aligned}$	T. A. Garrett,	J. C. Virdell	Hilitop	--	115	--	1
220	$\begin{aligned} & 14 \text { milos } \\ & \text { west } \\ & \hline \end{aligned}$	G. M. Lowis	do.	Slopo	--	83	6	0.3
[1221	$\begin{aligned} & 14 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	W. E. Mann	Woolsey \& Virdell	Top of ridge	1938	$890+$	--	--
[12	$\begin{aligned} & 14 \text { miles } \\ & \text { nest } \end{aligned}$	G. M. Lewis	-- Lewis	Slope	Old	185	6	--
223	$\begin{aligned} & 1.4 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	T. A. Garrott	T. A. Garrott	---	1938	360+	--	\square
224	do.	J. E. Gibbons	J. C. Virdell	Top of ridge	1938	994	6	0.3
225	$\begin{aligned} & 14 \text { miles } \\ & \text { west } \\ & \hline \end{aligned}$	J. W. Gibbons	do.	Flat	1928	387	6	1
226	$\begin{aligned} & 13 \frac{1}{2} \text { miles } \\ & \text { wost } \end{aligned}$	E. N. Taylor	---	--	01 d	15	--	0
227	$\begin{aligned} & 12 \mathrm{milos} \\ & \text { west } \end{aligned}$	J. 0. Noore	J. M. Virdell	Flat	1929	701	6	--
228	do.	T. G. McGrogor	do.	Top of ridge	-	120	6	0.5
229	$\begin{aligned} & 11 \text { miles } \\ & \text { west } \\ & \hline \end{aligned}$	O. P. Leonard	--	Bed of creck		Spring	--	--
230	do.	do.	--	$\begin{aligned} & \text { Side of } \\ & \text { bluff } \end{aligned}$		Spring	--	--
231	do.	do.	--	Bed of creek		Spring	--	--

No	$\begin{aligned} & \text { Water } \\ & \hline \text { Depth } \\ & \text { below } \\ & \text { measur } \\ & \text { ing po } \\ & \text { (ft.) } \end{aligned}$	Ievel Date of measure-ment int	Pump and power b/	Use of water c/	Remarks
2	Flows	$\begin{array}{ll} \hline \text { oct. } & 4, \\ 1938 \end{array}$	None	D, S	Measured flow, 24 gallons a minute from one opening in limestone. Temperature, $69^{\circ} F_{0}$ Known as "Fool Sprine,
25	Flows	$\begin{aligned} & \mathrm{Feb} .27, \\ & 1939 \end{aligned}$	None	D,S,I	g/ Measured flow 11 gallons a minute from many openings in conglomerate. Temperature, 66° F. Known as
29	23.9	$\begin{aligned} & \mathrm{Feb} \cdot 28, \\ & 1939 \end{aligned}$	B, H	D,S	Dug well. Concrete curb and casing. Reported strong supply. "Dripping Spring."
207	24.2	$\begin{aligned} & \text { Nov. } 15, \\ & 1938 \end{aligned}$	C, P	D, S, I	Dug well. Water from conglomerate.
209		--	None	N	Reported flowed from 700 Peet when drilled; water high ly mineralized. Filled and abandoned.
210	29.9	$\begin{array}{\|l} \hline \text { Dec. } \\ 1938 \\ \hline \end{array}$	C, W	D,S	Dug well. Reported strong supply from gravel and sand. Located at Algerita.
211	Flows	$\begin{aligned} & \text { Oct. } \\ & 1938 \end{aligned}$	None	D, S	Estimated flow, 1 to 2 gallons a minute from seepage in conglomerate. Temperature, $72^{\circ} \mathrm{F}$. Known as
212	44	$\left\|\begin{array}{l} \text { Oct. 10, } \\ 1938 \end{array}\right\|$	0, W	D, S, I	Galvanized casing, surface to TMMDaniel Spring." bottom. Reported strong supply from white sand, 48 to
214	Flows	$\begin{array}{\|l} \text { Oct. } \\ 1938 \end{array}$	None	D,S	Seeps from conglomerate. Temperature, ${ }^{71^{\circ}} 53$ feet. F.
21.5	--	--	C, WT	D,S	Steel casing. Reported drilled, bailed 20 gallons a minute. Water from conglomerate below 57 feet.
216	61.8	$\begin{aligned} & \hline \text { Oct. } 25, \\ & 1938 \\ & \hline \end{aligned}$	None	N	Reported weak supply, from sand and gravel. Struck water at 60 feet.
217	8.2	do.	C, W	D, S	90 feet of galvanized casing at top. Reported has yielded 120 gallons a minute for 2 to 3 hours when
218	Flows	$\left\lvert\, \begin{aligned} & \text { Oct. } 10, \\ & 1938 \end{aligned}\right.$	None	P, I	f/ Neasured flow, 1,535 gallons a minute \quad tested.
219	42	$\begin{aligned} & \text { Nov. } 14, \\ & 1938 \\ & \hline \end{aligned}$	C, W	5	Estimated yield, $1 \frac{1}{2}$ Knom as "Richland"Springn" gallons a minute from limestone.
220	19.9	$\begin{array}{ll} \hline \text { Nov. } & 4, \\ 1938 \\ \hline \end{array}$	C, 7	S	Reported 4.5 feet drawdom arter pumping 2 to 3 gatlons a minute for $\frac{1}{4}$ hour. 18 feet galvanized casing at top.
221	--	--	--	--	Drilled to 510 feet in 1923 ; being deepened when visit ed, Nov. 1, 1938.
222	--	--	None	N	Filled above water level, Nov. 4, 1938.
223	20.3	$\begin{array}{ll} \\ \hline \text { Nov. } & 4, \\ 1938 & \end{array}$	--	-	illing when visited, Nov. 4, 1938. See pertial log.
224	126.9	do.	--	S	Not equipped with windmill, Nov. 4, 1938. "Home Pasture well."
225	$80+$	do.	C, W	5	Reported strong supply frem red sand. "Plank Pens
226	0	$\begin{array}{ll} \hline \text { Nov. } & 2, \\ 1938 & \end{array}$	$\begin{gathered} \mathrm{C}, \mathrm{~T}, \mathrm{G}, \\ 9 \end{gathered}$	D,S	Dug well. Reported 1 foot drawdom after pumping 450 gallons a minute for 24 hours. Flows in wet season.
227	18	el	C , ${ }^{\text {Wh }}$	5	441 feet steel casing at top. Temperature, 71° F. Reported 230 feet drawdom after pumping 2 gallons a
228	50.8	$\begin{aligned} & \text { Oct. } 25, \\ & 1938 \end{aligned}$	C, 7	5	Galvanized minute for several hours. See log. casing. Estimated yield, 1 to 2 gallons a minute.
229	Hlows	$\begin{array}{ll} \begin{array}{l} \text { Oct. } \\ 1938 \end{array} \\ \hline \end{array}$	None	S	Measured flow, $5 \frac{t}{2}$ gallons a minute from seeps in limestone. Temperature, 710 F .
230	Flows	$\begin{aligned} & \text { Oct. 28, } \\ & 1938 \end{aligned}$	None	, S, I	f/ Mieasured flow, l, 710 gallons a minute from one opening in limestone. Temperature, $72^{\circ} \mathrm{F}$. Known as "Baker
231	Flows	$\begin{array}{ll} \text { Oct. } \\ 1938 \end{array}$	None	S	$\mathrm{g} /$ Measured flow, 15 gallons a minute from Spring. " two openings in limestone. Tomperature, 71° F.

Records of wolls and springs in San Saba County-Continued

NO.	Distenco from San Saba	Owner	Driller	Topogrpahic situation	Date com-pletod	Depth of Well (It.)	Diam- oter of WOLI. (in.)	$\begin{aligned} & \text { Hoight of } \\ & \text { moasuring } \\ & \text { point } \\ & \text { above } \\ & \text { ground } \\ & \text { (ft.) a/ } \end{aligned}$
233	$\begin{aligned} & 11 \text { miles } \\ & \text { west } \end{aligned}$	O. P. Loonard	--	$\begin{array}{\|l} \hline \text { Base of } \\ \text { hill } \\ \hline \end{array}$	$-\mathrm{S}$	$\begin{aligned} & \text { Spring } \\ & 1 \end{aligned}$	--	--
d/234	do.	do.	--	Rivor bottoms		Spring	--	--
235	$\begin{aligned} & \text { ll⿳ } \mathrm{miles} \\ & \text { wost } \end{aligned}$	do.	--	$\begin{aligned} & \text { Basc of } \\ & \text { hill } \end{aligned}$	-- S	Spring	--	--
236	$\begin{aligned} & 13 \mathrm{miles} \\ & \text { west } \end{aligned}$	James Sloan	--	$\begin{aligned} & \text { Rivor } \\ & \text { bottoms } \end{aligned}$	-- S	pring	--	--
a/237	do.	do.	$\begin{gathered} \text { Johnson Parsons, } \\ \text { ot al } \\ \hline \end{gathered}$	In cany on	1921	1,035	--	--
238	$\begin{aligned} & 13 \frac{2}{2} \text { miles } \\ & \text { west } \end{aligned}$	do.	---	do.		Spring	--	--
239	$\begin{aligned} & 14 \text { milos } \\ & \text { west } \end{aligned}$	do.	-	$\begin{aligned} & \text { Bod of } \\ & \text { crook } \end{aligned}$		Spring	--	--
240	$\begin{aligned} & 14 \frac{1}{5} \text { miles } \\ & \text { southwost } \end{aligned}$	do.	--	do.		Spring \qquad	--	--
241	$\begin{aligned} & 14 \frac{1}{2} \text { miles } \\ & \text { wost } \end{aligned}$	do.	-"	do.		pring	--	--
242	$\begin{aligned} & 15 \frac{1}{2} \text { milos } \\ & \text { west } \end{aligned}$	T. S. Lomons	--	Bank OI rivor		Spring	--	--
243	$\begin{aligned} & 16 \mathrm{miles} \\ & \text { wost } \end{aligned}$	Miss Laure Sloan	--	do.		Spring	--	--
244	do.	T. S. Lomons	--	do.	--S	Spring	--	-
245	$\begin{aligned} & 15 \frac{1}{2} \mathrm{miles} \\ & \text { west } \end{aligned}$	do.	-- Sullivan	$\begin{aligned} & \text { Fill- } \\ & \text { side } \end{aligned}$	1936	30	24	3
247	$\begin{aligned} & 14 \frac{1}{2} \text { milos } \\ & \text { wost } \end{aligned}$	Will Doran	--	River bottoms	--	20	40	2.9
248	$\begin{array}{\|l\|} \hline 13 \frac{1}{2} \text { miles } \\ \text { west } \end{array}$	Pete Sloan	J. O. Virdell	Hilltop	1938	825	--	--
249	$\begin{aligned} & 16 \mathrm{miles} \\ & \text { west } \end{aligned}$	J. E. Gibbons	do.	do.	1930	409	--	--
250	$\begin{aligned} & 15 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	J. W. Gibbons	do.	Slope	1933	588	-	--
251	do.	do.	do.	$\begin{aligned} & \text { In } \\ & \text { valley } \end{aligned}$	Old	176	--	-
252	do.	do.	do.	Hilltop	Old	720	6	---
253	do.	do.	do.	do.	1916	1,040	6	0.3
254	$\begin{aligned} & 17 \mathrm{miles} \\ & \text { mest } \end{aligned}$	J. E. Gibbons	do.	do.	1933	686	6	0.5
255	$\begin{aligned} & 18 \text { miles } \\ & \text { west } \end{aligned}$	do.	dc.	Slope	1933	456	6	--
256	$\begin{aligned} & 19 \mathrm{miles} \\ & \text { west } \end{aligned}$	J. W. Gibbons	do.	$\begin{aligned} & \text { Top of } \\ & \text { riage } \end{aligned}$	1938	914	--	0
257	do.	do.	do.	$\begin{aligned} & \text { Gentle } \\ & \text { slope } \end{aligned}$	1938	300	8	0

a) Measuring point was usually top of casing, top of well curb or top of pipe clamp; it was above ground level unless indicated by (-) sign for below ground level. B, bucket; C, cylinder; W, windmill; T, turbine; G, gasoline; \mathbb{F}, electric; H, hand; number indicates horsepower.
D, domestic; S, stock; I, irrigetion; Ind, industrial; P, public; N, not used.

George H. Shafer, Project Superintendent

d/ No water sample collocted for analysis.
y Vater level reported.
$\overline{f /}$ Current meter measuroment by cngineers of Geological Survoy, U.S.D.I.
g/ Weir measurement by project superintendent.

Records of wells and sorings in San Saba County--Continued

NO.	$\left\lvert\, \begin{gathered} \text { Distance } \\ \text { from } \\ \text { San Saba } \end{gathered}\right.$	Owner	Driller	Topogra.ohic situation	Date com-pleted	$\left\lvert\, \begin{gathered} \text { Depth } \\ \text { of } \\ \text { Well } \\ \text { (ft. }) \end{gathered}\right.$	Diameter of well (in.)	$\begin{aligned} & \text { Height of } \\ & \text { measuring } \\ & \text { point } \\ & \text { above } \\ & \text { ground } \\ & \text { (it.) al } \end{aligned}$
258	$\begin{aligned} & 19 \text { miles } \\ & \text { west } \end{aligned}$	J. V. Gibbons	J. C. Virdell	Slope	1932	288	6	--
259	$\begin{aligned} & 20 \mathrm{miles} \\ & \text { west } \end{aligned}$	do.	do.	In draw	1928	268	6	--
260	$\begin{aligned} & 20 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	do.	do.	Gentle slope	1987	312	8	1
261	$\begin{aligned} & 21 \frac{1}{2} \text { miles } \\ & \text { west } \\ & \hline \end{aligned}$	do.	do.	$\begin{aligned} & \text { Top of } \\ & \text { ridge } \end{aligned}$	$\underline{1530}$	342	6	--
262	$\begin{aligned} & 22 \text { miles } \\ & \text { west } \end{aligned}$	do.	do.	do.	1932	900	6	--
263	$\begin{aligned} & 20 \text { miles } \\ & \text { west } \end{aligned}$	do.	do.	Hilltop	1937	548	6	--
264	do.	do.	do.	do.	1s32	452	6	--
265	$\begin{aligned} & 19 \text { miles } \\ & \text { west } \end{aligned}$	20.	do.	Slope	1936	313	6	--
266	$\begin{aligned} & 18 \mathrm{miles} \\ & \text { west } \end{aligned}$	do.	do.	Creek bottoms	1936	448	6	--
267	$\begin{aligned} & 17 \frac{1}{2} \text { miles } \\ & \text { west } \\ & \hline \end{aligned}$	J. E. Gibbons	do.	Gentle slope	1925	440	6	--
268	$\begin{aligned} & 17 \mathrm{miles} \\ & \text { west } \\ & \hline \end{aligned}$	do.	do.	Side of bluff		Spring	--	--
a/269	$\begin{aligned} & 17 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	do.	do.	Slopo	1938	494	6	8.0
270	$\begin{aligned} & 19 \frac{1}{2} \mathrm{miles} \\ & \text { west } \end{aligned}$	do.	do.	Top of ridge	1528	488	6	--
271	$\begin{aligned} & 19 \mathrm{miles} \\ & \text { west } \end{aligned}$	do.	do.	Idge of bluff	1924	107	6	--
272	$\begin{aligned} & 18 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	do.	--	River bottoms		Spring	--	--
273	$\begin{aligned} & 19 \mathrm{miles} \\ & \text { west } \end{aligned}$	Jim Chadick	--	do.		Spring	--	--
d/274	$\begin{aligned} & 19 \text { miles } \\ & \text { southwest } \end{aligned}$	do.	--	do.		Spring	--	--
275	$\begin{aligned} & 22 \frac{1}{2} \text { miles } \\ & \text { west } \end{aligned}$	 Callahan	--	Edge of bluff	01a	9	24	1
276	do.	do.	--	Slope	O1d	68	6	0.4
277	do.	do.	--	--	01d	793	--	--
2/278	$\begin{aligned} & 24 \text { miles } \\ & \text { southwest } \end{aligned}$	T. M. Holt	--	Bed of dram		Spring	--	--
279	$\begin{aligned} & 25 \text { miles } \\ & \text { southwest } \end{aligned}$	J. S. Capps	--	Bed of oreek		Spring	--	--
280	$\begin{aligned} & 26 \text { miles } \\ & \text { southwest } \end{aligned}$	do.	--	Head of draw		Spring	--	--
a/281	do.	Mrs. Reilly Latham	--	$\begin{gathered} \text { Gentle } \\ \text { slo.je } \end{gathered}$	--	146	--	0
382	$\begin{aligned} & 27 \frac{1}{2} \text { miles } \\ & \text { southwost } \end{aligned}$	T. H. Latham	--	Slope	--	151	6	0.5
383	do.	--	--	Hilltop	--	75	6	0.6

Goorgo H. Shafor, Froje ct Superintondont

iva.	Water Depth below measur ing po (ft. $)$	level Dato of measure- $-\quad$ ment	$\begin{aligned} & \text { Pump } \\ & \text { and } \\ & \text { power } \\ & \text { b/ } \end{aligned}$	Use of water c/	Remaris
258	--	--	C, W	D, S	Earth rescrvoir located 225 foet to south. Galvanized casing. "North Elin well."
259	--	--	C, W	D,S	Estimated yield, 4 to 5 gallons a minute. "Three Gates well."
260	74.7	$\begin{aligned} & 10 \mathrm{t} .27 \\ & 1938 \end{aligned}$	C, 丽	D, S	Water levol measured whilo windmill pumping about 5 gallons a minute. "Oakdale well."
261	--	--	C, W	S	Gal vanized casing. Reported strong supply. "Henry White well."
262	--	--	C, Wh	5	"West Red Tank well."
263	--	--	C, W	5	Galvanized casing. "Mountain Tank well."
264	--	--	C, W	S	Steel casing. Located ebout one mile south 43° east from well 263 . "High well,"
265	--	--	C, iv	S	Steel casing. "South Elm well."
266	$100 \pm$	e/	C, W	S	lo feet of galvanized casing at top. Reported strong supply. "China well."
267	--	--	C, 7	D,S	Steel casing. "Hog Camp wel1."
268	Flows	$\begin{aligned} & \text { Novo } 17, \\ & 1938 \\ & \hline \end{aligned}$	None	N	Estimated flow during rainy season, $\frac{1}{2}$ gallon a minute Temperature, $65^{\circ} \mathrm{F}$. Known as "Woif Spring."
269	172.4	do.	C, W	S	Reported strong supply. "Roosevelt well."
270	--	--	C, गT	S	Galvanized casing. Reported strong supply. "Ward \& Burleson west well."
271	12	e/	$\begin{gathered} \mathrm{C}, \mathrm{G}, \\ 3 \end{gathered}$	D, S	Reported flows during wet season. "Ward \& Burleson main well."
272	--	$\begin{aligned} & \text { Nov. } 29, \\ & 1938 \\ & \hline \end{aligned}$	None	N	Estimated flow, 3^{n} to 50 galions a minute from one ovening in limestone. Temperature, $70^{\circ} \mathrm{F}$.
273	--	$\begin{aligned} & \text { Feb. } 25, \\ & 1939 \end{aligned}$	None	5	f/ Measured yield, 380 gallons a minute from one opening in limestone. Temperature, $71^{\circ} \mathrm{F}$. Known as
274	--	$\begin{aligned} & \text { Nov. } 29, \\ & 1938 \\ & \hline \end{aligned}$	None	N	Weter flows from many openings in "Sycamore Spring." limestone. Temperature, 71° F. Kmown as "Cottonwood
275	2.5	$\begin{aligned} & \text { Nov. } 30, \\ & 1938 \\ & \hline \end{aligned}$	None	N	Dug pit around seep to form weil. Report- Spring." ed strong supply.
276	19.9	do.	C, W	--	Water level measured while windmill pumping. Reported weak supply.
277	$200+$	do.	C, 7	D,S	Reported strong supply.
278	Flows	$\begin{aligned} & \text { Mar. } 10, \\ & 1939 \\ & \hline \end{aligned}$	None	S	Estimated flow, 15 to 20 gailons a minute from seeps in Iimestone. Temperature, $700^{\circ} \mathrm{F}$. Known as "Fecan
279	Flows	do.	None	S	Estimated flow, 150 to $2^{\prime \prime}$ gallons a minute from seeps in limestone. Temperature, $70^{\circ} \mathrm{F}_{2}$
280	Flows	do.	None	D,S,I	Estimated flow, Known as "Diggins Creek Spring:" 18 to 15 gallons a minute from one opening in limestone. Reported spring is affected by drought. Temperature, $69^{\circ} \mathrm{F}$. Known as "Capps Spring."
281	2.4	do.	None	N	
232	52.1	do.	C, ${ }^{\text {\% }}$	D, S, I	Gelvanized casing. Reported strong supply.
833	36.3	do.	C, W	S	Reported strong supply.

Records of wells and springs in San Saba County--Continued

3to.	$\begin{aligned} & \text { Distance } \\ & \text { from } \\ & \text { San Saba } \end{aligned}$	Owner	Driller	Topographic situation	Date com-pleted	$\begin{array}{\|c\|} \text { Depth } \\ \text { of } \\ \text { well } \\ \text { (ft. }) \end{array}$	Diam- eter of well (in.)	Height of measurine point above ground (ft.) a/
284	$\begin{aligned} & 26 \frac{1}{2} \text { miles } \\ & \text { southivest } \end{aligned}$	Ium Bartor	--	Bed of creek	--	11	60	2.8
285	$\begin{aligned} & 25 \text { miles } \\ & \text { southiost } \end{aligned}$	Nrs. Mike Miller	--	$\begin{aligned} & \text { Gentio } \\ & \text { slope } \\ & \hline \end{aligned}$	01d	180	6	1.3
a 286	$\begin{aligned} & 22 \frac{1}{2} \text { miles } \\ & \text { southwest } \end{aligned}$	H. G. Hollingsworth	J. M. Virdell	Hilltop	--	392	--	--
287	$\begin{aligned} & 23 \frac{1}{2} \text { iniles } \\ & \text { southwest } \end{aligned}$	Vernon Miller	J. C. Virdell	$\begin{aligned} & \text { Gentio } \\ & \text { slopo } \\ & \hline \end{aligned}$	--	220	6	0
288	$\begin{array}{\|l\|} \hline 23 \text { miles } \\ \text { southwest } \end{array}$	-- Callahan	Iynn Harlow	Flat	01d	310	--	--
289	$\left\lvert\, \begin{aligned} & 24 \text { miles } \\ & \text { southrest } \end{aligned}\right.$	I. R. Britton	--	Creck bottoms	--	105	6	0.9
290	$\begin{aligned} & 23 \frac{1}{2} \text { milos } \\ & \text { southwest } \end{aligned}$	W. H. Kothmann	--	Top of ridgo	01d	78	--	0.5
291	$\begin{array}{\|l\|} 23 \text { miles } \\ \text { southwest } \end{array}$	J. T. Bush	--	Bed of croek		Spring	--	--
292	do.	do.	Iynn Harlow	Near creek	--	57	6	1.4
295	$\begin{array}{\|l} 22 \text { miles } \\ \text { southwest } \end{array}$	Vernon Vililer	--	Hillto,	01d	180	--	0.5
1/29A	do.	do.	--	do.	--	--	--	0.2
295	$\begin{aligned} & 20 \frac{1}{2} \text { miles } \\ & \text { southwest } \end{aligned}$	Henry Taylor	J. C. Virdell	Noar crock	--	250	--	1
296	do.	do.	--	Hillto	01a	250	--	--
297	19⿺𠃊	do.	J. C. Virdell	$\begin{aligned} & \text { In } \\ & \text { vall gy } \end{aligned}$	1958	374	--	0.2
298	$\begin{aligned} & 18 \frac{1}{2} \text { miles } \\ & \text { southrest } \end{aligned}$	do.	--	Crock bottons	01d	250	--	0.3
$3 / 299$	19 miles southwest	do.	J. C. Virdell	Hill top	1938	538	--	--
500	$\left\lvert\, \begin{aligned} & 18 \text { miles } \\ & \text { southwest } \end{aligned}\right.$	Buster Pool	do.	Near creek	1936	800	--	,
E'I	$\begin{aligned} & 18 \frac{1}{2} \text { milos } \\ & \text { southwest } \end{aligned}$	Jim Chadwick	do.	In dreit	--	250	--	0.6
32	$\begin{aligned} & \hline 16_{\mathrm{c} \text { miles }} \\ & \text { southwest } \end{aligned}$	Buster P001	do.	Ton of ridgo	1938	475	6	--
513	$\begin{aligned} & 14 \frac{1}{2} \text { miles } \\ & \text { southwost } \end{aligned}$	do.	do.	In drav	01d	$200+$		I
504	do.	do.	do.	$\begin{aligned} & \text { In } \\ & \text { vall } \mathrm{cy} \end{aligned}$	O1d			1
325	$\begin{aligned} & 16 \frac{1}{2} \text { milos } \\ & \text { southwest } \\ & \hline \end{aligned}$	IViss Amy Sloan	do.	$\begin{aligned} & \text { Filla- } \\ & \text { side } \\ & \hline \end{aligned}$	1923	454	--	--
306	$\begin{aligned} & 17 \frac{1}{2} \mathrm{miles} \\ & \text { west } \end{aligned}$	Jim Chedrick	--	Bed of crook		Spring	--	--
307	$\begin{aligned} & 17 \text { miles } \\ & \text { southwost } \end{aligned}$	do.	--	Bed of rivor		Spring	--	--
308	$\begin{aligned} & 15 \text { miles } \\ & \text { wost } \end{aligned}$	Jim Sloan	Douglas Cloary	Top of ridge	1930	358	--	0.9
309	$\begin{aligned} & 9 \frac{t}{2} \text { miles } \\ & \text { southwest } \end{aligned}$	E. A. Kuykondall	--	Bed of crock		Spring	--	--

	Water level		$\begin{gathered} \text { Pump } \\ \text { and } \\ \text { power } \\ \text { b/ } \end{gathered}$	$\begin{gathered} \text { Use } \\ \text { of } \\ \text { water } \\ \text { c/ } \end{gathered}$	Remeriss
No.	Depth below measur ing po (ft.)	Date of measure- int ment			
284	6.1	$\begin{aligned} & \text { Mar. } 1 n, \\ & 1939 \end{aligned}$	C, 7	D, S	Dug well. Water from sandstone.
285	109	do.	C, W	D,S	Water level measured while windmill pumping. Galvanized casing.
$\overline{286}$	--	--	--	D,S	See log.
287	27.9	$\begin{aligned} & \hline \text { Dec. } 9, \\ & 1938 \end{aligned}$	C, 7	S	Reported 36 feet drawdom after pumping 2 to 3 gellons a minute for several hours.
288	--	--	C, it	D,S	Reported strong supply from sandstone.
289	48.4	NOV. 9, 1938	C, W	D	10 feet of casing at top. Water from sandstone.
290	28.3	do.	C, W	D,S	Water level measured while windmill pumping slightly. Water from sandstone.
291	Flows	$\begin{aligned} & \text { Nov. } 8, \\ & 1938 \end{aligned}$	None	S	Estimated flow, 2 gallons a minute from many seeps in sandstone blocks. Temperature, $68^{\circ} \mathrm{F}$. Known as
292	32.2	do.	C, H	D, S	10 feet of casing at top. Reported "Draper Spring." strong supply.
293	128.1	Dee. 9,	C, W	D, S	Estimated yield, 2 to 3 gailons a minute.
294	127.7	do.	C, W	N	Located 20 feet northeast of well 293.
295	133.9	$\begin{aligned} & \text { Dec. } 8, \\ & 1938 \\ & \hline \end{aligned}$	C, 7	S	Water level measured while windmill pumping about 5 gallons a minute.
296	110	e/	C, 7	D,S	Reported strong supply.
$\overline{297}$	61.1	$\begin{array}{ll} \text { Dec. } 8, \\ 1938 \end{array}$	C, ${ }^{\text {W }}$	S	Water level measured while windmill pumping about 3 gallons a minute.
298	79.6	do.	C, W	S	Do.
299	150	e/	C, W	5	Reported strong supply from sandstone.
719	112.4	$\begin{aligned} & \text { Dec. } 6, \\ & 1938 \end{aligned}$	C,	5	Located on bank of Deep Creek. Fstimated yield, 4 to 5 gallons a minute.
311	192.6	$\begin{aligned} & \hline \text { Dec. } 5, \\ & 1938 \\ & \hline \end{aligned}$	C, 7	D, S	Estimated yield, 4 to 5 gallons a minute.
$3: 2$	200	$\begin{array}{ll} \hline \text { Dec. } \\ 1938 \\ \hline \end{array}$	C, m	S	DO.
3	106.2	$\begin{array}{ll} \hline \text { Dec. } & 5, \\ 1938 \end{array}$	C, W	D, 5	Reported strong supply.
$3{ }^{3}$	104.6	do.	C, 7	D, S	Estimated yield, 4 to 5 gallons a minute. Located 750 foet north 15° west of well 303.
305	--	--	C, 1	D,S	Estinated yield, 4 to 5 gallons a minute.
316	Flows	$\begin{aligned} & \text { NOV. } 29, \\ & 1938 \end{aligned}$	None	5	f Measured flow, l, 360 gellons a minute from crevice in limestone. Temperature, 7:O F. Known as "Deep
37	Flows	do.	None	N	Estimated flow, $50 n$ to 5 B gallons a minute from 6 openines in limestone. Temperature,
9	174.9	$\begin{aligned} & \text { Dec. 19, } \\ & 1938 \end{aligned}$	C, W	5	Water level measured $\left[70^{\circ} F_{0}\right.$ Known es "Big Springs. while windmill pumping 3 to 4 gallons a minute.
$5 \cdot 9$	Flows	$\begin{aligned} & \text { Oct. } 3, \\ & 1938 \end{aligned}$	None	S	g/Measured flow, 1,60! gallons a minute from many openings in gravel and limestone. Temperature, $70^{\circ} \mathrm{F}$, Known as "Wallace Creek Spring."

Records of wolls and springs in San Seba County--Continued

No.	Distanco fromi San Saba	Ormon	Drillor	Topographic situation	Dato com-plotod	$\left\|\begin{array}{c} \text { Depth } \\ \text { of } \\ \text { well } \\ \text { (ft. }) \end{array}\right\|$	$\begin{array}{\|l} \text { Diam- } \\ \text { eter } \\ \text { of } \\ \text { woll } \\ \text { (in. }) \end{array}$	Height of measuring point above ground (it.) a/
310	$\begin{aligned} & 8 \text { miles } \\ & \text { southwost } \end{aligned}$	Gone Nored	--	Slopo	--		- $5 \frac{1}{2}$	1.2
611	do.	R. N. Manley	--	Bed of creek	--	52	--	1.1
312	$\begin{aligned} & 7 \frac{1}{2} \text { miles } \\ & \text { southwest } \end{aligned}$	C. B. Lembert	--	In valley		Spring	--	--
	$\begin{aligned} & 7 \text { miles } \\ & \text { southwest } \end{aligned}$	do.	Frank Comer	Near creek	--	41	48	0.1
314	$6 \frac{1}{3}$ miles southwest	Earnest Conner	Robert Virdell	$\begin{aligned} & \text { Hill- } \\ & \text { side } \\ & \hline \end{aligned}$	--	257	6	0
	$\begin{aligned} & 6 \text { miles } \\ & \text { southwest } \end{aligned}$	Jim Walker	--	In drav		Spring	--	--
316	$\begin{aligned} & 6 \frac{1}{2} \text { miles } \\ & \text { southwest } \end{aligned}$	R. N. Manley	--	Flat	1530	252	--	1
317	$\begin{aligned} & 7 \frac{1}{2} \text { miles } \\ & \text { southwest } \end{aligned}$	do.	--	$\begin{aligned} & \text { Top of } \\ & \text { ridge } \end{aligned}$	1929	246	--	--
318	8: $\frac{1}{2}$ miles southwest	do.	--	do.	O1a	300	--	1
319	$9 \frac{1}{2}$ miles southwest	Gene Nored	--	Bed of creek		Sping	--	--
320	10 miles southwest	do.	--	do.		Spring	--	--
321	$10 \frac{1}{2} \mathrm{miles}$ southwest	R, N. Manley	--	Slope	--	$200+$	$+-$	--
323	$\begin{aligned} & 14 \frac{1}{2} \text { miles } \\ & \text { southwest } \end{aligned}$	Miss Laura Sloan	---	$\begin{array}{\|l\|} \hline \text { Side of } \\ \text { draw } \\ \hline \end{array}$	1936	$\begin{array}{r} 250+ \\ \hline \end{array}$		--
324	do.	Nored, Sloan \& Taylor	J. C. Virdell	Hilltop	--	530	--	--
325	$\begin{aligned} & 15 \text { miles } \\ & \text { southwest } \end{aligned}$	E, A. Kuykendall	--	do.	1937	445	--	--
326	$\begin{aligned} & 16 \frac{1}{2} \text { miles } \\ & \text { southwest } \end{aligned}$	Buster Pool	J. C. Virdell	Slope	1932	$400+$	5	--
327	$\begin{aligned} & 18 \text { miles } \\ & \text { southwest } \end{aligned}$	Canning \& Winberly	--	do.	01d			--
328	$\begin{aligned} & 19 \text { miles } \\ & \text { southwest } \end{aligned}$	do.	J. C. Virdell	$\begin{aligned} & \text { In } \\ & \text { valley } \end{aligned}$	--	150	--	1
329	$\begin{aligned} & 19 \frac{1}{2} \text { miles } \\ & \text { southwest } \end{aligned}$	Henry Taylor	--	Creek bottoms	--	Spring	--	--
350	do.	do.	--	do.	--	20	60	2
331	$\begin{aligned} & 18 \text { miles } \\ & \text { south } \end{aligned}$	Ed. Lewis	- Brom	do.	1910	--	--	--
332	$\begin{aligned} & 18 \frac{1}{\approx} \text { miles } \\ & \text { south } \\ & \hline \end{aligned}$	Frank Gray	do.	do.	1900	150	$4 \frac{1}{2}$	--
333	do.	V. R. Maddox	J. Lowe sc--Ray	do.	1518	90	--	--
334	$\begin{aligned} & 18 \text { miles } \\ & \text { south } \end{aligned}$	Will Hart	--	$\begin{aligned} & \text { Near } \\ & \text { lake } \end{aligned}$	${ }^{--}$	42	6	0.9
d $/ 335$	do.	--	--	Gentio slope	1930	140	6	0.5
336	$\begin{aligned} & 16 \text { miles } \\ & \text { south } \end{aligned}$	T. J. Bowman	-- Jester	Flat	1918	280	6	1.6

George H．Shafer，Project Superintondent

WO．	$\begin{array}{\|c} \hline \text { Wate } \\ \text { Depth } \\ \text { below } \\ \text { measu } \\ \text { ing p } \\ \text { it. it. } \end{array}$	level Date of measure－ －ment	Pump and power b／	$\begin{array}{\|c\|} \text { Use } \\ \text { of } \\ \text { water } \\ \text { c/ } \end{array}$	Renarks
310	60.5	$\begin{aligned} & \text { Sept. } 9, \\ & 1938 \\ & \hline \end{aligned}$	C，${ }^{\text {¢ }}$	S	Steel acsing．Estimated yicid， 3 to 4 gallons a minuto．
311	19.3	do．	C， 7	5	Known as＂Buil Mill．＂
312	Flows	$\left\lvert\, \begin{aligned} & \operatorname{Jan}_{\cdot} 25, \\ & 1939 \end{aligned}\right.$	None	S，I	g／Measured flow， 93 gallons a minute from many open－ ings in limestone．Reported seldom goes dry．Tem－ porature， 69° F．Knom as＂Shoat Spring．＂
313	7.3	$\begin{aligned} & \text { Dec. } 13, \\ & 1938 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{C}, \mathrm{H}, \mathrm{G}, \\ 8 \end{gathered}$	D，I	Dug well．Reported 2 fect drawdown after pumping $3 n$ to 49 gallons a minute for 12 hours．
314	2	e／	C，G， -	D， 5	Reported flows in wet season．Struck water at 170 feet．Temperature， $72^{\circ} \mathrm{F}$ e
315	Flows	$\begin{aligned} & \text { Sept. } 5, \\ & 1938 \\ & \hline \end{aligned}$	None	D，S	Estimated flow， 5 to 10 gallons a minute from openings in limestone，Temporature， $71^{\circ} \mathrm{F}$ ．Known as＂Walker
316	101	e／	C， 7	S	Reported yield， 5 to 8 gallons a minute．Springo＂
317	149	c／	C，W	S	Do．
318	162.2	$\begin{aligned} & \text { Sept. } 9, \\ & 1938 \end{aligned}$	$\mathrm{C},{ }^{\text {TT }}$	D，S	Reported strong supply．
319	FIOWS	$\begin{array}{ll} \hline \text { Oct. } & 3, \\ 1938 \end{array}$	None	S	Meásured flow， 20 galions a minute from one opening in gravel．Temperature， 70° ．${ }^{\circ}$ ．
369	Flows	$\begin{array}{\|l\|} \hline \text { Oct. } \\ 1938 \end{array}$	IVone	S	g／Measured flom， 185 gallons a minute from many seeps in limestone．Temperature， $71^{\circ} \mathrm{F}$ ．Known as＂Latham
321	－－	－－	C， 7	S	Reported yield， 5 to 8 gallons a Creek Spring，＂ minute．
523	192	el	C，${ }^{\text {W }}$	5	Estimated yield， 4 to 5 gallons a minute．
324	$20 n+$	$\begin{aligned} & \text { Dec. } 6 ; \\ & 1938 \end{aligned}$	C，W	5	Reported stron¢ supply．
325	20 C	$\begin{aligned} & \text { Dec. } 15, \\ & 1938 \\ & \hline \end{aligned}$	C，列	S	DO．
「26	－－	－－	$\begin{gathered} C, W, G \\ 3 \end{gathered}$	S	Reported yield， 4 to 5 gallons a minute．
327	－－	－－	$\overline{C, T, C,}$	D，S	No cesing．Reported strong supply．
328	94.2	$\begin{aligned} & \text { Dec. } 15, \\ & 1938 \end{aligned}$	C，Wh	5	Reported 14 feet drawdown after pumping with windmill for several hours．
329	Flows	$\begin{array}{\|l\|} \hline \text { Dec. } \quad 9, \\ 1938 \\ \hline \end{array}$	None	S	Estimated $\mathrm{Flow}, 1$ to 2 gellons a minute from limestone conglomerate．Temperature， 51° F．
33）	5.5	do．	C， 7	S	Dug well．Reported strong supply．
331	Flows	$\begin{array}{ll} \operatorname{Mar} .9, \\ 1939 \end{array}$	None	S	Estimated flow， 3 to 4 gallons a minute．Flows into concrete trough．Temperature， $68^{\circ} \mathrm{F}$ 。
332	Flows	do．	None	D，S	Estimated flon， 2^{i} gallons a minute．Temperature， $68^{\circ} \mathrm{F}$ ．
333	Flows	do．	None	S	Estimated flow， 6 gallons a minute．Galvanized casing at top．Temperature， $67^{\circ} \mathrm{F}$ ．
334	10.6	do．	C，W	S	Furnishes water for stock tank．
355	24.2	do．	C， T	5	Galvanized casing．
536	32.5	do．	C， T	D，S，I	Dug，diameter 26 inches，surface to 50 feet；drilled to 280 feet．Reported strons suppIy．

Records of wolls and springs ir San Saba County-Continued

No.	$\begin{aligned} & \text { Distanco } \\ & \text { from } \\ & \text { San Saba } \end{aligned}$	Owner	Driller	Topographic si tuation	Dete com-ploted	$\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { well } \\ & \text { (ft. }) \end{aligned}$	Diameter of well (in.)	Height of measuring point above ground (ft.) a/
337	$\begin{aligned} & 14 \frac{1}{2} \text { miles } \\ & \text { south } \end{aligned}$	Tom Houston	Clyde Cook	Slope	--	150	4	--
338	$\begin{aligned} & 14 \text { miles } \\ & \text { south } \end{aligned}$	Mrs. Ben Broyles	do.	$\begin{aligned} & \text { Noar } \\ & \text { creek } \end{aligned}$	1910	402	6	--
339	do.	Mae Altizor	do.	Top of ridge	1513	135	8	--
340	$\begin{aligned} & 12^{\frac{1}{2} \text { miles }} \\ & \text { south } \end{aligned}$	J. H. Walker	--	Slope	--	$150 \pm$		--
341	$\begin{aligned} & 14 \frac{1}{2} \text { miles } \\ & \text { south } \\ & \hline \end{aligned}$	Mrs. E. Yarborough	--	do.	1920	111	6	1.1
d/342	$\begin{aligned} & 15 \text { miles } \\ & \text { south } \\ & \hline \end{aligned}$	--	--	do.	--	154	6	0.2
343	do.	Jack Barker	--	$\begin{array}{\|l\|} \hline \text { Basc of } \\ \text { cliff } \end{array}$		Spring	--	--
344	$\begin{aligned} & 12 \frac{1}{2} \text { miles } \\ & \text { south } \end{aligned}$	R. N. Manloy	--	$\begin{array}{\|l\|} \hline \text { Side of } \\ \text { draw } \end{array}$	1917	240	--	--
345	$\begin{aligned} & 12 \text { miles } \\ & \text { south } \end{aligned}$	do.	--	$\begin{aligned} & \text { Bed of } \\ & \text { draw } \end{aligned}$	O1d	215	--	--
346	$\begin{aligned} & 11 \text { miles } \\ & \text { south } \end{aligned}$	do.	J. M. Virdell	Slope	1928	240	--	--
347	$\begin{aligned} & 10 \text { miles } \\ & \text { south } \end{aligned}$	do.	--	$\begin{aligned} & \text { Bed of } \\ & \text { draw } \end{aligned}$	--	205	48	2
348	$\begin{aligned} & 8 \text { miles } \\ & \text { south } \end{aligned}$	do.	J. C. Virdell	Flat	1938	430	--	\rightarrow
349	$\begin{aligned} & 7 \frac{1}{3} \text { miles } \\ & \text { south } \end{aligned}$	do.	do.	do.	1938	290	--	--
d/350	$\begin{aligned} & 5 \frac{1}{2} \text { miles } \\ & \text { southwest } \end{aligned}$	do.	-- Fubbard	$\begin{aligned} & \text { Top of } \\ & \text { ridge } \\ & \hline \end{aligned}$	1938	515	--	--
351	$\begin{aligned} & 6 \frac{1}{2} \text { miles } \\ & \text { southeast } \end{aligned}$	Tom Murray	--	In sink	--	--	--	1.3
352	do.	J. S. Norris	T. T. Lowe	Flat	1932	224	6	--
353	$55^{\frac{1}{2}}$ miles southeast	A. E. Petty	-- Clark	In sink	1910	505	--	--
354	$9 \frac{1}{2}$ miles southeast	M. E. Millican	Clary Bros.	Filltop	2928	240	-*	0.3
355	$\begin{aligned} & 9 \text { miles } \\ & \text { southeast } \end{aligned}$	do.	--	$\begin{aligned} & \text { Hill- } \\ & \text { side } \\ & \hline \end{aligned}$		ring	--	--
356	$9 \frac{1}{2}$ miles southeast	G. H. Brister	--	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Creek } \\ \text { bottoms } \end{array} \\ \hline \end{array}$		Spring	--	--
357	$10 \frac{1}{2}$ miles southeast	J. D. Parker	--	$\begin{aligned} & \text { In } \\ & \text { valley } \\ & \hline \end{aligned}$		pring	--	--
358	do.	do.	--	$\begin{aligned} & \text { Top of } \\ & \text { ridge } \end{aligned}$	1918	20	--	1.2
362	do.	Moss Millican	--	$\begin{aligned} & \text { Hill } \\ & \text { side } \end{aligned}$		pring	--	--
363	12咅 miles southeast	Miss. E. MeCrory	Guess \& Wilkerson	$\begin{array}{\|l\|} \hline \text { Creek } \\ \text { bottoms } \end{array}$	1506	71	6	--
364	12 miles southeast	do.	--	do.		pring	--	--
a/ Measuring point was usually top of casing, top of well curb or top of pipe clamp; it was above ground level unless indicated by (-) sign for below ground level. D/ B, bucket; C, cylinder; W, windmill; T, turbine; G, gasgine; E, electric; H, hand ; number indicates horsepower. c/ D, domestic; S, stock; I, irrigation; Ind, industrial; P, public; N, not used.								

170.	Water level				Remarks
	Depth below measu ing p (ft.)	$\begin{aligned} & \text { Date of } \\ & \text { measure- } \\ & \text { r- ment } \\ & \hline \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Pump } \\ \text { and } \\ \text { power } \\ \text { b/ } \end{gathered}\right.$	Use of water $c /$	
$\overline{337}$	Floms	$\begin{aligned} & \text { Sept.21, } \\ & 1938 \end{aligned}$	C, W	D	Measured flow, 4 gallons a minute. Supplies water for concrete swimming pool. Temperature, $69^{\circ} \mathrm{F}$.
338	Flows	$\begin{aligned} & \text { Sept.22, } \\ & 1938 \\ & \hline \end{aligned}$	C, W	D,S	\qquad
359	9	e/	C,	D,s	Galvanized casing. Reported strong supply.
340	--	--	C, Wh	D, S, I	Reported water level very close to surface.
341	18.4	$\begin{aligned} & \text { Sept. } 8, \\ & 1938 \end{aligned}$	C, W	$\overline{\mathrm{D}, \mathrm{S}}$	Cased to bottom. Reported strong supply.
342	12.2	$\begin{array}{ll} \text { Feb, } 4, \\ 1939 \end{array}$	C, W	S	Iocated 0.8 mile west of Cherokee on Heck Spring road.
343	Flows	$\begin{aligned} & \text { Oct. } 29, \\ & 1938 \\ & \hline \end{aligned}$	--	S	ff Measured flow, 1,150 gallons a minute from 3 openings in limestone. Temperature, 700 F . Known as
344	$140+$	e/	$\begin{gathered} \hline 0, \pi, G \\ 6 \\ \hline \end{gathered}$	D,S	Reported pumped 15 gallons a minute "Heck Spring." for 25 days.
$\overline{3} 45$	100	e/	C, 7	S	Reported pumped 15 gailons a minute for 17 days; has supplied 7 now to 800 head of stock. "South well."
346	140	E/	C, T	S	Reported yield, 5 to 8 gallons a minute. "Buffalo well."
$\overline{547}$	3.3	$\begin{aligned} & \text { Sept.10, } \\ & 1938 \end{aligned}$	C, 7	S	Dug well, surface to 30 feet; bored to 205 feet. Estimated yield, 3 gallons a minute. "Bear Hollow
$\overline{348}$	$15 ?$	e]	C, 7	S	Reported struck water at 285, 385 and 422 well." feet. Reported yield, 3 to 10 gallons a minute.
349	150	e/	C, W	S	Reported yield, 5 to 8 gallons a "Correl well." minute. "Headquarters well."
357	1, 1	e/	C, W	--	Struck water at $376,476,485$ and at 505 feet. Report. ed yield, 5 to 8 gallons a minute. "Behrens well."
351	130.6	$\begin{aligned} & \text { Feb. } 23, \\ & 1939 \end{aligned}$	C, W	S	Estimated yield, 3 to 4 gallons a minute.
352	145	e/	C, 7	D,S	Steel casing. Cylinder set at 218 foet.
353	140	e]	C, 7	D, S	Reported yield, 6 gallons a minute.
354	124.3	$\begin{aligned} & \text { Feb. } 11, \\ & 1939 \end{aligned}$	C, 可	D,S	Reported weak supply.
$\overline{355}$	Flows	$\begin{aligned} & \text { Aug. } 30, \\ & 1938 \\ & \hline \end{aligned}$	None	D, S	Estimatea flow, 4 to 5 gallons a minute from limestone Temperature, 70° F. Known as "Cole Spring."
$\overline{356}$	flows	$\begin{aligned} & \text { Aug. } 29, \\ & 1938 \end{aligned}$	None	D,S,I	g/ Measured flow, 650 gallons a minute from gravel and limestone. Temperature, $71{ }^{\circ} \mathrm{F}$. Known as "Brister
357	Flows	$\begin{aligned} & \hline \text { let. } 29, \\ & 1938 \\ & \hline \end{aligned}$	None	D,S,I	$f /$ Measured flom, 83^{4} gallons a minute from Spring." Iimestone. Temperature, $74^{\circ} \mathrm{F}$. Known as "Holland
$\overline{358}$	15.9	$\begin{aligned} & \text { July } 26, \\ & 1938 \end{aligned}$	C, W	D, S	Located near Holland Parier spring. Parker Spring."
362	Flows	$\begin{aligned} & \text { Aug. } 29, \\ & 1938 \end{aligned}$	None	S	g/ Measured filow, 38 gallons a minute from one crevice in travertine. Temperature, $69^{\circ} \mathrm{F}$. Known as mWalnut
$\overline{363}$	9	e)	C, W	D,S,I	Iron casing at top. Reported strong supply. Spring. " Irrigates $\frac{1}{2}$ acre of gardon. Struck water at 17 feet.
364	Flows	$\begin{aligned} & \text { Aug. } 31, \\ & 1938 \\ & \hline \end{aligned}$	None	D, S	Estimated flow, 65 to 80 gallons a minute from seeps in limestone. Temperature, 79° F. Known as "Cottonwood

Recorls of wells and springs in San Saba County--Continued

ITO.	Distence from San Saba	Owner	Driller	Topographic situation	$\left\|\begin{array}{l} \text { Dato } \\ \text { con- } \\ \text { ple- } \\ \text { tod } \end{array}\right\|$	Depth of well (ft.)	$\begin{gathered} \text { piam- } \\ \text { eter } \\ \text { of } \\ \text { well } \\ \text { (in. }) \end{gathered}$	$\begin{gathered} \text { Height of } \\ \text { measuring } \\ \text { point } \\ \text { above } \\ \text { ground } \\ \text { (ft.) al } \end{gathered}$
365	$\begin{array}{\|l\|} \hline 12 \text { rilos } \\ \text { southeast } \\ \hline \end{array}$	B. B. Reese	--	Creok bottoms		Spring	--	--
366	do.	do.	--	Slopc		Spring	--	--
	$\begin{aligned} & 12 \frac{2}{2} \text { miles } \\ & \text { southeast } \end{aligned}$	do.	--	Bank of creek	--	$200+$	8	2.4
	$\begin{aligned} & 13 \frac{1}{2} \text { miles } \\ & \text { southeast } \end{aligned}$	-- Keeney	--	Slope	--	112	--	1.2
369	$\begin{aligned} & 15 \text { miles } \\ & \text { southeast } \end{aligned}$	B. Parks	--	Bed of creek		Spring	--	--
370	$\begin{aligned} & 17 \text { miles } \\ & \text { southeast } \end{aligned}$	-- Millican	--	do.	--	Spring	--	--
371	$\begin{aligned} & 16 \text { miles } \\ & \text { southoast } \end{aligned}$	T. S. Aylor	Clary \& V raell	Hiliton	--	163	6	--
372	$\begin{aligned} & 17 \text { milos } \\ & \text { southeast } \end{aligned}$	do.	--	River bottoms		$L^{\text {Spring }}$	--	--
373	$\begin{aligned} & 18 \frac{1}{2} \mathrm{mi} \mathrm{cs} \\ & \text { southerst } \end{aligned}$	I. G. Yatos	--	Bed of draw		Spring	--	--
	do.	do.	--	do.		Spring	--	---
375	$\begin{aligned} & 19 \frac{1}{2} \text { miles } \\ & \text { southoast } \end{aligned}$	do.	--	Bank of creek		Spring	--	--
576	$\begin{aligned} & 20 \text { miles } \\ & \text { southeast } \end{aligned}$	John Bemes	--	do.		Spring	--	--
377	$\begin{aligned} & 19 \text { miles } \\ & \text { southoast } \end{aligned}$	do.	Jack Lowe	In valiuy	1835	125	--	$\bigcirc .1$
378	$\begin{aligned} & 17 \text { miles } \\ & \text { southoast } \end{aligned}$	do.	--	Flat	1918	180	6	--
379	$\begin{aligned} & 18 \text { milos } \\ & \text { southeast } \end{aligned}$	do.	J. C. Virdell	$\begin{aligned} & \text { Gentlo } \\ & \text { slope } \\ & \hline \end{aligned}$	1938	262	6	I
380	$\begin{aligned} & 19 \text { miles } \\ & \text { southeast } \end{aligned}$	do.	---	Crock bottons	${ }^{--}$	$200+$	--	--
381	$\begin{aligned} & 18 \text { miles } \\ & \text { southeast } \\ & \hline \end{aligned}$	Mack Yatos	3. C. Virdell	Hill ${ }^{\text {\% }}$	1937	245	6	1.1
582	$\begin{aligned} & 15 \text { milos } \\ & \text { southeast } \\ & \hline \end{aligned}$	Clarence Dofflemeyer	--	In drew	--	--	--	--
d] 383	$\begin{aligned} & 13 \text { miles } \\ & \text { southeast } \\ & \hline \end{aligned}$	Jack Pressloy	--	Crock bottoms	${ }^{--}$	60	--	1.3
384	do.	do.	--	do.		Spring	--	--
385	$\begin{aligned} & 12 \text { milos } \\ & \text { southeast } \end{aligned}$	Judgo J. B. Harroll	T. T. Lowe	do.	1937	235	6	--
386	do.	Julian Millican	do.	$\begin{aligned} & \text { Idgu of } \\ & \text { revine } \end{aligned}$	11328	60	6	--
387	11. miles southeast	T. O. Long	Ben Fubbard	In drat	1935	85	6	3.3
380	$\begin{aligned} & \text { In milos } \\ & \text { southoast } \end{aligned}$	A. R. Noely	T. T. Lowe	$\begin{array}{\|l\|} \hline \text { Wag of } \\ \sin k \\ \hline \end{array}$	1933	113	6	0.8
592	do.	J. G. Roborts	Sidney Roberts	$\begin{aligned} & \text { Sida of } \\ & \text { draw } \\ & \hline \end{aligned}$	1938	- 40	48	1.9
393	$\begin{aligned} & 9 \frac{1}{2} \text { miles } \\ & \text { southosst } \end{aligned}$	J. P. Roborts	Jack Lowo	In sink	1935	江 233	$6 \frac{1}{2}$	1.4

George in, Shafer, Projoct Suporintonient

	Water level		Fump and power b/	$\left\lvert\, \begin{gathered} \text { Use } \\ \text { of } \\ \text { mator } \\ c / \end{gathered}\right.$	Roacrks
ito.	Dopth below measu ing po (ft.)	Date ol measure-- ment oint			
365	Flows	$\begin{aligned} & \text { Mar. } 3, \\ & 1939 \\ & \hline \end{aligned}$	Irone	S	Estimated flow, 5' to $6^{\prime \prime}$ Eallons a minute from seeps in limestone. Temperature, $58^{\circ} \mathrm{F}$.
$\overline{366}$	Flows	$\begin{aligned} & \text { Mar. } 2, \\ & 1939 \end{aligned}$	None	S	Estimated flow, llo gallons a minute from limestone. Temperature, 66° F. Known as "Bee Cave Spring."
367	8.8	$\begin{array}{ll} \text { Mar. } \\ 1939 \end{array}$	C, 1	D,S	Reported strong supply.
$\overline{68}$	49.5	do.	C, ${ }^{\text {a }}$	D,S	Water from shale.
369	Flows	${ }_{1939}{ }^{\text {Mar. }}$	None	S	Estimated flow, 2^{\prime} to 3) gallons a minute from seeps in limestone, Temperature, $52^{\circ} \mathrm{F}$. Known as "Cotton-
370	Flows	$\begin{aligned} & \text { Oct. } 25, \\ & 1938 \end{aligned}$	None	S	If Measured flow, 9×1 gallons a wood Creek Spring." minute from one opening in imestone. Temperature,
$\overline{7} 7$	--	--	C, TT	D,S	Reported strong 71° F, Known as "Gorman Spring," supply.
	Flows	$\begin{aligned} & \text { Mar: } 6, \\ & 1939 \\ & \hline \end{aligned}$	None	N	Estimated flow, 600 to 7in gallons a minute from gravel Temperature, $72^{\circ} \mathrm{F}$. Known as "Sulphur Spring."
373	Flows	$\begin{aligned} & \operatorname{Jan}_{1} 6, \\ & 1939 \end{aligned}$	None	S	Estimated flow, 5^{0} gallons a minute from one opening in limestone. Temperature, $62^{\circ} \mathrm{F}$. Known as "Clark
374	Flows	$\begin{aligned} & \text { Feb. } 26, \\ & 1939 \end{aligned}$	None	D, S	$\mathrm{f} / \mathrm{Measured}$ flow, 250 gallons a minute from Spring," many seeps in limestone. Temperature, $69^{\circ} \mathrm{F}$, Frown as
575	Flows	dio.	None	5	f/ Measured fow, 350 gallons a "Seven Springs,"
5	Flows	do.	${ }^{--}$	D,S	f/ ileasured flow, 69° T, Knom as "Post Oak Spring." 650 galions a minute from several openings in gravel. Temperature, 69° F. Known as "Jennings Creek Spring."
577	80.6	$\begin{array}{ll} \hline \text { Jan. } \\ 1939 \end{array}$	C, W	S	Estimated yield, 2 gallons a minute. "Little Mill
378	$7{ }^{\prime}$	e/	C, ${ }^{\text {r }}$	D,S	Galvanized casing. Reported strong supply. "Long Water Hole well."
379	112.2	$\begin{array}{ll} \operatorname{Jan}_{1939} & 3 \end{array}$	C, TT	5	2) feet of galvanized casing at top. Reported strong supply, "Pour Corners well."
531	--	--	C, V\%	5	Estimated yield, 2 to 3 gallons a minute.
$\overline{51}$	167.9	$\begin{aligned} & \text { Jan. } 16, \\ & 1939 \end{aligned}$	C, W	S	Galvanized casing. Tater level measured whlle windmill pumping about 5 gallons a minuta.
732	--	--	C, W	D, S	Water from black limestonc.
383	40.9	$\begin{aligned} & \text { Nar. } 1, \\ & 1939 \\ & \hline \end{aligned}$	C, w	D, S	Located ebout 5i) feet souts of Chappel Spring.
384	Flows	do.	None	$\overline{\mathrm{D}, \mathrm{S}}$	Estimated flow, 5 gallons a minute from seeps in limestonc. Known as "Chappel Suring."
$\overline{7}$	--	--	C, W	S	100 feet of galvanized casing at top. Reported strong supply.
536	50	c/	C, W	D, S	Reported wais supply.
587	55.9	$\begin{aligned} & \text { Nar. } 1, \\ & 1939 \\ & \hline \end{aligned}$	C, TV	D,S	55 feet of galvanized casing at top. Reported $7 \frac{1}{2}$ foct drawdown after pumping for cevcral hours.
\%	3.8	1938	$\begin{gathered} C, H, G \\ 1 \frac{1}{2} \\ \hline \end{gathered}$	D,S,I	Roported fiows in wot scasons. 44 feet of galvanizod casing at top. Struck wator in yellow clay at 110 foct
392	25.2	do.	B, H	D, S	Dug reli. Reported stronis su ply from sandstone at 30 feet.
\bigcirc	84.6	do.	B, $\overline{\mathrm{H}}$	D,S	3' feet of galvanized casine at top. Reported weak supriy.

Records of wells and springs in Sen Saba County--Continued

NTO.	$\begin{aligned} & \text { Distanco } \\ & \text { from } \\ & \text { San Saba } \end{aligned}$	Owner	Drillcr	Topographic situation	$\begin{aligned} & \text { Dete } \\ & \text { com- } \\ & \text { ple- } \\ & \text { tod } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Depth } \\ \text { of } \\ \text { well } \\ (f t .) \end{gathered}\right.$	$\begin{array}{\|l} \text { Diam- } \\ \text { oter } \\ \text { of } \\ \text { well } \\ \text { (in. }) \\ \hline \end{array}$	$\begin{aligned} & \text { Hoight of } \\ & \text { moasur ing } \\ & \text { point } \\ & \text { above } \\ & \text { ground } \\ & \text { (ft.) a/ } \end{aligned}$
594	$\begin{aligned} & 8 \frac{1}{2} \text { milcs } \\ & \text { southeast } \end{aligned}$	R. D. Ashlcy	J. C. Virdell	Creek bottoms	1927	80	6	1.2
395	do.	do.	--	do.	--	Spring	--	--
596	$\begin{aligned} & 10 \frac{1}{3} \text { milos } \\ & \text { southoast } \end{aligned}$	J. A. LOTO	T. T. Lowo	Hilltop	1934	120	6	--
397	$\begin{aligned} & 11 \frac{1}{2} \text { milos } \\ & \text { southeast } \end{aligned}$	W. H. Broylos	J. C. Virdell	$\begin{array}{\|l\|} \hline \text { Sidc of } \\ \text { draw } \\ \hline \end{array}$	1935	110	6	1.5
398	$\begin{aligned} & 13 \frac{1}{2} \text { miles } \\ & \text { southoast } \end{aligned}$	Joc Cranc	--	Bank of creck		Spring	--	--
309	$\begin{aligned} & 12 \text { milos } \\ & \text { southeast } \end{aligned}$	$\begin{aligned} & \text { T. J. Broylos } \\ & \text { Est. } \end{aligned}$	~- Clark	Slope	$\underline{1904}$	100	6	1.3
400	11 miles south	Mrs. J. E. G. Hillmen	--	$\begin{aligned} & \text { 至ill } \\ & \text { side } \end{aligned}$		Spring	--	--
401	$\begin{aligned} & 11 \frac{1}{2} \text { miles } \\ & \text { south } \end{aligned}$	do.	--	do.		Spring	--	--
402	do.	do.	--	do.		Sring	--	--
403	do.	do.	-- Brown	Hilltop	1917	190	6	--
494	15 milos south	C. J. Bowdon	Clyde Cook	Noar crook	--	165	4	--
405	do.	Miss M. E. Gay	J. C. Rosc	Slope	--	300	6	\%
406	do.	Frank Paxton	Ray \& Simms	$\begin{aligned} & \text { Near } \\ & \text { creck } \end{aligned}$	1912	223	6	0.9
497	$15 \frac{1}{2} \mathrm{milos}$ south	do.	--	In crook		Spring	--	--
418	$\begin{aligned} & 16 \frac{1}{2} \text { milos } \\ & \text { south } \end{aligned}$	J. H. Randolph	-- Putnam, et al	Gontic slope	1924	100	6	1.5
499	do.	Glon Randolph	Jack Lowc	do.	1937	102	6	1.4
410	$\begin{aligned} & 16 \mathrm{milos} \\ & \text { south } \end{aligned}$	Carl Johnson	--	Crook bottons	1878	5	60	2.4
411	do.	Nack Houston	--	do.	1915	50	--	1
412	do.	do.	--	do.	--	Spring	--	--
413	$\begin{aligned} & 15 \frac{1}{2} \text { miles } \\ & \text { south } \\ & \hline \end{aligned}$	I. G. Yatos	J. C. Virdcli	$\begin{aligned} & \text { Hill- } \\ & \text { side } \\ & \hline \end{aligned}$	1956	480	6	1.3
414	$18 \mathrm{milos}$ south	G. Light	- Iowo	Slopa	1229	64	6	--
415	18产 milos south	do.	--	$\begin{aligned} & \text { Head of } \\ & \text { draw } \end{aligned}$		Spring	--	--
a/ 16	18 miles south	Mack Yatos	J. C. Virdell	--	1¢38	225	--	--
d/417	16 milos southcast	do.	do.	--	1937	245	--	--
418	18 milos southeast	do.	T. T. Lowo	In dram	01 d	250	6	--
419	$\begin{aligned} & 19 \text { milos } \\ & \text { southuast } \end{aligned}$	do.	J. C. Virdoll	$\begin{aligned} & \text { In } \\ & \text { valloy } \end{aligned}$	1537	260	6	--

George H . Shafer, Froject Superintendent

Ho.	Weter Depth1 below measur ine po (ft.)	Ievel Date of measure- ment -int	Fump and power b/	Use of water c/	Remarks
394		$\left\lvert\, \begin{aligned} & \text { Feb. } 16, \\ & 1939 \end{aligned}\right.$	C, 7	D, S	Reported strong supply.
$\overline{395}$	Flows	$\begin{aligned} & \text { Feb. } 22, \\ & 1939 \end{aligned}$	--	S	Measured flow, 22^{13} gallons a minute from one opening in limestone. Temperature, 68° F. Know as "Rough
396	113	e]	C, W	D, S	Galvanized casing at top. Creek Spring."
$\overline{397}$	48.4	$\begin{array}{\|l\|} \hline \text { Dec. } 30 \\ 1938 \end{array}$	C, WT	D, S	Reported weak supply from sandstone at 75 feet.
$\overline{398}$	Flows	$\begin{array}{\|l\|} \hline \text { Dec. } 28, \\ 1938 \\ \hline \end{array}$	None	N	Estimated flow, 200 gallons a minute from many seeps in limestone. Temperature, $7^{\circ} \mathrm{F}$. Known as "Rector
$\overline{399}$	48	$\begin{array}{\|l\|} \hline \text { Dec. } \\ 1938 \end{array}$	C,	D,S	Reported strong supply. \quad Spring."
407	Flows	do.	None	N	Estimated flow, 5 gallons a minute from seeps in grave Temperature, 70° F. Knomn as "Mud Spring".
401	Flows	do.	None	S, I	Estimated flow, 2 to 5 gallons a minute from openings in bottom of pool. Irrigates garden. Temperature,
412	Flows	do.	None	--	Estimated flow, 3 gallons a minute from seeps $67^{\circ} \mathrm{F}$. in gravel. Temperature, $77^{\circ} \mathrm{F}$.
$4^{\prime} 13$	50	e/	C, प\%	D, ${ }^{\text {S }}$	Galvanized casing. Reported strong supply.
494	Flows	$\begin{aligned} & \text { Sept. } 21, \\ & 1938 \\ & \hline \end{aligned}$	None	D, S	Water level, 9 feet above ground level. Reported Hlow $3 \frac{1}{2}$ galions a minute.
445	7.9	do.	C, W	D,S	Water level measured while windmill pumping slightly. Reported strong supply.
216	11.5	do.	C, 7	D,S	I6 feet of galvanized casin. at top. Estimated yield, 4 to 5 gallons a minute.
417	Flows	do.	None	S	Estimated flow, one gallon a minute from one opening in sandstone. Temperature, $700^{\circ} \mathrm{F}$.
48	27.9	$1939{ }^{\text {Nar. }}$	C, W	D,S,I	Reported strong supply fro sandstone at 80 feet.
49	50.2	do.	C, ${ }^{17}$	D,S	Do.
411	4.7	$\begin{aligned} & \text { Sept.22, } \\ & 1938 \end{aligned}$	C, TT	D, S	Dug well. Water from limestone. Reported flows after heavy rains.
411	21.9	$\begin{array}{\|ll\|} \hline \text { Jan. } & 3 \\ 1939 \end{array}$	C, 7	D,S	Reported strong supply from sandstone.
412	Flows	do.	None	5	Estimated flow, 4 to 5 gallons a minute from seeps in limestonc. Temperature, $56^{\circ} \mathrm{F}$.
413	190	do.	$\begin{array}{c\|} \hline C, W, G, \\ 1 \frac{1}{2} \\ \hline \end{array}$	D,S	Reported furnishes water for 1,600 head of stock.
414	5	e]	C, 7	D,S,I	16 feet of iron casing at top. Reported yield, 5 to 8 gallons a minute.
415	Flows	$\begin{aligned} & \text { Sept. } 22, \\ & 1938 \\ & \hline \end{aligned}$	None	D,S	Measured flow, 4 gallons a minute from seeps in sandstone. Temperature, $72^{\circ} \mathrm{F}$.
416	--	--	C, W	S	Reported strong supply, "Jones well."
417	--	--	C, W	S	Water from limestone. "B well."
418	--	--	$\begin{gathered} \mathrm{C}, \mathrm{~W}, \mathrm{G}, \\ 4 \end{gathered}$	D, S	Reported weak supply. "Low well."
419	--	--	C, VI	S	Estimated yield, 4 to 5 gailons a minute. "Marley well."

Rccords of wolls and springs in San Saba County--Continuod

Wo.	Distance from San Saba	Owner	Driller	Topographic situation	$\left\lvert\, \begin{aligned} & \text { Date } \\ & \text { com- } \\ & \text { ple- } \\ & \text { ted } \end{aligned}\right.$	Depth of well (ft.)	Diam- eter of well (in.)	Height of measuring point above ground (ft.) a/
d/420	$\begin{aligned} & 10 \text { miles } \\ & \text { south } \end{aligned}$	Mack Yates	J. C. Virdenl	--	1538	260	--	--
d/421	$\begin{aligned} & 20 \mathrm{miles} \\ & \text { south } \\ & \hline \end{aligned}$	do.	T. T. Lowe	--	1935	80	--	--
422	$\begin{array}{\|l\|} 20 \frac{1}{2} \text { miles } \\ \text { southeast } \end{array}$	do.	do.	$\begin{aligned} & \text { Side of } \\ & \text { draw } \\ & \hline \end{aligned}$	1935	87	--	--
423	do.	do.	--	Creek bottoms	--	125	6	0.1
d/424	$\begin{aligned} & 19 \frac{1}{2} \text { miles } \\ & \text { southeast } \end{aligned}$	do.	T. T. Lowe	--	1935	250	--	--
a/425	21 miles southeast	do.	do.	--	--	36	--	--
426	$\begin{aligned} & 24 \text { miles } \\ & \text { southeast } \end{aligned}$	-- Rhodes	--	In ereek	--	Spring	--	--
a/ Measuring point was usually top of casing, top of well curb or top of pipe clamp; it was above ground level unless indicated by (-) sign for below ground levela b/ B, bucket; C, cylinder; W, windmill; T, turbine; G, gasoline; E, electric; H, hand number indicates horsepower. c/ D, domestic; S, stock; I, irrigation; Ind, industrial; P, public; N, not msed.								

George H. Shafer, Frojoct Supcrintondont

${ }^{17} 0$	$\begin{aligned} & \text { Water } \\ & \text { below } \\ & \text { moasur } \\ & \text { ing po } \\ & \text { (ft. } \end{aligned}$	Date of measure- - ment	$\begin{gathered} \text { Pump } \\ \text { and } \\ \text { power } \\ \text { b/ } \end{gathered}$	$\begin{gathered} \text { Uso } \\ \text { of } \\ \text { wator } \\ \text { cf } \end{gathered}$	Romirstes
429	--	---	C, 7	S	Roported strong supply. "Javolina well."
421	--	--	C, 7	5	Roported strong supply. Mwesquite well."
422	--	---	C, 7	S	Estimatod yiold, 4 to 5 galions a minute. "Partition well."
423	7.3	$\begin{aligned} & \operatorname{Tan} \cdot 16, \\ & 1939 \end{aligned}$	C, V	S	Estimated yicld, 3 gallons a minute. "Old Mill woll."
424	--	--	C, 7	5	Reported strong supply. "Correl Mill well."
425	--	--	C, W	5	Fast well of tivo at ranch hadquarters.
426	H10ws	$\begin{aligned} & \text { Feb. } 26, \\ & 1939 \end{aligned}$	--	5	Measured flow, l, 90 gallons a minute from 3 oponings in limestone. Temperature, 68° F. Known as "Boiling Spring."
d/ No water sample collected for analysis.					
I/ Curront metor measuremont by enginecrs of Geological survey, U,S.D.I.					

Thickness Depth $($ feet $)(f e e t)$

Driller ${ }^{\text {s }}$ log of well 1
O. L. B, Tyler ranch, 2 薆miles northwest of San Saba。

Sendy soil - - -	3	3
Sand rock - - - - --	27	30
Ferd sandy shale - - -	14	44
3and - - - m	6	50
Sandy shale - - - - -	44	94
Blue shale - - - - -m	11	105
Water sand -- -	16	121
Sandy shait - - - - --	85	206
Vater sand - - - - -	19	225
Sandy shale - -	65	290
Water sand, hole full of water - * - - - - -	22	312
Broken sand	73	385
Sandy shale - - - - -	12	397
Sand -- -	43	440
Blue shale	11	451
Sand -	11	462
Sandy shale	18	480
Sand - - - -	15	495
Sandy shale	29	524
Sand - - - - - - - -	11	535
Sondy shale $=$	5	540
Shale - -	15	555
Sand - - -	73	628
Black shale - - - - --	262	890
3laok broken lime - - - -	6	896
Hard black lime	17	913
Gray lime - - - - - - -	3	916
Black lime - - - - m	14	930
Blaok shale - -	1	931
Gray lime - - - - - - -	10	941
Elack shale - -	3	944
Blaok lime - -	2	946
Black shale - -	28	974
Black sandy lime - - - -	19	993
Black shale - - - - --	3	996
Lime and shells	2	998
Black shale - -	27	1015
Broken line - - -	15	1030
Blue shale -	20	1050
Lime - - -	5	1055
Black slate - - - - -m	24	1079
Gray lime -	2	1081
Sund -	2	1083
Lime -	12	1095
Sandy lime -	25	1120
White lime -	105	1225
White chalk -	11	1236
White lime - - - - - -	4	1240
White chalk lime	7	1247
Wite lime - - . - - -	78	1325
TOTAL DEPMH		1325

Thickness (feet)\quadDepth (feet)

Drjiller's \log of well 12
City of Fill, in Hall, $20 \frac{t}{3}$ miles west of San Saba.

Top soil - - - - - -	
Flint gravel - - - - - 1	12
Yellow clay - - - - - 1	22
Hard rock - - - - - -	28
Black shale	34
Blue mud - -	41
Elack lime -	48
Lime, water - . - - --	49
Soft black lime - - - 4	98
Hard black lime - - -- 2	222
Sandy white rock, water-	129
Blue rock - - - - - 4	178

CASING RECORD: 100 feet of 6-inch galvanized casing at top; 100 feet of 2-inch tubing at top.

Drillerts \log of well 17
W. H. Gibbons ranch, $17 \frac{1}{2}$ miles west of San Saba.
Top soil - - - - - 7
Broken lime - - - - - $23 \quad 30$
Sof't gray lime - - - - 68
Fard gray lime - - - - 66
Lime, 150 feet of water
at 522 feet - - - - 770 934
Lime with strecks of
brown and black shale,
hole full of fresh
water - - - - - - - 881022
TOTAL DEPTE
1022
CASING RECORD: 600 feet of $65 / 8$-inch casing.

Drillen's log of well 19
Leach and Hall tract, 19 miles west of San Saba.
White lime - - - . - 16
Black shale - - - - - 66
Yellow lime - - - - - - 43
sond - - - - - - - - 5
White lime - - - m - - $500 \quad 630$
White sand - - - - - $\quad 3 \quad 633$
White lime - - - - - - $121 \quad 754$
Shells and lime - - - - 16

TOTAL DEPTH	770

\cdots| Thiokness Depth |
| :---: |
| $($ feet) (feet) |

Driller's log of well 24
Lakeview Community well, 19 miles northwest of San Saba.

Top	2	2
Sand rock	13	15
Clay, some water	10	25
Sand rock	55	80
Blue shale	75	155
Black lime rock	100	255
Brown shale	22	277
Gray lime rock	123	400
Gray lime -	382	782
TOTAL DEPTH		782
CASING RECORD: 100 feet of 6-inch gal-		
venized casing at top; 100 feet of 2 minch tubing at topo		

Mrs. Mo $\frac{\text { Drilleris log of well } 30}{\text { F. Rushing tract, } 19 \text { mía }}$ northwest of San Saba.		
gand rock - - - - - -	14	14
Shale - -	26	40
band rock ..- - - - -	35	75
Blue shale	2	77
Sand rock, two bailers of water	18	95
Sand rook - - - - - -	110	205
White water sand -	5	210
Sand rook -	80	290
Blue shale -	7	297
Rock - - - -	1	298
Black shale - -	210	508
Black lime -	51	559
Blue shale	3	562
Gray lime .. - - - - m	14	576
Black Iime - -	34	610
Black shale - - - - mom	2	612
3lack lime -	4	616
Black shale - - - -	1	617
Black lime ... --	8	625
Brown shale	15	640
Black lime -	3	643
Brown shale - - - - --	21	664
Gray lime .	1	665
Sandy lime - .-		690
Dry white sand -	2	692
Lime - - - - - - - - - -	1	693
Not given - - - - - - -	57	750
TOTAL DEFTH		750

$\cdots \quad$| Thickess Depth |
| :---: |
| (feet) (feet) |

Driller's log of well 34.
C. Jo Cumings ranch, 18 miles northwest of San Saba.

| Hard-packed sandy shale- | 27 | 27 |
| :--- | ---: | ---: | ---: |
| Yellow olay $-\ldots-\ldots$ | 8 | 35 |
| Black shale - $-\ldots-$ | 22 | 57 |

Hard-wacked sandstone -- 75
Black shale; water at
154 feet - - - - - 25
Hard-paciked sandstone -- 237
Black shale --- - - -- 32
Gray shale . .. - - - - - $15 \quad 441$
Very black shale - - - m 229 670
Black lime - - - - - - $34 \quad 704$
Limy black shale . - m - 36
White lime - - - - - - 2
Black lime - - . - - - $18 \quad 760$
Black shale; drills brown $45 \quad 805$
White lime - - - - - - 53
White sand - - . - - . - 5
White lime; water at
870 feet - - - - -- 42995
Hard-packed sand - - - - 5
White lime - - - - - - 911001
Sandy white lime - - - - 5
$\begin{gathered}\text { Sandy white lime becoming } \\ \text { gray at bottom - ---- }\end{gathered} \quad 39$ 1045
Alternating white sand
with white lime in beds
5 feet thick - - - - 351080
White lime and chert - - $10 \quad 1090$
White lime - - - . - . - 15 1105
Gray shale - - - - - - 11106
White lime - - - - - - 921198
White lime, water - - -- 97 1295
White line, water flowing
to surface - - - -- $25 \quad 1320$
White lime - . - . . - 60
TOTAL DEPTH - - - - - - $\quad 1380$
Driller's log of well 35
Graves ranch, 17t miles northwest of San Saba.

Surface soil min m	-	3

Sandstone - - - - - - 4
Yell ow clay - - - - - - $30 \quad 37$
Hard sand - - - - - - 5
Blue shale - - - - - - 25
Fard shell - - - - - 5
Sandy shale and sand,
show of fresh water - 13
Hard sand - - - - - - 5
Shale and sand - - - - - 51
Black shale - - - - - 7 ; 148
(Continued on next page)

Table of Drillers' Logs, San Saba County--Continued

Thickness (feet) (feeth

Hard yellow shell looked		
like flint	2	150
Light-blue sandy shale -	15	165
Sand, little water, hole making 4 bbls. an hour at bottom of this sand	205	370
Blue shale	5	375
Sand, water increased, all		
Blue shale	25	425
Sand - - -	25	450
Blue shale -	15	465
Black shale	21	486
Blue shale - - - - - -	14	500
Hard broken black lime-	300	800
Sandy hard white lime -	70	870
Hard brown lime - - -	32	902
TOTAL DEPTH		1000
Struck water at 860 feet.		

Driller's \log of well 40
J. M. Heatherly ranch, $17 \frac{7}{2}$ miles north west of San Saba.

Darix-colored sand	275	275
Black shale -	225	500
Black lime - - - - -	100	600
White lime, water	5	605
White lime - .. -	370	975
Hard white lime - - -	248	1223
Sandy white lime, water	22	1245
Sandy white lime - - --	20	1265
White lime - - -	175	1440
Sandy white lime, water	35	3475
White lime -	42	1517
Gray shale - - - - -	1	1518
White lime - - - - -	137	1655
Wite lime and green shaie - - - - - -	60	1715
Gray lime - - - - - -	40	1755
Sandy lime - - - - --	40	1795
White lime - - - - - -	10	1805
Gray lime - - - - -m	83	1888
TOTAL DEPTH		1888

Driller's \log of well 71
Mrso Julia Ao Moore ranch, 7t miles northeas't of San Saba.

Sand rook and soill	6	6
Red and blue stone	26	32
Sticky blue shale - - --	21	53
Sondstone - - -	6	59
Shalc and lime	62	121
Lime, shale - - - - - .-	3	124
Water sand	12	136

Black shale - - - - 10	146
Blue shale - - - - - 20	166
Hard sand - - - - - -- 48	21
Black shale - - - - - - 11	225
Sand, not so hard - - -- 26	251
Blue shale - - - - - 8	259
Fard sand - - - - - -- 46	305
Black shale - - - - - 14	319
Water sand - - - - - - 12	31
Blue shale - - - - - 14	345
Sand - - - - - - - 3	348
Black shale - - - - -- 6	354
Sand - - - -	362
Blue shale - - - - - 7	369
Black shale - - - - -- 52	421
Blue shale - - - - - - 11	32
Very hard sand - - - - - 2	434
Blue shale - - - - - . 10	44
BIack shale - - - - - 508	952
Gray lime - - - - - -- 102	1054
White shale - - - - -- 9	1063
Gray lime - - - - - --	1085
Black shale - - - - -- 10	1075
White shale - - - - -- 10	1085
Gray lime - - - - - - 15	1100
Black lime - - - - - 10	1110
Gray lime - - - - - 6	1116
Black lime - - - - - 12	1128
Gray lime - - - - - 5	1133
White lime - - - - - 32	1165
Gray lime - - - - - - 27	1192
Black line - - - - - 89	1281
Gray lime - - - - - 4	1285
White lime - - - - - - 52	1337
Black lime, sand and pocket of water - - 3	1340
Gray lime - - - - - 17	1357
Sticky white lime - - -- 90	1447
Gray lime - - - - - - 7	1454
Blue-white lime - - -- 177	1631
Sandy lime - - - - - 6	1637
Sandy limestone - - - 5	1642
TOTAL DEPTH	164

Driller's \log of well 72

W. B, Leverett ranch, 6 miles northeest of San Saba.

Surface soil - - - - 3	3
Yellow clay - - - - -- 17	20
Lime - - - - - - - 5	25
Sandy clay - - - - - 20	45
Blue clay . - - - - -- 7	52
Lime - - - - - - - 6	58

Table of Drillers' Logs, San Saba County--Continued

\ldots| Thickness Depth
 (feet) (feet) |
| :---: |

Driller's log of well 72--Continued		
Lime . . - - - . -	7	68
Blue shale - - -	11	79
Lime - - -	2	81
Blue shale - -	44	125
White Iime	5	130
Blue shale - -		160
Line and shale - . - - -	19	179
Gray lime - - - - - - -	3	182
Lime - - -	6	188
Lime shell - - - - -	1	189
Blue shale - - -	63	252
Lightmblue shale - - - -	38	290
Black shale - - - - --	375	665
Gray lime - - - - - -	40	705
Black shale - - - - --	18	723
Gray lime - - - - - --	8	731
Black shale - - - - ---	3	734
Gray lime - - - - --	31	765
Blue shale - . - - - -	5	770
Gray lime - - - - - - -	30	800
White lime - - - - -	93	893
Brown shale - - - - - -	47	940
Shelly lime - - - - --	10	950
Hard lime - - - - - -	5	955
White lime - - - - -	48	1003
TOTAL DEPTH		1003

Driller's log of well 84

- Munsell ranch, 7 miles east of san Saba.

Surface soil	32	32
Soft blue shale - - - --	28	60
Soft gray shale	20	80
Soft black shale - - -	72	152
Hard gray lime -	23	275
Hard black lime	4	179
Hard gray lime -	7	186
Blaok flinty limestone (very hard) - - - -	8	194
Hard gray lime --	40	234
Soft blue shale - - - --	2	236
Hard gray lime - - - -	20	256
Hard black lime - - - - -	5	261
Soft black lime -	20	281
Hard gray lime -	67	348
Soft black shale	20	368
Hard gray lime -	36	404
Hard black shale	82	486
Hard gray lime -	114	600
Hard water sand - - - -m	58	658
Hard gray lime - - - ---	140	798
TOTAL DEPTH		798

 Thickness
(feet)
(feet)
T. A . Garrett tract, $14 \frac{1}{2}$ miles west of San Saba.
J. 0. Wore tract, 12 miles west of San Saba.

Driller's log of well 237
James Sloan ranch, 13 miles west of San Saba.

Driller's log of well 286
H. G. Hollingswortin tract, $22 \frac{t}{2}$ miles sout? west of San Saba.
(Continued on next page)

Table of Drillers' Logs, San Saba County--Continued

	$\begin{aligned} & \text { ickn } \\ & \text { feet } \end{aligned}$	$\begin{aligned} & \text { Depth } \\ & \text { (feet) } \end{aligned}$	$\begin{aligned} & \text { Thickness Depth } \\ & \text { (feet) (feet) } \end{aligned}$	
Driller's log of well 286--Continued			Driller's log of well 286--Continued	
Red limestone m-m	6	279	Yellow linestone, water- 8	318
White limestone - - - --	2	281	Water sand - - - - - 4	322
Light-brown limestone --	4	285	Yellow limestone - - - 14	336
Gray limestone, water -m	3	288	Not given - - - - - - 56	392
White limestone - - - --	22	310	TOTAL DEPTH	392

Logs of test wells drilled by W. P. A. labor in San Saba County, Texas Samples examined and classified by G. H. Shafer Projeot Superintendent

$\ldots \quad$| Thickness Depth |
| ---: |
| (feet) |

Well 7

In valley, side of county road, Diedrioh Ahrens sur., 1.2 miles southwest of Holt, 23 miles northwest of San Saba.
Gray and yellow top soil 2
Yellow olay - - - - 5
Greenishmgray clay m - 12 12 Octcber 19, 1938,

Well 11

Bottom of drew, side of county road, center of north half of Sylvester Simon sur o, 2.5 miles north of Hall, $21 \frac{1}{2}$ miles northwest of San Saba.
Surface soil - - - - I
Gray and yellow shalky, sandy cley - - - --Greenish-colored hard clay with little gravel 3lue shale - - - - - Ootober 17. 1938.

Well 75
Flat, W. B. Leverett ranch, Margil Gayton sur,, $5 \frac{1}{2}$ miles northeast of San Saba. Top soil and dark-red clay Dark-red sticky clay Sandy buff-colored olay with few chalk peboles
Greenish-gray sandy shale 4
Yellowishmbrow shale and boulders - - - -- 3 Chocolate-colored shale, lignite, few boulders 2
Black and blue sticky shale - - - - - $\quad 29$
Black shale - - - - - 2 September 16, 1938.

Well 76
Hillside, A. J. Walker ranch, Warci,l
Gayton sur., 6 miles northoast of San Sabae
Sandy brown surface soil 3
Greenishobrown clay and sand 2 Iellowish-brown sand and sandstone - - - - 3
Yellowish sandstone, some gravel - - - - - - $\quad 3$
Yollow sand - - - - m 4
Hard greenishogray shalo
with few layers of brown shale - - - - m m 32

Thickness Depth
(feet) (feet)
Well 77
Gentle slope, A. J. Walker ranch, Wargil Gayton sur., 6 miles northeast of San Saba.
Sandy reddish-brown clay 4
Sandy buff-colored clay
with few chalk pebbles 22
Coarse sand and gravel(damp) 5
Hard flint boulders -
4

Septernber 29, 1938.
Well 78
River bottoms, C. E. Lancaster ranch, Leargil Gayton sur., $5 \frac{7}{2}$ miles northeast of San Saba.

| Brown surface soill - - | 3 | 3 |
| :--- | :--- | :--- | :--- |

Reddish-brown clay and
lime nodules - - -- 13
Sandy brown clay - - - $\quad 8 \quad 24$
$\begin{array}{lll}\text { Brown clay and sand -- } & 2 & 26\end{array}$
Dry sand - - - - - $\quad 1 \quad 27$
Sand and gravel - - -- 29
Coarse brown sand, gravel,
and flint boulders-- 3
32
Boulders - - - - - $\quad 1 \quad 33$
Rook - . . . - . . - . $\quad 33$
August 30, 1938.
Well 79
River bottoms, a. J. Walker ranch, liargil Gayton sur., 6 miles northeast of San Saba.
Reddish-brown surface soil
and lime nodules $=$
Sandy buff-colored clay and lime nodules -13

15
Slightly sandy buff-
colored clay - - 18

33
September 1, 1938.
Well 80
River bottoms, C. E. Lancaster ranch, Margil Gayton sur., $5 \frac{1}{2}$ miles northeast of San Saba.
Reddishworn top soil

2	2

Sandy light-brown clay and lime nodules --
Buff-colored clayey sand and lime nodules -- 8
Fine-grained buffecolored sand (dry) - - . Coarse gravel and sand
$12 \quad 24$

25	1	25

September 6, 1938.

Logs of W. P. A . test wells in San Saba County--Continued

$\cdots \quad$| Thicmess Depth
 (feet) (feet) |
| :---: |

Well 81
Creek bottoms, W. F. Lackey tract, Thos. Pereida sur., $4 \frac{3}{4}$ miles northeast of San Saba.

Brown top soil	2	1
Buffecolored olay, sand, and chalk pebbles -	16	17
creammoolored send -	8	25
Yellowishugray sand and few pebbles - - - -	3	28
Coarse pebbles, sand, and boulders - - - - -	$2 \frac{1}{2}$	$30 \frac{1}{2}$
Dotober 5, 1938.		

Well 167
In draw, Ed Fagg tract, Thos. Pereida sure, $5 \frac{1}{2}$ miles north of San Scuba.
Black surface soil and
gravel - - - - -
2
Brown soil and gravelStioky yellowishogray olay and gravel - 2
March $24,1939$.

Well 168
In draw, Ed Fagg tract, Thos. Pereida sur., 6 miles north of San Saba. Sandy top soil - - - - 7

Well 169
In sink, Ed Fagg tract, Thos. Pereida sir. $5 \frac{1}{2}$ miles north of son saba.

Tob soil - - - --	2	2
Yellow and gray clay -	2	3
Yellow clay -- --	4	7
Erownish-colored clay-	11	18
Sandy bluish-gray olay	36	54

36
54
February 13, 1939。
Well 178
Slope, So W. Hughes tract, $1 \frac{1}{4}$ miles southwest of China Creek School, $6 \frac{1}{2}$ miles
northwest of San Saba.
Sandy top soil - - -
Sandy darkmbrown clay-
fandy yellow olay - -

1	1
3	4
4	8
14	22

careous clay, few chalk pebbles

14
-

Logs of W. P. A. test wells in San Saba County-Continued

Well 191
In valley, Rainboak tract, Heinrich E, Wald sur., \bar{T}_{4}^{3} miles west of San Saba. Waxy bleck top soil and
gravel - - - - - $\quad 5$
$5 \quad 5$
Yellow clay, gravel, and
boulders - - - - -
4
Rock - - - - - - - - -
Rarch 17, 1939.
Well 192
Creek bottoms, W. T. Wogle tract, Edward Brown sur., 1.8 miles southwest of Harm keyville, 5 miles west of San Saba, Black shale - m - - - 37 37 December 2, 1938.

Well 193
Top of ridge, Cook Est., Edward Brown sur., $2 \frac{1}{2}$ miles southwest of Harkeyville,传 uniles west of San Saba. Boulders - - - - - -

2	2				
2	4				
19	23				
32	55		Gray shale - - - - -	2	4
:---	---:	---:			
Groenishogray shale - -	19	23			
Sticky, hard black shale	32	55			
December l, 1938.					

Well 208
Gentio slope, T. C. Maxwell tract, Perry Peese sur. 20, $2 \frac{1}{4}$ miles southwest of A,1gerita, 10 miles west of San Saba. Red sand and clay - - Sandy, buffecolored clay, boulders and chalky pebbles

Thickness Depth
(feet) (feet)
Well 208--Continued
Chalky, finemgrained buff-
colored sand - - - 6
23
Stioky green clay - -- 26
November 21, 1938.

Well 213

Gravel pit, E. M. Hayes tract, El Paso Irri. Co. sur., 2 miles northwest of Algerita, $10 \frac{1}{2}$ miles west of San Saba.
 Sandy gray and yellow
caliche - - m $\quad 3 \quad 11$
Grayish-white lime - - $\quad 27 \quad 28$

Red sandstone - - - - 4
Coarse-grained packed
sand - . . - - .. 2
Hard reddish-yellow
sandstone - - - - 7
Rock - - - - - -- 41
Ootober 13, 1938.

Well 232

In draw, $0 . \overline{\text { P. Leonard tract, } N W W^{\frac{1}{4}} B .}$ Warmack sur. 23, 4.2 miles southwest of Algerita, 11 miles west of San Saba. Waxy black top soil
Sticky yellow and gray
clay - - - - - $\quad 5 \frac{1}{2}$
Sticky gray shale - -- 14
Black shale - - - -- 6
November 21, 1938.
Well 246
In valley, T. S, Lemons tract, $\mathrm{S} \frac{7}{2}$ Jos. B. Tatum sur. 63, 4 miles southwest of Sloan School, $15 \frac{1}{2}$ miles west of San Saba. Sandy gray top soil - 2 Buff-colored sand, chalk
pebbles, and boulders 11 Yellowishogreen shale- 5 Black shale - - - - - $\quad 3$ December 17, 1938.

Well 359

Creek bottoms, J. D. Pariker tract, Eberle sur., $10 \frac{1}{2}$ miles southeast of San Suba. Top soil and travertine White travertine - - -

1	1
7	8
9	27

Logs of W. P. A. test wells in San Saba County-mContinued

\ldots| Thickness Depth |
| :---: |
| (feet) (feet) |

Well 360
Creek bottoms, J. D. Parker tract, Eberle sur., 300 feet north of well 359 .
Top soil - - - - - - $\quad 1$
Travertine - - - - - $\quad 9$
August $30,1938$.
Well 361
Greek bottoms, J. Dz Parker tract, Eberle sur., 300 feet north of well 360 . Black top soil and travertine
Cream-colored travertine Lime and cherty limestone August 30, 1938.

Well 388
In sink, T. O. Long tract, P. Fuohs sur. 20, $10 \frac{\pi}{2}$ miles southeast of San Saba. Hard red olay and sand rock 4 Sandy yellowish-gray
calcareous clay - 15
Hard sandstone
1
March \qquad 1939.

\cdots| Thickness
 (feet)Depth
 (feet) |
| :---: |

Well 389
In sink, N. H. Gregg tract, E_{Z} Deidrich Fritz sur. 505, 11 miles southeast of San Saba.

Blaok surface soil - -	3	3

sandy browish-gray soil 4
$\begin{array}{llll}\text { Yellow clay and sand - } & 15 & 23\end{array}$
Brownish-yellow sandstone 2,25
Sandy blue clay - - -- 27
Dark-blue olay - - - - 7
Hard sandstone - - - -
December 29, 1938.
Well 391
Sido of draw, J. P. Roberts tract, Sith G. M. F. Kaiser sur. 507, 10 miles southeast of San Saba.
Sandy brown top soil and
gravel - - - - - 5
Sandy yellow clay - m 3
5
Yellowish-gray clayey sand, with thin layers of
sundstone - - - - $\quad 17$
25
Hard brownish-yellow sand rook - - - - - m 2
Sandy yellow clay - - - 8 27

Alternating layers of bluishgray sandstone and shale 30

65
December 29, 1938.
(Analyzed at The University of Texas under the direction of Dr. E. P. Sc'och, Director of the Bureau of Industrial Chemistry, and E. W. Lohr, Chemist, U. S. Department of the Interior, Genlogical Survey; by D. F. Riddell, and H. T. Davidson, Chemists; and Martin Wieland, Jack Ramsey, and D. C. Ebner, Assistant Chemists. Nitrate and fluoride determined by E. W. Lohr. Results are in parts per million. Well numbers cnrrespond to numbers in table of well records.

$\begin{aligned} & \text { Well } \\ & \text { No. } \end{aligned}$	Owner	Depth of wel. 1 (ft.)	$\begin{gathered} \text { Date } \\ \text { of } \\ \text { collection } \end{gathered}$	```Total dissolved solids (calc.)```	Calcium (Ca)	$\begin{aligned} & \text { Magn e- } \\ & \text { sium } \\ & (\mathrm{Mg}) \end{aligned}$	Sodium and Potassium $(\mathrm{Na}+\mathrm{K})$ (colc)	Bicarbonate $\left(\mathrm{HCO}_{3}\right)$	Sul- phate $\left(\mathrm{SO}_{4}\right)$	$\left\lvert\, \begin{aligned} & \text { Chio- } \\ & \text { ride } \\ & \text { (cl) } \end{aligned}\right.$	Ni- trate $\left(\mathrm{NO}_{3}\right)$	$\|$Fluor- ide (F)	Total hardness as CaCO3 $(\mathrm{calc}$.
2 Mrs. T. J. Singleton			oct. 18, 1938	810	192	24	(1)	311	81	94	223	-	580
3	Mrs - J. F. Deeds	41	do.	727	76	5	192	384	111	116	38	-	208
	Great Southern Life Ins. Co.	200	do.	379	99	10	34	293	27	65	b)	0.1	286
5	Ite	Spring	do.	650	$\frac{68}{86}$	20	144	329	173	83	-b/	0.5	253
6	Garret Burk	500	do.	2,507		116	635	653	989	360	b/	0.4	692
8	- - Hardeman	-	Oct. 19, 1938	480	98	29	51	433	19	70	b/	-	363
9	G. R. Armentrout	287	oct. 14, 1938	807	106	70	70	433	42	100	206	-	553
	N. J. Hal	500	do.	607	112	46	57	409	35	156	b/	-	468
12	Town of Hall	178	do.	1,260	222	38	155	134	340	385	54	\cdots	714
14	-- Parker	563	do.	393	116	22	8	433	19	15		0.3	378
15	W. J. Lewis	236	do.	343	102	20	5	384	12	15	b/	-	338
	W. H. Gibbons	1,536	Oct. 27, 1938	357	90	29	9	384	12	20	b/	0.5	343
	M. M. Leach and - Hall	Spring Oct. 24, 1938		198	53	3	1.6	61	12	84	b/	-	147
19	de.	770	do.	305	79	27	2	329	23	12	b/	-	306
20	do.	Suring	do.	261	-	22	-	275	11	13	b/	-	-
21	do.	279	do.	372	106		11	415	15	14	b/	-	353
	I. W. Horne	200	Oct. 17, 1938	1,760	78	53	472	336	634	355	b/	0.6	413
23	Ben Lucas	190	do.	1,549	109	34	$4) 0$	378	392	360	68	-	411
25	Mrs. J. W. King	166	do.	503	85	19	88	415	23	84	b ${ }^{7}$	-	292
26	George Wilton	100	Nov. 1, 1938	1,618	269	51	239	458	396	430	b/	0.1	881
	Mrs. Mary Winkel	10	do.	442	71	19	79	439	32	25	b/	1.2	257
	-- Christian	2007	do.	932	124	33	177	464	198	172	b/ -		445
29	A. B. Swinney	115	Oct. 19, 1938	322	53	27	37	317	23	26	b/	-	241
30	Mrs. M. F. Rushin	750	do.	7.529	13	2	603	451	a/	680	b/	8.5	41
31	Bowser School Dis	175	do.	1,120	15	12	401	592	246	155	b/	-	87
	Fd. Cowart	196	do.	414	39	25	96	451	15	17	b)	-	201
34	C. J. Cummings	1,380	Oct. 12, 1938	2,754	22	7	1,066	451	8	1,415	b/	9.0	84
36	Lncker Schonl Dist	. 360	do.	2,373	12	38	767	543	781	475	b/	0.4	264

SUlphate less than 10 parts per million.
\therefore Nitrate less than 20 perts per million.

Partial analyses of water from well s and springi in San Saba County-Continued

[^0]b/ Iritrate less than 20 parts per millinn.

Partial analyses of water from wells and springs in San Saba County--Continued

$\begin{aligned} & \text { Well } \\ & \text { No. } \end{aligned}$	Owner	$\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { well } \\ & \text { (ft.) } \end{aligned}$	Date of collection	Total dissolved solids (calc.)	Calcium (Ca)	$\left.\begin{array}{\|l\|} \hline \text { Magne- } \\ \text { sium } \\ (\mathrm{Mg}) \end{array} \right\rvert\,$	Sodium and Potassium $(\mathrm{Na} \neq \mathrm{K})$ (calc.)	$\left\lvert\, \begin{aligned} & \text { Bicar } \\ & \text { bonate } \\ & \left(\mathrm{HCO}_{3}\right) \end{aligned}\right.$	$\left\lvert\, \begin{gathered} \text { Sul- } \\ \text { phate } \\ \left(\mathrm{SO}_{4}\right) \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & \text { Chlo- } \\ & \text { ride } \\ & \text { (cl) } \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{Ni}- \\ \text { trate } \\ \left(\mathrm{NO}_{3}\right) \end{array}\right\|$	Fluor- ide (F)	Total hardness as CaCO (calc.)	
85 R. E. Senterfitt 232 Jan. 19, 1939				1,287	53	19	402	390	300	320	b/	0.9	212	
	J. O. Cagle	$\frac{232}{165}$	Mar. 13,1939	1,096	18	6	406	360	93	395	b/	1.1	69	
	F. B. Hall	16	Jan. 9, 1939	422	140	8	15	458	14	20	b/	-	385	
	- Squires	2004	Feb. 11, 1939	697	144	34	28	207	4.1	112	236	0.2	501	
	Tom Grozier	116	do.	336	74	34	10	366	16	22	b)	-	326	
	- Dalton	Spring oct. 7, 1938		403	-	--	-	479	8	10	b)	-	416	
	-- Kirkpatrick	Spring July 19, 1938		387	108	29	5	458	8	10	b/	-	388	
	Jim McConnell	Spring Jan. 9, 1939		510	115	42	13	397	36	63	46	-	461	
93	Mrs. J. M. Carter	21	do.	625	143	48	-	384	30	56	159	-	555	
	H. C. Galloway	600	Sept. 8, 1938	404	107	34	6	464	12	18	b/	-	406	
	W. M. Moore	$\frac{3007}{150}$	Sept. 9, 1938	251	75	12	2	232	20	16	b/	0.1	238	
97	-- Weatherby		Feb. 23, 1939	336	112	9	7	342	22	18	b/	0.1	315	
98	City of San Saba	Spring July 19, 1938		619	109	32	90	451	8	156	b/	-	405	
151	Mrs. Mary Sanderson	- 66	Sept.16, 1938	1,793	290	33	223	177	158	378	624	-	860	
152	do.	325 do.		1,812	40	15	67 A	732	14	700	b/	9.0	159	
153	do.	225	- do.	681	29	13	223	488	109	64	b/	3.0	128	
154	Rufe Thornton		2007 Nov. 18,1938		424	70	19	68	299	40	80	$\underline{\underline{1} /}$	-	252
-156	J. W. Patterson				357	122	6	3	256	38	62	b/	-	329
157	H. D. Moore	32	Sept, 14, 1938	1,043	-	- -	-	293	105	355	75	-	-	
156	Bill Letbetter	27	$\mathrm{do} .$	1,248	242	23	110	299	32	1.65	528	-	699	
159	C. E. Whitman	13		576	108	17	85	378	105	75	b/	-	541	
160	S. D. Edmondson	19	$\frac{\text { do. }}{\text { Sept. } 6,1938}$	721	121	14	124	390	126	102	42	-	359	
161	do.	8	$\frac{\text { Sept. } 15 .}{1938}$	508	40	13	136	317	102	56	b/	1.4	153	
162	Mrs. - Murray	16		455	-	-	-	317	53	77	b/	-	-	
163	Jim Murray	$\text { Spring Sept. } 14,1938$		1,932	111	61	468	378	377	415	312	2.5	528	
164	Jim Walker	-14	$d o$	615	-	--	-	378	32	166	b/	-	-	
165	Ida Rylander	29	Sept.15, 1938	1,670	262	40	266	329	255	515	170	-	820	
166	G. W. Thorp	9	Sept.19, 1938	719	156	32	44	342	308	10	b/	-	520	
170	W. M. Perry	$\frac{15}{28}$	Sept.16, 1938	812	150	16	104	323	28	143	212	-	4.40	
171	W. J. Terry		Sept.19, 1938	2,959	385	100	550	561	588	1,060	b/	$-$	1,372	
172	I. T. Watkins	1,160		10,944	144	40	4,101	366	8	6,465	b/	6.0	525	
173	W. E. Johnson	50		1,057	238	22	78	378	181	120	232	-	684	
174	E. C. Smith	167	$\frac{d 0 .}{\text { Oct. } 31,1938}$	1,417	75	41	388	342	188	455	102	0.8	355	
175	G. T. Feazle	62	do.	3,485	187	166	822	342	972	1,165	b/	0.2	1,152	

a/ Sulphate less than 10 parts per milion.
b/ Nitrate less than 20 parts per million.

Partial analyses of water from wells and springs in San Saba County--Continued Results are in parts per millinn.

a/ Sulphate less than 10 parts per million.
b/ Nitrate less than 20 parts per million.

Partial analyses of water from wells and springs in San Saba county-mContinued Results are in parts per millinn.

Well No.	Depth of well (ft.)	Date of collection		$\begin{aligned} & \mathrm{Cal}- \\ & \text { cium } \\ & \text { (Ca) } \end{aligned}$	$\begin{aligned} & \text { Magne- } \\ & \text { sium } \\ & \text { (Mg) } \end{aligned}$	Sndium and Potassium $(\mathrm{Na} \neq \mathrm{K})$ (calc.)	$\begin{aligned} & \text { Bicar- } \\ & \text { bonate } \\ & \left(\mathrm{HCO}_{3}\right) \end{aligned}$	$\left[\begin{array}{l} \text { Sul- } \\ \text { phate } \\ \left(\mathrm{SO}_{4}\right) \end{array}\right.$	$\begin{aligned} & \text { Chlo- } \\ & \text { ride } \\ & (\mathrm{Cl}) \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{Ni}- \\ & \text { trate } \\ & \left(\mathrm{NO}_{3}\right) \end{aligned}\right.$	Fluor- ide (F)	Total hardness as CaCO $(\text { calc. })^{3}$
256 J. W. Gibbons	914	Nov. 16, 1938	270	78	14	9	317	8	5	b/	-	254
257 do.	300	oct. 27, 1938	484	-	-	-	512	19	16	b/	-	-
258 do.	288	Nov. 16, 1938	426	109	42	-	516	10	10	b/	-	446
259 do.	268	oct. 27, 1938	394	73	27	47	427	8	20	b/	0.5	291
260 do.	312	do.	544	155	19	13	415	11	48	91	-	467
261 do.	342	Nov. 16, 1938	335	102	23	-	384	5	8	b/	-	349
262 do.	900	3n.	453	17	1	1.8	256	85	64	b/	-	16
263 do.	548	do.	338	98	22	7	109	3	7	b/	-	333
264 do.	453	do.	299	74	36	-	354	6	9	b/	-	332
265 do.	313	do.	353	99	25	4	409	5	7	b/	-	351
266 do.	448	Nov. 17, 1938	395	102	38	1	476	8	9	b/	-	414
267 J. E. Gibbnns	440	Nov. 16, 1938	223	50	24	4	256	9	10	b/	-	225
268 do.	Spring	NOV. 1\%, 1938	-	-	- -	-		1.5	6	b/	-	-
270 do.	W88	do,	290	60	30	10	299	30	13	b/	-	273
271 do.	107	do.	428	152	6	9	467	12	19	b/	0.1	104
272 do.	Spring	Nov. 29, 1938	286	72	33	-	329	8	11	b/	-	315
273 Jim Chadwi ck	Spring	do.	297	67	32	3	329	19	10	b/	-	300
$\begin{gathered} 275 \text { Sorrell and } \\ \text { Callahen } \end{gathered}$	-9	Nov. 30, 1938	466	110	26	2	479	17	23	-	-	356
276 do.	68	do.	505	155	22	-	445	14	48	52	-	179
27% do.	793	do.	328	84	30	-	312	30	16	b/	0.15	355
279 J. S. Capps	Spring	Mar. 10, 1939	315	-	--	-	3.2	9	1.	b/	-	-
280 dn.	Spring	do.	314	98	13	5	329	15	18	b/	-	303
282 W. H. Latnam	151	do.	357	101	21	11	397	13	16	$\underline{1}$	-	335
283 -	75	do.	419	63	11	81	79	11	214	b/	-	202
281 Lum Barton	11	do.	289	83	5	24	281	11	28	b/	-	228
285 Mrs. Mike Miller	180	do.	451	108	49	1	525	9	20	b/	-	470
287 Vemmn Miller	220	Dec. 9, 1938	478	113	28	13	24.	20	92	92	0.1	397
288-- Callahan	300	Nov. 9, 1938	737	162	36	48	397	36	140	120	0.6	552
289 L. R. Britton	105	do.	439	122	19	23	427	26	39	b/	-	382
290 W. H. Kothmann	78	do.	781	112	71	58	275	91	208	106	0.6	574
291 J. T. Bush	Spring	NOT. 8, 1938	-	-	-	-	-	15	13	b/	-	-
292 do.	57	do.	299	93	12	7	305	12	24	n/	0.8	282
293 Vernon Miller	180	Dec. 9, 1938	-	-	-	-	-	11	36	53	-	-

a/ Sulphate less than 10 parts per million.
b/Nitrate less than 20 parts per million.

Partial analyses of water from wells and springs in Sin Saba County--Conti nued
Results are in parts per millinn.

Well 1 Owner No.	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { well } \\ \text { (ft.) } \\ \hline \end{gathered}$	Date of collection	Total dissolved solids (calc.)	$\begin{aligned} & \text { Cal- } \\ & \text { cium } \\ & \text { (Ca) } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { Magne- } \\ & \text { sium } \\ & \text { (Mg) } \end{aligned}\right.$	Sodi um and Potassium $(\mathrm{Na} \neq \mathrm{K})$ (calc.)	$\left\lvert\, \begin{aligned} & \text { Bicar- } \\ & \text { bonate } \\ & \left(\mathrm{HCO}_{3}\right) \end{aligned}\right.$	Sul- phate $\left(\mathrm{SO}_{4}\right)$	$\begin{aligned} & \text { Chlo- } \\ & \text { ride } \\ & \text { (cl) } \end{aligned}$	$\left\|\begin{array}{l} \text { Ni- } \\ \text { trate } \\ \text { (NO } \end{array}\right\|$	$\begin{gathered} \text { Fluor- } \\ \text { ide } \\ (F) \end{gathered}$	Total hardness as Caco 3 (calc.)
295 Henry Taylor	250	Dec. 8, 1938	325	-	-	-	336	11	22	b/	-	-
296 do.	250	Dec. 9, 1938	281	-	-	-	293	11	16	b/	-	-
297 do.	374	Dec. 8, 1938	169	32	18	7	153	15	22	b/	-	156
298 do.	250	do.	1887	136	i_{1}	-	567	9	10	-	-	522
300 Buster Pool	800	Dec. 6, 1938	368	101	36	-	409	11	19	h/	-	403
301 Jim Chadwick	250	Dec. 5, 1938	307	70	43	-	354	9	11	$\underline{\text { b/ }}$	-	352
302 Buster Pool	475	Dec. 6, 1938	-	-	- -			9	8	-	-	-
303 do.	2007	Dec, 5, 1938	385	101	38	-	433	9	12	L/	-	398
304 do.	2004	do.	548	130	54	\cdots	506	15	30	70	-	$5 ; 8$
305 Mrs. Amy Sloan	454	Dec. 19,1938	409	-	-	-	451	13	13	b/	-	-
306 Jjm Chadwick	Spring	Nov. 29, 1938	393	-	-	-	1.45	11	8	b/	-	-
307 do.	Spring	do.	378	-	\cdots	-	27	11	8	b/	-	-
308 Jim Sloan	358	Dec. 19, 1938	256	-	-	-	268	13	11	b/	-	-
309 E. A. Kuykendal1	Spring	Sept.29, 1938	376	94	-	38	4.51	8	10	b/	-	394
310 Gene Nored	2001	Sept. 9, 1938	470	124	35	-	415	28	36	13	-	456
311 R. N. Manley	52	do.	262	-	-	-	281	8	9	b/		-
$312 \mathrm{C} . \mathrm{B}$. Lambert	Spring	Dec. 13, 1938	416	119	23	15	491	9	7	b/	-	398
314 Ernest Conner	257	Aug. 19, 1938	426	132	17	12	476	22	9	b/	0.1	400
315 Jim Walker	Spring	Sept. 5, 1938	292	144	9	-	451	8	9	b/	-	396
316 R. N. Manley	252	Sept.10, 1938	473	121	48	-	506	13	20	22	-	500
317 do.	246	do.	263	-	-	-	250	10	16	b/	-	-
318 do.	300	Sept. 9, 1938	358	89	35	3	423	8	8	b/	-	365
319 Gene Nored	Spring	Oct. 3, 1938	345	-	-	-	390	4	6	b/	-	-
320 do.	Spring	oct. 4, 1938	390	-	-	-	451	5	8	b/	-	-
321 R. N. Manley	2007	Sept.10, 1938	407	95	49	-	482	8	11	b/	-	438
323 Miss Laura Sloan	2507	Dec. 6, 1938	-	-	-	-	-	11	6	b)	-	-
324 Nored, Sloan and Taylor	530	do.	332	104	49	-	519	11	11	b/	-	460
325 E. A. Kuykendall	445	Dec. 15, 1938	300	61	35	9	360	11	7	b/	-	296
326 Buster Pool	4007	Dec. 6, 1938	414	105	41	-	458	9	15	b/	-	$\stackrel{3}{4}$
327 Canning and Mimberly	2007	Dec. 15, 1938	212	55	10	15	214	13	1.4	b/	-	176
328 do.	150	do.	213	50	13	11	189	14	10	22	-	178
329 Henry Taylor	Spring	Dec. 9, 1938	183	62	9	-	183	11	11	-	-	190
330 do.	20	do.	390	140	10	-	439	12	12	-	-	394

a/ Sulphate less than 10 parts per mjllion.
b/ Nitrate less then 20 parts per million.

Partial analyses of water from wells and springs in San Saba County-montinued Results are in parts per million.

Well No.	Depth of well (ft.)	Date of collection	Total dissolved solids (calc.)	$\begin{aligned} & \mathrm{Cal} \\ & \text { cium } \\ & \mathrm{Ca}) \end{aligned}$	$\begin{aligned} & \text { Magne- } \\ & \text { sium } \\ & (\mathrm{Mg}) \end{aligned}$	$\begin{gathered} \text { Sodium and } \\ \text { Potassium } \\ (\mathrm{Na}+\mathrm{K}) \\ (\mathrm{ca} \mathrm{c} .) \end{gathered}$	$\left\lvert\, \begin{aligned} & \text { Bicar- } \\ & \text { bmate } \\ & \left(\mathrm{FCO}_{3}\right) \end{aligned}\right.$	Sulphate $\left(\mathrm{SO}_{4}\right)$	$\left\lvert\, \begin{aligned} & \text { Chlo- } \\ & \text { ride } \\ & \text { (Cl) } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{Ni}- \\ & \text { trate } \\ & \left(\mathrm{NO}_{3}\right) \end{aligned}\right.$	$\left[\begin{array}{c}\text { FIuor- } \\ \text { ide } \\ (F)\end{array}\right.$	Total hardness as Caco 3 (calc.)
331 Ed Lewis	-	Ifar. 9, 1939	336	103	11	15	366	10	17	b/	-	302
332 Frank Gray	150	do.	273	89	5	12	287	8	18	b/	-	243
333 V. R. Maddox	90	do.	343	79	12	36	232	18	8.4	b/	-	248
334 Will Hart	42	do.	314	62	9	47	232	22	56	b/	0.4	190
336 T. J. Bowman	280	do.	523	144	16	37	464	36	62	b/	-	425
337 Tom Houstan	150	Sept.21, 1938	244	54	16	17	207	27	38	b/	-	200
338 Nirs. Ben Broyles	408	Sept.22, 1938	318	74	26	14	336	26	13	b/	0.5	291
339 Mae Altizer	135	Jan . 3, 1939	245	-	-	-	244	15	15	$\underline{\square}$	-	-
340 J. H. Walker	1507	Sept. 8, 1938	495	123	24	$1{ }^{1}$	317	69	27	85	0.6	405
3¢1 Mrs. E. Yrarbmugh	111	do.	215	45	25	3	207	16	24	$\underline{1}$	-	215
343 Jack Barker	Spring	Sept.27, 1938	380	69	51	12	473	6	10	b/	-	381
3.t4 R. N. Manley	210	Sept.10, 1938	-	-	-	-	-	8	7	b^{\prime}	-	-
345 do.	215	do.	267	64	28	2	323	8	6	b/	-	278
346 do.	240	do.	427	103	49	-	500	10	12	b/	-	157
347 l do.	205	do.	371	83	42	-	397	16	18	b/	-	301
348 do.	430	Sept. 9, 1938	433	110	47	-	512	10	10	b/	-	169
349 dn.	290	do.	426	95	49	2	188	13	15	b/	-	440
351 Tom Murray	-	Feb. 23, 1939	472	122	49	-	573	8	11	b/	-	505
352 J. S. Norris	224	do.	-	-	-	-	-	8	8	b/	-	--
353 A. E. Petty	505	Feb. 22, 1939	622	192	26	-	512	16	38	98	-	586
354 M . T. Millican	240	Feb. 11, 1939	653	121	36	68	390	142	94	b/	0.2	453
355 do.	Spring	Aug. 30, 1938	215	-	-	-	290	12	10	b/	-	-
356 G. H. Brister	Spring	Aug. 29, 1938	279	68	30	-	317	11	14	b/	-	293
357 J. D. Parker	Spring	July 20,1938	402	114	31	-	476	12	10	b/	-	414
358 do.	20	do.	407	106	40	-	500	8	7	b/	-	429
359 W. P. A. Test	17	Aug. 29, 1938	420	104	38	6	476	12	16	b/	-	419
362 Moss Millican	Spring	do.	265	59	31	-	299	8	9	b/	-	274
363 Mrs. E. McCrory	71	Aug. 31, 1938	265	75	14	7	244	28	21	b/	0.1	244
364 do.	Spring	do.	407	126	24	-	464	19	10	b/	-	416
365 B. B. Reese	Srring	Mar. 3, 1939	281	54	10	45	281	12	22	b/	-	176
366 do.	Spring	Mar. 2, 1939	359	-	-	-	366	15	24	b)	-	-
367 do.	2001	Mar. 1, 1939	415	142	10	8	458	11	19	b/	-	396
368 -- Keeney	112	do.	1,184	127	27	249	415	503	74	b/	-	427
369 B. Parks	Spring	Mar. 3, 1939	247	-	-	-	244	19	13	b/	-	-
370 -- Millican	Spring	oct. 29, 1938	327	-	-	-	366	7	9	b/	-	-

a/ Sulphate less then 10 parts per millinn.
b/ Nitrate less than 20 parts per million.

Partial analyses of water from wells and springs in San Saba County-mContinued
Results are in parts per million.

Well No.	Owner	Depth of well (ft.)	Date of collection	$\begin{gathered} \text { Total } \\ \text { dissolved } \\ \text { solids } \\ \text { (calc.) } \end{gathered}$	$\left\{\begin{array}{l} \mathrm{Cal}- \\ \mathrm{cium} \\ \mathrm{Ca}) \end{array}\right.$	$\begin{aligned} & \text { Magne- } \\ & \text { sjum } \\ & (\mathrm{Mg}) \end{aligned}$	Sodium and Potassium $(\mathrm{N} \rightarrow \neq \mathrm{K})$ (calc.)	Bicar- bonate $\left(\mathrm{FCO}_{3}\right)$	Sul- phate $\left(\mathrm{SO}_{4}\right)$	$\left\lvert\, \begin{aligned} & \text { Cnlo- } \\ & \text { ride } \\ & \text { (cl) } \end{aligned}\right.$	$\begin{aligned} & \overline{\mathrm{Ni}-} \\ & \text { trate } \\ & \left(\mathrm{NO}_{3}\right) \end{aligned}$	Fluor- ide (F)	$\left[\begin{array}{c}\text { Total } \\ \text { hardness } \\ \text { as CaCo } \\ \text { (calc.) }\end{array}\right.$
371	T. S. Aylor	163	Mar. 6, 1939	559	154	33	10	531	30	30	41	-	520
372	do.	Spring	do.	2,721	184	46	$81 ?$	451		1,430	b7	-	649
373	I. G. Yates	Spring	Jan. 6, 1939	390	-	-	-	439	9	11	b/	-	-
374	do.	Spring	do.	414	-	-	-	476	9	7	b/	-	-
375	do.	Spring	an.	353	89	35	1	421	13	8	b/	-	367
376	John Barnes	Spring	Feb. 26, 1939	306	-	-- -	-	305	19	17	b/	-	-
377	do.	125	Jan, 3, 1939	334	82	36	-	397	11	10	b/	-	352
378	do.	180	do.	301	73	25	11	348	11	10	b/	-	286
379	do.	262	do.	-	-	- -	-	-	6	10	\underline{L}	-	\cdots
380	do.	2007	Jan. 4, 1939	237	38	36	5	275	13	10	b/	-	242
381	Mack Yates	245	Jan. 16, 1939	361	70	46	10	439	9	10	b)	-	363
382	Clarence Dafflemey	er -	Dec. 28, 1938	433	136	23	3	494	14	14	b/	-	434
384	Jack Pressley	Spring	Mar. 1, 1939	431	131	28	-	494	15	14	b)	0.1	442
385	Judge J. B. Harrel	1235	Jan. 5, 1939	342	100	20	2	293	26	50	b/	0.3	333
386	Julian Millican	60	Dec. 29, 1938	1,218	326	46	11	299	472	195	21	0.3	1,004
387	T. O. Long	85	Mar. 1, 1939	1,074	125	60	178	390	294	225	b/	-	557
389	W. P. A. Test	34	Dec. 29, 1938	1,259	190	32	236	397	142	450	b/	-	605
390	A. R. Neely	113	do.	-	-	-- -	-	-	11	24	b/	-	-
391	W. P. A, Test	65	do.	993	117	51	196	512	67	310	b/	-	502
392	J. G. Roberts	40	do.	-	-	-	-	-	34	54	b/	-	-
393	J. P. Roberts	233	do.	-	-	-	-	-	884	575	b)	-	-
394	R. D. Ashley	80	Sept. 2, 1938	\cdots	-	-	-	-	8	11	b/	-	-
395	do.	Spring	do.	340	-	-	-	384	8	9	b)	-	-
396	J. A. Lowe	120	Mar. 7, 1939	434	-	-	-	482	10	16	b/	-	-
397	N. H. Broyles	100	Dec. 29,1938	1,177	96	33	287	433	348	200	b/	0.3	375
398	Joe Crane	Spring	Dec. 28, 1938	325	92	2.4	1	366	17	11	b/	-	330
399	T. J. Broyles Est.	100	Dec. 30, 1938	358	-	-	-	403	10	9	b/	-	-
400	Mrs. J. E. G. Hillman	Spring	$\mathrm{do} .$	302	-	-	-	293	17	24	b/	-	-
401	do.	Spring	do.	315	-	-	-	317	21	16	b)	-	-
402	do.	Spring	do.	257	-	-	-	256	17	15	b/	-	-
403	do.	-190	do.	310	63	34	10	323	27	17	b/	0.6	296
404	C. J. Bowden	165	Sept.21, 1938	275	78	22	-	320	12	5	b/	-	284
105	Miss M. T. Gay	300	do.	274	91	5	8	281	12	12	b/	-	248
406	Frank Paxton	223	do.	344	58	55	-	369	20	29	b/	0.3	369

[^1]b/ Nitrate less than 20 parts per million.

Partial analyses of water from wells and springs in Sin saba County-Continued Results are in parts per million.

MAP OF SAN SABA COUNTY, TEXAS SHOWING LOCATIONS OF WATER WELLS LISTED

[^0]: a/ Sulphate less than 10 parts pex million.

[^1]: a/ Sulphate less than 10 parts per million.

