```
TEXAS STATE BOARD OF TATER ETGINEERS
    C. S. Clarik, Chairman
    J. \. Pritchett, Nembsr
    f. H. Dunlap, Hember
```

WEMORANDUM ON GROUND-ATER RESOURCES IN THE VICINITY OF CRONELL, TEXAS

By

- O. George and C. E. Johnson

Prepared in cooperation with the Fork Projects Administration and the United States Department of Interior, Geological Survey
Introduction 1
Location, aroa, and populstion 1
Purposo of investigation 1
Provious invostigation 1
History of the vator supply at orowll 1
Organization 2
Aoknowledgmunt 2
Procipitation 3
Golopic formations and thoir :/ater-bearing propurtios 4
Drilling authods 5
quality of Hater 6
Ground Water in tho alluvial aroa north of margarct 7
Fumping tosts 7
Recharge 8
Movemont and discharpe 8
Conclusions 9
ILIUSTRATOLS
Piguro 1, Nap of alluvibl arva north of Jargaret showing slopo of watur surfacu and thjoknoss of saturated sand in each test hols 28
Figuroz. Diagram of wolls and oquipment used in pumping tests 29
Piguro 3. Arrangemont of volls usad in pumping tosts $3 C$
Figure 4, Gap of arva north of Margarct shoving total dissolved solids in parts per million in wator obtained from test holus 31
pigure 5 . Drawdow and recovary curves for woll 50 32

INTRODUCTION

Location, area, and population

Crowell is near the center of Foard County in the north-central part of Texas, and is the county seat as well as the largest city in the county, The city was incorporated in 1907 and according to the U. S. Census Bureau the population was 1,817 in 1940. The area covered by this investigation includes all of Foard County but most of the work wias confined to an area of several square miles along the Pease River and north of the tow of Margaret.

Purpose of the investigation

The purpose of the investigation on which this report is based was to determine the possibility of developing a ground-water supply that would be adequate for the needs of crowell either as a permanent and contimuous supply or as an auxiliary supply during periods of drouth when the surface supply is inadequate.

Previous investigations

In the summer of 1936 , the Board of Water Engineers in cooperation with the Geological Survey sponsored a project of the Work Projocts Administration to make an inventory of the ground-water resources of Foard County. These data were published I/ in May 1936. 1/ith the aid of this inventory, the writers were able to proceed directly with the investigations of the area nearest Crowell, most likely to yield adequate supplies of relatively good water. The area between the Pease River and the town of fiargaret was selectod for intensive investigations.

History of the water supply of Crowell
According to information obtained from some of the older residonts of Crowell, the city obtained its water supply from 1907 to 1921 from a water well about a mile northeast of town, owned by Mr. E. C. Campsey. Mr. Campsey, hauled the water in two 300 -gallon tanks to consumers in various

[^0]parts of town and sold from 100 to 150 barrels a day at 25 cents a barrel.
In 1921 the city constructed a complete public water supply system including a standpipe, distributing lines and pumps. The water was obtained from two collecting galleries, one 100 feet long and the other 300 feet long, cut in sandstone across the head of a draw about two miles west of town. The initial yield of this plant was about 50,000 gallons a day. The plant is still in use but the yield is now about 10,000 gallons a day.

In 1926 a dam was built about three miles northwest of Crowell on Raggedy Creek. The reservoir was then 26 feet deep near the dam and had an estimated capacity of $100,000,000$ gallons. The dam was raised six feet in 1936 and because of silting the reservoir is now l2 feet deep when full. During a severe drouth in the summer of 1936 various other pits and tunnels in the vicinity of the original pumping plant were constructed but the combined yield of all of the city's sources could not supply the needs of the city and 772,000 gallons of water were brought from Knox City in railway tank cars at a cost of $\$ 5,000$. Heavy rains ended the drouth in September.

The average daily needs of the city are now about 150,000 gallons a day.

Organization
The present investigation was a project of the Fort Worth District of the Works Projects Administration sponsored by the State Board of Water Engineers in cooperation with the Federal Geological Survey and the City of Crowell, Carl E. Johnson was the field supervisor for the Work Projects Administration under the technical supervision of the author. The project was started August 27, 1940 and was completed April 11, 1941. In all 84 test wells were drilled, two of which were used for pumping tests and 12 for observation wells during the pumping tests. William L. Broadhurst and Clarence R. Follett of the Board of Water Engineers assisted in conducting the pumping tests. Mr. Follett also collected data from another similar area along the Pease River and from the City of Vernon for comparison with the data obtained from this investigation. The chemical analyses of water samples were made by the Work Projects Administration under the direction of E. P. Schoch, Director of the Texas Bureau of Industrial Chemistry, and E. W. Lohr, of the quality of Water Division of the U. S. Geological Survey. Laboratory permeability tests and mechanical analyses of the material excavated from the wells were also made by the Work Projects Administration under the direction of A. A. Meador of the Texas Board of Water Engineers. All ground-water projects in Texas are made under the general direction of 0. E. Meinzer, Geologist in Charge, of the Division of Ground Water.

Acknowledgment

The writers are indebted to the officials of the City of Crowell and the Work Frojects Administration for their helpful cooperation.

Walter N, White, Senior Hydraulic Engineer in charge of ground-water
investigations in Texas, visited the project and has made helpful suggestions regarding plans for the work and the preparation of the report.

PRFCIPITATION

The precipitation in inches at Crowell, Texas from 1916 to 1940 as recorded by the U. S. Weather Bureau is given in the following table:

Monthly, annual and average precipitation in inches Crowell, Foard County, Texas

		eb									
1976								1.00	2.75		
1917	0.3	0.2	0.1	0.72	2.7	0.10	3.68	1.		0.200 .00	0.0010.
1918	0.60	0.58	1.27	1.11	0.10	2.83	0.4	0.20	,91	4.93 1.55	. 8
19	-	1.8	4.10	5.38	8.67	,	4.	0,	1,45	11.90 T.	0.00
1920	I. 6	0.7	2.	. 5	2.2	1.7	0.5	8.00	. 40	4,15 1, 54	. 5
1921	2.00	0.00	1.50	. 40	0.55	7.02	1.90	0.	. 7	. $00 \quad 0.00$. 20
1922	0.62	0.5	0.8	5.75	.			0.	. 5	$0.60 \quad 0.60$. 0
1923	1.55	0.8	1.0	3.9	1.8	8.3	0.0	5.32	. 95	. 912.31	. 1138.
1924	0.00	0.30	3.09	2.28	0.6	4.5	. 8	0.20	. 90	0.	. 00
25	2.00	0.30	0.00	3.99		1.2	2.	3.	.	1.90 1.5	. 6024
1926	1.20	0.0	.	4.	4.	3.8	3.3	4.27	. 40	2.940 .50	,
	0.60	0.00	2.35	1.05	1.1	3.	1.	4.	. 25	$0.00 \quad 0.00$. 8021.
1928	0.22	2.53	0.92	0,	3.		1.	1.	0.0	2.050 .98	. 0018.9
	0.85	0.2	2.35	0.3	8.	2.	5.1	0.20	4.32	. 501.6	. 0027.
	0.78	0.00	1.70	2.90		0.00	0.	0.	1,20	. 08 1.10	. 9022
1931	0.90	3.10	2.25	2.70	1.5		0.5	0.	. 0.00		4022.
1932	2.3	1.									2526.
1933	0.00	1.90	0.00			0.	2.25	3,22	2.60	0.002 .7	. 90
1934	0.95	0, 30	2.90	2.20	3		0.	3.00	2.90		. 00
	0.00	1.16						0.8	4.80	2.82 .2 .3	. 5026
1936	0,40	0.40	0.00	. 15	. 99	0.00	0.00	0.20	13.10	1.100 .00	4319.
1937	0.25	0.00	2.60		.			4.82	2.55	$4.80 \quad 0.49$	4525.
1938	0.8	3.54	2.05	. 77	9.66	5.63	0.00	2.22	0.00	0.801 .20	0.1026 .83
939	2.61	0.00	2.83	,	3.29	2.86	1.70	2.42		0.80.20	.10
940	0.60	2.25	0.00	20	4.23						

Average
$\begin{array}{lllllllllllllllll}0.84 & 0.93 & 1.58 & 2.60 & 3.61 & 2.76 & 1.56 & 2.26 & 2.62 & 2.86 & 1.19 & 1.01 & 23.32\end{array}$

The averages for each month show that the greater part of the precipitation falls during the spring and summer months and that November, December, January, and February are relatively dry months. Exceptions to this general trend emphasize the need for a more dependable supply. In 1936 only 0.20 inches of rain fell during the months of June, July, and August. It was at this time that the City was forced to haul water from Knox City. During the following month of September, the rainfall was 13.10 inches. The range of the annual precipitation during the 23 years of observation is from 20.47 to 38.99 inches.

* At Quanah.

The formations exposed in Foard County belong to the Permian and Quaternary systems. The permian rocks are exposed over a wide area in north fexas and in general yield very little water, most of which is of poor quality, These rocks are commonly called "red beds". Overlying the Permian in some places are more recent supurficial deposits of sand, gravel, ant clay which have been doposited by rivers and to a small extent by the wind. These deposits of alluvium are widespread in the eastern half of the county but are too thin in most places to yield much water. There are places along the main streams, however, where these deposits are thick onough to yield supplies large enough for irrigation and for cities. The City of Vernon, on the Pease River in Wibarger County obtains its water supply exclusively from this kind of a deposit. Several irrigation wells in the northeast corner of Foard County obtain water from similar deposits. The alluvial area north of Margaret is also of aimilar origin.

In all, 81 test wells were drilled in the area north of Margaret (see fig, 1). These tests revealed that there is a great difference in the thickness of saturated sand in different parts of the area and that the areas of greater thickness are roughly linoar as if the sediments had been deposited in old stream channels on the surface of Permian rocks.

The material excavated from the test wells in the alluvial area is predominantly sand and gravel. Balls of clay were found mixed with gravel in some wells. Some clay and sandy clay was encountered in nearly all of the wells but there are no persistent beds of any kind. The sand is predominantly quartz and most of the grains are well rounded. Pebbles up to two inches in diamoter were found. The clays and sandy clays are red and a red color persisted in the water for some time after the start of each pumping test. No cementation of the material was noticed while drilling but there was a tendency for the excavated material to "cake" when left on the ground to dry. Logs of the tast vells are included in this report.

The following are the results of mechanical analyses of matorial excavated from the saturated portion of test well 33. The analyses vere made under the direction of Mr . A. A. Moador, Engineor, Texas Board of Fater Engineers.

MECHANICAL ANALYSES OF SAMPLES FROH SATURATED PORTION OF AQUIFER IV VELL 33

DRILLING MERHODS

All of the test wells were drilled by hand. The holes were drilled as deep as possible with an Iwan-typo auger and as soon as caving started, 4 -inch casing was inserted, The 4 -inch casing was rotated in the hole and the cuttings were removed from the inside of the casing by means of a sand bucket. A collar with saw-tooth notches was placed at the lower end of the casing so that the pipe served as a drilling tool as well as casing. The casing was cut in lengths of seven feet to facilitate handling. Where beds of clay wure encountered a drop auger was used to remove the material inside of the casing. A portable tripod was made of 3 pieces of 4×4-inch timbers 20 feet long, A pulley and manila line were used for handing the casing and drilling tools. As each hole was completed the casing was removed and the hole was refilled. It was necessary to use wooden clamps and hydraulic jacks to loosen the casing.

The two wells that wore used for pumping tests, wells 33 and 50, required more eleborate equipment (see diagram in fig. 2). Well 50 was drilled in the manner described above and after it was selocted as a site for a pumping test, it was re-drilled in a similer manner, using 8 -inch casing which had been perforated with slots $\frac{\text { then wide and } 4}{2}$ inches long. These slots were closely spaced so that only a skeleton of the original pipe remained. The pipe was then tightly wrapped with No, 9 wire. The slotted and vire-wrapped portion extended from the water table to the clay at the bottom of the hole.

Because of the small yield developed during the pumping test at well 50 a different method was tried for well 33. A much larger hole was drilled by means of an orange-peel bucket and 42 -inch steel pipe, sections of which were bolted together. When the 42 -inch hole was completed, perforated l2-inch casing was placed in the middle hole. The perforations were $\frac{1}{2} \times 4$-inch slots extending the full length of the saturated sand without wire wrapping. The space between the 12 -inch easing and the 42 -inch pipe was then filled with coarse gravel and the 42 -inch casing was removed.

In both wells, large pits 10 feet deep were dug so that the centrifugal pump could be set noarer the water table. The walls of the pits were supported with timbers to prevent caving.

The arrangement of the observation wells is shown in figure 3, All of the observation wells used in the pumping test were drilled to the Permian clay with 4 -inch casing excepting wells 77, 78, 83, and 85. Mells 77,78 , and 83 vere drilled to 27, 24, and 34 feet respectively. In well 83 the casing was left in the hole. In all other observation wells readymade sand points like those used in farm wells in sandy areas were placed inside the 4 -inch casing and connected with small pipe which extended above the surface. The screoned portion of each sand point was about three feet long. After the sand point was placed at the bottom of the hole, the space between the 4 -inch casing and the sand point was filled with gravel and the casing removed. Each observation well was tested with a pitcher pump and by pouring water into the well. All of the observation wells responded to the test except vell 83, which was therefore abandoned as an observation well.

QUALITY OF WATER
The quality of vator available to the City of Crowell from various sources is indicated in the table of chemical analyses. The folloving data selected from this table shows the relative mineralization of the water from each source.

Total solids in parts per
Source
City Reservoir, impounded surface vator 600

City wells, San Angolo sendstone 838 a/
Well 64, San Angelo sandstone 5,934
Test wells, north of Margaret 286 to 2,028
a) From inventory of 1936.

The sample from the City Reservoir was taken when the reservoir was full and probable represents maximum dilution.

The city wells in the San Angelo sandstone may also include surface seepage.

It is difficult to explain the wide range of mineralization of the water obtained from test vells north of Margarot. The values for each well in total parts per million of dissolvod solids are shown in figure 4. A comparison between figure 1 and 4 shows that concentration of minerals in the water is in genoral inversely proportional to the thickness of the saturated portion of the sand.

One might conclude that the greater thicknoss of saturated sand and gravel permits more rapid movement of water and hence more dilution by recently acquired recharge. On this basis continued pumping might bo oxpected to bring in somo of tho more highly minoralized water. In each of the two pumping tests samplos woro obtained at the beginning and at the end of the pumping period. Ho significant changes were indicated in the analyses. Continued pumping, however, might cause a gradual increase in the mineral content of the water after a longer poriod of time.

One of the unusual characteristics of the water in the alluvial area is the high percentage of nitrates found in the tost wells. Concentration of nitrates often indicate pollution from organic sources or from commercial fertilizers used on the land. It was reported that no commercial fertilizers have been used in this area and the distribution of nitrates in this area boars no relation to human habitation, barn lots or other possible local sources of organic pollution. The concontration of nitrates appears to vary directly with the concentration of other minurals in each sample. These facts suggest that the nitratos wore a part of the original sediments when they were deposited.

GROUND :ATER IJT THE ALLUVIAL AREA NORTS OF MARGARET

pumping tests

Test wills 33 and 50 were rodrilled and used as pumped wells. The arrangement of observation wells with reference to the pumped wells is shown in figure 3. 101150 was chosen as the pumped woll in the first test, A 3-inch contrifugal pump, povered by a gasoline motor, was placed in the pit. The discharge pipe extended above the surface and fire hose was attachod to it to carry the water to a point about 200 foet east of the pumped woll where the dischargu was moasured froquently by muans of a 60 gallon steol barrel and a stop wateh. Suven obsorvation vells were placed in line north and south of the pumped well. Tells $76,70,71,77$ and 78 were north of Well 50 in the general direction of the slope of the water table and wolls 75 and 72 vere south of well 50 . Tho north wolls wore placed $25,75,150$, 225 , and 300 feet respectively from the pumping well. The south wells were 75 feet and 300 feot respectively from the pumping woll. Tell 82 was placed 75 foet wost and well 83, 75 feet east of the pumping well. The water lovel in wall 83 did not fluctuate with changes in the wator tablu, in spite of offorts to produce circulation by means of a pitcher pump and by puring water into the well, presumably because tho casing was open only at the bottom. For that reason the woll was not measured. Previous to the pumping test, the rolative altitude of the muasuring point was determined for each woll by means of a levol.
ater-luvel moasuremonts woro also mado in farm wolls in the area to detect any chango in the lovel of the vater surface from natural causes. It was observed that there was a maximum fluctuation of 0.02 foot in nuarly all wells at the same time, which was probably duc to the change in atmospheric pressure.

Tho pump in woll 50 was started at $2: 06 \mathrm{p}, \mathrm{m}$. , Warch 13, 1941, and continued until 3:00 a.m., Warch 23, oxcept for one interruption of one hour and sixtoen minutes boginning at 3:25 p.m, Warch 15 . The average yiold including shut-down timo was 20 gallons a minute. The interruption in the pumping was caused by efforts to incruase the yield of the will which apparently causod the pump to break suction. Rieasurements of all the obsorvation wells vore made frequently at the beginning of the test and at greator intervals after the first day. The drawdown and rocovery curvos for woll 50 aro show in figure 5. Well 72 at the south end of the line, 300 feot from woll 50 , had a maximum drawdow of 0.19 foot and will 70, 300 foot north had a drawdown of 0.09 foot at the end of the pumping test. The drawiown curve shows that the "cono" of unwatored matorial extended beyond the observation vells farthest from the pumping woll and that the ground-water divide was somewhat less than 75 feet south of tho pumpod woll at the end of the pumping test.

A socond pumping test was mado at the site of tost woll 33. The sito was selected because of the thickness of the saturated material found in tho test holo and because of its favorable position with reference to the slope of the wator table. It was designed to yield more water than was obtained in woll 50 (see fig. 4). The well was pumpod during tho poriod from $10: 24 \mathrm{a} . \mathrm{m}$. ,

April 2, 1941 to 7:27 2.m., April 7, a total of 7,023 minutes, during which the pump was idlo 782 minutes. The rate of pumping varied between 23 gallons a minuto and 45 gallons a minuto. The amount of vator pumped was 203,475 gallons, or 28.7 gallons a minute, for the ontire pumping poriod, including shutdow tima. Drawdow and recovery moasurements wore made in the pumped well and in observation wells 81,82 , and 84 as in the test at well 60 .

Recharge

The alluvial area as shown in figure 1 covurs about 4.2 square milos. With raspoct to ground water, it is an isolatad unit. It is noarly surrounded by stream channels which drain surface water away from it so that the only wator that reaches the water table must fall within the area as rain or snow. Bonoath tho alluvjum aro beds of relatively impermeable clay. Small amounts of water wore found in some of the tost wulls bulow the alluvium and outside tho alluvial area.

Conditions are unusually favorablu for recharge in this area. The soil is sandy and it absorbs water easily. The drainage patterm is poorly developed and no strcams cross the arua. Sand dunos and sand ridgos along; the fencos retard the run-off of rainfall. During the first pumping test a pit was dug some distance from the pumped woll to receivo the discharge, so that the rate of pumping could be moasured. It was discovered that too much of the vator was sceping into the ground to permit an accurate weir moasuremont. This is evidonce that the rate of natural rachargo is high.

Movemont and discharge

The movement of ground wetor is in the direction of the slope of tho water tablo and tho rate of movement is proportional to the slope. The slope of the wator table as indioatud in figure 1 by tho lines of equal altitude on the wator surfaco, is about 20 foot to tho milo. Tho water moves nor theastward toward the river and is dischargod chiofly by springs which issue from the alluvial material noar its contact with tho Permian clay 6 to 10 foet above the normal lavol of thu rivor. Seeps of vatur vere found ajong tho river whurever this contact vas obsurved. Locally, favorable channels seom to have dovelopud vhich allow considurable volumes of water to issue as springs. Blodsoo Spring was moasured with a woir and found to ho discharging 40 gallons a minute but tho slope of the river bank mado it impossible to find places to set the weir at the other springs. Jowever, it was estimatud that Ross Spring was yiolding about 20 gallons a minute and tho spring at the railroad crossing about 10 gallons a minuto. The total dischargo of the springs and soeps was estimated to be 200 gallons a minute in August 1940, after a comparatively dry soason. Tho springs have never been known to fail and are roported not to vary much in volume.

Some of tho water in the alluvium is probably discharged by transpiration. Nearly all of tho area, oxcept the sand dunos, is undor cultivation, the chief orops being corn and cotton. The sand duncs support a fow scrub oak troos. Therofore, the loss of watur by transpiration throughout most of the arca is probably not groater than tho avorago for other arcas. Along the rivur whe thero is a dense growth of willov trues and bush tho roots of thase trues reach the water table and a considerablo volume of wator is probably transpirod. Considorablo amounts of wator are aiso probably lost from the soil by evaporation, ator from light showors is probably ovaporatod without adding to groundwator storago.

Tho dischargo fromf farm wolls in the area, all of which are show on figure l, is probably small. Tho aroa may be consicured as a unit in which the ground-water systom is in natural balance. In this case the amount of water issuing as suops and springs ropresents excoss recharge ovor other natural discharge.

Rocunt moasuroments!of wator luv is in farm wolls in the aroa show littlo change from the moasuremunts mado in 1930 during a sovero drouth.

On tho basis of similar aruas ulsowhore, it was ostimated that ach cubic foot of saturatod maturial should yiold approximatoly 15 purcont of its volume in watur or about l.2 gallons. At this rate tho yield per acre for wach foot of dravdow would amount to about 50,000 gallons.

Tho area covered by the rusurvoir is about 4.2 square iniles. At the odges of the aroa the thickness of tho saturatod maturial tapurs to a fer: inchos; in the buttor parts of the area the saturatud matorial is from 15 to 24 fout thick.

CONCLUSIONS

Tho sands of the alluvial aroa north of Pargarut are boliuvod to contain the most abundant supply of ground wotor availablo to Crowoll within ton milus of the city. Thu underground rusurvoir in these sunds is supplied by rainfall on the alluvial area itselp. Thu rusorvoir is in a stato of approximato oquilibrium in that tho avorago annual intako from rainfall is bulancod by an approximatoly uqual avurago amual dischargu through the springs and scops near the Puasu Rivor. It is estimatod that this dischargo anounted to about 200 gallons a minute at the timo of tho investigation which was made at the close of a your of loss than avorago rainfall.

Thu invustigation has shom that tho wator-uburing sands are rolatively purmcablo and should yield i.ator rathur freuly to propurly constructed wells. Undor this condition of uquilibrium it is obvious that the amount of vator that can bo rocovurud from vells over a long puriod of years is limitod to the quantity that can be intercoptod from the dischargo of the seops and springs.

A vory large quantity of wator is stored in the saturated sands of the urua. Whon purping is first startod the surface of tho ground water at the wolls vill docline and practically all of the water withdrawn by the pumps will come from storage. As pumping progressos the depression in the vator table will continue to deepen and expand. More and more water which normally oscapes toward tho springs will be drawn toward tho wells, Thus the natural dischargo will be decreasod as the wator tablo is loverod but it can not be stoppod ontirely unless a vory large number of wells are drilled and the wator table is lowered to the bottom of the water-bearing sands. This could not be accomplished at a cost that vould be oconomically feasible. If 50 purcont of the ostimated flow of the springs could bo rocovord continuously from vilis, an average of approximately 140,000 gallons a day would bocomo available for Crowell. Tho maximum rocovery can best bo accomplishod by placing tho wolls where the gruatest saturated thicknoss of sand was found in tho test wolls, apparuntly in channols in tho undorlying "rod beds" surfaco; and by spacing the wolls at considerable distances apart.

Tho chemical charactor of the watur on the average is probably better than that of any othor ground watur within a radius of 10 milus of crowull. In goneral the mineral content of the water was lovest in tho arcas where tho tost wolls showod the greatest thicknoss of saturatod matorial. If those arcas wor dovoloped to the uxtont that would cause a widespruad lowering of the vator tablu, the minoral contont of the water might incruaso gradually but it is not likoly that it would ruach the high concentration found in somo of the tost wolls,

```
- 11 -
1. Flat, City of Crowell, H. \& T. C. Ry. Co. sur., \(\frac{1}{2}\) mile wh of Criwell.
\begin{tabular}{lcc}
\hline & \begin{tabular}{c} 
Thicknese \\
(feet)
\end{tabular} & \begin{tabular}{c} 
Depth \\
(feet)
\end{tabular} \\
\hline Hard sandy red clay & 18 & 18 \\
Fray sand, water bearing & 14 & \(19 \frac{1}{2}\) \\
Hard brittle red shale & 164 & 36 \\
Red clay with blue-gray \\
spots & 2 & 38 \\
Hater level, 15 feet bel own zriund level, \\
24 heurs after hole completed. Aue. 30, \\
1940 .
\end{tabular}
2. Foard County, l,300 feet east of SW cor. sec. 362, H. \& T, C. Ry. Co. sur., blk. A. Altitude at surface, 1362.4 feet.
\begin{tabular}{lrr}
\hline Coarse-grained red sand & 11 & 11 \\
Red gravel and clay & 4 & 15 \\
Coarse-grained red sand & 9 & 24 \\
Hard red clay & 2 & 26 \\
Red sand and gravel. & 10 & 36 \\
Hard cemented gravel. & 2 & 38 \\
Water level, 34 feet below ruund level, \\
24 hours after hule completed. Sept. 6, \\
1940 .
\end{tabular}
B. Hillside, Foard County, 1,800 feet east of SW cor. sec. उ52, स. \& T. C. Ry. Co. sur., blk. A. Altitude at surface, 1357.4 feet.
\begin{tabular}{llr} 
Coarse-grained red send & 9 & 9 \\
Red clay and gravel & 3 & 12 \\
Ciarse-grained red sand & 5 & 17 \\
Red sand and pea gravel & 1 & 18 \\
Redium-grained sharp \\
clean dry light-red sand & 4 & 22 \\
Red sand and small gravel & 2 & 24 \\
Hard cemented gravel \\
\hline
\end{tabular}
4. Flat, Fcard Ccunty, 2,400 feet east of SW cor. sec. 362, I. \& T. C. Ry. Co. sur., blk. A. Altitude at surfece, 1347.4 feet.

Red sand
5. Flat, Fcard County, 1,100 feet east of SW cor. sec. 357 , H. \& T. C. Ty. O. sur., h1k. A. Altitnde at surface, 1330.8 feet.
\begin{tabular}{lrr} 
& \begin{tabular}{r} 
Thickness \\
(feet)
\end{tabular} & \begin{tabular}{l} 
Depth \\
(feet)
\end{tabular} \\
\hline Sandy red clay & 2 & \(?\) \\
Ccarse-grained red sand & 13 & 15 \\
Coarse wet gravel & 4 & 19 \\
Fea gravel and sand & 1 & 20 \\
Bird's eye clay & 2 & 22 \\
Water level, 16.4 feet below ground \\
level, 24 hrurs after hole completed. \\
Sept. 13,1940 . & \\
\hline
\end{tabular}
6. Flat, Foard County 1,650 feet east of SW cor. sec. 357, H, \& T. C. Ry. Co. sur., blk. A. Altitude at surface, 1329.5 feet.
\begin{tabular}{llr} 
Coarse-grained red and \\
yellow sand & & \\
Red sand and gravel & 7 & 7 \\
Tet gravel & 8 & 15 \\
Red send and gravel & 1 & 17 \\
Bird's eye red clay & 2 & 18 \\
Ma
\end{tabular}

Water level, 17.A feet below ground level, 24 hourse after hcle completed. Sept. 18, 1940.
7. Flat, Fard County, 2,050 feet east of SW cor. sec. 357 , H. \& T. C. Ry. Cc. sur. Altitude at surface, 1320.5 feet.

Ccarse-grained sandy red
clay
8
Cuarse-greined red sand
11
Coarse-grained white sand \(5 \quad 16\)
Wet gravel and sand 62
Bird's eye clay 24
Water level, 18 feet below ground level, 24 hours after hole completed. Sept.15, 1940.
8. Flat, 2,500 feet east of. SW cor. sec. 357, H. \& T. C. Ry. Co. sur. Altitude at surface 1330.7 feet.
\begin{tabular}{llr}
\hline Coarse-grained red sand & 8 & 8 \\
Coarse-grained white sand & 6 & 14 \\
Dry gravel and sand & 2 & 16 \\
Ccarse-grained wet white sand & 2 & 18 \\
Met sand and gravel & 1 & 19 \\
Bird's eye red clay & 2 & 21 \\
\multicolumn{2}{c}{ (Continued on next page) } &
\end{tabular}

Well 8 -- Gontinued
\begin{tabular}{r}
\begin{tabular}{r} 
Thickness \\
(feet)
\end{tabular} \begin{tabular}{c} 
Depth \\
(feet)
\end{tabular} \\
\hline
\end{tabular}

Water level, 26 feet below ground level, 24 h.urs after hole cimpleted. Sept. 16, 1940.
9. Flat, Fuard C.unty, 3,000 feet gast of SW cor, sec. 357, स. \& T. C. Ry. O. sur. Altitude at surface, 1330.0 feet.
\(\qquad\)
Sandy red clay
Red sand and gravel.
Ccarse-grained white sand
C. arse-grained red gravel

Bird's eye red clay
\begin{tabular}{rr}
11 & 11 \\
5 & 16 \\
1 & 17 \\
2 & 19 \\
2 & 22
\end{tabular}

Water level, 15.7 feet belom around level, 24 hours after hole c.mpleted. Sept. 17, 1940.
10. Flat, Foard Ciunty, 3,500 feet east of swion. sec. 357, F. \& T. C. Ry. Co. sur. Altitude at surfece, 1327.8 feet.

Sandy red clay
Hard white clay
Cuarse-grained brown sand
Fine pa gravel
Cuarse gravel.
Coarse gravel and sand
Bird's eye clay
Water level, 15 feet belcm gr. und level, 24 hours after hile contleted. Sept, 17, 1940 .
11. Flat, Foard County, 3,500 feet gast of SN our. sec. 357, स. \& T. C. Ry. Co. sur. Altitude at surface, 1387.8 feet.

\section*{Cnarse-grained red sand}

Coarse-grained gray sand
Gray sravel and sand
Bird's evs red clay of 16
Struck rock at 13.5 feet. Tratar level, 13.5 feet beluw ground levol, 24 hours after hole cenpleted. Sevt. 18, 1940.
12. Ilat, Fcard Cunty, 4,000 feet east of SW cor. sec. 357, II. \& T. C. Ry. Cc. sur. Altitude at surfoce, 3327.7 feet.

Well
\begin{tabular}{lcc}
\hline & \begin{tabular}{c} 
Thickness \\
(foet)
\end{tabular} & \begin{tabular}{c} 
Depth \\
(foet)
\end{tabular} \\
\hline Fine-grained red sand & 10 & 10 \\
Ccarse-greined white sand & 1 & 11 \\
Coarse-grained red sand & 3 & 14 \\
Red sand and gr vel & 1 & 15 \\
White sand and aravel & 3 & 18 \\
Bird's eyo clay & 6 & 24
\end{tabular}

Struck reck at 18 feet. Water level, 17.4 feet below arcund level, 24 hours after hole completod. Sept. 20, 1940 .
18. Flat, F:ard County, 5,000 feet east of STN cor. sec 357, H. \& T. C. Ry. Co. sur. Altitude at surface, 1327.2 feet.
\begin{tabular}{lrl} 
Fine-greined red sand & 10 & 10 \\
Red sand and gravel & 4 & 14 \\
Red gravel and sand & 4 & 18 \\
Bird's eye red clay & 15 & 33
\end{tabular} Struck first water in clay at 27 feet. Wator level, 18 feet below pround level, 24 hours after hole completed. Sept. 20, 1940.
14. Flat, Foard County, SE cor. sec. 357, H. \& T. C. Ry. Co. sur. Altitude at surface, 1325.1 feet.
\begin{tabular}{lrr} 
Fine-grained rod sand & 12 & 12 \\
Ccarse-grained red sand & 2 & 14 \\
Gray gravel and sand & 2 & 16 \\
Curse-grained gravel & 1 & 17 \\
Red clay and gravel & 3 & 20 \\
Coarse-erained gray gravel & 2 & 22 \\
Foa gravel and sand & 6 & 28 \\
Bird's eye clay & 4 & 32
\end{tabular}

Struck water at 17 feet. Water level, 15.7 fect bolow ground lovel, 24 hiurs after hils completed. Sept. 22, 1940.
15. Flat, Foarl County, 500 feat east of SE cor. soc. 357 , H. \& T. C. Ry. Ce.
sur. Altitude at surface, 1325.0 foot.
\begin{tabular}{|c|c|c|}
\hline Finu-grsined red sand & 1 ? & 12 \\
\hline Gray sand and or mel & 4 & 16 \\
\hline Cuarse-grained gray sand & 2 & 18 \\
\hline Gray sund and errvel & 2 & 20 \\
\hline Sandy red clay & 2 & 22 \\
\hline Coarse-arained red sand & 5 & 7 \\
\hline Cosps-arained white sand & 2 & \\
\hline Bird's aye clay & & 32 \\
\hline Struck mater st 19 feot. & & \\
\hline 17.5 f t below ariund le & 24 & \\
\hline aftor hole completed, Sep & \%, & \\
\hline
\end{tabular}
16. Flat, Fpard Ccunty, 1,000
feet east of SN cor. sec. 357, Fi. \& T. C. Ry. Ce. sur. Altitude at surface, 1318.5 feet.

18. Flat, Fuard Ccunty, 3, 600 fest east of SW cor, sec. 357, H, \& T. C. Ry. Co. sur. Altitude at surfece, 1333.5 feet.

Fine-grained red sand 8 Sandy red clay
Ccarse-grained gray sand
White sand
White sand and gravel
Red sand and gravel
C:arse-grained red sand
Red clay
\begin{tabular}{rr}
8 & 8 \\
3 & 11 \\
4 & 15 \\
1 & 16 \\
3 & 19 \\
2 & 21 \\
5 & 26
\end{tabular}

Cemented gravel
oct. 2,1940 . No water.
19. Flat, Foard Ccunty, near conter
sec. 325, along railroad, H. \& \(\mathbb{T}\). U.
Ry. Co. sur. Altitude at surface,
1323.8 feet.

Bird's eys clay
Struck wator at 18 feet. Wator levol, 17.3 feet below grcund level, 24 hours aftor hole completed. Oct. 4, 1940 .
20. Flat, Foard County, l,000 feet northeast of NE cor. sec. 355, H. \& T. C. Ry. Co. sur. Altitude at surface, 1329.3 feet.
\begin{tabular}{llr}
\hline & \begin{tabular}{r} 
Thickness \\
(feet)
\end{tabular} & \begin{tabular}{r} 
Depth \\
(feet)
\end{tabular} \\
\hline Fine-grained brown sand & 5 & 5 \\
Rewcrked red clay and caliche & 2 & 7 \\
Fine-grained red sand & 2 & 9 \\
Big gravel & 1 & 10 \\
Caliche & 2 & 12 \\
Bird's eye clay & 6 & 18 \\
Struck water at 16 feet, Water level, \\
15.01 foet below preund level, 24 hcurs \\
after hole completed. oct. \(5,1940\). \\
\hline
\end{tabular}
21. Flat, F:ard Ccunty, SE cor. sec. 325, H. \& T. C. Ry. Co. sur. Altitude at surface, 1388.2 feet.

Red sand
Ccarse-grained yollow sand 3
Reworked red clay and caliche 6
Ccarse-grained sand and gravel

12
Fine-grained red sand 13
Ccarse-grained red sand 922
Red sand and gravel 426
Bird's eye clay 1 27
Struck wator at 17 feet, Water level, 15,05 feot below rround level, 24 hours after hole copleted. Oct. 6, 1940.
22. Wlat, Foard Ccunty, 50 foet west of SE ccr. sec. 325 , H. \& T. C. Ry. Co. sur. Altitude at surface, 1335.2 feet.
\begin{tabular}{llr} 
Fine-grained red sand & 5 & 5 \\
Cnarse-grained red sand & & \\
and clay & 9 & 14 \\
Sand and frevol. & 1 & 15 \\
Ccarse-grained red sand & 2 & 17 \\
Reworked yellow clay & 1 & 18 \\
Sandy clay and gravol & 5 & 23 \\
Ccarse-grained red sand & 6 & 29 \\
Red sand and gravel & 4 & 33 \\
Bird's eye clay & 1 & 34
\end{tabular}

Struck water at 18 feet. Water level, 18.7 foet belcw around level, 24 hcurs after holo completed. 0ct. 7, 1940.
23. Flat, Frard County, l,000 feot west of SE cor. sec. 325, H. \& T. C, Ry. Co.
sur. Altitude at surface, 1335.0 feet.

Well 23 -- Continued

24. Flat, Foard County, 1,500 foet wost Cf SE cor. sec, 325, H. \& T. C. Ry. Co. sur. Altitude at surfice, 1340.6 foet,

Rod sand and clay 9
Reworkod red clay and
caliche 6
Cuarse-grained red sand 217
Sand and eravel 1
Coarse-grained yellow sand
Ccarse-grained red sand
Bird's эye clay \(\quad\) R
Struck water at 21 feet. Water level, 20.17 feet below ground level, 44 hours after hile completed. Oct. 10, 1940,
25. Flat, Foard Ccunty, 2000 fost west of SE cor. sec. 325, H. \& T. C. Ry. Co. sur. Altitude at surface, 1341.6 feet,

Coarse-grained hard red sand
Red clay and sand
Fine-grained red sand
Fine-grained brown sand
Red sand and gravsl, lerge pebbles
Fins-grainod light-rod sand
Sand and pea gravel
Bird's ey clay
Struck water at 25 土, et. Water ivvel, 23.75 feet below gr und lovel, 24 hours after hole comploted. Oct. 11, 1940.
26. Flat, Frard Ccunty, 2,509 feot west cf SE cor. sec. 325, H. \& T. C. Ry. Cc. sur. Altitude at surface 1340.8 feet.
\begin{tabular}{|c|c|c|}
\hline & \[
\begin{aligned}
& \text { Thickness } \\
& (f e e t)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Deoth } \\
& \text { (foet) }
\end{aligned}
\] \\
\hline Hard red sand & & 5 \\
\hline Red clay and sand & 8 & 13 \\
\hline Fine-grained red sand & 2 & 1.5 \\
\hline Finu-grained br wn send & 5 & 20 \\
\hline Red sand and gravel & , & 21 \\
\hline \multicolumn{3}{|l|}{C:arse-grained light-red sand} \\
\hline Sand and poa graval & 5 & 36 \\
\hline Bird's eye clay & 1 & 37 \\
\hline \multicolumn{3}{|l|}{Struck water at 32 f fot. Tater level, 21.2 feet belch around level, 24} \\
\hline \multicolumn{3}{|l|}{hours after hole completed. Oct. IE, 1940.} \\
\hline
\end{tabular}
27. Flat, Foard County, 3,000 fest west of SE cor. sse. 3R5, H. \& T. C. Ry. C.. sur, Altitude at surface, liz40.8 feat.
\begin{tabular}{llr} 
Fine-grained yellow sand & 4 & 4 \\
Rewcrked red clay & 9 & 13 \\
Br wn sand & 7 & 20 \\
Red clay en ge vel & 5 & 25 \\
Foa gravel & 5 & 30 \\
Red sand, clay and gravel & 3 & 33 \\
Bird's eye clay & 1 & 34
\end{tabular}

Struck water at 25 feet. Wator level, 21.8 faet bolcw ar und lovel, 24 heurs after hole complated. Oct. 15, 1940.
28. Flst, F.ard Ccunty, 3,500 foot west of SE cor. sac. \(325, \mathrm{H} . \& T . \mathrm{C}\). Ry. Co. sur, Al+itude at surface, 1349.0 feet.
\begin{tabular}{|c|c|}
\hline  & 6 \\
\hline Gra, sand & 12 \\
\hline Red clay and gravel & 2. 14 \\
\hline Sendy red clay & 721 \\
\hline Yollow sand & \(7 \quad 28\) \\
\hline Rod sand and b ulders & 129 \\
\hline Sandy red clay & 37 \\
\hline Red sand and gravel & 3840 \\
\hline Bird's oy clay & 1.41 \\
\hline Struck wator at 30 f et. Water 29.95 feet belcw rrund levol, & \[
\begin{aligned}
& \text { lsvel, } \\
& 24 \text { hcurs }
\end{aligned}
\] \\
\hline after hola completod. Oct. 16 & 1340. \\
\hline
\end{tabular}
29. Fvard County, SF ccr. sec. 363, H. \& T. C. Ry. Co. sur. Altitude at surface, 1358.0 feet.


3a. Flat, Foard County, 1,500 feet north of SE cor. sec. \(363, \mathrm{H} . \& \mathrm{~T}\). C. Ry. Cc. sur. Altitude et surface, 1333.8 feet.
\begin{tabular}{lll}
\hline Coarse-grained red sand & 10 & 10 \\
Bird's eye clay & 20 & 30 \\
Water level, 20.8 feet below zrsund. \\
level, 24 hcurs after hele completed. \\
oct. 24, 1940.
\end{tabular}
31. Flat, Foard Ccunty, 1,500 feet west of SE cor. sec. 363, H. \& T. C. Ry. Co. sur. Altitude at surface, 1365 feat.

Coarse-grained red sand
\(7 \quad 7\) Sandy gray clay
Coarse-grained red sand
Wet red clay
Bird's eye clay
Struck water at 16 feet. Water level, 14.95 feet below grand level, 24
hours after hole completed. Oct. 26, 1940.
32. Flat, Foard Ccunty, 1,300 feet east of SE cor. sec. 356, H. \& T. C. Ry. Cc. sur. Altitude at surface, 1333.6 feet.

Coarse-grained red sand
Red sand and clay
Coarse-grained red sand pebbles

12
Red sand and gravel
Coarse-grained white sand
16
Coarse-crained white sand and gravel
Cuarse-grained gray sand
White sandstone
Red sand and gravel
Bird's eye clay
Struck water at 23 feet. Water level, 19.25 feet below ground level, 24 hours after h. le completed. IN. 1, 1940.
33. Flat, Frard County, 1,800 feet nerth if SE cor. sec. 356 , H. \& T. C. Ry. Co, sur. Altitude at surface, 1329.2 feet.
\begin{tabular}{llr}
\hline & \begin{tabular}{r} 
Thickness \\
(feet)
\end{tabular} & \begin{tabular}{c} 
Depth \\
(feet)
\end{tabular} \\
\hline Gray sand & 5 & 5 \\
Sendy red clay & 5 & 10 \\
Coarse-grained red sand & 2 & 12 \\
Red sand and pea gravel & 2 & 14 \\
White sand and pea gravel & 4 & 18 \\
Red clay and pea gravel & 1 & 18 \\
Gray sand and gravel, large & & \\
pebbles \\
Tan-cclured sand & 1 & 20 \\
Gcarse-grained sand and & 4 & 24 \\
gravel & 4 & 28 \\
Fine-grained gray sand & 2 & 30 \\
Sand and gravel, large & & 4 \\
pebbles & 34 \\
Sand and gravel & 5 & 39 \\
Bird's eye clay & 1 & 40
\end{tabular}

Struck water at 21 feet. Water level,
19.9 feet below ar und level, 24 hours after hole completed. Nov. 4, 1940 .
34. Flat, Fcard County, 500 feet scuthwest of SE cor. sec. 356, along railroad, H. \& T. C, Ry. Co. sur. Altitude at surface 1338.3 feet.

Coarse-grained red sand \(\quad 3\)
Sandy gray clay 2 5
Ccarse-grained grav sand \(2 \quad 7\)
Fine-grained yellow sand \(5 \quad 12\)
Red clay and sand 1 13
Yellow sand and gravel 4
Ccarse-grained red sand 522
Coarse-grained yellow sand 325
Ciarse-grained white sand and aravel
Coarse-grained red sand
Red sand and gravel 236
Cobble gravel, 4-inch pebbles 2.38
Bird's eye clay 240
Struck woter at 23 feet. Water level,
19.6 feet belcw mround level, 24 hours
after hole completed. Nov. \(16,1940\).
35. Flet. Fiard C.unty, 1,000 feet s.uthwest of \(3 E\) cor. sec. 356 , along railrcad, F. \& T. C. Ry. Co. sur. Altitude at surface, 1E4]. 8 feot.
Cuarse-grained red sand 5 5

Red sand and clay 8 13
Fine-grained tan culcred sand 518
(Cintinued en next page)

Well 35 -- Cuntinued
\begin{tabular}{lcc}
\hline & \begin{tabular}{r} 
Thickness \\
(feet)
\end{tabular} & \begin{tabular}{l} 
Denth \\
(feet)
\end{tabular} \\
\hline Cuarse-grained wet sand & 10 & 28 \\
Red sand and pea gravel & 2 & 30 \\
Red sand & 4 & 34 \\
Red sand and gravel & 2 & 36 \\
Bird's eye clay & 2 & 38 \\
Water level, 19.35 foet below grcund \\
level, 24. hours after hole completed. \\
Nov. 17, l940.
\end{tabular}
36. Flat, Fcard County, 1,500 feet scuthwest of SE cor, sec. 356, along railread, H. \& T. C. Ry. CC. sur. Altitude at surface, 1344.8 feet.

Red sand and clay
\(7 \quad 7\)

Reworked red clay
Red sand and clay
Cuarse-grained gray sand
Red send and clay
613

Ccarse-grained red sand and gravel
Sand and pea gravel
Red clay and gravel
Bird's eye clay
Struck water at 25 feet. Water level,
21. feet below ground level, 24 hours aftor hole cumpleted. NCV. 18, 1940 .
37. Flat, Foard County, 2,090 feet southwest of SE cor. sec. 356, along railroad, H. \& T. C. Ry. Co. sur. Altitude at surface, 1346.3 feet.

Ccarse-grained red sand \(\quad 10 \quad 10\)
Red clay and sand
Fine-grained yellow sand
Red sand and poa gravel
Pea grevel
Red clay and gravel
Bird's aye clay
Struck water at 23 feet. Water lovel, 22.9 feet below ground levsl, 24 heurs after hole completed. Nov. \(20,1940\).
38. Flat, Foard County, 2,500 feet scuthwest of SE ccr. s3c. 356, along railroad, H. \& T. C. Eiy. Cc. sur. Altitude at surface, 1853.1 feet.

Well 38 -- Untinued
\begin{tabular}{lrr}
\hline & \begin{tabular}{r} 
Thickness \\
(feet)
\end{tabular} & \begin{tabular}{c} 
Depth \\
(feet)
\end{tabular} \\
\hline Coarse-grained red sand & 7 & 7 \\
Ccarse-grained white sand & 3 & 10 \\
Ccarse-greined yollow sand & 10 & 20 \\
Cearse-grained red sand & 4 & 24 \\
Red sand and gravel & 2 & 26 \\
Fine-grained dark-red sand & 1 & 27 \\
Ccarse-grained red sand & 2 & 29 \\
Ccarse-grained rod sand and & & \\
yellow sand & 6 & 35 \\
Sandy white clay & 2 & 37 \\
Reworked red clay & 1 & 38 \\
Bird's eye clay & 2 & 40
\end{tabular}

Struck water st 28 feet. Water level, 26.7 feet belcw rround level, 24 hours after hill completed. Nov, 22, 1940.
39. Flat, Frard Crunty, 3, 000 feet scuthwest of ST cor, sきc. 356, alcng railroad, H. \& T. C. Ry. Co. sur, Altitude at surface, 1352.6 feet,
\begin{tabular}{|c|c|c|}
\hline Coarse-grained red sand & 6 & , \\
\hline Yellow sand and clay & 4 & 10 \\
\hline Ccarse-grained red sand & 7 & 17 \\
\hline Red sand and clay & 8 & 25 \\
\hline Ciarse-grained red sand & 8 & 33 \\
\hline Bird's aye clay & , & 34 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{Struck water at 27 feet. Water level, 25.7 feet belcw pround lev3l, 24 heurs after holo complated. Nov. 23, 194 .}} \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
40. Flat, Fcard County, 3,500 feョt S uthwest of SE cor. soc. 356, alcng railrcad, H. \& T. C. Ry. Co. sur. Altitude at surface, 1362.3 feet.
\begin{tabular}{lrr} 
Fine-grained yellow sant & 9 & 9 \\
Red sand and aravel & 10 & 19 \\
Reworked red clay & 7 & 26 \\
Stick blue clay & 1 & 27 \\
Bird's ye clay & 1 & \(2 ?\)
\end{tabular} Struck water at 24 feet. Water level, 23.6 feet belcw rcund level, 24 h urs after helo cccpleted. Nov. 24, 1940.
41. Flat, Foard Ccunty, 1,800 fe \(t\) aast of SE cor. sec. 356, H. \& T. C. Ry. Cc. sur. Altitude at surface. 1332.6 foet.

41 - Continued
\begin{tabular}{r}
\begin{tabular}{r} 
Thickness \\
\((\) feet \()\)
\end{tabular} \\
\begin{tabular}{l} 
Depth \\
(feet)
\end{tabular} \\
\hline
\end{tabular}

Ccarse-grained hard rod sand \(9 \quad 9\)
Sandy red clay \(\quad 7.6\)
Coarse-grained red sand and gravel 5
Carse-grained yellow sand 6
Sandy red clay and gravel 5 32
Pea gravel 2
Bird's eye clay 26
Struck water at 23 foet. Water level,
19.9 feot below ground lov: 1,24 hours aftor hole comploted. NCv. 25, 1940.
42. Flat, Fward County, 1,000 feet south of SE cor. sec. 356, H. \& T. C. Ry. Co. sur. Altitude at surface, 1833.2 feet.

43. Flat, Fcard Cunty, 1,500 fect south ©f SE cor. sac. 356 , H. \& T. C. Ry. Cu. sur. Altitude at surface, 1338.1 feet.
\begin{tabular}{|c|c|c|}
\hline & Thickness & \[
\begin{aligned}
& \text { Donth } \\
& \text { (feot) }
\end{aligned}
\] \\
\hline Coarso-prainod \(r \Rightarrow d\) sand & 2 & 2 \\
\hline Cuarsa-grain d yollow sand & 6 & 8 \\
\hline Red sand and clay & 4 & 12 \\
\hline \[
\begin{aligned}
& \text { Ccarse-graincd yollow } \\
& \text { sand }
\end{aligned}
\] & 6 & 18 \\
\hline Sandy red clay & z & 21 \\
\hline Bird's ovo clay & 1 & 22 \\
\hline Struck wator at 20 fout. \(18.2 \mathrm{f} e\) et bolcm ar und lev aftor helo ecmpletad. Nov & & \[
\begin{aligned}
& \text { yel, } \\
& 940 \text {. } \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

44．Plat，Foard County，2，000 foet south of SE cor，sec， 356 ，\＆T．C． Ey，Co．sur．Altitude at surfeco， 1342.1 fuet．


45．Plat，Poard vounty，2，500 fout
south of 3 scor ．sec．356，\＆I．©．
wy．Co，sur，Altitudo at surfaco，
1340.5 fuot．
\begin{tabular}{lcc} 
horkid rud clay & 14 & 14 \\
sirds sye clay & 9 & 23
\end{tabular}

Struck watur at 23 fuot，vatur levol， 22 foot bolow ground levvi， 24 hours aftor holu compluted．Ecc，8， 1940.

46．Flat，Poard County，3，800 foot south of SR cor．sec．356，工，T．．Ay．Co． sur．Altitude at surfaco， 1340.6 foct．

Coarso－prained yollow sand 8 －．．．．．．．．．．．．．． Rod clay and gravol 87 Coarsu－grainod rad sand 1.8 Coarse－grainod whito sand \(4 \quad 22\) hud clay 11 \＄3 Birdis oyo nlay 1 S4 Struck wator at 31 froot．ator lovel， 26． 9 feot bolo，ground luvul， 24 hours after hole complotod，Dec．3， 1840.

47．Plat，Poard County，2，500 feet dast of 5 E cor．seo，356，，，\＆T．． iry．Co，sur．Altitude at sursaco 1328.1 f＇eot．

Coarsu－grainua yorlo sond hea clay and pravel Coass－greined rod sand Coarso－grainod sand and gravel
u11 47 －．．．Continued


48．Flat，Hord County，3，200 feet oast of 32 cor．suc． 356 ，焐，h T．C．汤．Co． sur．Aititude at surface，1330，6 feet．
\begin{tabular}{lll} 
Finc－grained eray sand & 4 & 4 \\
Hard gray clay & 4 & 8 \\
Red sand and clay & 2 & 16 \\
Rovorked rod clay & 4 & 14 \\
Bticky light blue clay & 1 & 15 \\
Red clay & 2 & 17 \\
Tard red clay & 8 & 25 \\
Hard blue clay & 3 & 28 \\
Bird＇s eye clay & 2 & 30
\end{tabular}

Struck wator at 20 foot．iator levol， 18.5 foot bolow ground level， 24 hours atter holo completod，Lec．5， 1940.

49．Flat，Poard County，2，600 feet east and 1，300 fout south of SE cor，soc， 356 i．\＆T，C．ily．Co，sur．Altitude at surfaco， 2333.6 foot．

50. Flat, Foard County, 2,300 foet 3ast and 1,350 fout north of ses cur. sec. 356, H. \& T. C. Ry. Co. sur. Altitudo at surface, 1323.9 feot.
\begin{tabular}{|c|c|c|}
\hline & \[
\begin{gathered}
\text { Thickness } \\
(\text { feet })
\end{gathered}
\] & \[
\begin{aligned}
& \text { Dopth } \\
& \text { (foot) }
\end{aligned}
\] \\
\hline Dark-cclored sandy scil & . & 3 \\
\hline Gray sand and clay & 6 & \\
\hline Brown sand and clay & 2 & 11 \\
\hline Coarse-grained light-red sand & d & 12 \\
\hline Yellow sand and clay & 1 & 13 \\
\hline \multicolumn{3}{|l|}{Coarse-grained dark-bruwn sand} \\
\hline Coarse-grained red sand & 1 & 18 \\
\hline Fine-grainod red sand & 5 & 23 \\
\hline Cuarse-grained red sand and poa gravel & d & 32 \\
\hline Coarse-grained gray sand & nd & 33 \\
\hline \multicolumn{3}{|l|}{Pea gravel, small pieces of clay} \\
\hline Coarse-grained gray sand & d & 39 \\
\hline Cuarse gravel & - 1 & 40 \\
\hline Bird's eye clay & & 41 \\
\hline \multicolumn{3}{|l|}{Struck water at 17 feet. Wator level,} \\
\hline \multicolumn{3}{|l|}{15.4 fact below ground levil, 24 hours} \\
\hline after hole completed. De & Duc. 7, 1 & \\
\hline
\end{tabular}
51. Flat, Foard County, 2,600 fost east and 1,300 feot scuth of SE cor. sec. 356, H. \(\infty\) T. C. Ry. Co. sur. Altitude at surface, 1331.2 feet.
\begin{tabular}{llr}
\hline Yellow sand & & \\
Gray clay and caliche & 2 & 2 \\
Red clay, sand, and calichs & 5 & 5 \\
Soft red clay & 5 & 10 \\
Carse-grained yellow sand & 1 & 11 \\
Coarse-grained red sand & 5 & 12 \\
Bird's eye clay & 6 & 23
\end{tabular}

Struck water at 19 feet. Watcr level, 18.1 feet below grcund lovel, 24 hours after hole completud. Doc. 9, 1940. \(\qquad\)
52. Flat, Fuard County, 2,600 fost east and 2,200 feet scuth of SE cor. sse. 356, H. \& T. C. Ry. Co. sur. Altitude at surface, 1334.3 foot.
\begin{tabular}{|c|c|c|}
\hline Yollow sand & 2 & 2 \\
\hline Sandy red clay & 5 & 7 \\
\hline Cuarse-grained red sand & \(1 ?\) & 19 \\
\hline Red sand and gravel & 3 & 22 \\
\hline Bird's ayo clay & 1 & 23 \\
\hline Struck water at 22 feot, & tor & \\
\hline 19.4 feet below ground 1 & & \\
\hline ir hole comple & & \\
\hline
\end{tabular}
53. Flat, Foard County, 2,600 fost sast and 3,000 foet south of sse cor. soc.
356 , H. \& T. C. Ry. Co. sur. Altitude at surface, 1336.4 feet.
\begin{tabular}{lll}
\hline Coarse-grained yellow sand & 5 & 5 \\
Sandy red clay \\
Coarse-grained brown sand & 8 & 13 \\
and gravel & 1 & 14 \\
Fine-grainod yellow sand & 4 & 18 \\
Sand and coarse gravel & 3 & 21.
\end{tabular}
53.- Continued
\begin{tabular}{|c|c|c|}
\hline & \[
\begin{array}{r}
\text { Thickness } \\
\text { (feet) } \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \text { Denth } \\
& \text { (feet) }
\end{aligned}
\] \\
\hline Pea gravel & I & 22 \\
\hline Red clay & 4 & 26 \\
\hline Blue clay & 2 & 28 \\
\hline Red clay & 2 & 30 \\
\hline Bird's eye clay & 1 & 31 \\
\hline Struck wator at 26 foet. & - Wator 1 & \\
\hline 21.3 feet bolow ground lev & level, & \\
\hline aftor hols completer. Dec & Dec. 10 & \\
\hline 54. Flat, Fcard County, 2 & 630 & \\
\hline nd 3,600 foet s uth of' SE & & 356 \\
\hline Hi. \& T, C. Ry. Co sur. A & Altitud: & \\
\hline surface, 1336.8 feet. & & \\
\hline Yellow send & & \\
\hline Sandy rad clay & 7 & \\
\hline Coarse-grained yollow sand & and & 13 \\
\hline Red clay and grevel & & 18 \\
\hline Coarse-grainod yallow sand & and & 80 \\
\hline Fine-grained yollow sand & d & 1 \\
\hline Red clay and gravel & 2 & 23 \\
\hline Pea gravel and sand & 6 & 29 \\
\hline Clean white sand & & \\
\hline Coarse-grained red sand & 3 & \\
\hline Pea gravel & & \\
\hline Bird's uye clay & & \\
\hline Struck water at 25 feet, & , Water 1 & \\
\hline 23.6 feet below ground lev & level, 24 & \\
\hline after holo ecmploted. Dec. & cc. 12, 194 & \\
\hline 55. Flat, Foard County, 2 & 2,600 & \\
\hline and 4,100 feet south of SE & SE cor. So & 56, \\
\hline H, \& T. C. Ry. Co. sur. A & Altitude & \\
\hline surface, 1337.0 foet. & & \\
\hline Yellow sand & 2 & 2 \\
\hline Fod clay and sand & 10 & 2 \\
\hline Coarse-rad sand & 1 & 13 \\
\hline Fine-grained yellow sand & 12 & 25 \\
\hline Coarse-grainod rod sand & 6 & 31 \\
\hline Pea gravol and clay & 2 & 33 \\
\hline Fine-grained yellow sand & 10 & 43 \\
\hline Red slay and gravel & & 46 \\
\hline Bird's eve clay & 1 & 47 \\
\hline
\end{tabular}

Struck water at 27 feet. Wat ir levol, 22.6 fact below qround level, 48 h urs after hele copleted. Dec. 13, 1944.
56. Flat, Foard Ccunty, 2,600 foet sast and 4,700 fret south of SE cor. sec. 356 , H. \& T. C. Ry. Co. sur. Altitude at surface, 1328.3 feet.
\begin{tabular}{|c|c|c|}
\hline Sandy dark-red soil & & 7 \\
\hline Red clay and clay & 2 & 9 \\
\hline Clay and caliche & 2 & 1 \\
\hline Coarse-grain-d red sand & & 12 \\
\hline Red clay and gravel & & 14 \\
\hline Pea gravel and sand & & 6 \\
\hline Coarse-grainod red sand & & 19 \\
\hline Fins-grained red sand & & \\
\hline Fine-grained gray sand and pea gravel & & \\
\hline Pea gravel and pieces of c & & \\
\hline \multicolumn{3}{|l|}{Bird's eye clay} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Struck water at 16 foet. Water level,}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{artor hoi moun} \\
\hline
\end{tabular}
57. Flat, J. ... Urx, l,700 foot west and 650 feet north of SE cor. sec. 325, \& \& C. C. iy, Co, sur. Altitude at surface, 1324.0 feet.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{* स Thickness fiepth} \\
\hline \multicolumn{3}{|l|}{Sandy red soil 7} \\
\hline Hard red clay and caliche & & \\
\hline Bird's eye red clay & 17 & \\
\hline \multicolumn{3}{|l|}{Struck water at 20 feet. at} \\
\hline \multicolumn{3}{|l|}{21 feet below ground level, 48 hours} \\
\hline \multicolumn{3}{|l|}{after hole completed. Dec, 20, 1940.} \\
\hline \multicolumn{3}{|l|}{58. Flat, J. L. Orr, 750 feet wes} \\
\hline \multicolumn{3}{|l|}{850 feet north of 3E1 cor, sec. 325,} \\
\hline \multicolumn{3}{|l|}{\& T.C. Ry. Co. sur. Altitude a} \\
\hline \multicolumn{3}{|l|}{surface, 1325.6 feet.} \\
\hline \multicolumn{3}{|l|}{Sandy dark-colored soil} \\
\hline Sandy gray clay & 8 & \\
\hline \multicolumn{3}{|l|}{Coarse-grained white} \\
\hline sand & 2 & \\
\hline ijird's eye olay & 12 & \\
\hline \multicolumn{3}{|l|}{Struck water at 18 feet, ater level,} \\
\hline \multicolumn{3}{|l|}{19.1 feet belov ground level, 48 hour} \\
\hline after hole completed. Dec & . 20, & \\
\hline
\end{tabular}
59. Gentle slope, II, Fot, 1,980 feet west and 300 feet south of NE oor. sec. 277, H. \& T. C. liy. Co. sur., 5.2 miles east of Nargaret. Altitude at surface, 1382.6 feet.
Sandy dark-colored soil
Fine-grained yellow
water sond
Coarse-grained red sand
Minemgrained yellow sand
Birdts eye clay
Struck water at 6 feet. ater level,
7.2
60. Centle slope, H. Pot, l,980 feet west and 600 feet south of NE oor, sec. 277, H. \& T. C. y. Co. sur., 5.2 miles east of गargaret. Altitude at surface, 1386.5 feet.


\section*{64. Flat, Foard County, \(3-3 / 4\) miles west of Crovell.}
\begin{tabular}{lll} 
lard black soil & 4 & 4 \\
Yellow clay and caliche & 4 & 8 \\
Hard red clay & 3 & 11 \\
Sandy hard red clay & 2 & 13 \\
Sandy hard gray clay & 4 & 17
\end{tabular}

65. Plat, Eoard County, 800 feet from south line and 2,450 feet from west line sec. 356 , H. \& T. C. Ay, Co. sur, Altitude at surface, 1335.2 feet.
\begin{tabular}{lcc} 
Fine-grained yellow sand & 4 & 4 \\
Coarse-grained red sand & 7 & 11 \\
Coarse-grained red & & \\
sand and small gravel & 3 & 14 \\
Coarse-grained red sand & & \\
and large gravel & 6 & 20 \\
Cobrse-grained wet sand & 2 & 22 \\
Coarse-grained sand and & & \\
red gravel & 2 & 24 \\
Clean white pea gravel & 4 & 28 \\
Gray sand and pea gravel & 2 & 30 \\
ard:s eye clay & 2 & 32
\end{tabular}

Struck water at 20 feet, ater level, 19.6 feet below ground level, 24 hours after hole completed. Jan. 10. 1941.
66. Flat, Poard County, 1,750 feet from south line and 2,450 foet from wost line sec. 356 , K. \& T. C. Ry. Co. sur. Altitude at surface, 1335, 2 Reet,

Sandy coarse-grained red
soil \(4 \quad 4\)
Coarse-grained yellow sand \(2 \quad 6\)
67. Flat, Foard County, 2,450 feet from west line and 2,950 feet from south line sec, 356 , H. \& T. C. Ry. Co, sur. Altitude at surface, 1332.4 feet.
\begin{tabular}{llr} 
Coarse-grained red sand & 5 & 5 \\
Coarse-grained yellow sand & 4 & 9 \\
Sandy red clay & 2 & 11 \\
Red sand and gravel & 5 & 16 \\
Coarse-grained gray sand & 5 & 21 \\
Sandy red clay and gravel & 2 & 23 \\
Gray sand and gravel & 2 & 25 \\
Sandy red clay and large & & \\
gravel & 5 & 30 \\
Bird's eye clay & 2 & 32 \\
Struck water at 20 fect. ater level, \\
l9.3 feet below ground level, 24 hours \\
after hole completed. jan. \(17,1941\).
\end{tabular}
68. Flat, J. J. Crr, l,250 feet from west line and 2,900 feet from south line sec. 356, H. \& T. C. Ry. Co. sur. Altitude at surface, 1336.9 feet.
\begin{tabular}{llr} 
Sandy red soil & 3 & 3 \\
Coarse-grained yellow sand & 3 & 6 \\
Sandy gray clay & 6 & 12 \\
Coarse-grained yellow sand & 1 & 13 \\
leworked soft red clay & 8 & 21 \\
Bird's eye clay & 2 & 23 \\
Struck water at l5 feet. Tiater level, \\
14.7 fet below ground level, 24 hours \\
after hole completed. Jan. \(15,1.41\).
\end{tabular}
69. Plat, Foard County, 2,900 feet north of \(\mathrm{S} . \mathrm{cor}\). sec. 356 , \& T. C. Ry. Co. sur. Altitude at surface, 1348.9 feet.

70. Plat, A. L. Dunn, 75 foet north of well 50, H. \& T. C. Ry, Co, sur. Altitude at surface, 1324.0 foet.
\begin{tabular}{|c|c|}
\hline Sandy \(\overline{\text { dark-colored sand }}\) & 3 \\
\hline Dark red sand & 25 \\
\hline Sandy gray clay & 3 \\
\hline Coarse-grained light red sand & \(6 \quad 14\) \\
\hline Sandy yellow clay & 21.6 \\
\hline Coarse-grained red sand & 319 \\
\hline Red sand and poa gravel & 1.20 \\
\hline Coarse-grained red sand & 24 \\
\hline Coarso-grained red sand and gravel. & \(4 \quad 28\) \\
\hline Pine-grained red sand & 32 \\
\hline Coarse-grained red sand and pea gravel & 35 \\
\hline Red clay and gravel & 37 \\
\hline Pea gray gravol & 239 \\
\hline Bird.'s eye clay & 140 \\
\hline Observation well for pumping & \% test, Set \\
\hline l气-inch well point with 2 -in top of clay. Struok water a & \[
\begin{aligned}
& \text { noh pipe on } \\
& t ~ 16 \text { fect. }
\end{aligned}
\] \\
\hline Water level, 15.8 feet belov & ground \\
\hline levol, 24 hours after hole a & completed. \\
\hline Feb. \(1,1941\). & \\
\hline
\end{tabular}
71. Plat, A. L. Dunn, 150 feet north of well 50. F. \& I. C. Ry. Co. sur. Altitude at surface, 1324.1 feet,
\begin{tabular}{lcc} 
& \begin{tabular}{c} 
Thickness \\
(feet)
\end{tabular} & \begin{tabular}{c} 
Depth \\
(feet)
\end{tabular} \\
\hline Sandy brown soil & 4 & 4 \\
Sandy clay and caliche & 5 & 9 \\
Sandy red clay & 4 & 13 \\
Coarse-grained red sand & 2 & 15 \\
Coarse-grained red sand & & \\
and gravel \\
Coarse--grained red sand & 3 & 18 \\
Coarse-grained sand and & & 27 \\
pea gravel & 4 & 31 \\
Coarse-grained red sand & 1 & 32 \\
Coarse-grained red sand & & \\
and pua gravel & 5 & 37 \\
Pea gray gravel & 2 & 39 \\
Large gravel & 2 & 41 \\
Bird's eye clay & 1 & 42
\end{tabular}

Observation well for pumping test, Set l党"inch well point with 2 -inch pipe at 41 feet. Struck water at 17 feet. vater level, 16.33 feet below ground level, 24 hours after hole completed. Peb. 8, 1941.
73. Wlat, A. L. Dunn, 3,100 feet from south line, 100 feet from west line sec. 325, H. \& T. C. Ry. Co. sur. Altitude at surface, 1321.3 feet.
\begin{tabular}{|c|c|c|}
\hline Dark rea soil & 4 & 4 \\
\hline Sandy red clay & 2 & 6 \\
\hline Coarse-grained red sand & 1 & 7 \\
\hline Sandy red clay & 3 & 10 \\
\hline Sandy gray clay and caliche & 4 & 14 \\
\hline Coarse-grained gray sand & 3 & 17 \\
\hline Coarse-grained gray sand and pea gravel & 2 & 19 \\
\hline hite pea gravel & 2 & 21 \\
\hline Pine-grained red sand & 3 & 24 \\
\hline Coarse-grained gray sand and gravel & 4 & 28 \\
\hline Gray sand & 1 & 29 \\
\hline Red re-worked clay & 3 & 32 \\
\hline Bird's eye clay & - & 33 \\
\hline Struck water, at 16 feet. 16.3 feet below ground 1 after hole compteted. Fe & at & \\
\hline
\end{tabular}
74. Flat, H. I. Dunn, 700 foet north of 33. H. \& T. C. ny. Co. sur.
\begin{tabular}{lcc}
\hline & \begin{tabular}{c} 
Thickness \\
(feet)
\end{tabular} & \begin{tabular}{c} 
Depth \\
feot)
\end{tabular} \\
Red surface sand & 4 & 4 \\
Sandy red clay & 10 & 14 \\
Red sand and gravel. & 4 & 18 \\
Gray sand and gravel & 20 & 28 \\
Gray roworked clay & 3 & 31 \\
Gray clay & 2 & 33 \\
Red roworked clay & 3 & 36 \\
Bird's eye clay & 1 & 37
\end{tabular}

Struok wator at 17 fuct. Wator level, 17.3 foet bolow ground level, 24 hours after hole completed. Feb. 14, 1941.
75. Flat, A. L. Dunn, 95 feet south of \(50, \ldots . \operatorname{A}, ~ C . R y, ~ U 0\), sur. Altitude at surface, 1324.0.
\begin{tabular}{llr}
\hline Sandy red soil & 3 & 3 \\
Sandy gray clay & 6 & 9 \\
Gray sand & 1 & 10 \\
Red sand & 6 & 16 \\
Sandy red clay & 3 & 19 \\
Coarse-grained sand and & & \\
gravel & 9 & 28 \\
Coarse-grained gray sand & 5 & 33 \\
Sandy clay & 1 & 34 \\
Carse-grained sand & & \\
and pea gravel & 4 & 38 \\
Sand and pea gravel & 2 & 40 \\
Bird's oye clay & 1 & 41
\end{tabular}

Set I-inch woll point with l-inch pipe at 40 feot. Struck water at 1 foot. ivator level, 15.6 feet below ground level, 24 hours after hole completed. Mar. 3, 1941.
76. Flat, A, L. Dunn, 25 feet north of 50, h. AT. C. isy. Co. sur. Altitude at surface, 1324.1 foet.
\begin{tabular}{llr}
\hline Sandy gray soil & 4 & 4 \\
Sandy gray clay & 7 & 11 \\
Red sand & 3 & 14 \\
Brown sand & 1 & 15 \\
Coarse-grained red sand & 2 & 17 \\
Red sand & 7 & 24 \\
Fino-grained red sand & 4 & 28
\end{tabular}
.6 .1176 -- Continued
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{cc} 
Thickness Depth \\
(feot) & (foet)
\end{tabular} \\
\hline Sand and pea gravel & 6 34 \\
\hline Sand and clay & \(1 \quad 35\) \\
\hline Sand and pea gravel & 540 \\
\hline 3ird's eye clay & 141 \\
\hline \multicolumn{2}{|l|}{Set 1 well point with \(2 \rightarrow\) inch pipe at} \\
\hline \multicolumn{2}{|l|}{40 foet. Wator level, 16 feet below} \\
\hline completed, Haroh 7, & \\
\hline
\end{tabular}
77. Flat, A. I. Dunn 225 feet north of 50 , f. \& T. C. Ry. Co. sur. Altitude at surface, 1324.2 feet.
\begin{tabular}{llr} 
Sandy gray soil & 3 & 3 \\
Sandy red clay & 6 & 9 \\
Gray sand and gravel & 1 & 10 \\
Coarse-grained red & 2 & 12 \\
sand & 4 & 16 \\
Sand and gravel & 6 & 22 \\
Dark-red sand & & \\
Coarse-grained sand & 5 & 27 \\
anci pea gravel. \\
Set 2-inch point with 2-inch pipe at \\
27 feet, ater level, 16.6 feet below \\
ground level, 24 hours after hole \\
completed, ifar. 6, 1941. ...
\end{tabular}
78. Flat, A, I. Dunn, 300 feet north of. 50, H. \& T, C, Ry, sur. rltitude at
surface, 1324.0 feet,
\begin{tabular}{llr} 
Sandy dar-colored soil. & 3 & 3 \\
Led sand. & 1 & 4 \\
Gray olay & 5 & 9 \\
Red sand & 3 & 12 \\
Sandy red clay & 7 & 19 \\
Pea gravel and sand & 3 & 22 \\
led sand & 2 & 24 \\
Set 2-inch point with 2-inch pipe at \\
24 feet. ater level, l6.6 feet elow \\
ground level, 24 hours after hole \\
completed. Mar. 7, l941.
\end{tabular}
79. Flat, A. L. Dunn, 500 feet north of 73; H. \& T. C. Ry. Co. sur. Altitude at surface, 1320.6 feet.
\begin{tabular}{lcr}
\hline & \begin{tabular}{c} 
Thickness \\
(feet)
\end{tabular} & \begin{tabular}{c} 
Depth \\
(feet)
\end{tabular} \\
\hline Sandy dark-colored soil & 4 & 4 \\
Sandy gray clay & 5 & 9 \\
Coarse-grained gray sand & 9 & 18 \\
Fine-grained gray sand & 1 & 19 \\
Gray sand, pea gravel & 3 & 22 \\
Red sand and clay & 7 & 29 \\
Bird's eye clay & 1 & 30
\end{tabular}

Water level 16.1 feet below ground level, 24 hours after hole completed. Mar. 9; 1941.
\begin{tabular}{|c|c|c|}
\hline Dark-colored sand & & 9 \\
\hline Red sand and gravel & 2 & 11 \\
\hline Red sand & 6 & 17 \\
\hline Gray sand & 2 & 19 \\
\hline Coarse-grained red sand & 1 & 20 \\
\hline Red sand, gravel, clay & 3 & 23 \\
\hline Fine-grained red sand & 5 & 28 \\
\hline Red and gray sand,gravel & 8 & 36 \\
\hline Gravel & 1 & 37 \\
\hline Bird's eye clay & 3 & 40 \\
\hline \multicolumn{3}{|l|}{Water level, 20.8 feet below zround} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{level, 24 hours after hole completed.}} \\
\hline & & \\
\hline
\end{tabular}
81. Flat, A. L. Dunn, 150 feet north of \(33, \mathrm{SE} \frac{1}{4}\) sec. \(356, \mathrm{H} . \& \mathrm{~T}\). C. Ry.
Co. sur. Altitude 1332.68.
\begin{tabular}{lrr}
\hline Dark-red sand & 3 & 3 \\
Red sand & 4 & 7 \\
Red sand and clay & 2 & 9 \\
Gray sand & 9 & 18 \\
Red sand and gravel & 9 & 27 \\
Fine-grained red sand & 10 & 37 \\
Bird's eye clay & 2 & 39 \\
Water level, 21.5 feet below ground \\
level, 24 hours after hole completed.
\end{tabular}
82. Flat, A, L. Dunn, 75 feet west of 50 , H. \& T. C. Ry. Co. sur.
\begin{tabular}{lrr}
\hline & \begin{tabular}{c} 
Thickness \\
(feet)
\end{tabular} & \begin{tabular}{c} 
Depth \\
(feet)
\end{tabular} \\
\hline Sandy red soil & 3 & 3 \\
Sand, clay & 3 & 6 \\
Red sand & 11 & 17 \\
Sand and gravel & 1 & 18 \\
Red sand and gravel & 15 & 33
\end{tabular}

Set 2 -inch point with 2 -inch pipe at 33 feet. Water level, 18.8 feet below measuring point, 28 hours after hole completed. Mar. 8, 1941.
83. Flat. A. L. Dunn, 75 feet east of 50, H. \& T. C. Ry. Co, sur.
\begin{tabular}{lrr}
\hline Soil & 2 & 2 \\
Sandy gray clay & 7 & 9 \\
Red sand and gravel & 9 & 18 \\
Red sand & 11 & 29 \\
Red sand and lea gravel & 5 & 34
\end{tabular}

Left open hole with 4 -inch casing at 34 feet.
84. Flat, A. L. Dunn, 75 feet north of 33, H. \& T. C. Ry. Co. sur. Altitude at surface, 1329.0.
\begin{tabular}{llr} 
Sandy red soil & 4 & 4 \\
Sandy red clay & 7 & 11 \\
Green sand and gravel & 7 & 18 \\
Gray sand and gravel & 3 & 21 \\
Red sand and gravel & 4 & 25 \\
Coarse-grained gray sand & 2 & 27 \\
Gray sand & 6 & 33 \\
Gravel and sand & 4 & 37 \\
Bird's eye clay & 1 & 38 \\
Water level, 19.9 feet below ground \\
level, 24 hours after hole completed. \\
Mar. \(25,1941\).
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Well & Owner & ```
Depth
    of
    well
    (ft.)
``` &  & Totel
dissolved
solids & \[
\begin{aligned}
& \text { Cal- } \\
& \text { cium } \\
& \text { (Ca) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Magne- } \\
& \text { sium } \\
& \text { (Mg) }
\end{aligned}
\] & \[
\begin{gathered}
\text { Sodium and } \\
\text { Pressium } \\
\text { (Na +K) } \\
\text { (calc. }) \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Bicar- \\
bonate (\(\mathrm{HOO}_{3}\))
\end{tabular} & Sulfate \(\left(\mathrm{SO}_{4}\right)\) & \[
\begin{aligned}
& \text { Chlo- } \\
& \text { ride } \\
& (\neg 1)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ni- } \\
& \text { trate } \\
& \left(\mathrm{NO}_{3}\right)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Iluox- } \\
& \text { ide } \\
& (F)
\end{aligned}
\] & Total hardness as \(\mathrm{CaCO}_{3}\) (calc.) \\
\hline 1 & City ff Crowell & 13 & July 31, 1940 & 1,382 & 206 & 72 & 153 & 250 & 597 & 210 & 21 & 0.4 & 309 \\
\hline 3 & Fierd County & 34 & Sept. 4, 1940 & 1,355 & 125 & 38 & 200 & 275 & 427 & 220 & 139 & 0.6 & 674 \\
\hline 5 & do. & 18 & Sept. 7, I.40 & 1,265 & 104 & 65 & 238 & 263 & 434 & 230 & 62 & - & 530 \\
\hline 6 & do. & 17 & do. & 497 & 44 & 40 & 79 & 275 & 116 & 53 & 29 & 0.6 & 275 \\
\hline 7 & do. & 17 & Sept.10, 1740 & 717 & 75 & 47 & 108 & 293 & 21.3 & 97 & 30 & - & 339 \\
\hline 8 & तo. & 18 & Sept.11, 1940 & 596 & 57 & 4.2 & 95 & 305 & 14.4 & 58 & 50 & - & 316 \\
\hline 9 & do. & 17 & Sept.16, 1740 & 662 & 79 & 50 & 90 & 281 & 175 & 32 & 59 & - & 401 \\
\hline 10 & do. & 16 & Sept.13, 1940 & 643 & 75 & 57 & 30 & 299 & 159 & 82 & 54 & - & 396 \\
\hline 11 & do. & 14 & Sept.17, 1940 & 684 & 78 & 57 & 31 & 293 & 192 & 100 & 42 & - & 430 \\
\hline 12 & do. & 18 & Sept.13, 1940 & 932 & 36 & 63 & 115 & 281 & 248 & 146 & 36 & - & 474 \\
\hline 13 & do. & 28 & Sept. 19,1940 & 850 & 39 & 64 & 107 & 287 & 252 & 155 & 32 & 0.6 & 51.0 \\
\hline 14 & do. & 19 & Sept.20, 1240 & 1,399 & 166 & 98 & 161 & 256 & 536 & 220 & 42 & 0.4 & 315 \\
\hline 15 & त०. & 19 & do. & 722 & 96 & 54 & 69 & 238 & 240 & 110 & 35 & 0.9 & \(4 \times 0\) \\
\hline 15 & do. & 17 & Sept. 2L, 19L: & 911 & 91 & 50 & 141 & 287 & 310 & 142 & 25 & - & 472 \\
\hline 17 & do. & 1.9 & Oct. 3, 194? & 776 & 90 & 47 & 117 & 366 & 233 & 71 & 38 & , & 419 \\
\hline 19 & do. & 13 & Oet. 5, 1940 & 1,066 & 119 & 68 & 160 & 354 & 334 & 190 & 20 & 0.9 & 577 \\
\hline 20 & (). & 16 & Det. 3, 1940 & 1,086 & 155 & 78 & 109 & 348 & 305 & 185 & 22 & 0.5 & 702 \\
\hline 21 & do. & 15 & May 7, 1940 & 730 & 73 & 36 & 12.9 & 232 & 252 & 96 & 29 & 0.9 & 333 \\
\hline 22 & do. & 19 & Oet. 10, 1440 & 1,117 & 112 & 49 & 205 & 305 & 427 & 146 & 27 & 0.9 & 430 \\
\hline 23 & do. & 20 & do. & 1,339 & 156 & 63 & 203 & 32.9 & 349 & 215 & 191 & -- & 649 \\
\hline 24 & do. & 21 & Oct. 11, 1440 & 1,075 & 113 & 45 & 203 & 317 & 349 & 195 & b/ & - & 468 \\
\hline 25 & do. & 25 & Oct. 17, 1940 & 368 & 105 & 34 & 154 & 305 & 307 & 116 & b/ & 0.9 & 401 \\
\hline 25 & do. & 32 & तo. & 2,029 & 196 & 34 & 379 & 409 & 906 & 320 & 42 & 0.4 & 337 \\
\hline 27 & तo. & 25 & Det. 22, 1940 & 993 & 82 & 47 & 190 & 275 & 415 & 92 & 32 & - & 399 \\
\hline 28 & त). & 32 & तo. & 530 & 93 & 34 & 83 & 379 & 34 & 52 & 93 & 0.3 & 371 \\
\hline 29 & do. & 22 & Oct. 25, 1940 & 576 & 90 & 42 & 53 & 275 & 109 & 90 & 58 & - & 396 \\
\hline 30 & do. & 22 & Oct. 31, 1940 & 470 & 46 & 36 & 72 & 201 & 81 & 93 & 38 & - & 252 \\
\hline 31 & do. & 16 & Det. 25, 1740 & 591 & 129 & 49 & 57 & 275 & 58 & 250 & b/ & 0.3 & 525 \\
\hline 32 & do. & 23 & Nov. 2, 1940 & 509 & 80 & 43 & 66 & 244 & 196 & 54 & 50 & - & 377 \\
\hline 33 & do. & 23 & do. & 370 & 64 & 29 & 29 & 244 & 73 & 35 & 20 & - & 278 \\
\hline 33 & do. & 40 & Apr. 3, 1941 & 372 & 70 & 28 & 25 & 256 & 68 & 34 & 20 & 0.5 & 292 \\
\hline 33 & do. & 40 & Apr. 7, 1941 & 367 & 75 & 29 & 16 & 250 & 38 & 35 & 20 & 0.5 & 303 \\
\hline
\end{tabular}

Partial analyses of water obtained during investigation of water supply for Grmell, Texas--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 51011 & Ormor & \[
\begin{aligned}
& \text { Depth } \\
& \text { of } \\
& \text { well } \\
& \text { (ft.) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Dete } \\
& \text { of } \\
& \text { collection }
\end{aligned}
\] & \[
\begin{gathered}
\text { Total } \\
\text { dissolved } \\
\text { solids }
\end{gathered}
\] & \[
\begin{aligned}
& \text { cal- } \\
& \text { cium } \\
& \text { (ca) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Tagne- } \\
& \text { sium } \\
& \text { (} \mathrm{Mg})
\end{aligned}
\] & \[
\begin{gathered}
\text { Sodium and } \\
\text { Pot ssium } \\
(\mathrm{Na}+\mathrm{K}) \\
\text { (calc. }) \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Bicar- \\
bonate (\(\mathrm{HCO}_{3}\))
\end{tabular} & \begin{tabular}{l}
Sul- \\
fate
\[
\left(\mathrm{SO}_{4}\right)
\]
\end{tabular} & \[
\begin{aligned}
& \text { Chlo- } \\
& \text { ride } \\
& \text { (cl) }
\end{aligned}
\] & \[
\begin{gathered}
\text { Ni- } \\
\text { trate } \\
\left(\mathrm{HO}_{3}\right)
\end{gathered}
\] & \[
\begin{aligned}
& \text { FIuor- } \\
& \text { ide } \\
& \text { (F) }
\end{aligned}
\] & Total hardness as \(\mathrm{CaSO}_{3}\) (celc.) \\
\hline 34 & Foard County & 23 & Nov. 6, 1040 & 907 & 98 & 38 & 140 & 375 & 261 & 91 & 38 & 0.7 & 379 \\
\hline 35 & तो. & 22 & Nov. 7, 1940 & 855 & 97 & 49 & 127 & 287 & 300 & 100 & 43 & - & 445 \\
\hline 35 & तo. & 25 & Nov. 11, 1940 & 377 & 63 & 26 & 33 & 255 & 1 & 1. & 55 & 3.1 & 256 \\
\hline 37 & do. & \(2 ?\) & नo. & 545 & 95 & 57 & 57 & 226 & 229 & 76 & 32 & - & 446 \\
\hline 38 & (2). & 23 & Nov, 15, 194:0 & 423 & 79 & 34 & 50 & 311 & 109 & 41 & 24 & - & 336 \\
\hline 39 & do, & 27 & Nov.]. , 1¢LO & 1,677 & 235 & 127 & 141 & 275 & 714 & 305 & 20 & 0.1 & 1,10? \\
\hline 40 & do. & 24 & Nov. 15, 140 & 1,573 & 308 & 108 & 169 & 258 & 67 & 330 & 25 & - & 01 \\
\hline 41 & do. & 23 & Nov. 17, 1940 & 330 & 56 & 27 & 20 & 13 & 77 & 24 & 33 & - & 252 \\
\hline 42 & do. & 0 & Nov. 1, 1140 & 255 & 51. & 21 & 14 & 201 & 34 & 11. & 35 & - & 213 \\
\hline 43 & do. & 20 & Nov. 21, 1940 & 286 & 49 & 29 & 18 & 291 & 22 & 8 & 22 & - & 243 \\
\hline 44 & do. & 21 & Nov. 22, 1740 & 390 & 67 & 37 & 28 & 342 & 34 & 30 & 26 & - & 318 \\
\hline 45 & do. & 22 & do. & 357 & 60 & 19 & 46 & 299 & 50 & 10 & b/ & - & 227 \\
\hline 46 & do. & 31. & तo. & 2,750 & 288 & 119 & 444 & 3-3 & 1, 398 & 230 & 72 & - & 1,209 \\
\hline 47 & do. & 20 & Dee. 3, 1940 & 447 & 63 & 39 & 33 & 244 & 119 & 40 & 28 & - & 319 \\
\hline 48 & do. & 25 & Dec. 4, 1940 & 531 & 75 & 39 & 36 & 433 & 97 & 42 & 37 & - & 349 \\
\hline 49 & do. & 221 & Dec. 5, 1340 & 334 & 55 & 31 & 25 & 268 & 50 & 21 & 20 & - & 254 \\
\hline 50 & ?. A. Dunn & 20 & do. & 305 & 58 & 32 & 3 & 214 & 77 & 26 & b/ & - & 275 \\
\hline 50 & do. & 22 & Mar. 9, 1941 & 350 & 75 & 24 & 15 & 250 & 66 & 18 & 28 & - & 290 \\
\hline 50 & do. & 40 & Mar. 11, 1941 & 358 & 72 & 23 & 24 & 250 & 70 & 13 & 28 & - & 274 \\
\hline 50 & do. & 40 & Mar. 23, 1941 & 351 & 55 & 25 & 37 & 250 & 66 & 16 & 28 & 0.8 & 240 \\
\hline 51 & Foard Count- & 19 & Dec. 9, 1940 & 451 & 64 & 44 & 40 & 329 & 57 & 52 & 32 & -- & 342 \\
\hline 52 & do. & 22 & Dec. 3, 1940 & 361 & 62 & 33 & 21 & 299 & 28 & 10 & 60 & - & 290 \\
\hline 53 & do. & 26 & Dec. 11, 1940 & 1,106 & 166 & 06 & 111 & 323 & 452 & 114 & 38 & - & 636 \\
\hline 54 & तo. & 25 & Dec. 10, 1940 & 322 & 59 & 4.5 & 3 & 372 & 27 & 5 & b/ & - & 333 \\
\hline 55 & do. & 27 & Dec. 12, 1940 & 300 & \(4 ?\) & 33 & 28 & 299 & \(4{ }^{\circ}\) & 8 & b/ & - & 240 \\
\hline 56 & do. & 16 & do. & 323 & 57 & 29 & 26 & 336 & 21 & 5 & 20 & - & 263 \\
\hline 57 & do. & 25 & Dec. 16, 1940 & 455 & 55 & 37 & 60 & 329 & 73 & 28 & 40 & - & 288 \\
\hline 59 & No. & 25 & Dec. 17, 1940 & 721 & 77 & 45 & 117 & 349 & 129 & 82 & 30 & - & 379 \\
\hline 59 & H. Fox & 12. & Dec. 19, 1940 & 629 & 60 & 37 & 125 & 390 & 92 & 100 & 23 & - & 303 \\
\hline 50 & do. & 5 & त०. & 375 & 58 & 28 & 45 & 293 & 58 & 42 & b/ & - & 262 \\
\hline 61 & Harry Schlagel & 9 & Dec. 20, 1940 & 577 & 95 & 54 & 36 & 372 & 172 & 37 & b/ & - & 458 \\
\hline 52 & do. & 15 & do. & 667 & 104 & 53 & 60 & 403 & 199 & 50 & b/ & - & 477 \\
\hline 64 & Foard County & 34 & Feb. 7, 1941 & 5,934 & 652 & 21.3 & 959 & 110 & 2,830 & 1,130 & b/ & - & 2,630 \\
\hline
\end{tabular}

\footnotetext{
a) Sulfate less than 10 parts per million.
b/ Nitrate less than 20 parts p r million.
}

Partial analyses of water obtained during inv stigation of water supply for Crowell, Texas-- ontinued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Well & Owner & \[
\begin{aligned}
& \text { Depth } \\
& \text { of } \\
& \text { woll } \\
& (\mathrm{ft.})
\end{aligned}
\] & & \[
\begin{gathered}
\text { Total } \\
\text { dissilved } \\
\text { solids }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Cal- } \\
& \text { cium } \\
& \text { (ya) }
\end{aligned}
\] & Magnesium (Mg) & \[
\begin{aligned}
& \text { Sodium and } \\
& \text { Potassium } \\
& \text { (Ns + K) } \\
& (\text { calc. })
\end{aligned}
\] & & \[
\begin{aligned}
& \text { Sul- } \\
& \text { fate } \\
& \left(\mathrm{SO}_{4}\right)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Thlo- } \\
& \text { ride }
\end{aligned}
\]
(C1) & \[
\begin{aligned}
& \text { Ni- } \\
& \text { trate } \\
& \left(\mathrm{NO}_{3}\right)
\end{aligned}
\] & \begin{tabular}{l}
Fluor- \\
ide \\
(F)
\end{tabular} & \[
\begin{aligned}
& \text { Thtal } \\
& \text { hardness } \\
& \text { as Gaco3 } \\
& \text { (calc.) }
\end{aligned}
\] \\
\hline 65 & Foord County & 24 & Jan. 10, 1941 & 1,364 & 210 & 77 & 313 & 378 & 756 & 270 & 42 & & \\
\hline 66 & do. & 26 & do. & 1,145 & 136 & 77 & 141 & 373 & 479 & 36 & 40 & - & 657 \\
\hline 67 & do. & 22 & Jen. 14, 1941 & 581 & 83 & 53 & 41 & 287 & 151 & 49 & 64 & _ & 423 \\
\hline 57 & do. & 22 & Jan. 29, 1941 & 626 & 103 & 43 & 45 & 299 & 174 & 62 & 47 & - & 455 \\
\hline 53 & J. L. Orr & 15 & Jan. 15, 1941 & 385 & 52 & 36 & 29 & 317 & 37 & 23. & 42 & _ & 302 \\
\hline 50 & Fiard County & 2 & Jan. 17, 1941 & 314 & 65 & 23 & 24 & 305 & 33 & 19 & b/ & - & 259 \\
\hline 70 & TV. A. Dunn & 20 & -30. & 34.3 & 74 & 27 & 9 & 323 & 76 & 19 & 24 & - & 297 \\
\hline 71 & do. & 29 & Fob. 7, 2941 & 358 & 73 & 27 & 20 & 250 & 74 & 19 & 32 & 0.3 & 272 \\
\hline 73 & A. I. Dunn & 20 & F-h. 11, 1941 & 449 & 72 & 41 & 4 & 44 & 129 & 22 & 34 & 0.7 & 351 \\
\hline 74 & do. & 22 & Fob. 12, 194] & 109 & 72 & 32 & 27 & 255 & 77 & 24 & 3 & - & 351 \\
\hline 75 & d. & 25 & 7. \({ }^{3}\), 1941 & 345 & 67 & 27 & 1.7 & 225 & 72 & 15 & 27 & - & 277 \\
\hline 78 & d. & 25 & Far. 3, 1941 & 403 & 74. & 23 & 36 & 332 & 101 & 89 & 3 & - & 277 \\
\hline 78 & do. & 20 & Nar. Q, 141 & 364 & 70 & 22 & 31 & 2.2 & 62 & 17 & 35 & - & 254 \\
\hline \(7{ }^{7}\) & C. H c. & \(\bigcirc\) & Mar. --, 1941 & 505 & 34 & 45 & 29 & 317 & 94 & 36 & 50 & 0.3 & 370 \\
\hline 14.4 & C. H. hite & & Det. 22, 1940 & 528 & 63 & 35 & 95 & 372 & 134 & 27 & b/ & 1.2 & 301 \\
\hline 145 & \%. T. Dunn & 26 & Jan. 25, 1241 & 311 & 63 & 29 & 10 & 278 & & 11 & 32 & - & \(27{ }^{\circ}\) \\
\hline 147 & 77. L. Dunn & \(\cdots\) & No. 4, 140 & 305 & 114 & 21 & 139 & 273 & 254 & 3 & 36 & - & \\
\hline 148 & Dunn Eist. & 23 & Jan. 27, 1941 & 795 & 127 & 43 & 75 & 299 & 255 & 100 & 33 & - & \\
\hline 149 & 7. T. Dunn & 2 & Jan. 26, 1941 & 91.5 & 97 & 92 & 104 & 372 & 221 & 120 & 32 & & 515 \\
\hline 150 & ' A. Dunn & 24 & do. & 32.1 & 34 & 30 & 15 & 300 & 49 & 12 & b/ & - & 281 \\
\hline & -- Bledsos & Spring & Det. 15, 1940 & 1,003 & 100 & 84 & 75 & 230 & 408 & 150 & 33 & - & 583 \\
\hline & A.T.S.F. Ry, & Spring & do. & 95 & 95 & 55 & 63 & 27. & 231 & 30 & 24 & - & 463 \\
\hline & fate less & Lake & 2. & 600 & 155 & 15 & 7 & 69 & 323 & 6 & b/ & - & 449 \\
\hline
\end{tabular}

FIGURE 2.
DIAGRAM OF WELLS AND EQUIPMENT USED IN PUMPING TESTS

GROWELL,TEXAS

Figure 3-ARRANGEMENT OF WELLS USED IN PUMPING TEST IN ALLUVIUM AREA NORTH OF CROWELL,TEXAS

EXPLANATION
O Observation well
© Pumping well


```


[^0]:    1/ Records of wells, chemical nalyses, etc, in Foard County: Texas Board of Water Engineers, 1936.

