TRANS-TEXAS WATER PROGRAM

West Central Study Area Phase I Interim Report

Volume 1

San Antonio River Authority

San Antonio Water System

Edwards Underground Water District

Guadalupe-Blanco River Authority

Lower Colorado River Authority

Bexar Metropolitan Water District

Nueces River Authority

Texas Water Development Board

May, 1994

HDR Engineering, Inc. in association with Paul Price Associates, Inc. LBG-Guyton Associates Espey-Huston & Associates, Inc.

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA

PHASE I INTERIM REPORT

VOLUME 1

Prepared for

San Antonio River Authority
San Antonio Water System
Edwards Underground Water District
Guadalupe-Blanco River Authority
Lower Colorado River Authority
Bexar Metropolitan Water District
Nueces River Authority
Texas Water Development Board

by

HDR Engineering, Inc.
in association with
Paul Price Associates, Inc.
LBG-Guyton Associates
Espey-Huston & Associates, Inc.

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA

TABLE OF CONTENTS

VOLUME 1

Secti	on			Page
ES	EXEC	CUTIVE	SUMMARY	ES-1
1.0			rion	
	1.1 1.2		tudy Area	
	1.2	Object	tives	. 1-3
2.0			ON, WATER DEMAND AND WATER SUPPLY	
	PROJ		NS	
	2.1	-	ation Projections	
		2.1.1	Population Projections for the 33-County Study Area	. 2-3
		2.1.2	Population Projections for the Edwards Aquifer Area Counties	
			and Cities	
		2.1.3	Population Projections for River Basins and Adjacent Areas	
	2.2		Demand Projections	
			Water Demand Projections for the 33-County Study Area	
		2.2.2	Water Demand Projections for the Edwards Aquifer Area	
		2.2.3	Water Demand Projections for River Basins	
	2.3		Supply Projections	
		2.3.1	Groundwater Supply Projections	
		2.3.2	Surface Water Supply Projections	
	2.4		Demand and Supply Comparisons	
		2.4.1	Edwards Aquifer Area	
		2.4.2	Nueces River Basin Study Area	
		2.4.3	San Antonio River Basin	
		2.4.4	Guadalupe River Basin	
		2.4.5	Colorado River Basin Study Area	
		2.4.6	Summary of Water Demand and Water Supply Projections	2-105
			VOLUME 2	
			. 020112	
3.0	WATI		PPLY ALTERNATIVES AND EVALUATIONS	
	3.0.1		onmental Overview	
	3.0.2	Cost I	Estimating Procedures	. 3-47

Table of Contents (continued)

Section	n		Page
	Conse	ervation/Local Alternatives	
	3.1	Demand Reduction (L-10)	. 3-57
	3.2	Exchange Reclaimed Water for Edwards Irrigation Water (L-11)	. 3-73
	3.3	Exchange Reclaimed Water for BMA Medina Lake Water (L-12)	3-91
	3.4	Reclaimed Water Reuse (L-13)	
	3.5	Transfer of Reclaimed Water to Corpus Christi Through Choke Canyon Reservoir (L-14)	3-117
	3.6	Purchase (or Lease) of Edwards Irrigation Water for Municipal and	J 11,
	2.0	Industrial Use	3-127
	3.7	Demineralization of Edwards "Bad Water" (L-16)	
	3.8	Natural Recharge - Type 1 Projects (L-17)	
	3.9	Natural Recharge - Type 2 Projects (L-18)	
	3.10	Springflow Augmentation (L-19)	
	3.11	Existing Water Rights in Nueces River Basin (N-10)	
	San A	Antonio River Basin	
	3.12	San Antonio River Unappropriated Streamflow (S-10, -11, -12)	3-211
	3.13	Medina Lake (S-13)	
	3.14	Applewhite Reservoir (S-14)	3-235
	3.15	Cibolo Reservoir (S-15)	3-255
	3.16	Goliad Reservoir (S-16)	3-273
	Guad	alupe River Basin	
	3.17	Guadalupe River Unappropriated Streamflow	
		(G-10, -11, -12, -13, -14)	
	3.18	Diversion of San Marcos River Unappropriated Streamflow (G-13) .	3-303
	3.19	Diversion of Guadalupe River at Lake Dunlap Unappropriated	
		Streamflow (G-14)	
	3.20	Canyon Lake (Released to Lake Dunlap) (G-15)	
	3.21	Cuero Reservoir (G-16)	
	3.22	Lindenau Reservoir (G-17)	
	3.23	McFaddin Reservoir (G-18)	3-389

Table of Contents (continued)

Section	n		Page
	3.24 3.25 3.26 3.27	Minor Reservoirs Guadalupe River Dam No. 7 (G-19) Gonzales Reservoir (G-20) Lockhart Reservoir (G-21) Dilworth Reservoir (G-22)	3-417 3-423
	Colora	ado River Basin	
	3.28 3.29 3.30	Colorado River at Lake Austin (C-10, -11, -12, -13)	3-459
	Brazo	s and Sabine River Basins	
	3.31 3.32 3.33	Allens Creek Reservoir (B-10)	3-503
	Carriz	zo Aquifer	
	3.34	Carrizo-Wilcox Aquifer (CZ-10)	3-529
APPE	NDICE	ES .	
	Apper	ndix A - Report on Carrizo Aquifer	
	Apper	ndix B - Protected Endangered and Threatened Species	
	Apper	ndix C - Trans-Texas Environmental Criteria	
	Apper	ndix D - GSA Basin Model - Parameter Summary Tables	

Table of Contents (continued)

VOLUME 3*

Item	Supplemental Report Items
I II	Mayor's 2050 Committee Regional Plan* (L-20) Lake Mason* (C-19)
IV	Canyon Lake/Mid-Cities Regional Plan* (G-23)

^{*} Placeholder for amended scope items to be published in a supplemental report at a later date. (West Central PMC Action 5/24/94)

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA

LIST OF TABLES

VOLUME 1

_		•	-	•
" "	a In	le.	N	o.

ES-1	Population Projections
ES-2	Total Water Demand Projections ES-8
ES-3	Water Demand Projection by Type of Use ES-8
ES-4	Estimated Edwards Aquifer Area Water Supply ES-11
ES-5	Estimated Nueces River Basin Water Supply ES-11
ES-6	Estimated San Antonio River Basin Water Supply ES-12
ES-7	Estimated Guadalupe River Basin Water Supply ES-12
ES-8	Estimated Lower Colorado River Basin Water Supply ES-13
ES-9	Water Supply Alternatives ES-21
ES-10	Summary of Potential Water Supply Alternatives for the Trans-Texas
	Water Program West Central Study Area ES-29
2-1	Population Projections 33 County West Central Study Area 2-4
2-2	Population Projections for Counties and Cities Edwards Aquifer
	West Central Area
2-3	Population Projections for River Basins and Adjacent Areas
	West Central Study Area
2-4	Municipal Water Demand Projections 33-County West Central
	Study Area
2-5	Industrial Water Demand Projections 33-County West Central
_ •	Study Area
2-6	Steam-Electric Power Water Demand Projections 33-County
_ •	West Central Area
2-7	Irrigation Water Demand Projections 33-County West
	Central Study Area
2-8	Mining Water Demand Projections 33-County West
- *	Central Study Area
2-9	Livestock Water Demand Projections 33-County West
	Central Study Area
2-10	Total Water Demand Projections 33-County West
	Central Study Area
2-11	Municipal Water Demand Projections for Cities and Counties
	Edwards Aquifer Area West Central Area
2-12	Industrial Water Demand Projections for the Edwards Aquifer
- 	Area West Central Area
2-13	Steam-Electric Power Water Demand Projections for the Edwards
- -	Aquifer Area West Central Area

Table No.	•	Page
2-14	Irrigation Water Demand Projections for the Edwards Aquifer Area West Central Area	2-52
2-15	Mining Water Demand Projections for the Edwards Aquifer Area West Central Area	
2-16	Livestock Water Demand Projections for the Edwards Aquifer Area West Central Area	
2-17	Total Water Demand Projections for the Edwards Aquifer Area West Central Area	
2-18	Municipal Water Demand Projections for River Basins and Adjacent Areas West Central Area	
2-19	Industrial Water Demand Projections for River Basins and	
2-20	Adjacent Areas West Central Area Steam-Electric Water Demand Projections for River Basins and	
2-21	Adjacent Areas West Central Area	
2-22	Adjacent Areas West Central Area	
2-23	Adjacent Areas West Central Area Livestock Water Demand Projections for River Basins and	
2-24	Adjacent Areas West Central Area	
2-25	Adjacent Areas West Central Area	
2-26 2-27	1990 Surface Water Use 33-County West Centra Area	2-86
2-28	West Central Area	
2-29	Summary of Run-of-River Water Rights - West Central Study Area	
2-30	Edwards Aquifer Water Use Edwards Aquifer Area West Central Study Area	
2-31	Edwards Aquifer Water Use by River Basin West Central Study Area	
2-32	Total Water Demand Projections	
2-33	Water Demand Projections by Type of Use	
2-34	Estimated Edwards Aquifer Area Water Supply	2-109
2-35	Estimated Nueces River Basin Water Supply	
2-36	Estimated San Antonio River Basin Water Supply	2-110
2-37	Estimated Guadalupe River Basin Water Supply	
2-38	Estimated Lower Colorado River Basin Water	2-111

VOLUME 2

Table No.		Page
3.0	Water Supply Alternatives	3-2
3.0-1	Environmental Issues Summary	3-27
3.0-2	Impacts of Water Treatment Alternative Pipeline Rights-of-Way	
	to The Injection Well Field and the Recharge Reservoir Zone	3-35
3.0-3	Proposed New Reservoir Construction Alternatives Ranked	
	by Inundated Area	3-40
3.0-4	Level of Water Treatment for Each Source and Delivery Location	3-48
3.0-5	Water Treatment Plant Costs	3-50
3.0-6	Water Treatment Annual O&M Costs	3-50
3.0-7	Pipeline Costs	
3.0-8	Summary of Source and Delivery Elevations	3-55
3.1-1	Potential Additional Water Conservation and Costs Edwards	
	Aquifer Area West Central Area Trans-Texas Water Program	3-64
3.1-2	Estimated Costs to Retrofit Plumbing Fixtures of a Typical	
	Residence West Central Trans-Texas Study Area	3-66
3.2-1	Reclaimed Water Flows	3-74
3.2-2	1988 Return Flows for Small Treatment Plants - San Antonio	
	Metro Area	
3.2-3	Reclaimed Water Availability - Current Return Flows	3-77
3.2-4	Guadalupe - San Antonio Basin Modeling Parameter -	
	Alternative L-11	
3.2-5	Reclaimed Water Availability - Future Estimated Return Flows	
3.2-6	Important Species With Habitats in the Project Vicinity (L-11)	
3.2-7	Monthly Irrigation Demand and Availability	
3.2-8	Reclaimed Water Firm Yield	3-86
3.2-9	Cost Estimate Summary for Exchange Reclaimed Water for	
	Edwards Irrigation Water (L-11)	
3.3-1	Monthly Irrigation Demand and Availability	
3.3-2	Reclaimed Water Firm Yield - Plan A	3-98
3.3-3	Cost Estimate Summaries for Exchange of Reclaimed Water	
	for BMA Medina Lake Water (L-12)	-100
3.3-4	Monthly Irrigation Demand and Availability	
3.4-1	Reclaimed Water Availability - Current Return Flows	
3.4-2	Reclaimed Water Availability - Future Estimated Return Flows 3	-107
3.4-3	Cost Estimate Summary for Reclaimed Water to the Edwards	
	Aquifer (L-13B)	-114
3.5-1	Recharge Enhancement and Yield Reduction of Various	
	Recharge Programs in the Nueces Basin Located Upstream	445
	of the CC/LCC System 3	-IT/

Table No.		Page
3.5-2	Guadalupe - San Antonio Basin Modeling Parameters -	
	Alternative L-14	
3.5-3	Important Species With Habitat Within the Proposed Project Area	3-122
3.5-4	Cost Estimate for Transfer of Reclaimed Water to Corpus Christi	
	Through Choke Canyon Reservoir (L-14)	3-124
3.6-1	Estimates of Irrigated Acreages and Irrigation Water Use in Uvalde	
	County Edwards Aquifer Area West Central Area Trans-Texas	2 420
262	Water Program	3-130
3.6-2	Estimates of Irrigated Acreages and Irrigation Water Use in	
	Medina County Edwards Aquifer Area West Central Area	2 120
262	Trans-Texas Water Program	3-130
3.6-3	Estimates of Irrigated Acreages and Irrigation Water Use in Bexar	
	County Edwards Aquifer Area West Central Area	2 121
3.6-4	Trans-Texas Water Program	3-131
3.0-4		
	of Uvalde, Medina, and Bexar Counties Edwards Aquifer Area West Central Area Trans-Texas Water Program	2 121
3.6-5	Crops Irrigated with Acreages and Estimated Water Use for each	3-131
5.0-5	Crop Edwards Aquifer Area West Central Area Trans Texas	
	Water Program	2 122
3.6-6	Estimates of Acreages Irrigated Using Edwards Aquifer Water	5-155
3.0-0	Edwards Aquifer Area West Central Area Trans Texas	
	Water Program	3-135
3.6-7	Estimated Value and Costs of Irrigated Production Edwards	5 155
5.0)	Aquifer Area Trans-Texas Water Program	3-140
3.6-8	Estimated Annual Value of Irrigated and Dryland Crop	5 110
0.00	Production Edwards Aquifer Area	3-142
3.7-1	Classification of Saline Water	
3.7-2	Cost Estimate Summary for Demineralization of Edwards	
	"Bad Water" (L-16)	3-153
3.8-1	Summary of Recharge Enhancement Potential for Type 1	
	Reservoir Programs	3-159
3.8-2	Habitats Affected by Operation of Type 1 Recharge Reservoirs	3-163
3.8-3	Important Species with Habitat in the Project Vicinity (L-17)	
	Edwards Plateau and Edwards Aquifer	3-165
3.8-4	Summary of Costs for Recharge Enhancement Programs -	
	Type 1 Reservoirs (L-17)	3-169
3.9-1	Summary of Recharge Enhancement Potential for Type 2	
	Reservoir Program (L-18)	3-174

Table No.		Page
3.9-2	Habitats Affected by Operation of Type 2 Recharge Reservoirs (L-18) .	3-178
3.9-3	Species listed for Protection on Petition to USFWS	
3.9-4	Protected Species with Habitat in the Project Vicinity	
3.9-5	Summary of Costs for Recharge Enhancement Programs -	
	Type 2 Reservoirs (L-18)	3-183
3.10-1	Preferred Habitat, Designated Critical Habitat, and Minimum	
	Springflows for the Conservation of Threatened or Endangered	
	Species in the San Marcos or Comal Springs Ecosystems	3-189
3.10-2	Summary of Possible Water Sources, Delivery Methods, and	
	Preliminary Costs for Springflow Augmentation Alternatives	3-194
3.10-3	Summary of Total and Incremental Increase in Recharge and	
	Resulting Flows at Buda for Each Project Alternative	
3.10-4	Preliminary Projected Costs	3-206
3.11-1	Summary of Water Rights by Type of Use	3-207
3.13-1	Cost Estimate Summaries for Purchase of BMA Medina Lake	
	Water (S-13)	
3.14-1	Applewhite Dam and Reservoir Land Use Baseline	
3.14-2	Important Species With Habitats in the Project Vicinity (S-14)	
3.14-3	Cost Estimate Summaries for Applewhite Reservoir (S-14)	
3.15-1	Summary of Cibolo Reservoir Firm Yield Estimates	
3.15-2	Protected Species with Habitat in the Project Vicinity (S-15)	3-265
3.15-3	Cost Estimate Summaries for Cibolo Reservoir and Pipeline (S-15)	
3.16-1	Summary of Goliad Reservoir Firm Yield Estimates	
3.16-2	Important Species with Habitat in the Project Vicinity (S-16)	
3.16-3	Cost Estimate Summaries for Goliad Reservoir and Pipeline (S-16)	
3.18-1	Cost Estimate Summaries for San Marcos River Diversion (G-13)	3-312
3.19-1	Important Species With Habitat Within the Project Vicinity,	
	Guadalupe County (G-14)	3-232
3.19-2	Important Species With Habitat Within The Project Vicinity,	
	Bexar County (G-14)	3-324
3.19-1	Cost Estimate Summaries for Guadalupe River at Lake Dunlap	
	Diversion (G-14)	3-326
3.20-1	Definition of Alternatives for Canyon Lake Water (Released	
	to Lake Dunlap) Project (Alternative G-15)	3-331
3.20-2a	Cost Estimate Summaries for Purchase of Canyon Lake Water	
2.20.21	(G-15)(Released to Lake Dunlap)	3-335
3.20-2b	Cost Estimate Summaries for Purchase of Canyon Lake Water	2 220
2.21.1	(G-15) (Released to Lake Dunlap)	
3.21-1	Summary of Cuero Reservoir Firm Yield Estimates	<i>3-3</i> 46

Table No.		Page
3.21-2	Important Species With Habitat Within the Project Vicinity (G-16)	3-354
3.21-2	Cost Estimate Summaries for Cuero Reservoir (G-16)	
3.22-1	Summary of Lindenau Reservoir Firm Yield Estimates	
3.22-2	Important Species With Habitat Within the Project Vicinity (G-17)	
3.22-3	Cost Estimate Summaries for Lindenau Reservoir (G-17)	
3.23-1	Summary of McFaddin Reservoir Firm Yield Estimates	
3.23-2	Important Species With Habitat in the Vicinity	
	of the Proposed Project (G-18)	3-398
3.23-3	Cost Estimate Summaries for McFaddin Reservoir	
	and Pipeline (G-18)	3-402
3.24-1	Cost Estimate for Guadalupe River Dam No. 7 and	
	Reservoir (G-19)	3-415
3.25-1	Cost Estimate for Gonzales Dam and Reservoir (G-20)	3-422
3.26-1	Cost Estimate for Lockhart Dam and Reservoir (G-21)	
3.27-1	Cost Estimate for Dilworth Dam and Reservoir (G-22)	3-433
3.28-1	Major Water Rights in the Lower Colorado Basin	
3.28-2	Unutilized Water Purchase	3-439
3.28-3	Unutilized & Second Crop Water Purchase	3-439
3.28-4	Definition of Alternatives for Colorado River at Lake Austin	
	(Alternative C-13)	
3.28-5	Important Species With Habitats in the Project Vicinity (C-13)	3-448
3.28-5a	Cost Estimate Summaries for Colorado River at Lake	
	Austin (C-13A,B,C)	3-452
3.28-5b	Cost Estimate Summaries for Colorado River at Lake	
	Austin (C-13D,E,F)	
3.29-1	Important Species With Habitats in the Project Vicinity (C-17)	3-467
3.29-2	Cost Estimate Summaries for Colorado River at Columbus (C-17)	3-469
3.30-1	Shaws Bend Reservoir Habitats Within Proposed Reservoir	
	Construction Area and Conservation Pool	3-477
3.30-2	Important Species With Habitat in the Shaws Bend	
	Project Vicinity (C-18)	
3.30-3	Cost Estimate Summary for Shaws Bend Reservoir (C-18)	
3.31-1	Protected Species with Habitat in the Project Vicinity (B-10)	3-492
3.31-2	Definition of Alternatives for Allens Creek Reservoir	
	Project (Alternative B-10)	3-495
3.31-3	Cost Estimate Summaries for Allens Creek Reservoir (B-10)	3-497
3.32-1	Definition of Alternatives for Toledo Bend Reservoir	
	(Alternative SB-10)	3-509
3.32-2	Cost Estimate Summaries for Toledo Bend Water Supply (Alt. SB-10) .	3-511

Table No	0.	Page
3.33-1	Definition of Alternatives for Combined Allens Creek and Toledo	
	Bend Project (Alternative SBB-10)	3-519
3.33-2	Cost Estimate Summaries for Allens Creek And Toledo Bend	
	Reservoir (SBB-10)	3-521
3.34-1	Carrizo-Wilcox Ground Water Availability	
3.34-2	Important Species with Habitat in the Project Vicinity (CZ-10) 3	3-539
3.34-3	Cost Estimate Summaries for Carrizo-Wilcox Aquifer Development	
	Alternative (CZ-10)3	3-543

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA

LIST OF FIGURES

VOLUME 1

Figure N	Page
ES-1	Study Area ES-2
ES-2	Population Projections - 33-County West Central Study Area ES-5
ES-3	Population Projections - River Basin Study Areas ES-6
ES-4	Total Water Demand Projections - 33-County Area ES-9
ES-5	Total Water Demand Projections - River Basin Study Areas ES-10
ES-6	Total Water Demand and Supply Projections - Edwards Aquifer Area . ES-14
ES-7	Total Water Demand and Supply Projections - Nueces Basin Study Areas ES-15
ES-8	Total Water Demand and Supply Projections - San Antonio Basin
	Study Area ES-16
ES-9	Total Water Demand and Supply Projections - Guadalupe Basin
	Study Area ES-17
ES-10	Total Water Demand and Supply Projections - Colorado Basin
	Study Area ES-18
ES-11	Water Supply Alternatives ES-23
ES-12	Summary of Unit Costs and Firm Water Supply for Water
	Supply Alternatives ES-45
1-1	Study Area 1-3
1-2	Edwards Aquifer Authority Area 1-4
2-1	Study Area 2-2
2-2	Population Projections - 33-County West Central Study Area 2-5
2-3	Edwards Aquifer Area - Trans Texas Water Program 2-7
2-4	Population Projections - Edwards Aquifer Area
2-5	Population Projections - River Basin Study Areas
2-6	Municipal Water Demand Projections - 33-County Area 2-23
2-7	Industrial Water Demand Projections - 33-County Area
2-8	Steam-Electric Power Water Demand Projections - 33-County Area 2-28
2-9	Irrigation Water Demand Projections 33-County Area
2-10	Mining Water Demand Projections - 33-County Area 2-34
2-11	Livestock Water Demand Projections - 33-County Area
2-12	Total Water Demand Projections - 33-County Area
2-13	Municipal Water Demand Projections - Counties of the Edwards
	Aquifer Area
2-14	Industrial Water Demand Projections - Counties of the Edwards
2.15	Aquifer Area
2-15	Steam-Electric Water Demand Projections - Counties of the Edwards
	Aguifer Area

List of Figures (continued)

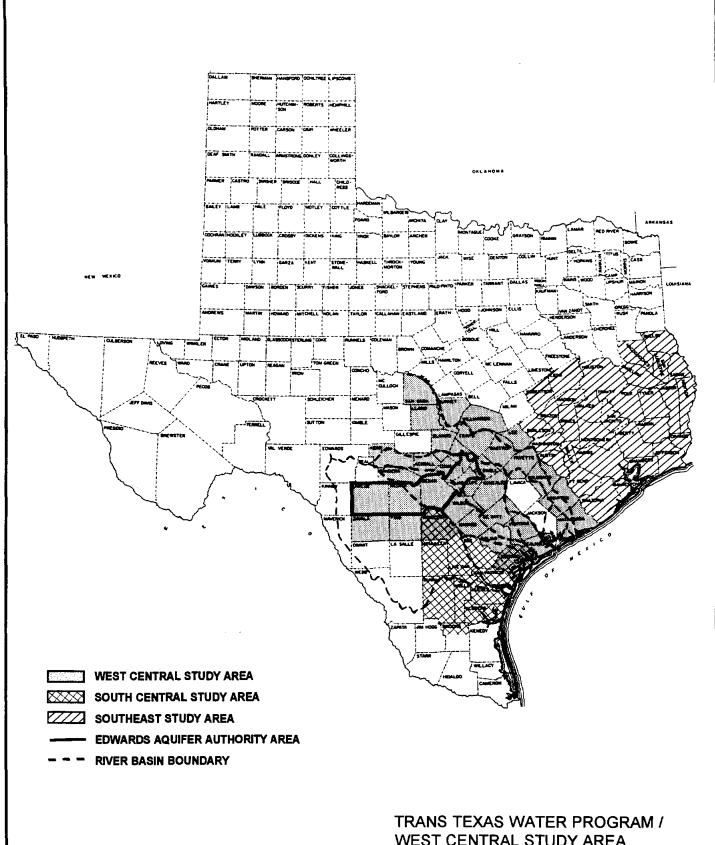
Figure N	Page
2-16	Irrigation Water Demand Projections - Counties of the Edwards
-	Aquifer Area
2-17	Mining Water Demand Projections - Counties of the Edwards
	Aquifer Area
2-18	Livestock Water Demand Projections - Counties of the Edwards
0.10	Aquifer Area
2-19	Total Water Demand Projections - Counties of the Edwards
2.20	Aquifer Area
2-20	Municipal Water Demand Projections - River Basin Study Areas 2-64
2-21	Industrial Water Demand Projections - River Basin Study Areas 2-68
2-22	Steam-Electric Water Demand Projections - River Basin Study Areas 2-71
2-23 2-24	Irrigation Water Demand Projections - River Basin Study Areas 2-74
2-24 2-25	Mining Water Demand Projections - River Basin Study Areas 2-77 Livestock Water Demand Projections - River Basin Study Areas 2-80
2-25 2-26	Total Water Demand Projections - River Basin Study Areas 2-80
2-20	Total Water Demand and Supply Projections - Edwards Aquifer Area 2-99
2-27	Total Water Demand and Supply Projections - Nueces Basin Study Area 2-101
2-29	Total Water Demand and Supply Projections - San Antonio Basin
<i>L-L)</i>	Study Area
2-30	Total Water Demand and Supply Projections - Guadalupe Basin
200	Study Area
2-31	Total Water Demand and Supply Projections - Colorado Basin Study Area2-106
	VOLUME 2
3.0	Water Delivery Locations 3-4
3.0-1	Ecoregions of Texas West Central Study Area - Trans-Texas Phase I Reporß-12
3.0-2	Vegetational Areas of Texas West Central Study Area - Trans-Texas
	Phase I Report 3-14
3.0-3	Biotic Provinces of Texas - West Central Study Area - Trans-Texas
	Phase I Report 3-16
3.2-1	Exchange Reclaimed Water for Edwards Irrigation Water (Alt L-11) 3-76
3.2-2	Reclaimed Water Potentially Available for Reuse (Alts L-11, L-12, L-13) . 3-79
3.3-1	Exchange Reclaimed Water for BMA Medina Lake Water (31,000 acft/yr) (Alt L-12A)
3.3-2	Exchange Reclaimed Water for BMA Medina Lake Water (66,000 acft/yr)
J.U <u>2</u>	(Alt L-12B)
3.4-1	Reclaimed Water to Edwards Aquifer (Alt L-13B)

List of Figures (continued)

Figure 1	√o.	Page
3.8-1	Type-1 Potential Recharge Enhancement Projects (Alt L-17)	3-156
3.9-1	Type-2 Potential Recharge Enhancement Projects (Alt L-18)	
3.10-1	Duration of Deficits - Comal Springs Flow	
3.10-2	Duration of Deficits - San Marcos Springs Flow	3-193
3.10-3	Locations of the Proposed Project Alternatives Within the Onion	
	Creek Watershed	
3.11-1	Significant Water Rights in Nueces River Basin	3-208
3.12-1	San Antonio River Hydrology Analysis Points (Alts S-10, S-11, S-12)	3-212
3.12-2	Unappropriated Streamflow - San Antonio River at Elmendorf (Alt S-10)	3-214
3.12-3	Unappropriated Streamflow - San Antonio River at Falls City (Alt S-11)	3-216
3.12-4	Unappropriated Streamflow - San Antonio River at Goliad (Alt S-12)	3-217
3.13-1	Medina Lake (Alt S-13)	
3.13-2	Storage Traces Medina Lake (Alt S-13)	3-222
3.13-3	Changes in Streamflow Medina Lake (Alt S-13)	3-224
3.14-1	Applewhite Reservoir (Alt S-14)	3-236
3.14-2	Storage Traces Applewhite Reservoir (Alt S-14)	
3.15-1	Cibolo Reservoir (Alt S-15)	
3.15-2	Storage Trace Cibolo Reservoir (Alt S-15)	
3.15-3	Changes in Streamflow Cibolo Reservoir (Alt S-15)	
3.16-1	Goliad Reservoir (Alt S-16)	
3.16-2	Storage Trace Goliad Reservoir (Alt S-16)	
3.16-3	Changes in Streamflow Goliad Reservoir (Alt S-16)	3-279
3.17-1	Guadalupe River Hydrology Analysis Points (Alts G-10, G-11, G-12,	
		3-292
3.17-2	Unappropriated Streamflow Guadalupe River Near Gonzales (Alt G-10)	
3.17-3	Unappropriated Streamflow Guadalupe River Near Cuero (Alt G-11)	3-296
3.17-4	Unappropriated Streamflow Guadalupe River at Salt Water Barrier	
	(Alt G-12)	3-298
3.17-5	Unappropriated Streamflow San Marcos River Below Blanco River	
	Confluence (Alt G-13)	3-300
3.17-6	Unappropriated Streamflow Guadalupe River at Lake Dunlap (Alt G-14)	
3.18-1	San Marcos River (Alt G-13)	3-304
3.18-2	Changes in Streamflow San Marcos Diversion (Alt G-13)	
3.19-1	Guadalupe River at Lake Dunlap (Alt G-14)	3-318
3.19-2	Changes in Streamflow Lake Dunlap Diversion (Alt G-14)	3-320
3.20-1	Canyon Lake (Released to Lake Dunlap) (Alt G-15)	3-332
3.21-1	Cuero Reservoir (Alt G-16)	3-344
3.21-2	Firm Yield Storage Trace Cuero Reservoir (Alt G-16)	
3.21-3	Changes in Streamflow Cuero Reservoir (Alt G-16)	3-349

List of Figures (continued)

Figure N	lo.	Page
3.22-1	Lindenau Reservoir (Alt G-17)	3-366
3.22-2	Storage Trace Lindenau Reservoir (Alt G-17)	3-371
3.22-3	Changes in Streamflow - Guadalupe River with Lindenau	
	Reservoir (Alt G-17)	3-372
3.22-4	Changes in Streamflow - Sandies Creek at Lindenau	
	Reservoir (Alt G-17)	
3.23-1	McFaddin Reservoir (Alt G-18)	3-390
3.23-2	Firm Yield Storage Trace McFaddin Reservoir (Alt G-18)	
3.23-3	Changes in Streamflow McFaddin Reservoir (Alt G-18)	3-399
3.24-1	Minor Reservoirs (Alts G-19, G-20, G-21, G-22)	3-408
3.28-1	Colorado River Hydrology Analysis Points (Alts C-10, C-11, C-12, C-14,	
	C-15, C-16)	
3.28-2	Diversion of Unutilized Major Rights at Lake Austin (Alt C-11)	3-442
3.28-3	Diversion of Unutilized Major Rights and Second Crop Irrigation	
	at Lake Austin (Alt C-12)	
3.28-4	Colorado River at Lake Austin (Alt C-13)	
3.29-1	Colorado River at Columbus (Alt C-17)	
3.29-2	Diversion of Unutilized Major Rights at Columbus (Alt C-15)	3-462
3.29-3	Diversion of Unutilized Major Rights and Second Crop Irrigation	
	at Columbus (Alt C-16)	
3.30-1	Shaws Bend Reservoir (Alt C-18)	
3.31-1	Allens Creek Reservoir (Alt B-10)	
3.32-1	Toledo Bend Reservoir (Alt SB-10)	
3.34-1	Carrizo-Wilcox Aquifer to Injection or Recharge (Alts CZ-10A, CZ-10B)	
3.34-2	Carrizo-Wilcox Aquifer to WTP (90,000 acft/yr) (Alt CZ-10C)	
3.34-3	Carrizo-Wilcox Aquifer to WTP (220,000 acft/yr) (Alt CZ-10D)	3-532


TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA EXECUTIVE SUMMARY

ES-1 INTRODUCTION

In the 1990 Texas Water Plan, the projections of population and water demand growth identified immediate water supply needs in the metropolitan areas of Southeast and South Central Texas (San Antonio, Corpus Christi, and Houston). The 1990 Water Plan also identified significant quantities of surplus supply in some river basins. The Trans-Texas Water Program (TWDB) has been created under the leadership of the Texas Water Development Board and with the sponsorship of many of the State's river authorities to address the water supply needs of these areas in an environmentally responsible, coordinated, and economical manner. The Trans-Texas Water Program is a multiple-phase program beginning with Phase I planning studies to determine projected water demands and supplies through the year 2050 and to identify possible water supply alternatives to meet future needs. This Phase I report provides: (1) projections of water demands of the study area for the period 1990 to 2050; (2) comparisons of projected demands to existing supplies; (3) potential water supply alternatives to meet the needs of the area; and, (4) a reconnaissance level assessment of the water supply potentials, costs, and environmental effects of each option. From this, decisions can be made regarding viable water supply alternatives to be studied in more detail in Phase II. Alternatives chosen to be considered further will require significant environmental, hydrologic, and economic study prior to a project or management plan being implemented.

The West Central Study Area of the Trans-Texas Water Program includes all of the San Antonio and Guadalupe River Basins, parts of the Nueces, Colorado and Brazos River Basins, and parts of the San Antonio-Nueces, Lavaca-Navidad, and Brazos-Colorado Coastal Basins. The study area is shown in Figure ES-1 and includes 33 counties. Major population centers of the region are the cities of San Antonio, Austin, San Marcos, New Braunfels, Round Rock, Victoria, and Seguin.

A significant portion of the West-Central Study area is highly dependent on groundwater supply from the Edwards Aquifer, which is used extensively for municipal,

WEST CENTRAL STUDY AREA

HDR Engineering, Inc.

STUDY AREA

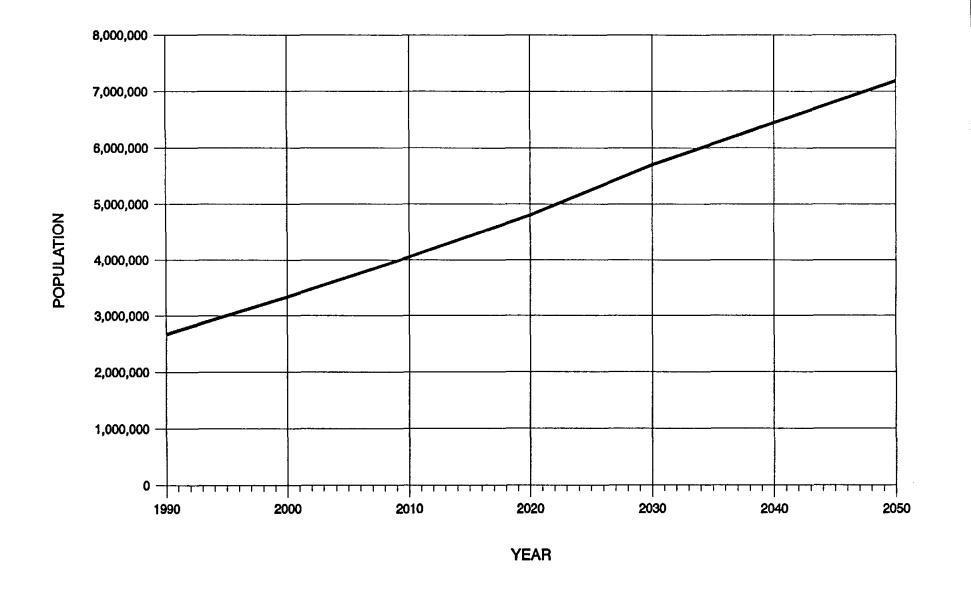
manufacturing, irrigation, and livestock watering. Within the study area, 1.36 million people benefit directly or indirectly from the water supply provided by the Edwards Aquifer to wells or springflows, and by year 2050, the population potentially affected by the aquifer is projected to be 3.7 million. The current dependence on this single water source, coupled with the projected growth of the area and the resulting need for additional water, makes water supply planning essential. Development of alternative water supplies not only is needed to meet growth demands, but to maintain significant ecosystems at Comal and San Marcos Springs.

The TWDB, through the Trans-Texas Water Program, has brought together eight sponsors that collectively commissioned this Phase I study. Alternatives studied include existing surface and groundwater supplies, conservation, reuse, changes in use of existing supplies, potential development of new surface and groundwater sources, and inter-basin transfers. For each water supply option, this screening study provides preliminary estimates of yields, costs, and environmental impacts, for use in making policy decisions for the long term water supply of the area.

ES-2 POPULATION PROJECTIONS

Population projections have been made by the TWDB for the period 1990 through 2050. The TWDB high case population projections were specified by the TWDB for use in all Trans-Texas studies, and are tabulated for each of the following areas: (a) 33-county West Central Study Area; (b) Edwards Aquifer area¹; and (c) river basins and adjacent areas.

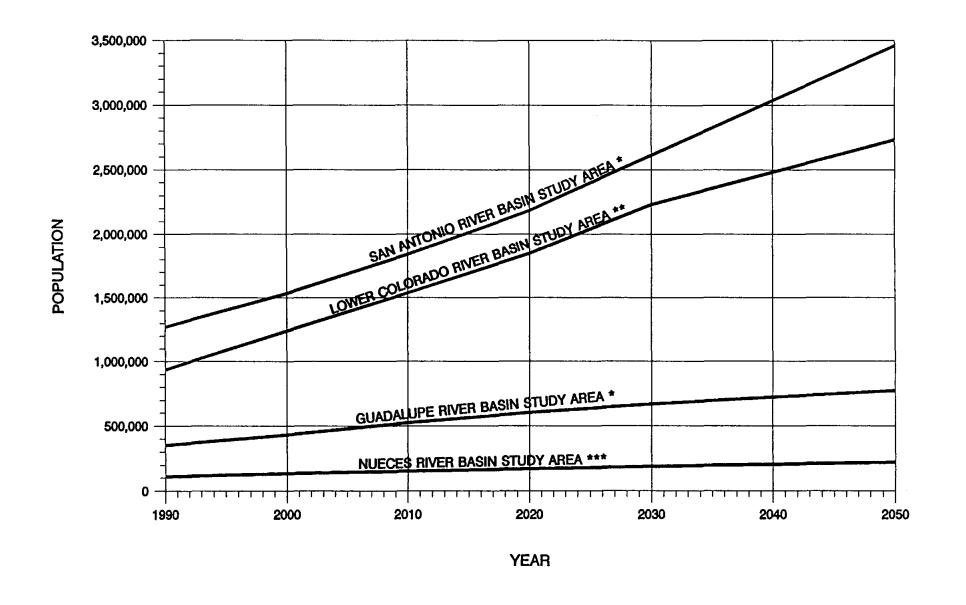
The 1990 population of the 33-county study area was 2.7 million and the projection to year 2020 is 4.8 million and to 2050 is 7.2 million, a projected total increase of almost 170 percent.


¹The Edwards Aquifer Area is the area specified in Senate Bill 1477, 1993 Texas Legislature, creating the Edwards Aquifer Authority, and includes all of Uvalde, Medina, and Bexar counties, and parts of Atascosa, Comal, Guadalupe, Comal, Hays, and Caldwell counties. (See Figure 2-3 for Edwards Aquifer Authority Area.) At the time of this report the creation of the Edwards Aquifer Authority is still in question as various legal issues regarding its creation, are unresolved.

The 1990 population of the Edwards Aquifer area was 1.4 million (about 50 percent of the 33-county area population), with year 2020 projections of 2.4 million and 2050 projections of 3.7 million (again, about 50 percent of the study area total), a projected total increase of 164 percent.

In 1990, Bexar County had 87 percent of the Edwards Aquifer area population, and by 2050 is projected to have about 89 percent of the Edwards Aquifer area projected population.

Table ES-1 contains a summary of population projections through year 2050 for the study area, Edwards Aquifer area, river basins, and selected cities. Figure ES-2 presents a graph of the total projected population growth in the study area during the planning period and Figure ES-3 contains the projected growth in the study river basins.


Table ES-1 Population Projections ¹						
Area	1990	2020	2050	Annual Growth Rate %		
33 Counties	2,669,016	4,805,280	7,185,211	1.66		
Edwards Aquifer Area	1,363,688	2,359,661	3,696,204	1.67		
River Basin Study Areas Nueces San Antonio Guadalupe Colorado	110,733 1,271,334 350,659 936,290	169,160 2,184,550 602,606 1,848,964	220,678 3,459,299 772,441 2,732,793	1.15 1.68 1.32 1.80		
Selected Counties Bexar Travis Victoria	1,185,394 576,407 74,361	2,034,080 1,083,814 110,685	3,271,762 1,520,837 135,596	1.70 1.63 1.01		
State of Texas	16,986,510	27,053,959	36,308,602	1.27		
¹ Source: Texas Water Development	Board, High Case	Population Proje	ections.			

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA POPULATION PROJECTIONS
33 COUNTY WEST CENTRAL STUDY AREA

HDR Engineering, Inc.

^{*} In basin plus adjacent areas that obtain water from the basin.

*** Includes only study area countles of the Nueces Basin.

HDR Engineering, Inc.

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA POPULATION PROJECTIONS
RIVER BASIN STUDY AREAS

⁶⁶ Inbasin plus adjacent coastal areas that obtain water from the Colorado Basin. Does not include parts of study area countles located in the Brazos Basin.

ES-3 WATER DEMAND AND CURRENT SUPPLIES

Water Demand Projections

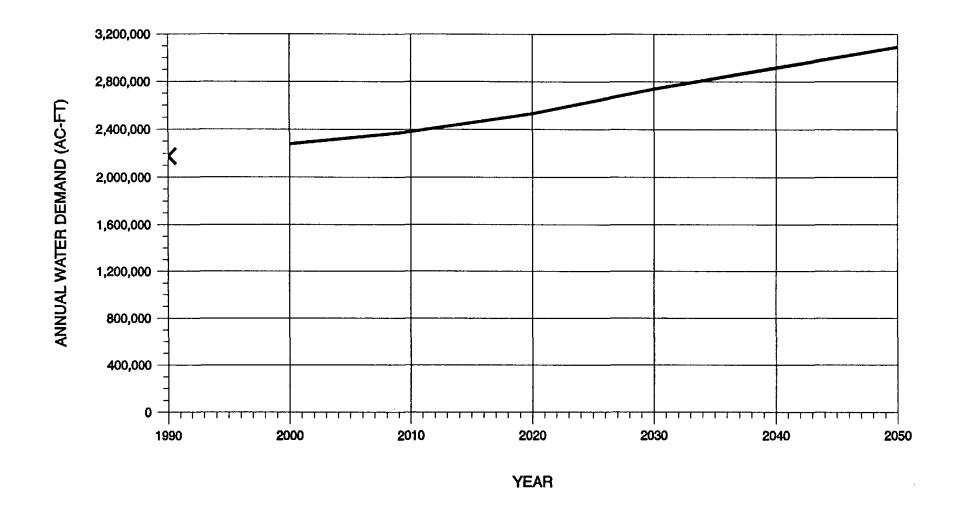
The Texas Water Development Board has made water demand projections for the period 1990 through 2050. High case water demand projections, with conservation, were specified by the TWDB for use in all Trans-Texas studies, and are tabulated and shown in various figures for each of the following areas: (a) 33-county West Central Study Area; (b) Edwards Aquifer area²; and (c) river basins and adjacent areas.

In 1990, total water use³ in the 33-county study area was 2.2 million acft (see footnote⁴), of which 646,000 acft (30 percent) was in the Edwards Aquifer area. Projected year 2050, total water demand for the 33-county study area is 3.1 million acft (a 41 percent increase), of which 1.1 million acft is in the Edwards Aquifer area (a 70 percent increase). In the Edwards Aquifer area, the two major water use categories are municipal and irrigation. Municipal use is projected to increase from 260,000 acft in 1990 to 765,000 acft in 2050, a 195 percent increase. Conversely, irrigation use is projected to decline from 335,000 acft in 1990 to 240,000 acft in 2050, a 28 percent decrease.

Table ES-2 contains a summary of total water demand projections through year 2050 for the study area, Edwards Aquifer area, river basins, and selected cities. Table ES-3 contains a summary of current and projected water demand by type of use. Figure ES-4 presents a graph of the total projected water demand in the study area during the planning period and Figure ES-5 contains the projected demand in the study river basins.

Section 2 of this report contains individual projections of water demand for municipal, industrial, steam-electric, irrigation, mining, and livestock, for the 33 county area, the Edwards Aquifer area, and the individual river basins.

²The Edwards Aquifer Area is the area specified in Senate Bill 1477, 1993 Texas Legislature, creating the Edwards Aquifer Authority, and includes all of Uvalde, Medina, and Bexar counties, and parts of Atascosa, Comal, Guadalupe, Comal, Hays, and Caldwell counties. (See Figure 2-3 for Edwards Aquifer Authority Area.)

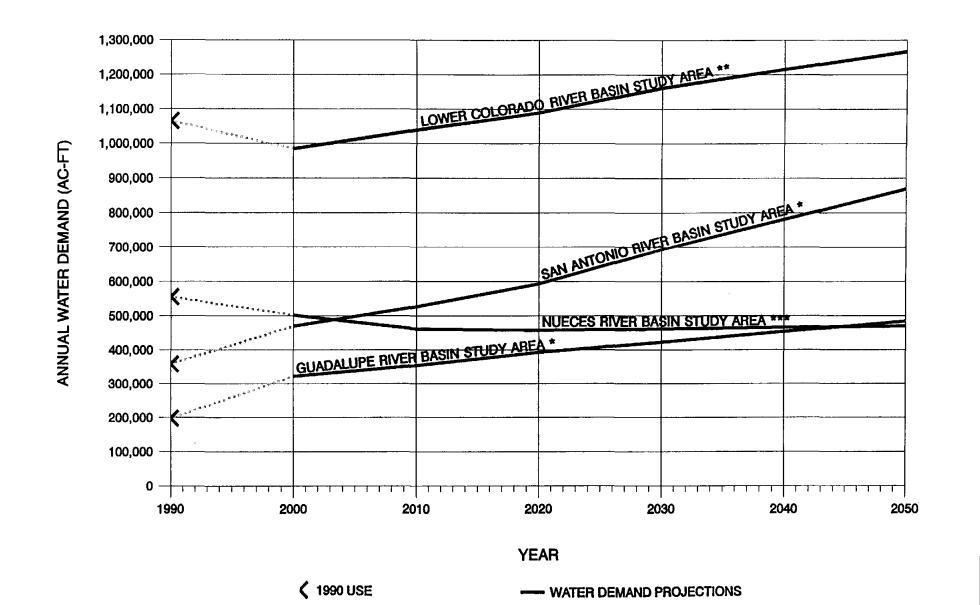

³Total water use is the sum of the water demands for municipal, industrial, steam-electric power, irrigation, mining, and livestock purposes.

⁴An acre-foot of water (abbreviated "acft") is the volume contained by covering one acre with water one foot deep; in other terms, this volume is 325,851 gallons.

Table ES-2 Total Water Demand Projections ¹ (in Acre-Feet ²)					
Area	1990	2020	2050		
33 Counties	2,177,005	2,532,828	3,089,709		
Edwards Aquifer Area ³	646,076	853,245	1,144,481		
River Basin Study Areas			·		
Nueces	555,503	457,295	470,173		
San Antonio	358,304	592,888	868,928		
Guadalupe	197,959	392,782	484,366		
Colorado	1,065,239	1,089,836	1,266,242		

¹Source: Texas Water Development Board; High Case Projection with Conservation. ²One acre-foot equals 325,851 gallons. ³As defined by SB 1477.

	Table ES-3 Water Demand Projection by Type of Use ¹							
		Use	2050 Projections					
Type of Water		33-County Edwards Study Area Aquifer Area		33-County Study Area		Edwards Aquifer Area		
Use	Acft	%	Acft	%	Acft	%	Acft	%
Municipal	498,128	22.9	259,330	40.1	1,420,211	45.9	765,017	66.8
Industrial	83,307	3.8	19,263	3.0	415,953	13.5	66,519	5.8
Steam-Elec.	98,755	4.5	24,263	3.8	236,200	7.6	56,000	4.9
Irrigation	1,411,579	64.8	335,061	51.9	918,400	29.7	239,880	21.0
Mining	47,360	2.2	2,979	0.4	48,663	1.6	10,089	0.9
Livestock	<u>37,876</u>	_1.7	_5,180	0.8	50,282	_1.7	<u>6,976</u>	0.6
TOTAL	2,177,005	100.0	646,076	100.0	3,089,709	100.0	1,144,481	100.0
¹ Source: Texas V	Vater Developme	ent Board;	High Case Proj	ection wit	h Conservation.			


√ 1990 USE

- WATER DEMAND PROJECTIONS

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA TOTAL WATER DEMAND PROJECTIONS 33 COUNTY AREA

HDR Engineering, Inc.

- * In basin plus adjacent areas that obtain water from the basin.
- ** in basin plus adjacent coastal areas that obtain water from the Colorado Basin. Does not include parts of study area counties located in the Brazos Basin.

*** Includes only study area countles of the Nueces Basin.

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA TOTAL WATER DEMAND PROJECTIONS RIVER BASIN STUDY AREAS

HDR Engineering, Inc.

Water Supply Information

Water supply information is listed below and on the following pages for the Edwards Aquifer Area and each major river basin (see Tables ES-4 through ES-8 and Figures ES-6 through ES-10). Water supplies from the Edwards aquifer are based on SB 1477 (450,000 acft thorough 2007 and 400,000 acft thereafter).

Table ES-4 Estimated Edwards Aquifer Area Water Supply (acft/yr)						
Water Source	Thru 2007	After 2007				
Edwards Aquifer	450,000	400,000				
Other Aquifers	39,750	39,750				
Canyon Lake (New Braunfels Contract)	6,720	6,720				
Canyon Lake (San Marcos Contract)	5,000	5,000				
Medina Lake - Average Supply	57,970	57,970				
Medina River - Run-of-River Rights	11,580	11,580				
Braunig Lake	12,000	12,000				
Calaveras	<u>37,000</u>	<u>37,000</u>				
Total	620,020	570,020				

Table ES-5 Estimated Nueces River Basin Water Supply (acft/yr)					
Water Source	Thru 2007	After 2007			
Edwards Aquifer	181,300	161,200			
Other Aquifers	133,200	133,200			
Run-of-River Rights	52,700	<u>52,700</u>			
Total	367,200	347,100			

Table ES-6 Estimated San Antonio River Basin Water Supply (acft/yr)					
Water Source	Thru 2007	After 2007			
Edwards Aquifer	250,020	222,240			
Other Aquifers	109,200	109,200			
Run-of-River Rights	46,800	46,800			
Medina Lake - Average Supply	57,900	57,900			
Braunig Lake	12,000	12,000			
Calaveras	<u>37,000</u>	<u>37,000</u>			
Total	512,920	485,140			

Table ES-7 Estimated Guadalupe River Basin Water Supply (acft/yr)		
Water Source	Thru 2007	After 2007
Edwards Aquifer	18,630	16,560
Other Aquifers	144,700	144,700
Canyon Lake	50,000	50,000
Consumptive Run-of-River Rights	259,100	_259,100
Subtotal	472,430	470,360
Pass-Through Industrial and Steam Electric Run-of-River Rights*	_ 587,500	587,500
Total	1,059,930	1,057,860

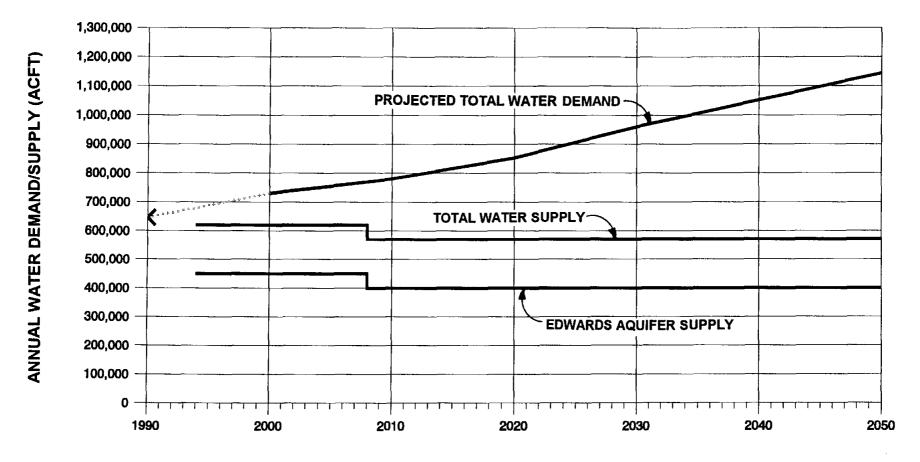

^{*}Does not include hydroelectric right of 600 cfs at Lake Dunlap, which is a nonconsumptive right and, therefore, these flows can be used downstream of the last hydroelectric power plant near Gonzales for other purposes.

Table ES-8 Estimated Lower Colorado River Basin Water Supply		
Water Source	Estimated Supply (acft/yr)	
Groundwater	293,300	
Highland Lakes	445,300	
Run-of-River Rights	<u>1,140,800</u> *	
Total	1,879,400	
*Estimated supply during critical drought 350,921 acft		

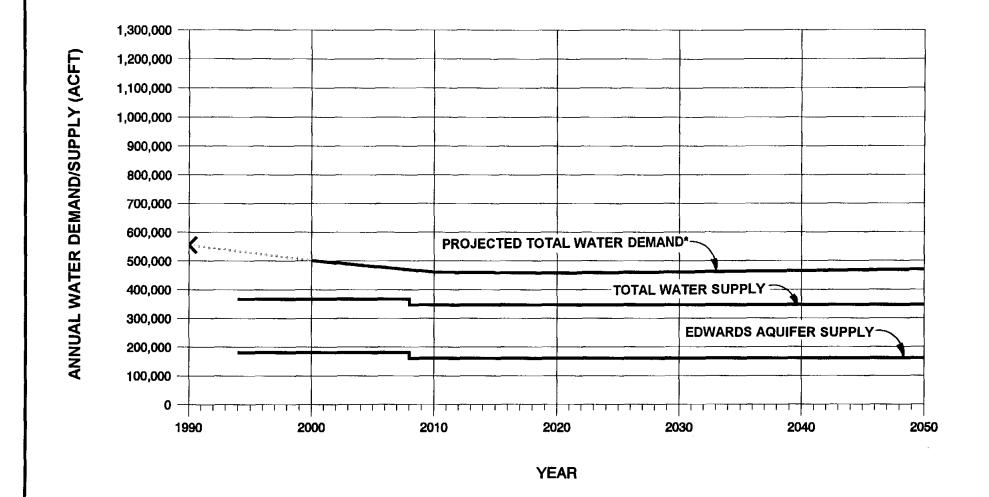
Water supply information for the 33-county study area is summarized below:

- Water supply from the Edwards aquifer, as specified in SB 1477, is as follows:
 - Through 2007, 450,000 acft; and
 - Beginning in 2008, 400,000 acft.
- Groundwater supply information for the Carrizo and other aquifers of the 33-county study area:
 - Recharge (long-term dependable supply), 680,400 acft;
 - Overdrafting is occurring in nine counties;
 - Significant underdevelopment is present in seven counties.
 (Note: this groundwater is beneath private land and in many cases is more than 50 miles from municipal and industrial users.)
- Annual surface water supply of the 33-county study area are as follows:

-	Nueces Basin Study Area Firm Yield	0 acft
-	San Antonio Basin (Medina Lake) Firm Yield	8,770 acft
-	San Antonio Basin (Medina Lake) Average Yield	57,900 acft
-	Guadalupe Basin (Canyon Lake) Firm Yield	50,000 acft
-	Colorado Basin (Highland Lakes) Firm Yield	445,266 acft
-	Nueces Basin Run-of-River Permits	53,397 acft
-	San Antonio Basin Run-of-River Permits	46,808 acft
-	San Antonio Basin Reuse Permit (Calaveras)	37,000 acft
-	San Antonio Basin Cooling Lake Permit (Braunig)	12,000 acft
-	Guadalupe Basin Run-of-River/Consumptive Permits	272,327 acft
-	Guadalupe Basin Run-of-River Once-Thru Permits	587,500 acft
-	Colorado Basin Run-of-River Permits	1,140,790 acft

ESTIMATED WATER SUPPLY (ACFT/YR)		
WATER SOURCE	THRU 2007	AFTER 2007
EDWARDS AQUIFER	450,000	400,000
OTHER AQUIFERS	39,750	39,750
CANYON LAKE (NEW BRAUNFELS CONTRACT)	6,720	6,720
CANYON LAKE (SAN MARCOS CONTRACT)	5,000	5,000
MEDINA LAKE - AVERAGE SUPPLY	57,970	57,970
MEDINA RIVER - RUN-OF-RIVER RIGHTS	10,503	10,503
BRAUNIG LAKE	12,000	12,000
CALAVERAS LAKE	37,000	37,000
TOTAL	618,943	569,125

YEAR


WEST CENTRAL STUDY AREA

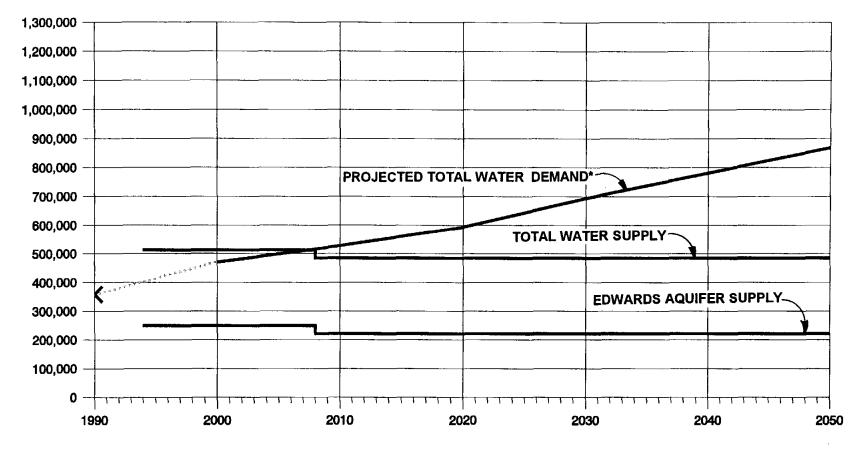
TRANS TEXAS WATER PROGRAM /

TOTAL WATER DEMAND AND SUPPLY PROJECTIONS EDWARDS AQUIFER AREA

FIGURE ES - 6

REV 5-31-94

ESTIMATED WATER SUPPLY (ACFT/YR)		
WATER SOURCE	THRU 2007	AFTER 2007
EDWARDS AQUIFER	181,300	161,200
OTHER AQUIFERS	133,200	133,200
RUN-OF-RIVER RIGHTS	<u>52,700</u>	52,700
TOTAL	367,200	347,100


HDR Engineering, Inc.

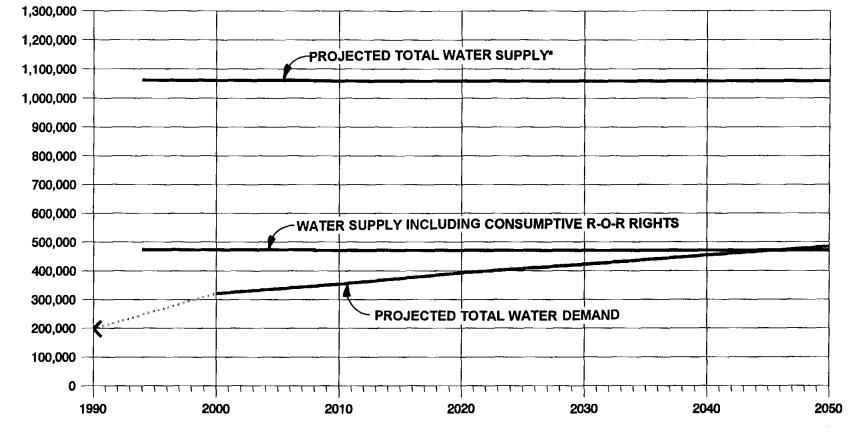
TRANS TEXAS WATER PROGRAM / WEST CENTRAL STUDY AREA

TOTAL WATER DEMAND AND SUPPLY PROJECTIONS NUECES BASIN STUDY AREA

* Includes only study area counties of the Nueces Basin.

ESTIMATED WATER SUPPLY (ACFT/YR)		
WATER SOURCE	THRU 2007	AFTER 2007
EDWARDS AQUIFER	250,020	222,240
OTHER AQUIFERS	109,200	109,200
RUN-OF-RIVER RIGHTS	46,800	46,800
MEDINA LAKE - AVERAGE SUPPLY	57,900	57,900
BRAUNIG LAKE	12,000	12,000
CALAVERAS LAKE	<u>37,000</u>	<u>37,000</u>
TOTAL	512,920	485,140

In-basin plus adjacent coastal areas that obtain water from the Colorado Basin. Does not include parts of study area counties located in the Brazos Basin.



HDR Engineering, Inc.

TRANS TEXAS WATER PROGRAM / WEST CENTRAL STUDY AREA

TOTAL WATER DEMAND AND SUPPLY PROJECTIONS SAN ANTONIO BASIN STUDY AREA

ESTIMATED WATER SUPPLY (ACFT/YR)			
WATER SOURCE	THRU 2007	AFTER 2007	
EDWARDS AQUIFER	18,630	16,560	
OTHER AQUIFERS	144,700	144,700	
CANYON LAKE	50,000	50,000	
CONSUMPTIVE RUN-OF-RIVER RIGHTS	<u>259,100</u>	259,100	
SUBTOTAL	472,430	470,360	
PASS-THROUGH INDUSTRIAL AND STEAM ELECTRIC RUN-OF-RIVER RIGHTS	<u>587,500</u>	<u>587,500</u>	
TOTAL	1,059,930	1,057,860	
NOTE: HYDROELECTRIC RIGHT AT D	DUNLAP IS 600 C	FS.	

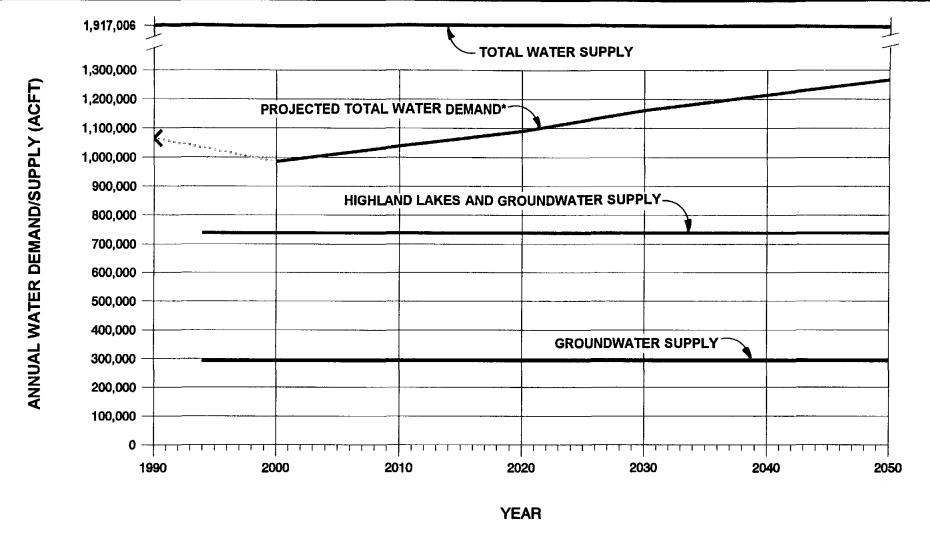
* In-basin plus adjacent areas that obtain water from the basin.

YEAR

WEST CENTRAL STUDY AREA

TOTAL WATER DEMAND A

TOTAL WATER DEMAND AND SUPPLY PROJECTIONS GUADALUPE BASIN STUDY AREA


TRANS TEXAS WATER PROGRAM /

HDR Engineering, Inc.

Comparison of Supply and Demand

The projected water demands are compared with water supplies from existing sources for the Edwards aquifer area and each of the river basins of the West Central Study area, as follows:

- Shortages are projected for the Edwards aquifer area in the immediate future:
 - Year 2000 shortage of 110,788 acft; and
 - Year 2050 shortage of 574,461 acft.
- Shortages are projected for the Nueces Basin Study area in the immediate future:
 - Year 2000 shortage of 134,626 acft; and
 - Year 2050 shortage of 123,073 acft.
- Shortages are projected for the San Antonio Basin after year 2008:
 - Year 2010 shortage of 41,531 acft; and
 - Year 2050 shortage of 383,788 acft.
- For the Guadalupe Basin and adjacent areas, projected demands are less than projected supplies to year 2046, when run-of-river consumptive permits are considered. When once-through industrial and electric power permits of 587,500 acft are included as available supplies for downstream diversion, then supplies exceed demand through 2050.
- For the Lower Colorado Basin and adjacent areas, projected demands are less than the sum of firm yields from lakes, groundwater, and run-of-river surface water rights throughout the planning period (surplus of 894,780 acft in 2000 and 613,158 acft in 2050). However, for drought-of-record conditions (when 1,140,800 acft of run-of-river rights are estimated to yield 350,921 acft), supply equals projected demands in year 2020 and there would be a shortage of 176,721 acft for projected demands in year 2050.

ESTIMATED WATER SUPPLY								
WATER SOURCE	ESTIMATED SUPPLY (ACFT/YR)							
GROUNDWATER	293,300							
HIGHLAND LAKES	445,300							
RUN-OF-RIVER RIGHTS	<u>1,178,406</u>							
TOTAL	1,917,006							

HR

* In-basin plus adjacent coastal areas that obtain water from the Colorado Basin.

Does not include parts of study area counties located in the Brazos Basin.

HDR Engineering, Inc.

TRANS TEXAS WATER PROGRAM / WEST CENTRAL STUDY AREA

TOTAL WATER DEMAND AND SUPPLY PROJECTIONS COLORADO BASIN STUDY AREA

FIGURE ES - 10

REV 5-31-94

ES-4 SUMMARY OF POTENTIAL WATER SUPPLY ALTERNATIVES

A total of 37 primary water supply alternatives with over 130 sub-alternative configurations were evaluated in this Phase I planning and screening level study. Each of these alternatives was evaluated for water supply potential, environmental effects, and cost. The names of the alternatives are listed in Table ES-9 and the locations of the water supply sources for each alternatives are shown on Figure ES-6.

Table ES-10 lists the potential available water supply, a summary of environmental issues and special concerns, and the estimated unit cost in 1994-dollars (including capital, operation and maintenance, and water purchase costs) of the water supply alternatives. The Environmental Overview (Section 3.0.1 in the main report) contains a more detailed summary of the environmental assessment and study requirements of each alternative and Section 3.0.2 in the main report contains a summary of cost estimating procedures.

The water supply alternatives have all been studied on a stand-alone basis and many of the alternatives, if implemented, could affect water availability of other alternatives located in the same basin. Because of the inter-relationship between projects, implementation of one project may affect either the firm yield of another project, or the annual distribution of availability. For these reasons, the yields of projects listed in Table ES-10 within the same river basin, cannot be added together. An example of this would be a reuse alternative, such as L-12, Exchange of Reclaimed Water for BMA Medina Lake Water. The implementation of L-12 would significantly reduce the yield of the other reuse alternatives (i.e., L-11, L-13, and L-14). Further, the yield of downstream projects, (i.e., Goliad Reservoir, S-16) could be affected. The yield available from implementation of various groups or scenarios of water supply alternative projects will require more detailed analysis in Phase II of the study in order to accurately determine the interaction between various alternatives.

Classification of Alternatives

Alternatives have been classified into four basic groups each of which considers alternatives method of supplying water to the study area. This grouping includes:

<u> </u>	Table	FS-0	
	Water Supply		atives ¹
Altern		Altern	·
No.	<u>Description</u>	No.	<u>Description</u>
	Conservation / Local Alternatives		Guadalupe River Basin
L-10	Demand Reduction	G-10	Unappropriated Streamflow near
L-11	Exchange Reclaimed Water for Edwards		Gonzales
	Irrigation Water	G-11	Unappropriated Streamflow near Cuero
L-12	Exchange Reclaimed Water for BMA	G-12	Unappropriated Streamflow at Salt Water
ļ	Medina Lake Water		Barrier
	Recycling/Reuse Plans by SAWS	G-13	San Marcos River Diversion
L-13B	Reclaimed Water to Edwards Aquifer	G-14	Guadalupe River at Lake Dunlap
L-14	Transfer of Reclaimed Water to Corpus		Diversion
ļ	Christi Through Choke Canyon	G-15	Canyon Lake Released to Lake Dunlap
1	Reservoir	G-16	Cuero Reservoir
L-15	Purchase or Lease of Edwards Irrigation	G-17	Lindenau Reservoir
1	Water for Municipal and	G-18	McFaddin Reservoir
	Industrial Use	G-19	Guadalupe River Dam 7
L-16	Demineralization of Edwards "Bad Water"	G-20	Gonzales Reservoir
L-17	Natural Recharge - Type 1 Projects	G-21	Lockhart Reservoir
L-18	Natural Recharge - Type 2 Projects	G-22	Dilworth Reservoir
L-19	Springflow Augmentation	G-23	Canyon Lake/Mid-Cities Regional Plan ²
3.11	Nueces River Basin Water Rights		
L-20	Mayor's 2050 Committee Regional Plan ²		Colorado River Basin
1	San Antonio River Basin	C-10	Colorado River at Lake Austin with
			Purchase of Irrigation Rights
S-10	Unappropriated Streamflow near Elmendorf	C-13	Lake Travis with Purchase of Irrigation Rights
S-11	Unappropriated Streamflow near Falls City	C-17	Colorado River at Columbus with Purchase of Irrigation Rights
S-12	Unappropriated Streamflow near Goliad	C-18	Shaws Bend Reservoir
S-13	Medina Lake	C-19	Lake Mason ²
S-14	Applewhite Reservoir		
S-15	Cibolo Reservoir		Brazos and Sabine River Basins
S-16	Goliad Reservoir		_
		B-10	Allens Creek Reservoir
Į.		SB-10	Toledo Bend Reservoir
		SBB-10	Allens Creek Reservoir and Toledo
			Bend Reservoir
			Carrizo Aquifer
		CZ-10	Carrizo Aquifer
	Figure ES-11 for location of Water Supply Alternatives d scope items to be published in a supplemental report.		tral PMC Action 5/24/94.

THIS PAGE INTENTIONALLY LEFT BLANK

Natural Recharge:

For purpose of this study natural recharge is considered to be recharge to the aquifer with water originating from the Edwards Plateau catchment, recharge zone, or from springs originating from the Edwards. Natural recharge to the aquifer can be accomplished through either an injection well or through the delivery of water to a stream or reservoir located in the recharge zone.

Imported

Recharge: Imported recharge is recharge to the aquifer with all or a portion of

the water originating from sources other than those listed under Natural Recharge, regardless of the delivery system into the aquifer.

<u>Treatment</u>

and Distribution: This classification considers alternatives which would include

conventional water treatment (or just disinfection in the case of Carrizo water) and delivery to a municipal water distribution system at a point near the water treatment plant. (Note: Distribution costs are based on costs as estimated in previous studies for delivery to the SAWS system. This is a simplifying assumption for the Phase I study and does not preclude other entities receiving treated water from a regional water treatment plant or from an interconnection with the

SAWS system.)

Other: This classification includes all other alternatives including: demand

reduction by conservation, reclaimed water reuse, transfer of water through purchase or lease, and treatment of brackish water by

demineralization.

Water Delivery Locations

The water supply from many of the alternatives could be delivered into the study area in one or more of the following three ways: (1) to the recharge zone by discharge into a stream or a recharge structure; (2) to an injection well placed into the Edwards formation; and, (3) to a water treatment plant.

For delivery to the recharge zone, the Edwards formation outcrop between Leon Creek and Medina Lake was identified as the representative terminal point area with the existing San Geronimo Creek recharge site included as one of the terminal locations. Other potential recharge sites on Culebra, Government, Limekiln, and Deep creeks were selected as potential delivery locations. For recharge into the aquifer through injection wells, a possible recharge area is along the BMA canal in Medina County as identified in previous

studies.⁵ For the treatment and distribution alternatives, two delivery points have been identified. For alternative sources located north or northeast of San Antonio, water would be delivered to a treatment facility to be located in the vicinity of FM 1604 and Nacogdoches Road; and, for sources east or southeast, delivery would be to the previously proposed water treatment plant site located in the vicinity of Highway 16 and FM 1604. Generally, each alternative considered in this study is described in a figure which shows potential water sources and the various delivery options considered.

Figure ES-12 is a summary of unit costs and firm water supply for all alternatives with a unit cost of \$1,500 per acre foot or less. Alternatives have been grouped into four general categories as follows:

- 1) Conservation, Reuse, and Lease Alternatives;
- 2) Natural Recharge Alternatives;
- 3) Imported Recharge Alternatives; and,
- 4) Treatment and Distribution Alternatives.

A review of Figure ES-12 shows that generally the more economical alternatives fall into the first two categories listed above (i.e. Conservation, Reuse and Lease Alternatives and Natural Recharge Alternatives). However the unit cost of many of the individual alternatives presented in this Phase I study could either increase or be reduced by combining alternatives. The combination of alternatives is to be considered in the next phase (i.e. Phase II) of the Trans-Texas Water Program.

⁵W. E. Simpson Co. and William F. Guyton Assoc. Inc., "Medina Lake Study, Recharge Evaluation," Edwards Underground Water District, no date.

ES-5 ENVIRONMENTAL ISSUES

Table ES-10 includes a brief listing of the potentially most important environmental effects expected to result if an individual water supply alternative is implemented. Interactive effects, where two or more alternatives are implemented, have not yet been evaluated. Although an attempt has been made to be as comprehensive as possible, it should be understood that, in some instances, substantial background detail that is important in impact evaluation does not exist. The background material that was available is included in the text, figures and other tables in the Phase I report.

The alternatives involving new reservoir construction involve land disturbance and long-term habitat alteration over much larger areas than do other water supply alternatives. The remaining alternatives tend to have streamflow reduction and pipeline construction activity as the primary sources of potential impact. Most alternatives, regardless of whether new construction is involved or not, involve changes in streamflow and, consequently, inflows to their respective estuaries. The alternatives considered in the Phase I work, (with the exception of possible small impoundments associated with reuse alternatives) meet the instream flow and the bay & estuary inflow requirements established as screening criteria for the Trans Texas Water Program by the Texas Water Development Board. It is anticipated that alternatives selected for further evaluation will require site specific study to determine streamflow needs.

Alternatives involving new construction will require environmental and cultural resources surveys, including endangered species evaluations. The amount of effort that will have to be invested, and the likelihood of encountering significant environmental and cultural resource problems will be roughly proportional to the area to be disturbed, and to the degree of flexibility in specific project locations and operational characteristics. Reservoir alternatives generally require specific locations for efficient impoundment and storage, and are therefore usually less able to mitigate potential impacts by avoidance than are, for example, diversion and pipeline alternatives.

None of the alternatives considered appears to have adverse impacts so pronounced that the alternative can be eliminated at this time. However, alternatives involving recharge of the Edwards Aquifer with treated wastewater, or with water from sources not originating

on the Edwards Plateau, and springflow augmentation will likely require extensive study of their potential effects on the Edwards Aquifer and spring run fauna and flora before implementation. The portion of the Carrizo Aquifer alternative in Bastrop County has the potential to adversely impact Houston Toad breeding habitat. Some of the reservoir alternatives may have potential conflicts with protected species, recreational interests, or existing state parks.

 		INAINO-IEAAO				TRAL STUDI		
				Cost of Add	litional Wat (\$/Acft/Yr)	er (1994 Dollar	rs)	
		Firm Water Supply (1)		Imported	Recharge	Treatment &		
Alternative		(Acft/Yr)	Natural Recharge	Without Treatment	With Treatment	Municipal Distribution	Other	Environmental Issues/Special Concerns
G-13	SAN MARCOS RIVER							Reduced streamflows in San Marcos
A	San Marcos River Unappropriated Streamflow Below Blanco River Confluence,	6,600 ⁽²⁾	\$3,640(a) \$2,796(b)					River/ Terrestrial habitat impacts slight/ Interbasin transfer. (a) with treatment.
В	Divert and Inject to Aquifer San Marcos River Unappropriated Streamflow Below Blanco River Confluence, Divert to Recharge Zone	6,600 ⁽²⁾	\$2,420(b)					(b) without treatment.
G-14 A	GUADALUPE RIVER AT LAKE DUNLAP Guadalupe River Unappropriated Streamflow at Lake Dunlap, Divert and Inject to Aquifer (No Use of Stored Water from Canyon)	3,500 ⁽²⁾	\$5,793(a) \$4,213(b)					Reduced streamflow in Guadalupe River/ Terrestrial habitat impacts slight/ Interbasin transfer. (a) with treatment. (b) without treatment.
В	Guadalupe River Unappropriated Streamflow at Lake Dunlap, Divert to Recharge Zone (No Use of Stored Water from Canyon)	3,500 ⁽²⁾	\$3,437(b)					

⁽¹⁾ WATER SUPPLY VALUES FOR EACH ALTERNATIVE ARE ON A STAND-ALONE BASIS AND CANNOT BE ADDED TO OTHER ALTERNATIVES IN THEIR PRESENT FORM.

⁽²⁾ WATER SUPPLY VALUE BASED ON 10-YEAR DROUGHT AVERAGE.

⁽³⁾ WATER SUPPLY VALUE BASED ON FIRM YIELD.

ļ		THE REAL PROPERTY.	V V Z X X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	O to Chilli	TILDI CEN	(4004 D "	<u> </u>	
			Unit		litional Wat (\$/Acft/Yr)			
i.		Firm Water Supply ⁽¹⁾	į	Imported		Treatment &]	
	Alternative	(Acft/Yr)	Natural Recharge	Without Treatment	With Treatment	Municipal Distribution	Other	Environmental Issues/Special Concerns
G-15	CANYON LAKE (RELEASED TO LAKE DUNLAP)						-	Increased streamflows in Guadalupe
Α	Canyon Lake, Divert and Inject to Aquifer	10,000	\$765(a) \$629(b)		1			between Canyon Dam and Lake Dunlap, slight to no effect below Lake
В	Canyon Lake, Divert to Recharge Zone	10,000	\$536(b)					Dunlap/ Interbasin Transfer.
С	Canyon Lake, Divert to Recharge Zone	15,000	\$467(b)		 			(a) with treatment. (b) without treatment.
D	Canyon Lake, Divert to WTP	10,000				\$533		
E	Canyon Lake, Divert to WTP	15,000			i	\$497		
G-16	CUERO RESERVOIR	1		,				
A	Cuero Reservoir, Divert and Inject to Aquifer	168,000 ⁽³⁾			\$688			Reduced streamflows in Guadalupe River/ Riverine habitats converted to
В	Cuero Reservoir, Divert to Recharge Zone	168,000 ⁽³⁾		\$647	\$730			lake habitats, terrestrial habitat impacts/ Potential protected species
С	Cuero Reservoir, Divert to WTP	168,000 ⁽³⁾	[]		<u> </u>	\$648		conflict/ Interbasin transfer.
G-17	LINDENAU RESERVOIR (with diversion from Guadalupe)							Reduced streamflows in Guadalupe
A	Lindenau Reservoir, Divert and Inject to Aquifer	45,800 (30)	<u> </u> -		\$1,211		!	River/ Small stream habitats converted to lake habitats/ Terrestrial habitat
В	Lindenau Reservoir, Divert to	45,800 ⁽³⁾	ļ	\$1,151	\$1,249			impacts/ Potential protected species conflicts/ Interbasin transfer.
С	Recharge Zone Lindenau Reservoir, Divert to WTP	45,800 ⁽³⁾	}			\$1,132		, and a substitution of the substitution of th

Note:

⁽¹⁾ WATER SUPPLY VALUES FOR EACH ALTERNATIVE ARE ON A STAND-ALONE BASIS AND <u>CANNOT</u> BE ADDED TO OTHER ALTERNATIVES IN THEIR PRESENT FORM.

⁽²⁾ WATER SUPPLY VALUE BASED ON 10-YEAR DROUGHT AVERAGE.

⁽³⁾ WATER SUPPLY VALUE BASED ON FIRM YIELD.

			Unit	Cost of Add	litional Wate (\$/Acft/Yr)	er (1994 Dollar	s)	
1		Firm Water Supply (1)			Recharge	Treatment &		
	Alternative	(Acft/Yr)	Natural Recharge	Without Treatment	With Treatment	Municipal Distribution	Other	Environmental Issues/Special Concerns
L-10	LOCAL ALTERNATIVES Demand Reduction							Conservation alternatives could reduce treated wastewater discharge to the San
A B	Public Information Incentive Programs							Antonio River/ Water not extracted from the Edwards Aquifer would
C D	Conservation Pricing Leak Detection and Repair	90,000(a)		; ;			\$272	contribute to spring discharge.
E F	Conservation Landscaping Retrofit Plumbing Fixtures				:			(a) Values listed in water supply column are reductions in demand, not
G	Gray Water Use for Lawns and Landscaping	N/A						water supply. 90,000 includes combined effects of Items A thru F.
H	Low Energy Precision Application for Agriculture Furrow Diking for Agriculture	11,200(b)					\$38	(b) Value listed is reduction in demand. 11,200 includes combined effects of H and I.
J	Surge Valves for Agriculture	N/A						
L-11	Exchange Reclaimed Water for Edwards Irrigation Water	38,000(a)					\$469	Potential increase in soil salinity/ Potential for reduced streamflows/ Requires elimination of certain food crops from irrigation acreage. (a) Annual volume of reclaimed water to irrigators.

Note:

⁽¹⁾ WATER SUPPLY VALUES FOR EACH ALTERNATIVE ARE ON A STAND-ALONE BASIS AND <u>CANNOT</u> BE ADDED TO OTHER ALTERNATIVES IN THEIR PRESENT FORM.

⁽²⁾ WATER SUPPLY VALUE BASED ON 10-YEAR DROUGHT AVERAGE.

⁽³⁾ WATER SUPPLY VALUE BASED ON FIRM YIELD.

TABLE ES-10 SUMMARY OF POTENTIAL WATER SUPPLY ALTERNATIVES FOR THE TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA Unit Cost of Additional Water (1994 Dollars) (\$/Acft/Yr) Firm Water Imported Recharge Supply (1) Treatment & (Acft/Yr) With Natural Without Municipal **Alternative** Environmental Issues/Special Concerns Recharge Treatment | Treatment Distribution Other 31,000(a) L-12 Exchange Reclaimed Water for Potential increase in soil salinity/ BMA Medina Lake Water 66,000(b) Potential for reduced streamflows/ Costs are included in Alternative S-13 (Purchase of BMA Medina Lake Water). Willingness of owners to sell water/Requires elimination of certain food crops from irrigation acreage/ Willingness of CPS to allow use of cooling reservoirs. (a) Water available using top 3 feet of Braunig & Calaveras (b) Water available with new offchannel reservoir. L-13 Reclaimed Water Reuse A. Potential to reduce streamflows. Α Recycling/Reuse Plans by SAWS 30,000 to \$375 B. Potential impacts to Edwards aquifer 50,000 fauna.

\$761

Reduced San Antonio

Water quality

Reservoir.

Basin.

River.

River flows/

Canyon

in Choke

May require purchase of

(a) 27.850 acft/yr is drought recharge

enhancement available from Type 2 Recharge projects in Nueces River

existing water rights on San Antonio

(1) WATER SUPPLY VALUES FOR EACH ALTERNATIVE ARE ON A STAND-ALONE BASIS AND <u>CANNOT</u> BE ADDED TO OTHER ALTERNATIVES IN THEIR PRESENT FORM.

92,000

27,850(a)

Reclaimed Water to Edwards

San Antonio River to Choke

Transfer of Reclaimed Water to

Corpus Christi - Diversion from

Aquifer

Canyon

Note:

В

L-14

Alternatives are classified into four categories: Natural Recharge is recharge to the aquifer with water originating from the Edwards Plateau catchment, recharge zone, or from springs originating from the Edwards. Natural recharge to the aquifer can be accomplished through an injection well or recharge zone. Imported Recharge is recharge to the aquifer with all or a portion of the water originating from sources other than those listed under Natural Recharge, regardless of the delivery system into the aquifer. Treatment and Distribution considers alternatives which would include conventional water treatment, or just disinfection in the case of Carrizo water. Distribution costs will be based on costs as estimated in previous studies for delivery to the SAWS system. Other use includes demand reduction by conservation, reclaimed water reuse, transfer of water through purchase or lease, and treatment of brackish water by demineralization.

Possible mitigation project for Alternatives L-17 and L-

18, (Natural Recharge Enhancement).

⁽²⁾ WATER SUPPLY VALUE BASED ON 10-YEAR DROUGHT AVERAGE.

⁽³⁾ WATER SUPPLY VALUE BASED ON FIRM YIELD.

<u> </u>		IRANS-IEAAS				IKAL STUDI		
			Unit		itional Wate (\$/Acft/Yr)	er (1994 Dollar	·s)	
	Alternative	Firm Water Supply ⁽¹⁾ (Acft/Yr)	Natural Recharge	Imported Without Treatment		Treatment & Municipal Distribution	Othor	Environmental Issues/Special Concerns
L-15	Purchase (or Lease) of Edwards Irrigation Water for Municipal and Industrial Use	68,900(a)(d) 69,800(b)(d)						Land use changes may affect wildlife habitats and fertilizer and pesticide runoff to area streams/Willingness of irrigators to lease rights. (a) Water available under full conservation strategy. (b) Water available under full conservation strategy with average weather irrigation, with provisions of SB 1477. (c) Estimated by SAWS. (d) Economic impact to the local economy of converting irrigated acres to dryland production is \$498 of gross farm income and an additional \$552 of gross business loss to farm supply sectors per acre converted. (e) Need to refine monthly distribution of withdrawals to match seasonal crop needs and TWDB aquifer model parameters.
L-16	Demineralization of Edwards "bad water"	None					N/A	Withdrawal and treatment of bad water from the Edwards produces no net increase in supply.

Note:

Alternatives are classified into four categories: Natural Recharge is recharge to the aquifer with water originating from the Edwards Plateau catchment, recharge zone, or from springs originating from the Edwards. Natural recharge to the aquifer can be accomplished through an injection well or recharge zone. Imported Recharge is recharge to the aquifer with all or a portion of the water originating from sources other than those listed under Natural Recharge, regardless of the delivery system into the aquifer. Treatment and Distribution considers alternatives which would include conventional water treatment, or just disinfection in the case of Carrizo water. Distribution costs will be based on costs as estimated in previous studies for delivery to the SAWS system. Other use includes demand reduction by conservation, reclaimed water reuse, transfer of water through purchase or lease, and treatment of brackish water by demineralization.

W:\07755001\SUMMARY.TBL

⁽¹⁾ WATER SUPPLY VALUES FOR EACH ALTERNATIVE ARE ON A STAND-ALONE BASIS AND <u>CANNOT</u> BE ADDED TO OTHER ALTERNATIVES IN THEIR PRESENT FORM.

⁽²⁾ WATER SUPPLY VALUE BASED ON 10-YEAR DROUGHT AVERAGE.

⁽³⁾ WATER SUPPLY VALUE BASED ON FIRM YIELD.

 		IKANS-IEAAS				IKAL STUDY		
		Unit		litional Wat (\$/Acft/Yr)	er (1994 Dollar	rs)		
		Firm Water Supply (1)		Imported	Recharge	Treatment &		
	Alternative	(Acft/Yr)	Natural Recharge	Without Treatment	With Treatment	Municipal Distribution	Other	Environmental Issues/Special Concerns
L-17	Natural Recharge - Type 1 Projects a. Maximum Size b. Optimum Size	71,000 ⁽²⁾ 35,600 ⁽²⁾	\$642 \$460					Potential impacts to terrestrial and karst inhabitants and to Edwards aquifer fauna will vary with impoundment location/ Streamflow impacts occur below Type 1 structures.
L-18	Natural Recharge - Type 2 Projects (Optimum Size)	52,000 ⁽²⁾ (a)	\$505					Potential impacts to terrestrial and karst inhabitants and to Edwards aquifer fauna will vary with impoundment location/Enhanced streamflow across outcrop zone/Reduced flood flows below the outcrop. (a) 27,850 acft/yr occurs in Nueces River Basin and 24,150 acft/yr per year occurs in other basins.

Note:

⁽¹⁾ WATER SUPPLY VALUES FOR EACH ALTERNATIVE ARE ON A STAND-ALONE BASIS AND <u>CANNOT</u> BE ADDED TO OTHER ALTERNATIVES IN THEIR PRESENT FORM.

⁽²⁾ WATER SUPPLY VALUE BASED ON 10-YEAR DROUGHT AVERAGE.

⁽³⁾ WATER SUPPLY VALUE BASED ON FIRM YIELD.

			Unit		litional Wate (\$/Acft/Yr)			
	Alternative	Firm Water Supply (1) (Acft/Yr)	Natural Recharge	Imported Without Treatment	Recharge With Treatment	Treatment & Municipal Distribution	Other	Environmental Issues/Special Concerns
L-19	Springflow Augmentation	-108,800(a) -32,500(b)						Water temperature and quality must be carefully maintained for springflow augmentation to successfully preserve the San Marcos and Comal spring run communities/Other springs or seeps would not necessarily be protected. (a) 108,800 acft/yr represents average annual deficit which would be needed to maintain the flow of Comal Springs at 200 cfs under a repeat of the critical drought based on historical recharge and aquifer pumpage of 400,000 acft/yr. (b) 32,500 acft/yr represents average annual deficit which would be needed to maintain the flow of San Marcos Springs at 100 cfs under a repeat of the critical drought based on historical recharge and aquifer pumpage of 400,000 acft/yr.
L-20	MAYOR'S 2050 COMMITTEE REGIONAL PLAN(a)							(a) Amended scope item to be published in a supplemental report. West Central Study Area PMC action 5/24/94.

- (1) WATER SUPPLY VALUES FOR EACH ALTERNATIVE ARE ON A STAND-ALONE BASIS AND <u>CANNOT</u> BE ADDED TO OTHER ALTERNATIVES IN THEIR PRESENT FORM.
- (2) WATER SUPPLY VALUE BASED ON 10-YEAR DROUGHT AVERAGE.
- (3) WATER SUPPLY VALUE BASED ON FIRM YIELD.

Note:

Alternatives are classified into four categories: Natural Recharge is recharge to the aquifer with water originating from the Edwards Plateau catchment, recharge zone, or from springs originating from the Edwards. Natural recharge to the aquifer can be accomplished through an injection well or recharge zone. Imported Recharge is recharge to the aquifer with all or a portion of the water originating from sources other than those listed under Natural Recharge, regardless of the delivery system into the aquifer. Treatment and Distribution considers alternatives which would include conventional water treatment, or just disinfection in the case of Carrizo water. Distribution costs will be based on costs as estimated in previous studies for delivery to the SAWS system. Other use includes demand reduction by conservation, reclaimed water reuse, transfer of water through purchase or lease, and treatment of brackish water by demineralization.

W:\07755001\SUMMARY.TBL

I		IRANS-IEAAS				IKAL STUDI		<u></u>
			Unit		litional Wat (\$/Acft/Yr)	er (1994 Dollar	rs)	
		Firm Water Supply (1)		Imported	Recharge	Treatment &		
		(Acft/Yr)	Natural	Without	With	Municipal		<u>.</u> _
	Alternative		Recharge	Treatment	Treatment	Distribution	Other	Environmental Issues/Special Concerns
S-13	MEDINA LAKE							Potential increase in soil salinity with use of wastewater for irrigation/ Potential to reduce streamflows/
A	Purchase Medina Lake Rights and Inject to Aquifer, (Combined with L-12, Reclaimed Water Exchange)	26,700 (2)	\$884(a)					Willingness of owners to sell and or exchange water. (a) Includes cost of Alt L-12, Exchange
В	Purchase Medina Lake Rights and Divert to Recharge Zone (Combined with L-12, Reclaimed Water Exchange)	26,700 (2)	\$606(a)		į			Reclaimed Water with BMA Medina Lake water, 31,000 acft/yr. (b) Firm yield delivered to WTP. (c) Recharge to the Edwards is also increased 20,200 acft/yr during
С	Purchase Medina Lake Rights and Divert to WTP (Combined with L-12, Reclaimed Water Exchange)	8,800 ⁽³⁾ (b) 29,000 ⁽³⁾ (c)				\$1,499(a)(b) \$455(a)(c)		drought conditions under this alternative.
D	Purchase Medina Lake Rights and Release to Applewhite (See Alternative S-14D)							

⁽¹⁾ WATER SUPPLY VALUES FOR EACH ALTERNATIVE ARE ON A STAND-ALONE BASIS AND <u>CANNOT</u> BE ADDED TO OTHER ALTERNATIVES IN THEIR PRESENT FORM.

⁽²⁾ WATER SUPPLY VALUE BASED ON 10-YEAR DROUGHT AVERAGE.

⁽³⁾ WATER SUPPLY VALUE BASED ON FIRM YIELD.

			Unit Cost of Additional Water (1994 Dolla (\$/Acft/Yr)				rs)	
		Firm Water Supply ⁽¹⁾		Imported		Treatment &		
	Alternative	(Acft/Yr)	Natural Recharge	Without Treatment	With Treatment	Municipal Distribution	Other	Environmental Issues/Special Concerns
S-14	APPLEWHITE RESERVOIR							Impacts to terrestrial habitat as stated
A	Applewhite Reservoir, Divert and Inject to Aquifer	22,500 (2)	1		\$1,168			in EIS/Effects on streamflow similar to those stated in EIS.
В	Applewhite Reservoir, Divert to Recharge Zone	22,500 (2)		\$1,041	\$1,288	<u> </u>		(a) Firm yield delivered to WTP.
С	Applewhite Reservoir, Divert to WTP	7,700 ⁽³⁾		!		\$1,498		(b) Recharge to the Edwards is also increased 22,600 acft/yr during
D	Applewhite Reservoir Operated in Conjunction with Medina Lake (Same as Alternative S-13D)	14,900 ⁽³⁾ (a) 37,500 ⁽³⁾ (b)				\$1,537(a) \$611(b)		drought conditions under this alternative.
S-15	CIBOLO RESERVOIR	22 200 (3)			A. 22 0			Reduced streamflows in Cibolo Creek/
Α	Cibolo Reservoir, Divert and Inject to Aquifer	32,300 ⁽³⁾	İ		\$1,230	ļ		Riverine habitats converted to lake
В	Cibolo Reservoir, Divert to Recharge Zone	32,300 ⁽³⁾	i.	\$1,161	\$1,264			habitats/ Terrestrial habitat impacts.
C	Cibolo Reservoir, Divert to WTP	32,300 ⁽³⁾			l	\$1,130		
S-16	GOLIAD RESERVOIR					-		
A	Goliad Reservoir, Divert and	115,500 ⁽³⁾			\$700			Reduced streamflows in San Antonio River/ Riverine habitats converted to
В	Inject to Aquifer Goliad Reservoir, Divert to Recharge Zone	115,500 (3)		\$654	\$738			lake habitats/ Terrestrial habitat impacts.
C	Goliad Reservoir, Divert to WTP	115,500 ⁽³⁾				\$653		

Note:

⁽¹⁾ WATER SUPPLY VALUES FOR EACH ALTERNATIVE ARE ON A STAND-ALONE BASIS AND CANNOT BE ADDED TO OTHER ALTERNATIVES IN THEIR PRESENT FORM.

WATER SUPPLY VALUE BASED ON 10-YEAR DROUGHT AVERAGE. (2)

⁽³⁾ WATER SUPPLY VALUE BASED ON FIRM YIELD.

			Unit		litional Wate (\$/Acft/Yr)	er (1994 Dollar	rs)	
	Alternative	Firm Water Supply (1) (Acft/Yr)	Natural Recharge	Imported Without Treatment	Recharge With Treatment	Treatment & Municipal Distribution	Other	Environmental Issues/Special Concerns
G-18 A B	MCFADDIN RESERVOIR (Includes Purchase of Irrigation Water Rights in Calhoun County) McFaddin Reservoir, Divert and Inject to Aquifer McFaddin Reservoir, Divert to	37,000 ⁽³⁾		\$845	\$907 \$945			Small reduction in inflows to Guadalupe Estuary/Potential interbasin
С	Recharge Zone McFaddin Reservoir, Divert to WTP	37,000 ⁽³⁾		φυΨ	Ψ243	\$826		transfer.

Note:

⁽¹⁾ WATER SUPPLY VALUES FOR EACH ALTERNATIVE ARE ON A STAND-ALONE BASIS AND <u>CANNOT</u> BE ADDED TO OTHER ALTERNATIVES IN THEIR PRESENT FORM.

⁽²⁾ WATER SUPPLY VALUE BASED ON 10-YEAR DROUGHT AVERAGE.

⁽³⁾ WATER SUPPLY VALUE BASED ON FIRM YIELD.

I		1				(4004 D U		
			Unit		litional Wate (\$/Acft/Yr)			
		Firm Water Supply (1)		Imported	Recharge	Treatment &		
	Alternative	(Acft/Yr)	Natural Recharge	Without Treatment	With Treatment	Municipal Distribution	Other	Environmental Issues/Special Concerns
C 10	MINOR RESERVOIRS	22 200 (3)(-)						Reduced streamflows in Guadalupe River/ Riverine habitats converted to lake habitats/ Terrestrial habitat impacts proportional to reservoir size/
G-19	Guadalupe River Dam 7	33,300 ⁽³⁾ (a)						Potential conflict with recreation/ Scenic uses/ Interbasin transfer. (a) Annual cost of raw water at
G-20	Gonzales Reservoir	52,700 ⁽³⁾ (b)						reservoir with no conveyance or treatment is \$402/acft. (b) Annual cost of raw water at reservoir with no conveyance or
G-21	Lockhart Reservoir	8,000 ⁽³⁾ (c)						treatment is \$256/acft. (c) Annual cost of raw water at reservoir with no conveyance or treatment is \$426/acft.
G-22	Dilworth Reservoir	27,000 ⁽³⁾ (d)						(d)Annual cost of raw water at reservoir with no conveyance of treatment is \$286/acft.
G-23	CANYON LAKE/MID-CITIES REGIONAL PLAN(a)							(a)Amended scope item to be published in a supplemental report. West Central Study Area PMC action 5/24/94.

⁽¹⁾ WATER SUPPLY VALUES FOR EACH ALTERNATIVE ARE ON A STAND-ALONE BASIS AND CANNOT BE ADDED TO OTHER ALTERNATIVES IN THEIR PRESENT FORM.

⁽²⁾ WATER SUPPLY VALUE BASED ON 10-YEAR DROUGHT AVERAGE.

⁽³⁾ WATER SUPPLY VALUE BASED ON FIRM YIELD.

L		INAINS-IEAAS				IKAL STUDI		
			Unit	Cost of Add	litional Wat (\$/Acft/Yr)			
		Firm Water Supply ⁽¹⁾		Imported Recharge		Treatment &	- <u>"-</u>	
II.		(Acft/Yr)	Natural	Without	With	Municipal		
3	Alternative		Recharge	Treatment	Treatment	Distribution	Other	Environmental Issues/Special Concerns
C-13	LAKE TRAVIS (DELIVERED TO LAKE AUSTIN)			i.	}			Reduced streamflow in Colorado River/ Interbasin transfer/ Potential
A	Lake Travis Divert and Inject to Aquifer; Purchase of Stored Water and Irrigation Rights	68,000 ⁽³⁾			\$701			organism transfer/ Willingness of owners to sell rights.
В	Lake Travis Divert to Recharge Zone; Purchase of Stored Water and Irrigation Rights	68,000 ⁽³⁾		\$587	\$681			·
С	Lake Travis Divert to WTP; Purchase of Stored Water and Irrigation Rights	68,000 ⁽³⁾				\$658		
D	Lake Travis Divert and Inject to Aquifer; Purchase of Stored Water	50,000 ⁽³⁾			\$775			
E	Lake Travis Divert to Recharge Zone; Purchase of Stored Water	50,000 ⁽³⁾		\$653	\$749			
F	Lake Travis Divert to WTP; Purchase of Stored Water	50,000 (3)				\$715		

⁽¹⁾ WATER SUPPLY VALUES FOR EACH ALTERNATIVE ARE ON A STAND-ALONE BASIS AND <u>CANNOT</u> BE ADDED TO OTHER ALTERNATIVES IN THEIR PRESENT FORM.

⁽²⁾ WATER SUPPLY VALUE BASED ON 10-YEAR DROUGHT AVERAGE.

⁽³⁾ WATER SUPPLY VALUE BASED ON FIRM YIELD.

! 			Unit Cost of Additional Water (1994 Dollars) (\$/Acft/Yr)					
		Firm Water Supply ⁽¹⁾		Imported		Treatment &		
	Alternative	(Acft/Yr)	Natural Recharge	Without Treatment	With Treatment	Municipal Distribution	Other	Environmental Issues/Special Concerns
C-17 A	COLORADO RIVER DELIVERY AT COLUMBUS Colorado River at Columbus, Divert to WTP; Purchase of Stored Water and Irrigation	125,000 ⁽³⁾	- "		,	\$726	-	Reduced streamflow in Colorado River/ Interbasin transfer/ Potential organism transfer/ Willingness of owners to sell rights.
В	Rights Colorado River at Columbus, Divert to WTP; Purchase of Stored Water	50,000 ⁽³⁾				\$783		
C-18	SHAWS BEND RESERVOIR Shaws Bend Reservoir Divert to WTP	100,000 ⁽³⁾				\$816		Reduced streamflows in Colorado River/ Riverine habitats converted to lake habitats/ Terrestrial habitat impacts as stated in EIS/ Interbasin transfer/ Potential organism transfer.
C-19	LAKE MASON (a)							(a)Amended scope item to be published in a supplemental report. West Central Study Area PMC action 5/24/94.
B-10	BRAZOS RIVER - ALLENS CREEK RESERVOIR							Reduced streamflow in Brazos River/
A	Allens Creek Reservoir Divert and Inject to Aquifer	57,800 ⁽³⁾			\$1,079	je		Smaller stream habitats converted to lake habitats/ Terrestrial habitat
В	Allens Creek Reservoir Divert to Recharge Zone	57,800 ⁽³⁾		\$952	\$1,047			impacts proportional to reservoir size/ Interbasin transfer/ Potential organism
С	Allens Creek Reservoir Divert to WTP	57,800 ⁽³⁾				\$1,015		transfer.
D	Allens Creek Reservoir Divert to WTP	152,800 ⁽³⁾			<u> </u>	\$700		

⁽¹⁾ WATER SUPPLY VALUES FOR EACH ALTERNATIVE ARE ON A STAND-ALONE BASIS AND <u>CANNOT</u> BE ADDED TO OTHER ALTERNATIVES IN THEIR PRESENT FORM.

⁽²⁾ WATER SUPPLY VALUE BASED ON 10-YEAR DROUGHT AVERAGE.

⁽³⁾ WATER SUPPLY VALUE BASED ON FIRM YIELD.

		IIVANO-IEMAO										
			Unit	Unit Cost of Additional Water (1994 Dollars) (\$/Acft/Yr)								
		Firm Water Supply ⁽¹⁾		Imported	Recharge	Treatment &						
	Alternative	(Acft/Yr)	Natural Recharge	Without Treatment	With Treatment	Municipal Distribution	Other	Environmental Issues/Special Concerns				
SB-10	SABINE RIVER - TOLEDO BEND RESERVOIR	1						Interbasin transfer/ Potential organism				
A	Toledo Bend Reservoir Divert and Inject to Aquifer	300,000 (3)			\$977			transfer/Potential water availability may be limited by Southeast Study				
В	Toledo Bend Reservoir Divert to Recharge Zone	300,000 ⁽³⁾		\$955	\$1,037			Area needs.				
С	Toledo Bend Reservoir Divert to WTP	300,000 (3)				\$944						
D	Toledo Bend Reservoir Divert to WTP	600,000 (3)		:		\$861						
SBB- 10	SABINE AND BRAZOS RIVERS							Interbasin transfer/ Potential organism				
Α	Allens Creek and Toledo Bend Reservoirs Divert and Inject to Aquifer	357,800 ⁽³⁾			\$952			transfer/ Reduced streamflow in Brazos River/ Smaller stream habitats converted to lake habitats/ Terrestrial				
В	Allens Creek and Toledo Bend Reservoirs Divert to Recharge	357,800 ⁽³⁾		\$860	\$929			habitat impacts proportional to reservoir size/Potential water availability may be limited by				
С	Zone Allens Creek and Toledo Bend Reservoirs Divert to WTP	357,800 ⁽³⁾				\$923		Southeast Study Area needs.				
D	Allens Creek and Toledo Bend Reservoirs Divert to WTP	452,800 ⁽³⁾	_			\$837						

⁽¹⁾ WATER SUPPLY VALUES FOR EACH ALTERNATIVE ARE ON A STAND-ALONE BASIS AND <u>CANNOT</u> BE ADDED TO OTHER ALTERNATIVES IN THEIR PRESENT FORM.

⁽²⁾ WATER SUPPLY VALUE BASED ON 10-YEAR DROUGHT AVERAGE.

⁽³⁾ WATER SUPPLY VALUE BASED ON FIRM YIELD.

			Unit Cost of Additional Water (1994 Dollars) (\$/Acft/Yr)							
	Alternative	Firm Water Supply (1) (Acft/Yr)	Natural Recharge	Imported Without Treatment	Recharge With Treatment	Treatment & Municipal Distribution	Other	Environmental Issues/Special Concerns		
CZ-10	CARRIZO AQUIFER	<u> </u>								
A	Carrizo Aquifer Supply Injected to Edwards	90,000 (3)			\$538			Potential effect on river flows where streams cross outcrop/ Potential		
В	Carrizo Aquifer Supply Imported to Edwards Recharge	90,000 (3)		\$404	\$46 0			dewatering of Houston Toad breeding habitats in Bastrop County/Subject to underground water district regulations		
С	Zone Carrizo Aquifer Supply to WTP	90,000 (3)				\$413		where applicable.		
D	Carrizo Aquifer Supply to WTP	220,000 (3)				\$474				

⁽¹⁾ WATER SUPPLY VALUES FOR EACH ALTERNATIVE ARE ON A STAND-ALONE BASIS AND <u>CANNOT</u> BE ADDED TO OTHER ALTERNATIVES IN THEIR PRESENT FORM.

⁽²⁾ WATER SUPPLY VALUE BASED ON 10-YEAR DROUGHT AVERAGE.

⁽³⁾ WATER SUPPLY VALUE BASED ON FIRM YIELD.

THIS PAGE INTENTIONALLY LEFT BLANK

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA PHASE I REPORT

1.0 INTRODUCTION

In its 1990 Texas Water Plan, the Texas Water Development Board (TWDB) presented projections of population and water demand for each area of Texas⁶. The projections showed immediate water shortages for the metropolitan areas of South Central and Southeast Texas.

In response to the water supply needs identified in the 1990 Texas Water Plan, the TWDB, city leaders of San Antonio, Corpus Christi, and Houston, water supply organizations, and other state officials met on May 7, 1992 and initiated the Trans-Texas Water Program in an effort to address the water supply needs of these areas in a coordinated, local, efficient, and environmentally responsible manner. The Trans-Texas water program is anticipated to become an integral part of the State Water Plan⁷.

The Trans-Texas Water Program planning studies are being conducted in phases through a cooperative state and regional effort in which each study is managed by a Policy Management Committee whose membership includes representatives of the local sponsor and state water and environmental agencies. In Phase I, water demands will be identified for the ensuing 50-year period, and available options to meet projected demands will be identified and assessed in terms of costs, and environmental effects. From the results of the Phase I studies, the Policy Management Committee will select the most attractive options for more detailed evaluations in Phase II. Upon completion of the Phase II studies, a recommended plan of action to meet the demands of each respective area will be developed for implementation. Following Phase II studies, the implementation phases will be conducted, as follows:

⁶The Texas Water Development Board is the State agency responsible for the preparation and maintenance of a comprehensive Texas Water Plan (Texas Water Code; Sections 16.051 and 16.055).

⁷"Water for Texas--Trans-Texas Water Program; Overall Program Description," Texas Water Development Board, Austin, Texas June, 1992.

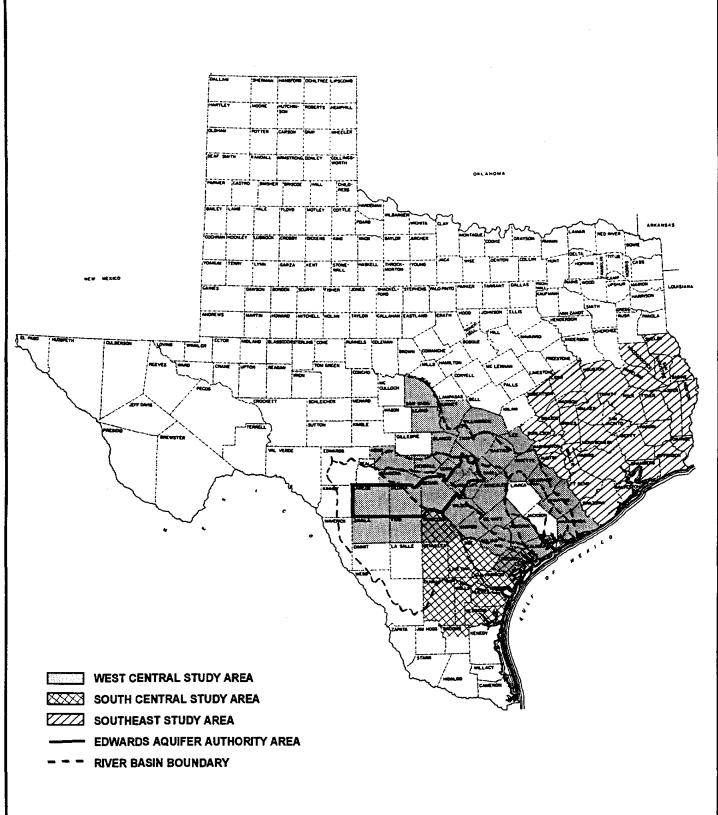
Phase III - Preliminary Design/State and Federal Permitting

Phase IV - Property Acquisition/Final Design

Phase V - Project Construction, Start-Up, and Operation

This is the Phase I Study Report for the West Central area of the Trans-Texas Water Program.

1.1 The Study Area

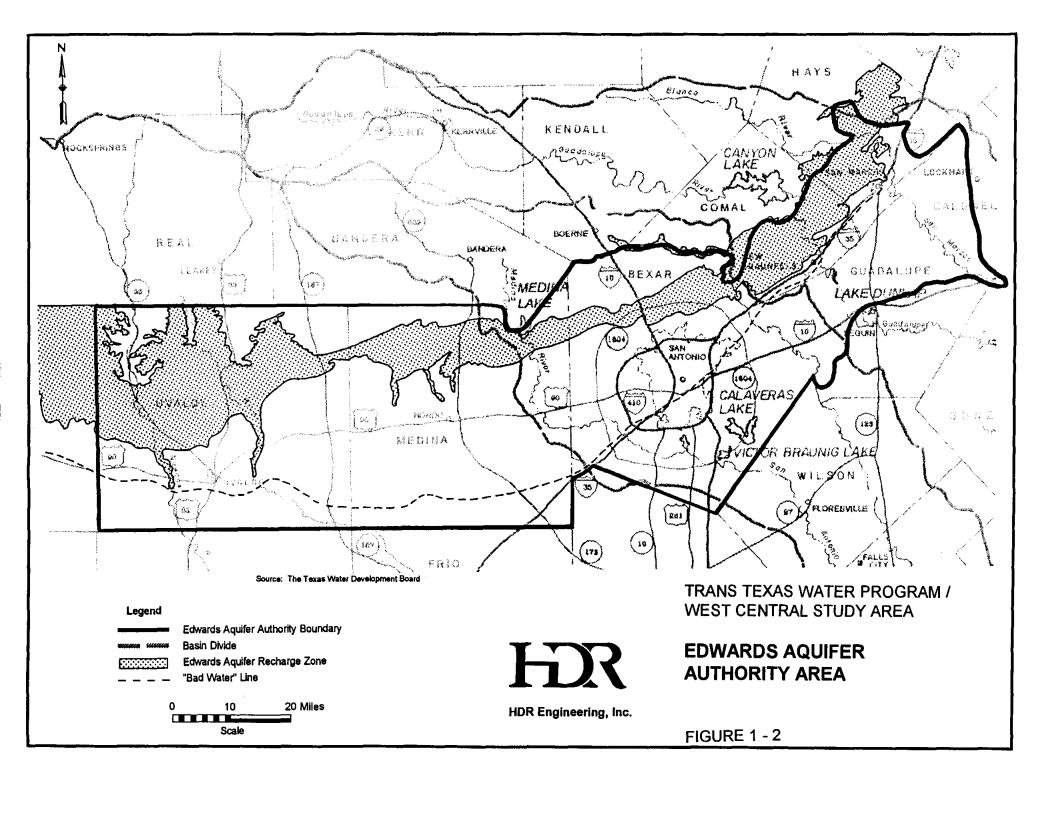

The West Central Trans-Texas study area includes the following 33 counties:

1	Atascosa	12	Fayette	23	Matagorda
2	Bandera	13	Frio	24	Medina
3	Bastrop	14	Goliad	25	Refugio
4	Bexar	15	Gonzales	26	San Saba
5	Blanco	16	Guadalupe	27	Travis
6	Burnet	17	Hays	28	Uvalde
7	Caldwell	18	Karnes	29	Victoria
8	Calhoun	19	Kendall	30	Wharton
9	Colorado	20	Kerr	31	Williamson
10	Comal	21	Lee	32	Wilson
11	Dewitt	22	Llano	33	Zavala

The 33-county study area, along with the South Central and Southeast study areas is shown in Figure 1-1. Population of the area was 2.7 million in 1990 and is projected to be 7.2 million in 2050.

The Edwards Aquifer area is the area specified in Senate Bill (SB) 1477 and includes all of Bexar, Medina, and Uvalde counties, and parts of Atascosa, Comal, Caldwell, Hays, and Guadalupe counties (Figure 1-2). This area depends upon the Edwards Aquifer for municipal, industrial, and irrigation water. The population of the Edwards Aquifer area (Figure 1-2) was 1.36 million in 1990 and is projected to be 3.7 million in 2050.

In addition to supplying the people and economy of San Antonio and neighboring areas, the Edwards Aquifer is home to several endangered or threatened species and is the source of water for several important springs, including Comal and San Marcos Springs. The aquifer cannot meet the growing needs for water and, at the same time, supply adequate spring flows for endangered species as well as downstream needs of the environment and water rights holders.


TRANS TEXAS WATER PROGRAM / WEST CENTRAL STUDY AREA

HDR Engineering, Inc.

STUDY AREA

FIGURE 1 - 1

Areas outside of the Edwards Aquifer area within the Nueces, San Antonio, and Guadalupe Basins and in the Colorado Basin to the east are also growing and in need of water planning. These areas depend upon the Carrizo and other aquifers and upon surface water for their supplies and include some downstream areas which depend upon spring flows from the Edwards Aquifer. In the Phase I Study, the needs and supplies of all parts of the West Central Study Area will be considered.

1.2 Objectives

The objectives of this Phase I West Central Trans-Texas study are to:

- 1) Present projections of water demands of the 33-county study area for the period 1990 through 2050; (see Section 2.0)
- 2) Identify potential water supply alternatives to meet the needs of the study area; (see Section 3.0) and
- Provide a general assessment of the water supply potentials, costs, and environmental advantages and disadvantages of each alternative, so that decisions can be made as to which alternatives should be pursued in more detail in Phase II (see Section 3.0).

Water supply alternatives are identified within the 33-county study area, and in neighboring basins to the east, including the Colorado and Brazos River Basins, as well as the Sabine River Basin within the Southeast Trans-Texas study area.

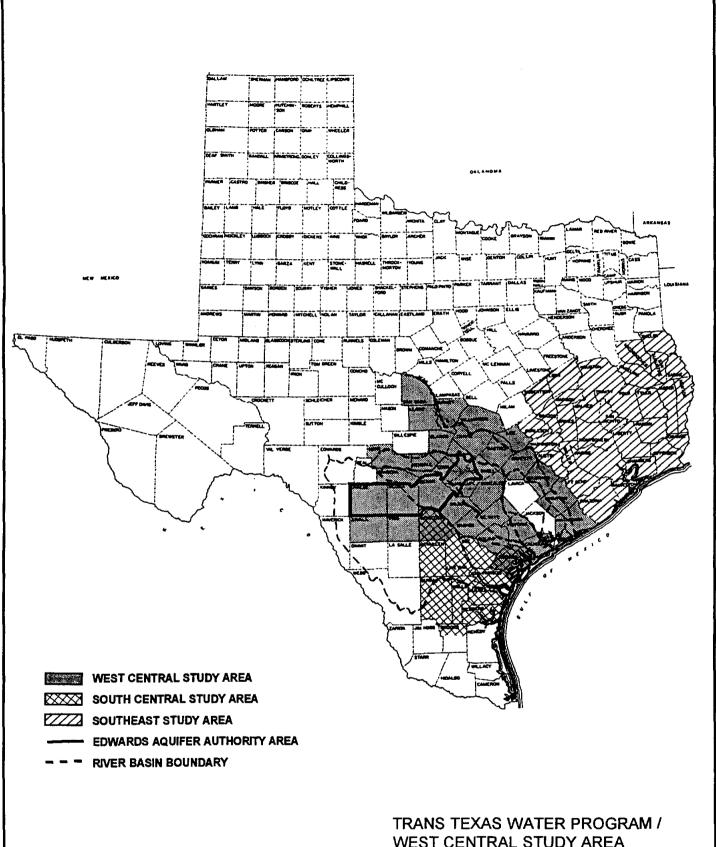
1.3 Review of Previous Studies

This study of water supply alternatives for the West Central area of the Trans-Texas Water Program has extensively used existing information from agency files and particularly the results of previous studies of potential water supply projects within the Nueces, San Antonio, Guadalupe, Colorado, and Brazos River Basins. Reviews were made of more than 45 reports that have been prepared since 1965 that pertain to various water supply topics relevant to the study.

2.0 POPULATION, WATER DEMAND AND WATER SUPPLY PROJECTIONS

The purposes of this section are to present the Texas Water Development Board's (TWDB): (1) High case population projections, (2) High case, with conservation, water demand projections, and (3) Water supply projections for use in the study⁸. Projections are shown for the following three areas:

- 1) The 33 counties in the West-Central study area (Figure 2-1);
- 2) The Edwards Aquifer Area⁹ (with projections shown for each of the cities within this area including cities in Bexar, Medina, Uvalde, and parts of Comal, Hays, Guadalupe and Caldwell Counties); and
- 3) The Nueces, San Antonio, Guadalupe, and Lower Colorado River Basin subareas of the 33 county study area.


Projections are shown in 10-year intervals beginning with 1990 and ending in 2050. Population is shown in numbers of people; water demand is shown in acft per year (one acre-foot is 325,851 gallons) for each of the following list of water use categories: (1) Municipal, (2) Industrial, (3) Steam-Electric Power Generation, (4) Irrigation, (5) Mining, (6) Livestock, and (7) Total Water Demand. Descriptions of each water use category are given with the respective projections.

2.1 Population Projections

TWDB high case population projections are shown in tabular and graphic form for: (1) the 33 county study area, (2) the Edwards Aquifer Area (including cities of Bexar, Medina, Uvalde, and parts of Comal, Hays, Guadalupe and Caldwell counties) and (3) the Nueces, San Antonio, Guadalupe, and Lower Colorado River Cohort Basin areas. The TWDB uses a cohort component population projection method in which the existing (1990) population of each city and county is divided into five year age groups for males and females. Life expectancy rates of each age group, migration statistics for counties, and the respective vital statistics (births and deaths) of each county are used to compute projections.

⁸The Texas Water Development Board (TWDB) specified that TWDB's high case, with conservation, projections were to be used for each of the Trans Texas, Phase I projects.

⁹The Edwards Aquifer area, as defined in this study, includes the boundaries as defined in Senate Bill 1477 as enacted by the Texas Legislature, 1993 Regular Session.

WEST CENTRAL STUDY AREA

STUDY AREA

HDR Engineering, Inc.

FIGURE 2-1

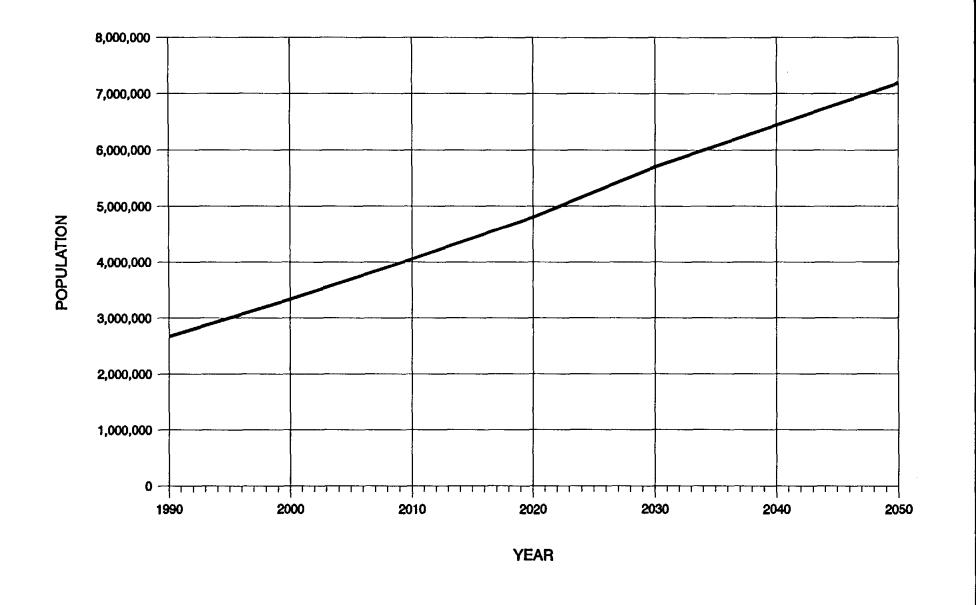
The high case population projections were based upon migration rates of the 1980's¹⁰. Using these projection methods, future populations of each city and each county of Texas are developed for each of the decadal points in time from 1990 to 2050. The projections are presented below.

2.1.1 Population Projections for the 33-County Study Area

The population of the 33-county study area was reported at 2,669,016 in 1990 (Table 2-1) and is projected to be 3.34 million in 2000, 4.81 million in 2020, and 7.18 million in 2050 (Table 2-1 and Figure 2-2). The compound annual growth rate of this projection is 1.66 percent. The TWDB projections of the State of Texas population is from 16,986,510 in 1990 to 36,308,602 in 2050, having a compound annual growth rate of 1.27 percent. At 1.66 percent, the 33-county study area growth rate is about 30 percent higher than that projected for the State. For the 1990-2050 projection period, the 33 county study area population increases from 15.71 percent of the State total in 1990 to 19.78 percent of the State total in 2050.

¹⁰Unpublished planning information, Texas Water Development Board, Austin, Texas, 1992.

Table 2-1
Population Projections -- 33-County West Central Study Area
Trans-Texas Water Program

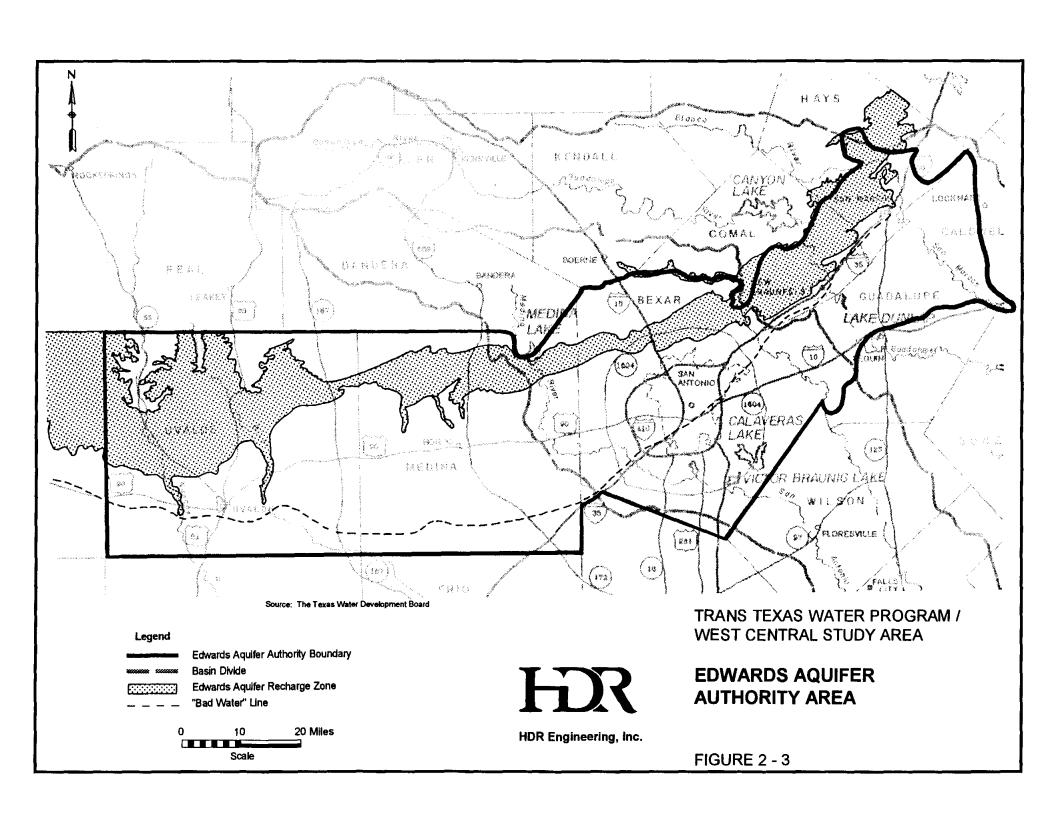

		Projections ³							
County ¹ _	1990²	2000	2010	2020	2030	2040	2050		
Atascosa	30,533	37,785	44,108	49,394	54,480	59,580	64,680		
Bandera	10,562	13,820	18,638	20,563	21,848	22,507	23,166		
Bastrop	38,263	54,400	73,263	87,910	98,623	107,437	116,251		
Bexar	1,185,394	1,422,629	1,705,074	2,034,080	2,449,468	2,860,615	3,271,762		
Blanco	5,972	7,356	9,319	11,539	13,523	15,162	16,801		
Burnet	22,677	27,551	32,544	36,373	38,620	40,131	41,642		
Caldwell	26,392	30,112	35,216	40,662	44,838	48,183	51,528		
Calhoun	19,053	22,548	26,493	29,832	32,633	34,827	37,021		
Colorado	18,383	20,417	21,463	22,653	23,656	24,482	25,308		
Comal	51,832	68,754	86,446	103,929	121,548	136,106	150,664		
Dewitt	18,840	19,485	20,040	20,553	21,276	21,942	22,608		
Fayette	20,095	21,521	22,828	24,162	24,736	25,041	25,346		
Frio	13,472	16,331	18,307	19,958	21,712	23,628	25,544		
Goliad	5,980	6,618	7,182	7,627	8,246	8,805	9,364		
Gonzales	17,205	18,023	18,603	18,883	19,179	19,538	19,897		
Guadalupe	64,873	86,388	110,879	128,148	141,019	153,368	165,717		
Hays	65,614	95,359	135,230	170,486	200,895	216,766	232,637		
Karnes	12,455	13,116	13,564	13,797	14,085	14,207	14,329		
Kendall	14,589	18,499	21,630	24,161	26,987	28,491	29,995		
Кетт	36,304	43,849	50,060	54,978	58,955	62,690	66,425		
Lee	12,854	14,880	17,173	19,037	20,741	22,435	24,129		
Liano	11,631	13,001	14,155	15,734	17,889	18,120	18,351		
Matagorda	36,928	43,241	46,987	49,992	52,496	55,098	57,700		
Medina	27,312	31,774	36,421	39,815	42,855	44,859	46,863		
Refugio	7,976	7,939	8,415	8,780	9,096	9,278	9,460		
San Saba	5,401	5,466	5,665	5,821	5,944	6,008	6,072		
Travis	576,407	747,012	906,601	1,083,814	1,273,733	1,397,285	1,520,837		
Uvalde	23,340	27,518	31,662	35,462	39,637	44,132	48,627		
Victoria	74,361	87,180	100,334	110,685	118,748	127,172	135,596		
Wharton	39,955	44,926	50,503	55,061	61,940	68,036	74,132		
Williamson	139,551	225,008	311,795	403,388	558,821	658,572	758,323		
Wilson	22,650	30,064	37,221	41,839	45,890	49,583	53,276		
Zavala	12,162	13,607	14,939	<u>16,164</u>	17,672	19,416	21,160		
Total	2,669,016	3,336,177	4,052,758	4,805,280	5,701,789	6,443,500	7,185,211		

¹Study Area

²1990 Census, U.S. Bureau of the Census, U.S. Department of Commerce

³Texas Water Development Board, High Case for 1990 through 2040, with extrapolation to 2050 at same rate as projected for 2030-2040, April 1992, Austin, Texas.

Note: Texas population in 1990 was 16,986,510. TWDB projections of Texas population for 2000 is 20,257,960 and for 2050 is 36,308,602 (1.27% growth rate).



TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA POPULATION PROJECTIONS
33 COUNTY WEST CENTRAL STUDY AREA

2.1.2 Population Projections for the Edwards Aquifer Area Counties and Cities

The Edwards Aquifer area referenced here is the area specified in Senate Bill 1477, Texas Legislature, 73rd Session (1993), and includes all of the areas of Bexar, Medina, and Uvalde Counties, and parts of Atascosa, Comal, Caldwell, Hays, and Guadalupe Counties (Figure 2-3). Population projections for the portions of the counties and cities located within the Edwards Aquifer area are shown in Table 2-2 and Figure 2-4. The population of the Edwards Aquifer area was 1,363,688 in 1990 and is projected to be 3,696,204 in 2050. The compound annual growth rate of this area for the 1990-2050 projection period is 1.67 percent, which is nearly equal to the 1.66 percent rate for the 33-county study area (Table 2-2).

2-2

Table 2-2
Population Projections for Counties and Cities
Edwards Aquifer Area -- West Central Area
Trans-Texas Water Program

				Projections ³				Compound
County and City ¹	1990 ²	2000	2010	2020	2030	2040	2050	Annual Growth Rate
ATASCOSA COUNTY								
Lytle	1,567	2,066	2,479	2,827	3,161	3,498	3,835	1.50
BEXAR COUNTY								
Alamo Heights	6,502	6,791	7,092	7,407	7,736	8,080	8,424	0.43
Balcones Heights	3,022	3,316	3,638	3,992	4,380	4,806	5,232	0.92
Castle Hills	4,198	4,792	5,112	5,410	5,681	5,830	5,979	0.59
Converse	8,887	13,177	19,598	26,379	34,940	43,415	51,890	2.98
Fairoaks Ranch	1,640	2,236	2,946	3,773	4,817	5,850	6,883	2.42
Fort Sam Houston	12,000	12,000	12,000	12,000	12,000	12,000	12,000	0.00
Helotes	1,535	1,973	2,495	3,103	3,871	4,360	4,849	1.94
Hill Country Village	1,038	1,244	1,493	1,789	2,134	2,570	3,006	1.79
Hollywood Park	2,841	3,538	4,156	4,882	5,735	6,514	7,293	1.58
Kirby	8,326	9,686	11,507	13,628	16,306	18,957	21,608	1.60
Lackland AFB	9,352	9,352	9,352	9,352	9,352	9,352	9,352	0.00
Leon Valley	9,581	10,317	11,050	11,722	12,503	13,525	14,547	0.70
Live Oak	10,023	12,001	14,584	17,593	21,391	25,152	28,913	1.78
Olmos Park	2,161	2,352	2,561	2,787	3,034	3,303	3,572	0.84
Randolph AFB	4,000	4,000	4,000	4,000	4,000	4,000	4,000	0.00
San Antonio	935,933	1,097,349	1,305,620	1,548,224	1,854,525	2,157,699	2,460,873	1.62
Schertz (Part)	414	596	700	822	966	1,100	1,234	1.84

2-9

Table 2-2
Population Projections for Counties and Cities
Edwards Aquifer Area -- West Central Area
Trans-Texas Water Program

			rans-Texas v	vater Program	<u> </u>			······································
				Projections ³				Compound
County and City ¹	1990²	2000	2010	2020	2030	2040	2050	Annual Growth Rate
Shavano Park	1,708	2,023	2,327	2,565	2,737	2,961	3,185	1.04
Somerset	1,144	1,207	1,261	1,299	1,299	1,299	1,299	0.21
St. Hedwig	1,443	1,778	2,327	2,966	3,773	4,572	5,371	2.21
Terrell Hills	4,592	4,940	5,198	5,546	5,870	6,060	6,250	0.52
Universal City	13,057	15,429	18,665	22,435	27,194	31,905	36,616	1.73
Windcrest	5,331	5,613	5,911	6,224	6,553	6,900	7,247	0.51
Rural San Antonio ⁴	133,915	192,957	246,422	309,823	390,654	470,745	550,836	2.39
Lytle (Part)	4	4	4	4	4	4	4	0.00
Rural Nueces ⁴	<u>2,747</u>	<u>3,958</u>	<u>5,055</u>	<u>6,355</u>	<u>8,013</u>	<u>9,656</u>	11,299	<u>2.39</u>
Total - Bexar Co.	1,185,394	1,422,629	1,705,074	2,034,080	2,449,468	2,860,615	3,271,762	1.71
MEDINA COUNTY								
Castroville	2,159	2,508	2,822	3,096	3,308	3,422	3,536	0.83
Lacoste	1,021	1,359	1,712	1,969	2,200	2,352	2,504	1.51
Other	2,251	2,657	3,106	3,401	3,688	3,897	4,106	1.01
Devine	3,928	4,310	4,708	4,998	5,259	5,431	5,603	0.59
Hondo	6,018	6,700	7,539	8,266	8,837	9,144	9,451	0.76
Lytle (Part)	340	364	385	400	415	428	441	0.43
Natalia	1,216	1,623	1,826	2,001	2,140	2,214	2,288	1.06
Rural Nueces ⁴	10,379	12,253	14,323	<u>15,684</u>	<u>17,008</u>	<u>17,971</u>	18,934	<u>1.01</u>
Total - Medina Co.	27,312	31,774	36,421	39,815	42,855	44,859	46,863	0.90

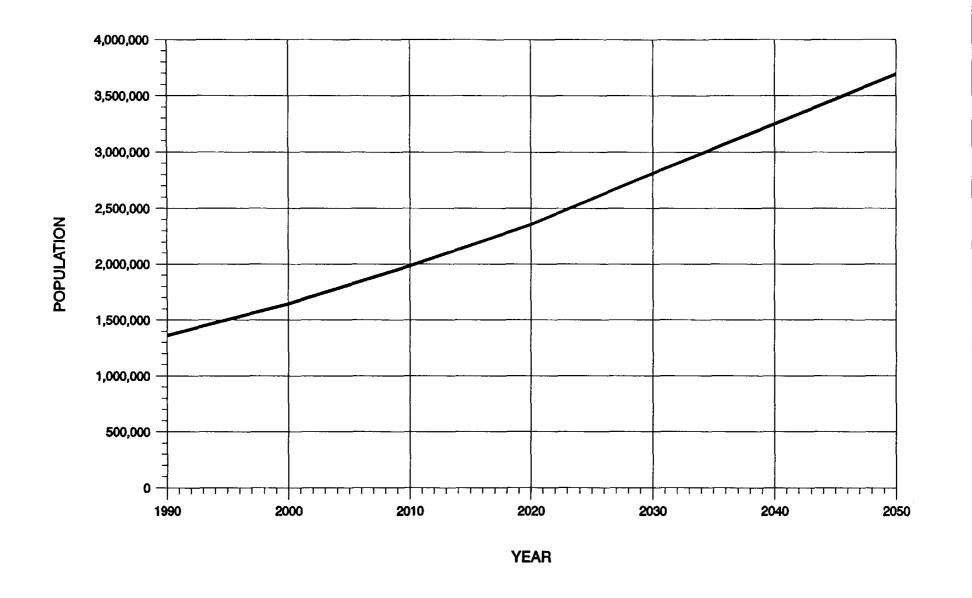
7-10

Table 2-2
Population Projections for Counties and Cities
Edwards Aquifer Area -- West Central Area
Trans-Texas Water Program

			·	Projections ³				Compound
County and City ¹	1990²	2000	2010_	2020	2030	2040	2050	Annual Growth Rate
UVALDE COUNTY								
Sabinal	1,584	1,955	2,324	2,661	3,048	3,448	3,848	1.49
Uvalde	14,729	17,984	21,705	25,076	28,949	33,091	37,233	1.56
Rural Nueces ⁴	7,027	<u>7,579</u>	<u>7,633</u>	<u>7,725</u>	<u>7,640</u>	<u>7,593</u>	<u>7,546</u>	0.12
Total - Uvalde Co.	23,340	27,518	31,662	35,462	39,637	44,132	48,627	1.23
COMAL COUNTY								
Garden Ridge	1,450	1,993	2,561	3,122	3,687	4,155	4,623	1.95
New Braunfels	27,091	33,023	40,460	46,633	53,747	57,434	61,121	1.37
Rural Guadalupe	1,698	2,460	3,167	3,951	4,676	5,435	6,195	2.18
Schertz (Part)	129	173	211	258	299	347	395	1.88
Rural San Antonio ⁴	<u>613</u>	889	<u>1,144</u>	<u>1,427</u>	<u>1,689</u>	<u>1,964</u>	2,238	<u>2.18</u>
Total - Comal Co. (Part)	30,981	38,538	47,543	55,391	64,098	69,335	74,572	1.47
HAYS COUNTY								
Kyle	2,225	2,612	2,970	3,282	3,528	3,654	3,780	0.89
San Marcos	28,743	36,320	46,477	55,459	63,205	67,250	71,295	1.53
Rural Guadalupe ⁴	5,127	<u>8,463</u>	12,944	<u>16,900</u>	20,328	22,122	<u>23,916</u>	<u>2.60</u>
Total - Hays Co. (Part)	36,095	47,395	62,391	75,641	87,061	93,026	98,991	1.69

Table 2-2 Population Projections for Counties and Cities Edwards Aquifer Area -- West Central Area Trans-Texas Water Program

		<u>-</u>		Projections ³				Compound
County and City ¹	1990²	2000	2010	2020	2030	2040	2050	Annual Growth Rate
GUADALUPE COUNTY								
New Braunfels (Part)	243	277	332	378	472	496	520	1.28
Rural Guadalupe4	21,373	31,198	43,780	51,294	56,496	61,955	67,414	1.93
Cibolo	1,757	2,715	3,802	4,569	5,141	5,690	6,239	2.13
Schertz (Part)	10,012	13,457	15,212	16,898	19,102	20,727	22,352	1.35
Rural San Antonio ⁴	5,832	8,514	<u>11,948</u>	<u>13,999</u>	<u>15,418</u>	16,908	18,397	<u>1.93</u>
Total - Guadalupe Co. (Part)	39,217	56,161	75,074	87,138	96,629	105,776	114,922	1.80
CALDWELL COUNTY								
Lockhart	9,205	10,401	12,291	14,308	15,854	17,093	18,332	1.15
Luling	4,661	4,706	4,770	4,835	4,886	4,927	4,968	0.11
Rural Guadalupe⁴	<u>5,916</u>	<u>7,087</u>	<u>8,574</u>	<u>10,164</u>	<u>11,381</u>	12,357	13,332	<u>1.36</u>
Total - Caldwell Co. (Part)	19,782	22,194	25,635	29,307	32,121	34,377	36,632	1.03
TOTAL	1,363,688	1,648,275	1,986,279	2,356,661	2,815,030	3,255,168	3,696,204	1.67


¹Study Area

Note: Texas population in 1990 was 16,986,510. TWDB projections of Texas population for 2000 is 20,257,960 and for 2050 is 36,308,602 (1.27% compound annual growth rate).

²1990 Census, U.S. Bureau of the Census, U.S. Department of Commerce

³Texas Water Development Board, High Case for 1990 through 2040, with extrapolation to 2050 at same rate as projected for 2030-2040, April 1992, Austin, Texas.

⁴Estimates of residents living in rural areas of the county that are located in each respective river basin area that is also located within that part of the county that is included within the Edwards Aquifer Area, as specified in S.B. 1477.

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA POPULATION PROJECTIONS EDWARDS AQUIFER AREA

2.1.3 Population Projections for River Basins and Adjacent Areas.

The 33-county West Central Study Area contains all or parts of the Nueces, San Antonio, Guadalupe, and Lower Colorado River Basins, however, parts of some study area counties are located in areas adjacent to one or more of these river basins. In addition, some study area counties are located in two or more study area river basins. For purposes of making projections of water demands for each individual river basin, it is necessary to sum the population and water demand projections of the counties and parts of counties located within each river basin as well as adjacent areas that depend upon each basin, respectively. In this section, the river basin and adjacent area population projections are presented. Water demand projections for these areas are presented in Section 2.2.3.

The population projections for the counties of the West Central Study Area that are located within the Nueces, San Antonio, Guadalupe, and Lower Colorado Basins, respectively, were summed and are shown in Table 2-3 and Figure 2-5. For the Nueces River Basin, it was necessary to adjust the total basin population for that portion located outside the study area. The resulting population projections of the counties of the Nueces Basin that are included in the 33-county study area (Uvalde, Medina, Zavala, Frio, Atascosa, and parts of Bexar, Wilson and Karnes counties) are shown on row 2 of Table 2-3; i.e., 110,733 in 1990, and 220,678 projected in 2050.

In the case of the San Antonio Basin, the basin totals are shown as follows: 1,270,884 in 1990 and 3,458,520 projected for 2050. The population of areas adjacent to the San Antonio Basin (the part of Goliad County that is located in the adjacent San Antonio-Nueces Coastal Basin) that is included in the 33-county study is shown to total 450 in 1990 and 779 in 2050.

The total for the Guadalupe Basin was also tabulated and listed on Table 2-3. For the Guadalupe Basin, the part of Victoria County located in the adjacent Lavaca-Guadalupe Coastal Basin plus Refugio and Calhoun counties were tabulated and included as a separate element, since Calhoun County obtains water from the Guadalupe Basin, and Victoria and Refugio counties may need water from the Guadalupe Basin in the future. The population for the areas adjacent to the Guadalupe were 48,250 in 1990 and are projected to be 85,210 in 2050 (Table 2-3).

Table 2-3
Population Projections for River Basins and Adjacent Areas--West Central Study Area
Trans-Texas Water Program

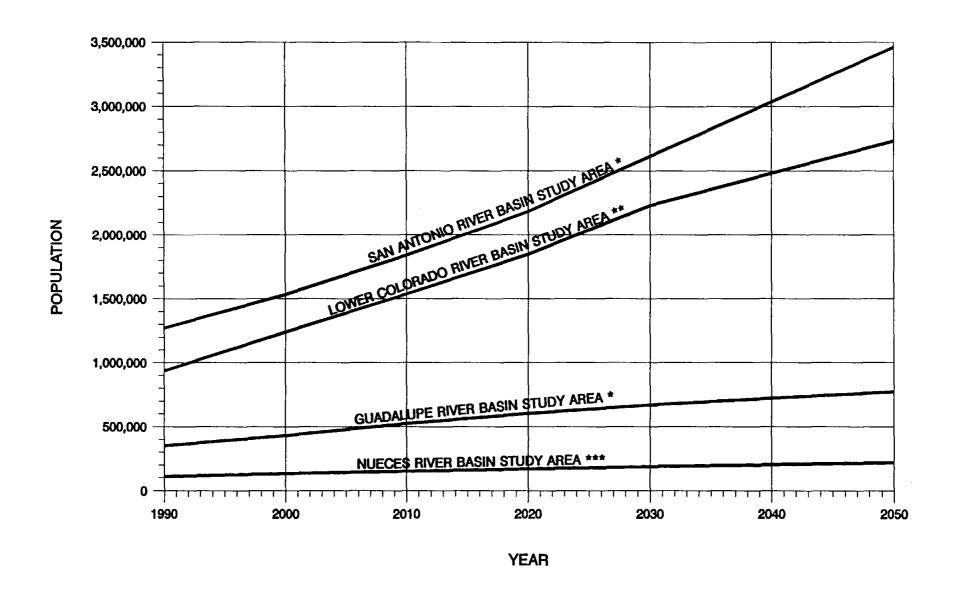
		Projected ³								
RIVER BASIN ¹	1990²	2000	2010	2020	2030	2040	20			
NUECES										
Total In-Basin	165,139	194,657	220,567	241,683	262,746	283,247	303,			
Study Area Subtotal ⁴	110,733	<u>132,470</u>	<u>152,305</u>	<u>169,160</u>	186,554	203,616	<u>220, </u>			
Remainder of Basin	54,406	62,187	68,262	72,523	76,192	79,631	83,			
SAN ANTONIO										
Total In-Basin	1,270,884	1,532,451	1,838,947	2,183,948	2,613,416	3,035,968	3,458,			
Adjacent Area ⁵	<u>450</u>	511	562	722	665	<u>722</u>	<u>779</u>			
Study Area Subtotal	1,271,334	1,532,962	1,839,509	2,184,550	2,614,081	3,036,690	3,459,			
GUADALUPE										
Total In-Basin	302,409	375,420	460,254	532,452	593,985	640,608	687,			
Adjacent Area ⁶	48,250	55,424	63,504	70,154	75,650	80,430	85,			
Study Area Subtotal	350,659	430,844	523,754	602,606	669,635	721,038	772,			
LOWER COLORADO										
Total In-Basin	709,456	920,081	1,124,397	1,340,653	1,566,477	1,712,900	1,859			
Adjacent Area ⁷	<u>73,250</u>	_83,700	91,968	98,758	106,886	_114,435	121			
Subtotal	782,706	1,003,781	1,216,365	1,439,411	1,673,363	1,827,335	1,981			
Adjacent Inland Area8	<u>153,584</u>	236,120	320,385	409,553	558,156	654,821	<u>751</u>			
Study Area Subtotal	936,290	1,239,901	1,537,190	1,848,964	2,231,519	2,482,156	2,732			
RIVER BASIN TOTALS	2,447,888	3,022,609	3,644,165	4,298,736	5,036,624	5,672,723	6,308			
STUDY AREA	2,669,016	3,336,177	4,052,758	4,805,280	5,701,789	6,443,500	7,185			

¹Study Area

²1990 Census, U.S. Bureau of the Census, U.S. Department of Commerce

Texas Water Development Board, High Case for 1990 through 2040, with extrapolation to 2050 at same rate as projected for 2030-2040, April 19 Austin, Texas.

Only counties of Nueces Basin included in study area (Uvalde, Medina, Zavala, Frio, Atascosa, and parts of Bexar, Wilson and Karnes).


⁵Part of Goliad County located in adjacent San Antonio-Nueces Coastal Basin.

Part of Victoria County located in adjacent Lavaca-Guadalupe Coastal Basin, plus all of Refugio and Calhoun counties.

Parts of Colorado, Wharton, and Matagorda counties located in adjacent coastal basins.

⁸Parts of Fayette, Lee, Williamson, and Burnet counties located in adjacent basins.

Note: Texas population in 1990 was 16,986,510. TWDB projections of Texas population for 2000 is 20,257,960 and for 2050 is 36,308,602 (1.27% compound annual growth rate).

^{*} In basin plus adjacent areas that obtain water from the basin.

*** Includes only study area counties of the Nueces Basin.

HDR Engineering, Inc.

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA POPULATION PROJECTIONS RIVER BASIN STUDY AREAS

FIGURE 2 - 5

^{**} In basin plus adjacent coastal areas that obtain water from the Colorado Basin. Does not include parts of study area counties located in the Brazos Basin.

Areas adjacent to the Lower Colorado Basin are also shown in Table 2-3. Those parts of counties located in coastal basins adjacent to the Lower Colorado Basin (i.e., Colorado, Wharton, and Matagorda) had a 1990 population of 73,250. Projected 2050 population of these counties is 121,984 (Table 2-3). Additionally, the population of inland study area counties adjacent to the Lower Colorado Basin, including parts of Fayette, Lee, Williamson, and Burnet counties, are shown separately. The population of this area was 153,584 in 1990 and is projected to increase to 751,476 by 2050 (Table 2-3). It should be noted, however, that even though these inland counties adjacent to the Colorado Basin are included in the 33-county study area, it is expected that only a part of their future water needs might be obtained from the Colorado Basin (e.g. southern Williamson County and southern Fayette County).

2.2 Water Demand Projections

Texas Water Development Board high case water demand projections, with conservation, are tabulated for the counties and are shown in tabular and graphic form for: (1) the 33-county study area, (2) the Edwards Aquifer area, including counties of Bexar, Medina, Uvalde, Comal, Hays, and parts of Guadalupe, and Caldwell counties, and (3) the Nueces, San Antonio, Guadalupe, and Lower Colorado River Basin areas included within the study area. Projections are shown for each of the major water-using categories, as follows: (1) Municipal, (2) Manufacturing, (3) Steam-Electric Power Generation, (4) Irrigation, (5) Mining, (6) Livestock, and (7) Total of (1) through(6). Each type of water use is explained below, together with a brief description of projection methods, procedures, and data.

Municipal Water Use

Municipal water use includes freshwater for drinking, food preparation, dishwashing, bathing, toilet flushing, laundry, lawn watering, private and public swimming pools, hot tubs, restaurants, car washes, commercial laundries, office, service, hotel, motel, and retail building bathrooms and air conditioning, fire protection, fountains, public parks, sports centers, aquariums, zoos, and street washing. Municipal water must meet safe drinking standards as specified by Federal and State laws and regulations.

The municipal water demand projection for a city for any future date is computed by the following formula:

 $MW = \frac{gpcd(P)(365)}{325,851}$

Where MW = Number of acft of municipal water needed for one year;

gpcd = Number of gallons of water used per person per day during the

year;

P = Projected population of the city in the projection year;

365 = Number of days in one year; and

325,851 = Number of gallons of water in one acre-foot.

For purposes of making projections of future municipal water demands, TWDB has conducted an annual survey of cities, and public and private water districts and authorities since the mid-1960's. In the annual survey, each respondent reports the quantities of water that have been obtained from each respective water source and supplied to municipal-type customers. From the water use reports of the cities, TWDB has computed an annual per capita water use, in gallons per person per day, for each city. For the high case projection, the per capita use for the year with the highest computed value of the 1977-1986 period was chosen as the projection starting point (1990) per capita municipal water use rate for the city.

The effects of water conservation were used to adjust the per capita water use rates of each city as follows. In 1991, the Texas Legislature enacted legislation which allows only the sale of low-flow rate plumbing fixtures in Texas after January 1, 1993. TWDB estimated that by 2020, the effects of this legislation will have reduced per capita water use by 18 gallons per person per day. This 18 gallons per person per day was phased into the projection methodology by reducing the computed per capita water use rate of each city by six gallons per decade between 1990 and 2020; i.e., if per capita water use for City A, in 1990, as explained above, was computed at 190 gallons per day, then the rate used for the year 2000 would be 184 gallons per day, the rate used for 2010 would be 178 gallons per day, and the rate used for 2020 and the following decades would be 172 gallons per day. Projections of annual municipal water demand for each city for the 1990-2050 planning period were made by multiplying the projected per capita water use of the city at each decadal point in time, times 365 days, times the number of people projected for that city (Section 2.1) at the corresponding decadal point in time. Similar computations are made

for rural areas using data from water use reports of water supply corporations. County and area projections are obtained by summing the projections for cities and rural areas of the counties, respectively.

Industrial Water Use

Industrial water use includes freshwater used by industries for processing raw materials, including cooling of manufacturing processes, on-site power generation for use in the manufacturing plants, cleaning and waste removal, grounds maintenance, sanitation, pollution control, internal transportation, and in some cases, such as food and beverage manufacture, is included as part of the finished product.

As is done for cities, TWDB conducts an annual water use survey of business establishments of the major water using industries of Texas (petroleum refining, petrochemicals, inorganic chemicals, cement and concrete, steel, nonferrous smelters, construction machinery, pulp, paper and paperboard, food and beverages, and electronics). From the survey data, the quantity of freshwater used by each industry sector of a county is computed for the projections starting point (1990). Projections are made of quantities of water needed at future decadal points by applying estimated growth rates of each respective industry. Industrial water conservation effects are included by using projected recirculation and technology improvements coefficients for the projection period, which reduces the projected quantities obtained when growth rates are applied to the starting point water use data mentioned above.

Steam-Electric Power Water Use

Steam-electric power generation plants use freshwater for condenser cooling, boiler feed make-up, sanitation, grounds maintenance, and pollution control. Consumptive use typically ranges from one-third to one-half gallon of water for each kilowatt-hour of electricity produced, however, from 20 to 60 gallons of water must be circulated through the power plant condensers for each kilowatt-hour of electricity produced. The electric power industry uses both once-through and recirculation methods of operation. In the TWDB projections, each power plant is treated separately, and the projections are in terms of consumptive water use as opposed to total flows.

Annual water use surveys of electric power utilities provide TWDB with quantities of water used annually at each steam electric power plant. These data, together with

projections of additional generating units, and additional electric power plants form the basis for computing projections of quantities of water needed for electric power generation. It is important to note that TWDB projections of steam electric power generation water needs are tied to projections of population growth; i.e., it is assumed that electric power generation capacity will be added as needed in order to meet the needs of the population projected for each area of the state. (Note: In some cases, electric power may be obtained from neighboring areas, with the required water supplies being provided at the power generation site).

Irrigation Water Use

The application of freshwater to land to grow crops is irrigation water use. The TWDB high case, with conservation, irrigation projections are based upon annual estimates of acreages of each irrigated crop and estimates of the quantities of water required per acre irrigated.

For water planning purposes TWDB, in cooperation with the Texas State Soil and Water Conservation Board and the U.S. Soil Conservation Service's County Work Units, conducts a field survey of irrigation water use every five years. The latest such survey was done in 1989 and is the basis for making estimates of the quantities of irrigation water used in each county in which irrigation was done in 1990. The irrigation survey involves locating irrigation acreages on individual county maps, site visits to representative irrigation tracts, and checking soil conservation farm management plans and irrigation research results in order to determine the quantities of irrigation water used to produce each crop. Through this process, the number of irrigated acreages of each crop within each county is estimated. The acreages, together with estimated quantities of irrigation water used per acre allows the computation of quantities of irrigation water used in the projections starting point year (1990). For the projection period 1990-2050, irrigation water demands are projected by making projections of irrigated acreages at each decadal point in time and the quantity of water needed for each acre, assuming that efficient irrigation technology and methods appropriate at each decade point will be used by irrigation farmers.

Mining Water Use

Freshwater used in the recovery of petroleum, sand, gravel, clay and stone is mining water use. In the case of petroleum production, water is injected into petroleum bearing formations to drive crude oil and natural gas to the wells for pumping to the surface. In the case of sand, gravel, clay, and stone production, water is used to wash and separate materials into usable sizes and simply to remove soil and unusable materials.

TWDB's annual water use surveys includes mining establishments. In addition, records of the Texas Railroad Commission are used to determine the quantities of freshwater used in "water flooding operations" for petroleum production. From these survey data and reports, computations are made of the quantities of freshwater used for mining purposes for the projections starting point year (1990). The growth rate (in the case of petroleum production, the direction is downward over the long run in most cases) of each mining activity of each county is projected and applied to the 1990 computed water use in order to obtain projections of quantities of water that will be needed at each decade point of the projection period (2000 - 2050).

Livestock Water Use

Drinking water and water for washing and sanitation of livestock housing and production facilities are needed for farm and ranch animals and poultry.

Livestock and poultry water requirements are estimated from nutritional needs, in gallons per day, for each type of livestock, times the number of each type. Projections are made of the numbers at each decadal point of the projection period for each county. Carrying capacity and the acreages of rangeland are used in making projections for beef cattle, sheep, and goats. Growth rates of dairy and poultry numbers are developed for making projections for these groups. Projections are made for each county by summing the projections for each livestock type.

Total Water Demand

Total water use projected for each subarea (city, county, Edwards Aquifer area, and river basin area) of the study area is the sum of the projected water demands for municipal, industrial, steam-electric power, irrigation, mining, and livestock purposes.

2.2.1 Water Demand Projections for the 33-County Study Area

The TWDB high case, with conservation water demand projections, are shown in tabular and graphic form for the 33-county study area for: (1) Municipal, (2) Industrial, (3) Steam-Electric Power Generation, (4) Irrigation, (5) Mining, (6) Livestock, and (7) Total water use.

2.2.1.1 Municipal Water Demand Projections for the 33-County Study Area

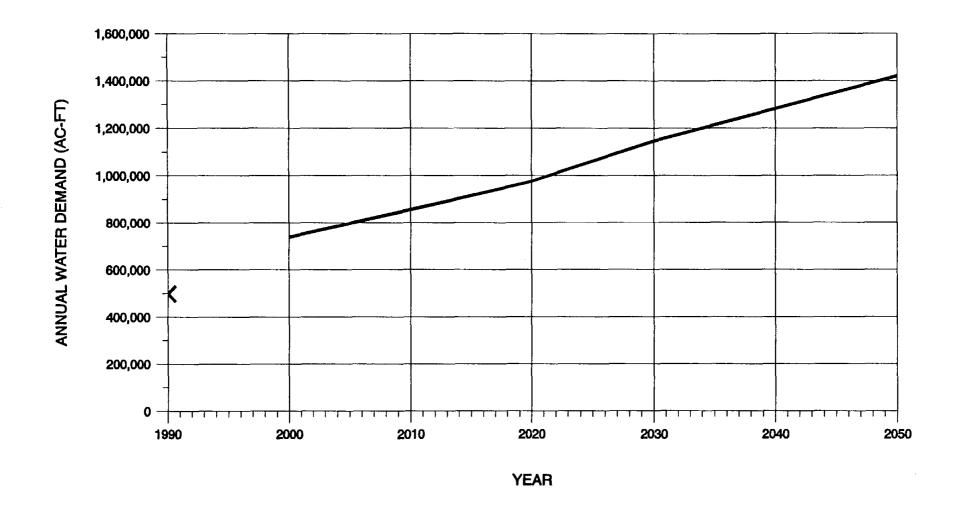

For the 33-County study area, municipal water use in 1990 was 498,128 acft and ranged from 916 acft in Goliad County to 225,057 acft in Bexar County (Table 2-4 and Figure 2-6). The high case projection, with conservation is 737,908 acft in 2000, 975,998 acft in 2020 and 1,420,211 acre feet in 2050 (Table 2-4). Projections for the individual counties are a function of the number of people projected for the counties and the per capita water use rates of the respective counties. The individual county projections are displayed in Table 2-4 and for year 2050 range from a low of 1,359 acft for Goliad County to a high of 678,925 acft for Bexar County. It should be noted that for 1990 the quantities are of actual use, while the projections for 2000 and beyond are for dry year conditions. Since 1990 was not a dry year, the per capita use is lower than that which was used in the projections, thus the point for 1990 is not located on the projections curve of Figure 2-6.

Table 2-4
Municipal Water Demand Projections -- 33-County West Central Study Area
Trans-Texas Water Program

	1990¹			Projections i	n Acre-Feet ²		
County	Actual Use	2000	2010	2020	2030	2040	2050_
Atascosa	5,670	6,979	7,657	8,157	8,808	9,465	10,122
Bandera	1,445	2,122	2,647	2,774	2,894	2,954	3,014
Bastrop	6,234	10,481	13,316	15,291	17,018	18,313	19,608
Bexar	225,057	332,801	381,895	436,129	518,799	598,862	678,925
Blanco	904	1,273	1,498	1,743	1,995	2,203	2,411
Burnet	3,526	4,767	5,380	5,720	5,987	6,135	6,283
Caldwell	4,931	5,481	5,951	6,439	6,889	7,230	7,571
Calhoun	3,916	4,022	4,497	4,849	5,221	5,500	5,779
Colorado	2,927	3,709	3,734	3,783	3,898	3,965	4,032
Comal	10,415	17,271	20,617	23,643	27,288	30,074	32,860
Dewitt	3,556	3,699	3,646	3,562	3,614	3,654	3,694
Fayette	3,397	3,596	3,624	3,638	3,634	3,621	3,608
Frio	3,045	3,469	3,753	3,922	4,226	4,463	4,700
Goliad	916	1,146	1,177	1,186	1,243	1,301	1,359
Gonzales	3,832	4,075	4,033	3,918	3,916	3,924	3,932
Guadalupe	9,627	16,728	20,095	22,196	24,073	25,813	27,553
Hays	11,709	18,789	24,247	28,863	33,147	35,330	37,513
Karnes	2,187	2,446	2,408	2,334	2,334	2,310	2,286
Kendall	2,130	3,085	3,412	3,649	4,001	4,163	4,325
Кегг	5,821	8,084	8,780	9,096	9,546	9,926	10,306
Llano	2,488	2,951	3,042	3,190	3,551	3,537	3,523
Lee	2,991	2,981	3,250	3,438	3,680	3,911	4,142
Matagorda	5,225	7,632	7,909	8,032	8,284	8,532	8,780
Medina	5,254	6,988	7,560	7,882	8,348	8,591	8,834
Refugio	1,227	1,359	1,372	1,363	1,382	1,380	1,378
San Saba	1,272	1,499	1,482	1,451	1,459	1,453	1,447
Travis	114,809	174,069	203,075	235,214	273,721	297,268	320,815
Uvalde	5,278	7,456	8,389	9,138	10,238	11,461	12,684
Victoria	11,545	14,851	16,400	17,327	18,326	19,316	20,306
Wharton	6,218	7,145	7,589	7,876	8,670	9,320	9,970
Williamson	24,482	48,643	64,486	80,348	109,137	127,781	146,425
Wilson	3,745	5,423	6,328	6,762	7,303	7,769	8,235
Zavala	<u>2,349</u>	<u>2,888</u>	<u>2,997</u>	<u>3,085</u>	<u>3,313</u>	<u>3,552</u>	<u>3,791</u>
Total	498,128	737,908	856,246	975,998	1,145,943	1,283,077	1,420,211

¹As reported to the Texas Water Development Board, dry-year demands would be significantly higher.

²Texas Water Development Board, High Case for 1990 through 2040, with extrapolation to 2050 at same rate as projected for 2030-2040, April 1992, Austin, Texas.

√ 1990 USE

--- WATER DEMAND PROJECTIONS

HDR Engineering, Inc.

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA MUNICIPAL WATER DEMAND PROJECTIONS 33 COUNTY AREA

FIGURE 2-6

2.2.1.2 Industrial Water Demand Projections for the 33-County Study Area

Industrial water use in the study area in 1990 was reported at 83,307 acft and is projected to increase to 415,953 acft in 2050 (Table 2-5 and Figure 2-7). Industrial water use is concentrated in the coastal counties of Calhoun, Victoria, and Matagorda, and along the I-35 corridor (Bexar, Comal, Guadalupe, and Travis Counties). Seven of the study area counties do not have any projected industrial water use (Table 2-5). In 1990, the heavy water using industries of Calhoun, Victoria, and Matagorda counties were operating at much less than full capacity due to sluggish economic conditions. Thus, reported water use was below normal. As economic conditions improve, water use is projected to increase to that needed to return idle capacity to production. This is reflected in the projections and explains a part of the large increase in the industrial water demand projections between 1990 and 2000.

2.2.1.3 Steam-Electric Power Water Demand Projections for the 33-County Study Area

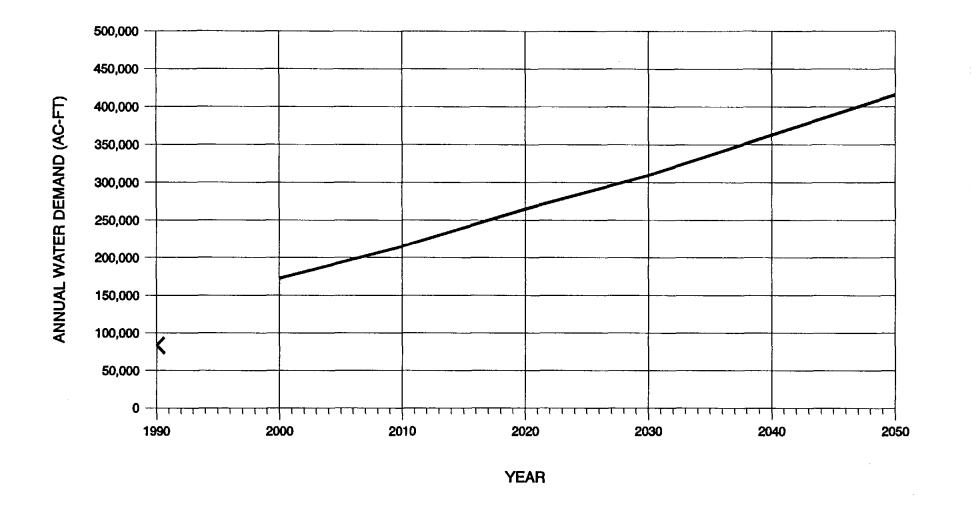

Steam-electric power generation is located in 10 of the 33-study area counties, with the larger plants located in Bexar, Matagorda, Goliad, and Fayette Counties. Consumptive use by power plants in 1990 was 98,755 acft (Table 2-6 and Figure 2-8). Projected consumptive use of water for steam-electric power generation in 2050 is 236,200 acft (Table 2-6). It is important to note that total volume of water required for circulation in steam-electric power plants is perhaps 50 times that which is consumed by evaporation. It is further useful to note that treated municipal wastewater can and is being used for make-up water for electric power generation.

Table 2-5
Industrial Water Demand Projections -- 33-County West Central Study Area
Trans-Texas Water Program

			s in Acre-Fe				-
County	1990¹ Use	2000	2010	2020	2030	2040	2050
Atascosa	0	0	0	0	0	0	0
Bandera	0	0	0	0	0	0	0
Bastrop	27	51	68	87	111	127	143
Bexar	14,049	19,567	24,399	30,031	36,441	42,617	48,793
Blanco	0	2	3	4	4	5	6
Burnet	1,116	108	137	169	206	246	286
Caldwell	0	0	0	0	0	0	0
Calhoun	24,539	73,297	83,156	94,154	103,934	114,509	125,084
Colorado	1,078	2,047	2,530	3,110	3,738	4,211	4,684
Comal	3,248	4,745	5,647	6,674	7,562	8,181	8,800
Dewitt	91	139	181	228	282	326	370
Fayette	32	54	65	76	90	107	124
Frio	0	0	0	0	0	0	0
Goliad	0	0	0	0	0	0	0
Gonzales	865	1,303	1,584	1,921	2,309	2,717	3,125
Guadalupe	1,661	1,807	2,049	2,314	2,679	3,073	3,467
Hays	293	2,492	3,093	3,815	4,611	5,209	5,807
Karnes	270	214	278	351	434	498	562
Kendall	2	5	6	8	10	12	14
Kerr	28	11	14	17	20	24	28
Lee	5	8	9	10	12	13	14
Llano	0	0	0	0	0	0	0
Matagorda	6,807	11,946	21,072	34,524	44,019	60,404	76,789
Medina	286	120	150	182	221	266	311
Refugio	0	0	0	0	0	0	0
San Saba	0	27	34	42	50	56	62
Travis	6,243	13,803	18,139	22,227	26,379	30,569	34,759
Uvalde	557	435	526	635	765	920	1,075
Victoria	20,032	37,974	49,097	61,388	71,794	83,891	95,988
Wharton	396	473	570	674	788	918	1,048
Williamson	326	457	596	731	876	1,029	1,182
Wilson	50	99	118	139	163	179	195
Zavala	<u>1,306</u>	<u>1,213</u>	<u>1,494</u>	<u>1,835</u>	<u>2,243</u>	<u>2,740</u>	<u>3,237</u>
Total	83,307	172,397	215,015	265,346	309,741	362,847	415,953

¹As reported to the Texas Water Development Board.

²Texas Water Development Board, High Case for 1990 through 2040, with extrapolation to 2050 at same rate as projected for 2030-2040, April 1992, Austin, Texas.

\ 1990 USE

- WATER DEMAND PROJECTIONS

HDR Engineering, Inc.

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA INDUSTRIAL WATER DEMAND PROJECTIONS 33 COUNTY AREA

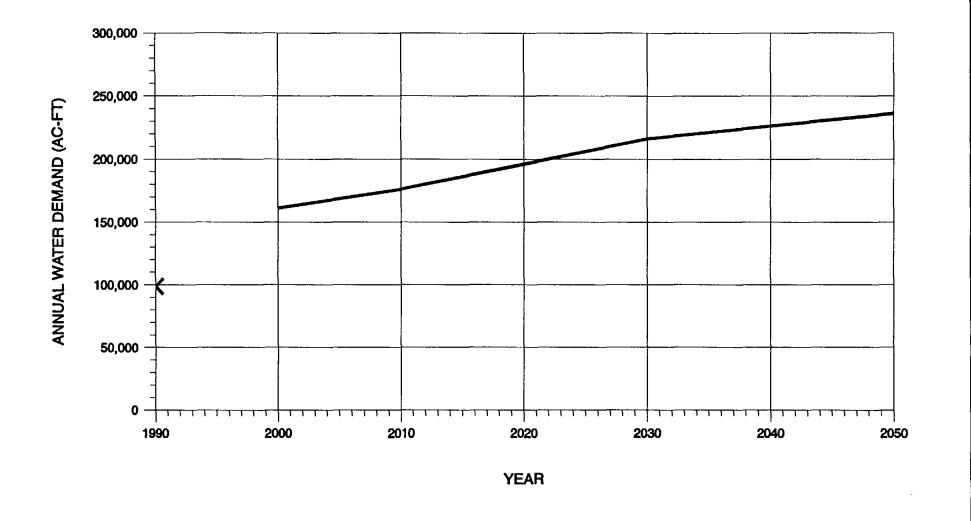

FIGURE 2-7

Table 2-6
Steam-Electric Power Water Demand Projections -- 33-County West Central Area
Trans-Texas Water Program

	10001	Projection	Projections in Acre-Feet ²								
County	1990 ¹ Use	2000	2010	2020	2030	2040	2050				
Atascosa	3,622	12,000	12,000	17,000	22,000	27,000	32,000				
Bandera	0	0	0	0	0	0	0				
Bastrop	2,967	8,000	8,000	8,000	8,000	8,000	8,000				
Bexar	24,263	36,000	41,000	46,000	56,000	56,000	56,000				
Blanco	0	0	0	0	0	0	0				
Burnet	0	0	0	0	0	0	0				
Caldwell	0	0	0	0	0	0	0				
Calhoun	62	200	200	200	200	200	200				
Colorado	0	0	0	0	0	0	0				
Comal	0	0	0	0	0	0	0				
Dewitt	0	0	0	0	0	0	0				
Fayette	11,701	25,500	35,500	40,500	45,500	50,500	55,500				
Frio	38	2,000	2,000	2,000	2,000	2,000	2,000				
Goliad	12,165	16,000	16,000	16,000	16,000	16,000	16,000				
Gonzales	0	0	0	0	0	0	0				
Guadalupe	0	0	0	0	0	0	0				
Hays	0	0	0	0	0	0	0				
Karnes	0	0	0	0	0	0	0				
Kendall	0	0	0	0	0	0	0				
Кетт	0	0	0	0	0	0	0				
Lee	0	0	0	0	0	0	0				
Llano	937	2,000	2,000	2,000	2,000	2,000	2,000				
Matagorda	35,915	26,000	26,000	26,000	26,000	26,000	26,000				
Medina	0	0	0	0	0	0	0				
Refugio	0	0	0	0	0	0	0				
San Saba	0	0	0	0	0	0	0				
Travis	6,198	7,500	7,500	7,500	7,500	7,500	7,500				
Uvalde	0	0	0	0	0	0	0				
Victoria	887	26,000	26,000	31,000	31,000	31,000	31,000				
Wharton	0	0	0	0	0	0	0				
Williamson	0	0	0	0	0	0	0				
Wilson	0	0	0	0	0	0	0				
Zavala	0	0	0	0	0	0	0				
Total	98,755	161,200	176,200	196,200	216,200	226,200	236,200				

¹As reported to the Texas Water Development Board.

²Texas Water Development Board, High Case for 1990 through 2040, with extrapolation to 2050 at same rate as projected for 2030-2040, April 1992, Austin, Texas.

〈 1990 USE

- WATER DEMAND PROJECTIONS

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA
STEAM-ELECTRIC POWER WATER DEMAND PROJECTIONS
33 COUNTY AREA

HDR Engineering, Inc.

FIGURE 2-8

2.2.1.4 Irrigation Water Demand Projections for the 33-County Study Area

Irrigation is done in practically all of the counties of the study area, with large acreages, and consequently large quantities of water used in the coastal counties (Wharton, Matagorda, Colorado, and Calhoun), the Winter Garden area (Zavala, Frio, and Uvalde Counties), the western Edwards Aquifer area (Bexar, Medina, and Uvalde Counties), and in Atascosa and Wilson Counties (Table 2-7). The sources of irrigation water for the coastal counties are diversions from the Colorado and Guadalupe/San Antonio rivers and groundwater from the Gulf Coast Aquifer. The sources for the Winter Garden area are the Edwards and Carrizo Aquifers, with small quantities from the Nueces River. The sources for Bexar and Medina counties are the Edwards Aquifer and Medina and Diversion Lakes (the Medina River). Uvalde County irrigation is supplied from the Edwards Aquifer. Atascosa and Wilson County irrigation is supplied largely from the Carrizo Aquifer, with some water obtained from streams which flow through the counties. Irrigation water for other counties of the study area is obtained from both ground and surface water sources.

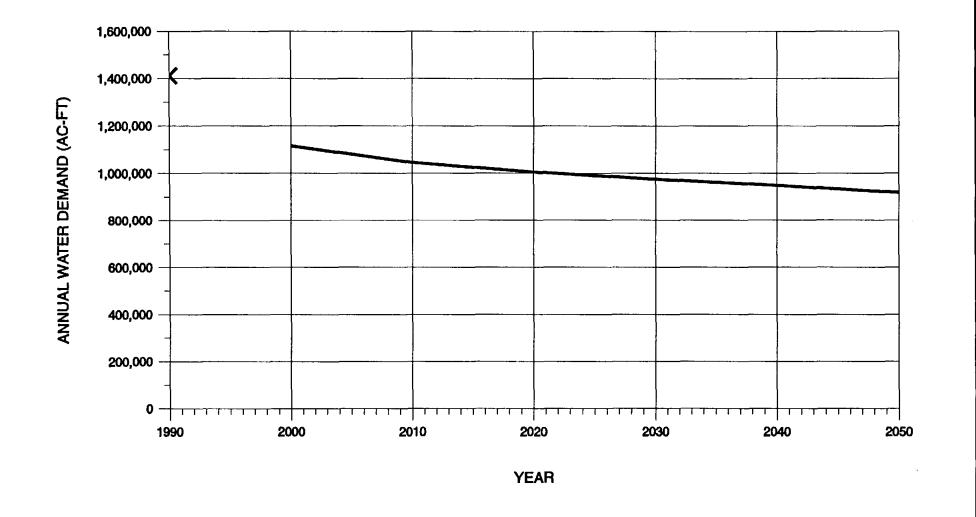

In 1990, irrigation water use in the study area from all sources was estimated at 1,411,579 acft (Table 2-7 and Figure 2-9). Irrigation water demand is projected to decline to 1.1 million acft in 2000, 1.0 million acft in 2020, and 918,400 acft in 2050. The projected decline is anticipated to occur due to improved application efficiency, canal lining and pipeline installation to reduce losses between the river bank diversion points and the fields, and reduced acreages of some irrigated crops.

Table 2-7
Irrigation Water Demand Projections -- 33-County West Central Study Area
Trans-Texas Water Program

	1000	Projectio	ns in Acre	-Feet²			
County	1990¹ Use	2000	2010	2020	2030	2040	2050
Atascosa	47,208	50,000	42,500	40,000	40,000	40,000	40,000
Bandera	290	330	330	330	330	330	330
Bastrop	645	866	866	866	866	866	866
Bexar	37,012	25,000	20,240	18,880	17,520	16,200	14,880
Blanco	483	495	495	495	495	495	495
Burnet	300	250	250	250	250	250	250
Caldwell	1,375	125	125	125	125	125	125
Calhoun	35,421	27,959	27,899	27,099	25,169	25,169	25,169
Colorado	216,480	129,675	122,543	117,438	112,332	107,263	102,118
Comal	479	500	500	500	500	500	500
Dewitt	285	3,250	3,250	3,250	3,250	3,250	3,250
Fayette	400	1,314	1,314	1,314	1,314	1,314	1,314
Frio	83,233	90,000	83,373	79,146	74,767	70,400	66,033
Goliad	685	495	495	495	495	495	495
Gonzales	3,540	2,310	2,310	2,310	2,310	2,310	2,310
Guadalupe	2,646	4,455	4,455	4,455	4,455	4,455	4,455
Hays	320	660	660	660	660	660	660
Karnes	2,034	1,200	1,200	1,200	1,200	1,200	1,200
Kendall	380	248	248	248	248	248	248
Kerr	850	1,125	1,125	1,125	1,125	1,125	1,125
Lee	283	220	220	220	220	220	220
Llano	1,122	1,250	1,250	1,250	1,250	1,250	1,250
Matagorda	204,827	138,257	138,253	128,478	122,893	117,406	111,718
Medina	157,380	110,000	105,000	105,000	105,000	105,000	105,000
Refugio	0	83	83	83	83	83	83
San Saba	5,734	9,599	9,500	9,403	9,305	9,199	9,093
Travis	800	990	990	990	990	990	990
Uvalde	140,669	130,000	120,000	120,000	120,000	120,000	120,000
Victoria	13,699	12,172	10,800	10,350	9,900	9,450	9,000
Wharton	328,220	283,920	272,562	261,206	249,849	240,145	227,136
Williamson	160	165	165	165	165	165	165
Wilson	13,697	8,660	8,512	8,364	8,216	8,069	7,922
Zavala	110,922	80,000	<u>65,000</u>	60,000	60,000	<u>60,000</u>	60,000
Total	1,411,579	1,115,573	1,045,713	1,005,695	975,282	948,632	918,400

¹As estimated by the Texas Water Development Board from irrigation surveys.

²Texas Water Development Board, High Case for 1990 through 2040, with extrapolation to 2050 at same rate as projected for 2030-2040, April 1992, Austin, Texas. The projections have been adjusted to include canal seepage losses for irrigation using surface water diversions from the rivers.

〈 1990 USE

--- WATER DEMAND PROJECTIONS

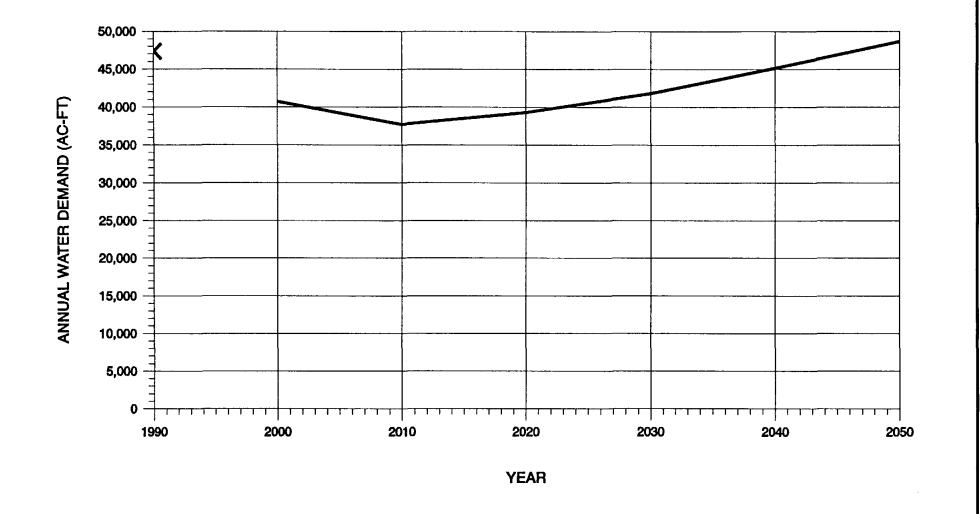
TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA IRRIGATION WATER DEMAND PROJECTIONS 33 COUNTY AREA

HDR Engineering, Inc.

FIGURE 2-9

2.2.1.5 Mining Water Demand Projections for the 33-County Study Area

Mining is done in all of the counties, with the largest quantities of water use in Colorado, Wharton, Victoria, Travis, Bexar and Williamson Counties (Table 2-8). Estimated mining water use in 1990 was 47,360 acft, with projected use for the period 2010 to 2030 dropping to a range of 37,721 to 41,814 acft per year (Table 2-8 and Figure 2-10). The decline is due to a projected decline in water flooding for petroleum recovery. The high case, with conservation, projection at 2050 is 48,663 acft. The growth in mining after 2030 is due to growth in sand, gravel, and limestone quarrying in the San Antonio and Austin areas.


2.2.1.6 Livestock Water Demand Projections for the 33-County Study Area

Livestock production is done throughout the study area, with the predominant activity being grazing of beef and goats. Poultry production is concentrated in Gonzales County. Estimated livestock water use in 1990 was 38,876 acft with projections of 50,282 for 2000 through 2050 (Table 2-9 and Figure 2-11). The TWDB projection method for livestock water requirements estimates the maximum grazing capacity for rangeland in each county and computes the quantity of water needed by livestock for this grazing capacity. Thus, in areas where range livestock production predominates the projection reaches its upper limit and is held constant thereafter.

Table 2-8
Mining Water Demand Projections -- 33-County West Central Study Area
Trans-Texas Water Program

	10001		Proj	ections in	Acre-Feet ²	}	
County	1990¹ Use	2000	2010	2020	2030	2040	2050
Atascosa	664	1,444	1,554	2,680	3,806	4,931	6,056
Bandera	20	24	24	25	26	26	26
Bastrop	16	52	46	38	33	34	39
Bexar	1,591	4,691	4,936	5,201	5,406	5,645	5,884
Blanco	0	12	9	5	1	0	0
Burnet	936	949	971	990	1,011	1,040	1,069
Caldwell	27	23	17	10	4	0	0
Calhoun	1	35	34	20	9	4	2
Colorado	31,967	14,742	12,825	13,305	14,147	15,393	16,639
Comal	946	4,799	4,464	4,151	3,861	3,590	3,319
Dewitt	129	148	120	95	67	53	45
Fayette	7	80	58	34	13	4	1
Frio	313	276	280	287	296	305	314
Goliad	0	17	12	6	3	0	0
Gonzales	21	41	37	33	29	29	29
Guadalupe	8	195	198	200	202	207	212
Hays	0	11	8	4	1	0	0
Karnes	187	356	183	93	47	17	1
Kendall	0	12	9	5	1	0	0
Kerr	73	143	122	110	103	102	102
Lee	0	28	21	13	5	1	0
Llano	65	140	112	99	95	92	89
Matagorda	250	294	265	250	244	242	243
Medina	120	131	128	128	129	132	135
Refugio	77	28	14	7	4	1	0
San Saba	86	154	133	124	123	122	121
Travis	2,288	4,934	5,021	5,384	5,884	6,429	6,974
Uvalde	399	574	628	699	776	866	956
Victoria	2,409	2,314	2,088	2,090	2,207	2,424	2,641
Wharton	2,650	1,890	953	481	241	83	0
Williamson	1,713	2,014	2,344	2,673	3,002	3,375	3,749
Wilson	281	107	65	42	30	23	17
Zavala	<u>116</u>	<u>59</u>	42	<u>25</u>	8	2	0
Total	47,360	40,717	37,721	39,307	41,814	45,172	48,663

¹As estimated by the Texas Water Development Board. ²Texas Water Development Board, High Case for 1990 through 2040, with extrapolation to 2050 at same rate as projected for 2030-2040, April 1992, Austin, Texas.

< 1990 USE

--- WATER DEMAND PROJECTIONS

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA MINING WATER DEMAND PROJECTIONS 33 COUNTY AREA

HDR Engineering, Inc.

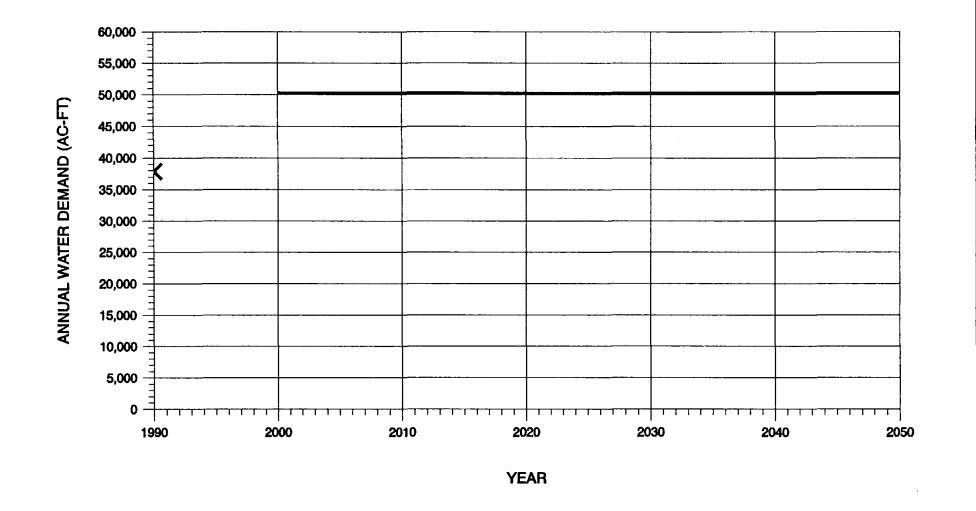

FIGURE 2 - 10

Table 2-9
Livestock Water Demand Projections -- 33-County West Central Study Area
Trans-Texas Water Program

	40001		Pı	ojections	in Acre-Fe	eet²	
County	1990¹ Use	2000	2010	2020	2030	2040	2050
Atascosa	1,613	1,945	1,945	1,945	1,945	1,945	1,945
Bandera	325	506	506	506	506	506	506
Bastrop	1,431	2,033	2,033	2,033	2,033	2,033	2,033
Bexar	1,376	1,245	1,245	1,245	1,245	1,245	1,245
Blanco	553	639	639	639	639	639	639
Burnet	820	846	846	846	846	846	846
Caldwell	816	1,416	1,416	1,416	1,416	1,416	1,416
Calhoun	291	649	649	649	649	649	649
Colorado	1,395	2,191	2,191	2,191	2,191	2,191	2,191
Comal	316	468	468	468	468	468	468
Dewitt	1,840	2,432	2,432	2,432	2,432	2,432	2,432
Fayette	2,037	2,647	2,647	2,647	2,647	2,647	2,647
Frio	1,097	1,532	1,532	1,532	1,532	1,532	1,532
Goliad	884	1,271	1,271	1,271	1,271	1,271	1,271
Gonzales	4,108	4,443	4,443	4,443	4,443	4,443	4,443
Guadalupe	1,031	1,450	1,450	1,450	1,450	1,450	1,450
Hays	676	777	777	777	777	777	777
Karnes	1,371	1,644	1,644	1,644	1,644	1,644	1,644
Kendall	389	722	722	722	722	722	722
Kerr	382	709	709	709	709	709	709
Lee	1,398	2,050	2,050	2,050	2,050	2,050	2,050
Llano	908	1,057	1,057	1,057	1,057	1,057	1,057
Matagorda	1,120	1,380	1,380	1,380	1,380	1,380	1,380
Medina	1,560	2,001	2,001	2,001	2,001	2,001	2,001
Refugio	563	673	673	673	673	673	673
San Saba	1,121	1,850	1,850	1,850	1,850	1,850	1,850
Travis	942	1,099	1,099	1,099	1,099	1,099	1,099
Uvalde	994	1,869	1,869	1,869	1,869	1,869	1,869
Victoria	1,271	1,623	1,623	1,623	1,623	1,623	1,623
Wharton	1,213	1,684	1,684	1,684	1,684	1,684	1,684
Williamson	1,508	1,643	1,643	1,643	1,643	1,643	1,643
Wilson	1,813	2,149	2,149	2,149	2,149	2,149	2,149
Zavala	<u>714</u>	1,639	1,639	1,639	1,639	1,639	<u>1,639</u>
Total	37,876	50,282	50,282	50,282	50,282	50,282	50,282

¹As estimated by the Texas Water Development Board.

²Texas Water Development Board, High Case for 1990 through 2040, with extrapolation to 2050 at same rate as projected for 2030-2040, April 1992, Austin, Texas.

< 1990 USE

--- WATER DEMAND PROJECTIONS

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA LIVESTOCK WATER DEMAND PROJECTIONS 33 COUNTY AREA

HDR Engineering, Inc.

FIGURE 2 - 11

2.2.1.7 Total Water Demand Projections for the 33-County Study Area

In previous sections, projections of future water demands have been tabulated for each of the major water using functions of the 33-county area; i.e., municipal, industrial, steam-electric power generation, irrigation, mining, and livestock water. In this section, the totals of all uses projected for each county are shown along with the sum for the 33-counties (Table 2-10).

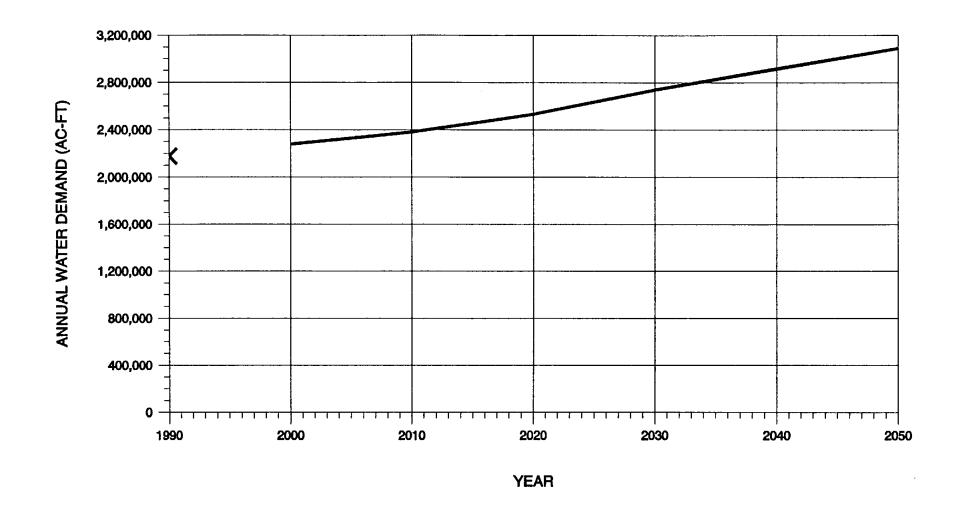

Water use in 1990 was 2,177,005 for the 33-county area, with 15.5 percent in Wharton County, 14 percent in Bexar County, 12 percent in each of Matagorda and Colorado counties, 7.5 percent in Medina County, 6.7 percent in Uvalde County, 6.0 percent in Travis County, and 5.2 percent in Zavala County (Table 2-10). The TWDB high case, with conservation, projected total water demand for the 33-county area is approximately 2.28 million acft in 2000, 2.53 million acft in 2020, and 3.09 million acft in 2050 (Table 2-10 and Figure 2-12).

Table 2-10
Total Water Demand Projections -- 33-County West Central Study Area
Trans-Texas Water Program

	1		Pı	rojections i	n Acre-Fee	t ²	-
County	1990¹ Use	2000	2010	2020	2030	2040	2050
Atascosa	58,777	72,368	65,656	69,782	76,559	83,341	90,123
Bandera	2,080	2,982	3,507	3,635	3,756	3,816	3,876
Bastrop	11,320	21,483	24,329	26,315	28,061	29,373	30,685
Bexar	303,348	419,304	473,715	537,486	635,411	720,569	805,727
Blanco	1,940	2,421	2,644	2,886	3,134	3,342	3,550
Burnet	6,698	6,920	7,584	7,975	8,300	8,517	8,734
Caldwell	7,149	7,045	7,509	7,990	8,434	8,771	9,108
Calhoun	64,230	106,162	115,635	126,971	135,182	146,031	156,883
Colorado	253,847	152,367	143,823	139,827	136,306	133,023	129,664
Comal	15,404	27,783	31,696	35,436	39,679	42,813	45,947
Dewitt	5,901	9,668	9,629	9,567	9,645	9,715	9,785
Fayette	17,574	33,191	43,208	48,209	53,198	58,193	63,188
Frio	87,726	97,277	90,938	86,887	82,821	78,700	74,579
Goliad	14,650	18,929	18,955	18,958	19,012	19,067	19,122
Gonzales	12,366	12,172	12,407	12,625	13,007	13,423	13,839
Guadalupe	14,973	24,635	28,247	30,615	32,859	34,998	37,137
Hays	12,998	22,729	28,785	34,119	39,196	41,976	44,756
Karnes	6,049	5,860	5,713	5,622	5,659	5,669	5,679
Kendall	2,901	4,072	4,397	4,632	4,982	5,145	5,308
Kerr	7,154	10,072	10,750	11,057	11,503	11,886	12,269
Lee	4,677	5,287	5,550	5,731	5,967	6,195	6,423
Llano	5,520	7,398	7,461	7,596	7,953	7,936	7,919
Matagorda	254,144	185,509	194,879	198,664	202,820	213,964	224,910
Medina	164,600	119,240	114,839	115,193	115,699	115,990	116,281
Refugio	1,867	2,143	2,142	2,126	2,142	2,137	2,132
San Saba	8,213	13,129	12,999	12,870	12,787	12,680	12,573
Travis	131,280	202,395	235,824	272,414	315,573	343,855	372,137
Uvalde	147,897	140,334	131,412	132,341	133,648	135,116	136,584
Victoria	49,843	94,934	106,008	123,778	134,850	147,704	160,558
Wharton	338,697	295,112	283,358	271,921	261,232	252,150	239,891
Williamson	28,189	52,922	69,234	85,560	114,823	133,993	153,163
Wilson	19,586	16,438	17,172	17,456	17,861	18,189	18,517
Zavala	115,407	85,799	<u>71,172</u>	66,584	<u>67,203</u>	67,933	68,663
_Total	2,177,005	2,278,077	2,381,177	2,532,828	2,739,262	2,916,210	3,089,709

¹As reported to and estimated by Texas Water Development Board.

²Texas Water Development Board, High Case for 1990 through 2040, with extrapolation to 2050 at same rate as projected for 2030-2040, April 1992, Austin, Texas.

√ 1990 USE

- WATER DEMAND PROJECTIONS

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA TOTAL WATER DEMAND PROJECTIONS 33 COUNTY AREA

HDR Engineering, Inc.

FIGURE 2 - 12

2.2.2 Water Demand Projections for the Edwards Aquifer Area

The TWDB high case, with conservation, water demand projections are shown in tabular form for municipal water demand for cities and counties of the Edwards Aquifer area, as defined in Senate Bill 1477, 1993 Texas Legislature (Figure 2-1). The projections are also shown in tabular and graphic form for counties of the Edwards Aquifer area for: (1) Municipal, (2) Industrial, (3) Steam-Electric Power, (4) Irrigation, (5) Mining, (6) Livestock, and (7) Total Water Demand. Only the municipal water demand projections are available at the city level.

2.2.2.1 Municipal Water Demand Projections for Cities and Counties of the Edwards Aquifer Area

In 1990, reported municipal water use in cities and rural areas of the Edwards Aquifer area was 259,330 acft (Table 2-11 and Figure 2-13). Projected high case municipal water demand for the area, with conservation, is 384,727 acft in 2000, 504,003 acft in 2020, and 765,017 acft in 2050 (Table 2-11 and Figure 2-13). The projections for individual cities can be seen in Table 2-11.

Table 2-11
Municipal Water Demand Projections for Cities and Counties
Edwards Aquifer Area
West Central Area -- Trans-Texas Water Program

County/City	1990¹ Use	Projections in Acre-Feet ²					
		2000	2010	2020	2030	2040	2050
ATASCOSA COUNTY							
Lytle	336	446	508	554	613	670	727
BEXAR COUNTY							
Alamo Heights	2,210	2,883	2,900	2,921	3,024	3,141	3,258
Balcones Heights	538	787	827	872	942	1,017	1,092
Castle Hills	1,311	1,653	1,712	1,763	1,833	1,868	1,903
Converse	1,213	2,258	3,139	4,019	5,244	6,468	7,692
Fairoaks Ranch	617	1,087	1,383	1,712	2,174	2,634	3,094
Fort Sam Houston	4,340	3,508	3,374	3,253	3,199	3,159	3,119
Helotes	310	440	528	629	776	864	952
Hill Country Village	460	474	549	637	755	904	1,053
Hollywood Park	1,714	1,823	2,067	2,351	2,743	3,101	3,459
Kirby	1,080	1,920	2,153	2,427	2,868	3,291	3,714
Lackland AFB	3,300	3,677	3,551	3,426	3,394	3,363	3,332
Leon Valley	1,146	1,525	1,535	1,549	1,611	1,697	1,783
Live Oak	1,221	2,473	2,842	3,252	3,882	4,536	5,190
Olmos Park	385	577	602	627	673	725	777
Randolph AFB	1,494	1,635	1,582	1,528	1,514	1,501	1,488
San Antonio	166,616	247,067	282,259	320,833	380,152	437,465	494,778
Schertz (Part)	60	124	140	157	182	205	228
Shavano Park	840	879	970	1,029	1,088	1,171	1,254
Somerset	215	178	177	172	167	163	159
St. Hedwig	187	273	336	405	507	609	711
Terrell Hills	817	1,101	1,106	1,131	1,177	1,201	1,225
Universal City	2,323	3,405	3,910	4,473	5,361	6,218	7,075
Windcrest	1,329	1,503	1,523	1,548	1,608	1,669	1,730
Rural San Antonio	31,000	50,535	61,489	73,919	92,057	109,663	127,269
Lytle (Part)	1	1	1	1	1	1	1
Rural Nueces	330	1,015	_1,240	1,495	1,867	2,228	2,589
Total - Bexar Co.	225,057	332,801	381,895	436,129	518,799	598,862	678,925

(continued)

Table 2-11

Municipal Water Demand Projections for Cities and Counties

Edwards Aquifer Area

West Central Area -- Trans-Texas Water Program **Projections in Acre-Feet**² 1990^{1} County/City 2000 2010 2020 2030 2040 2050 Use **MEDINA COUNTY** 904 Castroville 779 840 950 1,004 1,031 1,058 Lacoste 229 330 395 437 483 511 539 Other 258 425 467 483 515 535 555 Devine 630 826 854 868 895 906 917 Hondo 1,456 2,101 2,263 2,380 2,524 2,581 2,638 Lytle (Part) 73 79 79 78 80 82 84 Natalia 294 265 282 294 309 315 321 Rural Nueces 1,535 2,122 2,316 2,392 2,538 2,630 2,722 Total - Medina Co. 5,254 6,988 7,560 7,882 8,348 8,591 8,834 **UVALDE COUNTY** Sabinal 381 499 568 623 707 792 877 Uvalde 3,915 5,802 6,710 7,444 8,496 9,674 10,852 Rural Nueces 982 <u>1,155</u> 1,111 1,071 1,035 995 955 Total - Uvalde Co. 5,278 7,456 8,389 9,138 10,238 11,461 12,684 COMAL COUNTY 650 800 941 Garden Ridge 361 1,103 1,233 1,363 9,692 New Braunfels 6,199 11,376 12,693 14,509 15,376 16,243 502 725 Rural Guadalupe 210 612 845 977 1,107 19 42 49 Schertz (Part) 36 56 65 74 223 265 308 355_ 402 Rural San Antonio 172 184 6,961 13,053 14,673 18,006 Total - Comal Co. (Part) 11,064 16,821 19,189 HAYS COUNTY Kyle 326 474 509 537 569 577 585 San Marcos 6,321 9,357 11,453 13,232 14,939 15,819 16,699 Rural Guadalupe *773* 1,406 1,988 2,332 2,716 2,913 3,109 Total - Hays Co. (Part) 7,420 11,237 13,870 16,101 18,224 19,309 20,393

(continued)

Table 2-11
Municipal Water Demand Projections for Cities and Counties
Edwards Aquifer Area

West Central Area -- Trans-Texas Water Program **Projections in Acre-Feet**² 1990¹ County/City 2000 2010 2020 2030 2040 2050 Use **GUADALUPE COUNTY** New Braunfels (Part) 55 81 93 103 127 133 139 7,504 Rural Guadalupe 2,649 5,696 8,447 9,176 9,925 10.673 Cibolo 178 414 545 624 691 758 825 1,454 2,804 3,033 3,595 3,854 Schertz (Part) 3,218 4,113 Rural San Antonio 819 <u>1,554</u> 2,048 2,305 2,504 2,708 2,912 10,549 Total-Guadalupe Co. (Part) 5,155 13,223 14,697 16,093 17,378 18,662 CALDWELL COUNTY 1,816 1,771 1,983 2,196 Lockhart 2,380 2,527 2,674 Luling 1,207 1,239 1,208 1,175 1,166 1,159 1,152 Rural Guadalupe <u>846</u> <u>1,176</u> 1,312 <u>1,458</u> <u>1,588</u> 1,682 1,777 Total-Caldwell Co. (Part) 3,869 4,186 4,503 <u>4,829</u> <u>5,134</u> <u>5,603</u> <u>5,368</u>

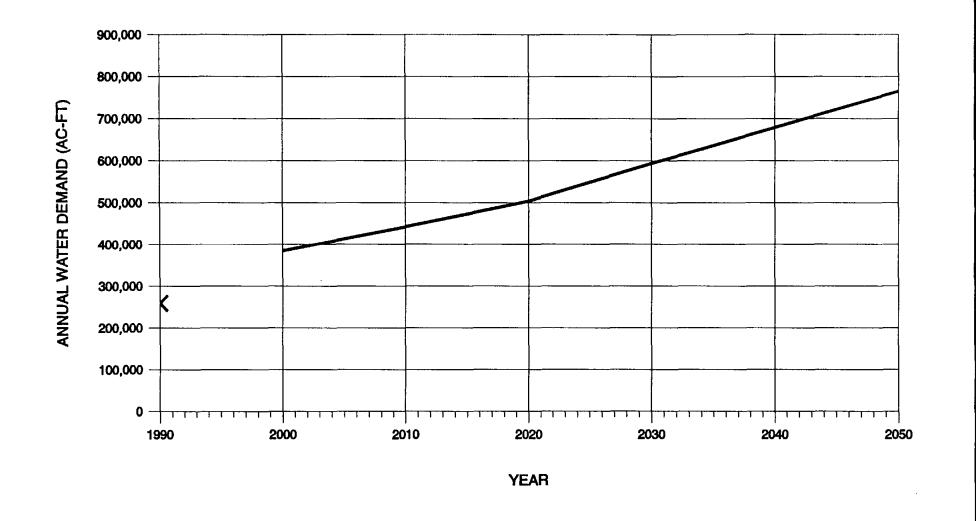
¹As reported to and estimated by the Texas Water Development Board.

259,330

TOTAL

443,001

504,033


594,270

679,645

765,017

384,727

²Texas Water Development Board, High Case for 1990 through 2040, with extrapolation to 2050 at same rate as projected for 2030-2040, April 1992, Austin, Texas.

〈 1990 USE

--- WATER DEMAND PROJECTIONS

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA MUNICIPAL WATER DEMAND PROJECTIONS COUNTIES OF THE EDWARDS AQUIFER AREA

HDR Engineering, Inc.

2.2.2.2 Industrial Water Demand Projections for Counties of the Edwards Aquifer Area

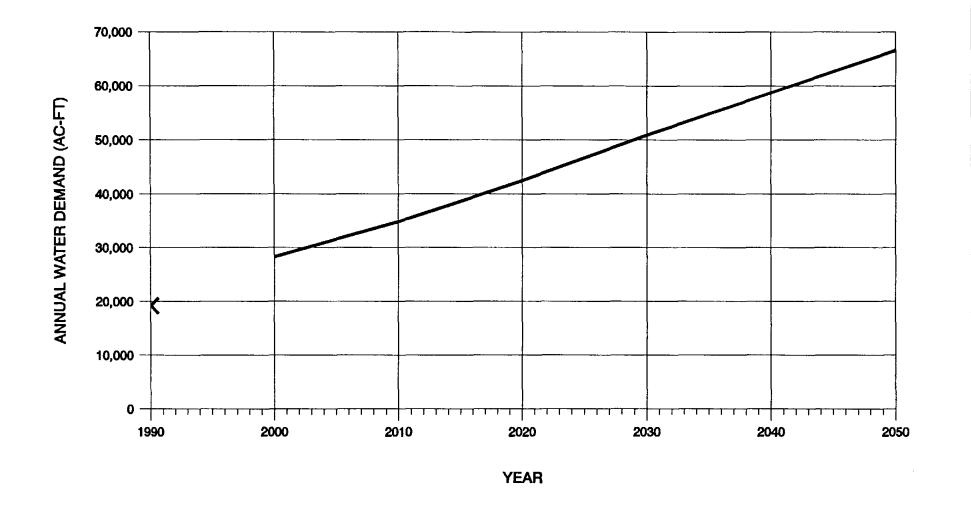
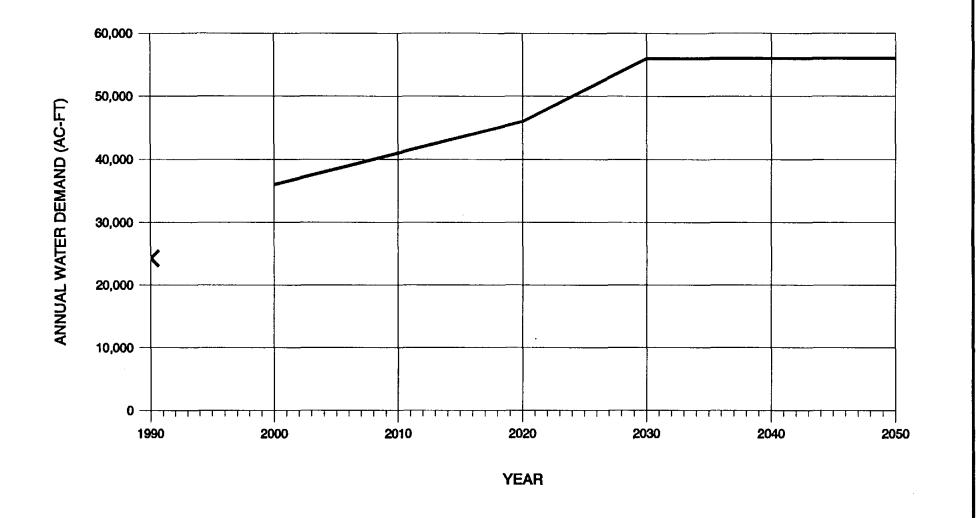

Industrial water use in the Edwards Aquifer area in 1990 was reported at 19,264 acft and is projected to increase to 28,263 acft in 2000, 42,494 acft in 2020, and 66,520 acft in 2050 (Table 2-12 and Figure 2-14). Industrial water use is located primarily in Bexar, Comal, Hays, and Guadalupe counties. However, there is some industrial water use in all the other Edwards Aquifer area counties, except Caldwell. It should be noted that a part of the industrial water use is for electric power generation for use within manufacturing plants (primarily cement plants) located within the area.

Table 2-12
Industrial Water Demand Projections for the Edwards Aquifer Area
West Central Area -- Trans-Texas Water Program

	1	Projections in Acre-Feet ²							
County	1990¹ Use	2000	2010	2020	2030	2040	2050		
BEXAR	14,049	19,567	24,399	30,031	36,441	42,617	48,793		
MEDINA	286	120	150	182	221	266	311		
UVALDE	557	435	526	635	765	920	1,075		
COMAL ³	3,248	4,745	5,647	6,674	7,562	8,181	8,800		
HAYS³	293	2,492	3,093	3,815	4,611	5,209	5,807		
GUADALUPE ³	830	903	1,025	1,157	1,339	1,538	1,733		
CALDWELL ³	0	0	0	0	0	0	0		
Total	19,263	28,262	34,840	42,494	50,939	58,731	66,519		

¹As reported to the Texas Water Development Board.

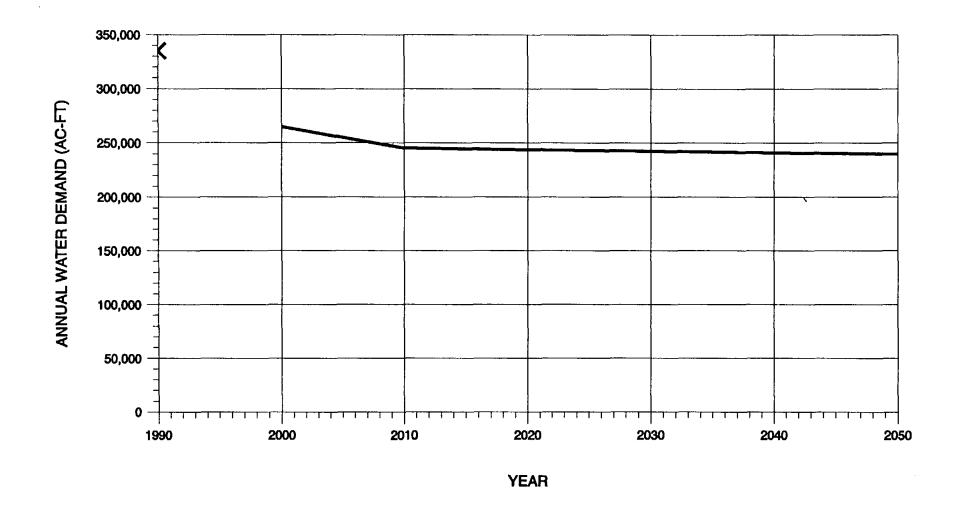
²Texas Water Development Board, High Case for 1990 through 2040, with extrapolation to 2050 at same rate as projected for 2030-2040, April 1992, Austin, Texas. ³Only a portion of these counties are located within the Edwards Aquifer area.


〈 1990 USE

- WATER DEMAND PROJECTIONS

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA INDUSTRIAL WATER DEMAND PROJECTIONS COUNTIES OF THE EDWARDS AQUIFER AREA

HDR Engineering, Inc.


〈 1990 USE

--- WATER DEMAND PROJECTIONS

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA STEAM-ELECTRIC POWER WATER DEMAND PROJECTIONS COUNTIES OF THE EDWARDS AQUIFER AREA

HDR Engineering, Inc.

< 1990 USE

--- WATER DEMAND PROJECTIONS

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA IRRIGATION WATER DEMAND PROJECTIONS COUNTIES OF THE EDWARDS AQUIFER AREA

HDR Engineering, Inc.

2.2.2.3 Steam-Electric Power Water Demand Projections for Counties of the Edwards Aquifer Area

The only steam-electric power generation within the Edwards Aquifer area for production of electricity for distribution through electric utilities to private and public customers is located in Bexar County. In 1990, reported water use for steam-electric power generation was 24,263 acft. The high case projected demands, with conservation, are 36,000 acft in 2000, 46,000 acft in 2020, and 56,000 acft in 2050 (Table 2-13 and Figure 2-15). The projected demands level off after 2030 since at this time there are no plans for the addition of electric power generating capacity within the area. This could change however, as growth in population occurs. It should be noted, however, that the Edwards Aquifer area is also served electricity from hydroelectric plants located on the Guadalupe River and from power plants that are located outside the area. Water demands for plants located outside the area are included in neighboring area water demand projections.

Table 2-13 Steam-electric Power Water Demand Projections for the Edwards Aquifer Area West Central Area -- Trans-Texas Water Program

			P	rojections in A	.cre-Feet²		
County	1990¹ Use	2000	2010	2020	2030	2040	2050
BEXAR	24,263	36,000	41,000	46,000	56,000	56,000	56,000
MEDINA	0	0	0	0	0	0	0
UVALDE	0	0	0	0	0	0	0
COMAL ³	0	0	0	0	0	0	0
HAYS³	0	0	0	0	0	0	0
GUADALUPE³	0	0	0	0	0	0	0
, CALDWELL ³	0	0	0	0	0	0	0
Region	24,263	36,000	41,000	46,000	56,000	56,000	56,000

¹As reported to and estimated by the Texas Water Development Board.

²Texas Water Development Board, High Case for 1990 through 2040, with extrapolation to 2050 at same rate as projected for 2030-2040, April 1992, Austin, Texas.

³Only a portion of these counties are located in the Edwards Aquifer area.

2.2.2.4 Irrigation Water Demand Projections for Counties of the Edwards Aquifer Area

Irrigation within the Edwards Aquifer area is located in Bexar, Medina, and Uvalde counties. The sources of irrigation water are the Edwards Aquifer and the Medina and Nueces Rivers.

Estimated irrigation water use in the area in 1990 was 336,061 acft, with high case projections showing a reduction to 265,000 acft in 2000, 243,800 acft in 2020, and 239,880 acft in 2050 (Table 2-14 and Figure 2-16). The projections are declining due to improved irrigation efficiency and reduced acreages due to poor economic conditions expected for agricultural irrigation over the long run.

Table 2-14
Irrigation Water Demand Projections for the Edwards Aquifer Area
West Central Area -- Trans-Texas Water Program

		Projections in Acre-Feet ²								
County	1990¹ Use	2000	2010	2020	2030	2040	2050			
BEXAR	37,012	25,000	20,240	18,880	17,520	16,200	14,880			
MEDINA	157,380	110,000	105,000	105,000	105,000	105,000	105,000			
UVALDE	140,669	130,000	120,000	120,000	120,000	120,000	120,000			
COMAL ³	0	0	0	0	0	0	0			
HAYS³	0	0	0	0	0	0	0			
GUADALUPE ³	0	0	0	0	0	0	0			
CALDWELL ³	0	0	0	0	0	0	0			
Total	335,061	265,000	245,240	243,880	242,520	241,200	239,880			

¹As estimated by the Texas Water Development Board from irrigation surveys.

²Texas Water Development Board, High Case for 1990 through 2040, with extrapolation to 2050 at same rate as projected for 2030-2040, April 1992, Austin, Texas. Note: Projections are for on-farm demand and are low to the extent that canal losses for surface water sources are not included. In the case of Medina County, canal losses could be as much as 8,000 acft/yr.

³Only the portion of these counties that are located within the Edwards Aquifer area.

2.2.2.5 Mining Water Demand Projections for Counties of the Edwards Aquifer Area

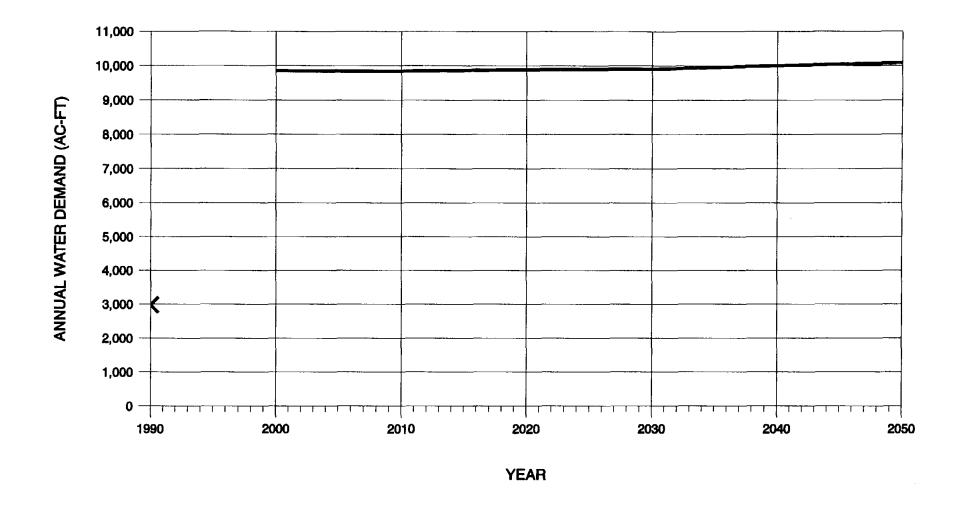

The mining activities of the Edwards Aquifer area are primarily for quarrying of stone, clay, sand, and gravel materials. Reported water use within the area in 1990 was 2,979 acft, with projections of demand for these purposes being 9,852 acft in 2000, 9,892 acft in 2020, and 10,089 acft in 2050 (Table 2-15 and Figure 2-17). The largest concentrations of mining activities are projected for Bexar and Comal counties. Since the mining water demand is for stone and building materials, use in 1990 was lower than normal due to poor economic conditions in the construction industries. As the economy picks up, these industries will return to a higher level of employment and production and will use more water. The projections for 2000 and beyond reflect this.

Table 2-15
Mining Water Demand Projections for the Edwards Aquifer Area
West Central Area -- Trans-Texas Water Program

	1						
County	1990¹ Use	2000	2010	2020	2030	2040	2050
BEXAR	1,591	4,691	4,936	5,201	5,406	5,645	5,884
MEDINA	120	131	128	128	129	132	135
UVALDE	399	574	628	699	776	866	956
COMAL ³	851	4,319	4,017	3,736	3,475	3,231	2,987
HAYS³	0	9	6	3	1	0	0
GUADALUPE ³	5	117	118	120	121	124	127
CALDWELL ³	13	11	9	5	2	0	0
Total	2,979	9,852	9,842	9,892	9,910	9,998	10,089

¹As reported to the Texas Water Development Board.

²Texas Water Development Board, High Case for 1990 through 2040, with extrapolation to 2050 at same rate as projected for 2030-2040, April 1992, Austin, Texas. ³Only a portion of these counties are located within the Edwards Aquifer area.

1990 USE

--- WATER DEMAND PROJECTIONS

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA MINING WATER DEMAND PROJECTIONS COUNTIES OF THE EDWARDS AQUIFER AREA

HDR Engineering, Inc.

2.2.2.6 Livestock Water Demand Projections for Counties of the Edwards Aquifer Area

Livestock production, including beef, goats, horses for pleasure, dairy and poultry is done throughout the Edwards Aquifer area. Estimated water use for livestock purposes within the area in 1990 was 5,180 acft, and is projected to increase to its maximum level of 6,976 acre feet annually in 2000 and for planning purposes is held constant at that level to 2050 (Table 2-16 and Figure 2-18).

Table 2-16
Livestock Water Demand Projections for the Edwards Aquifer Area
West Central Area -- Trans-Texas Water Program

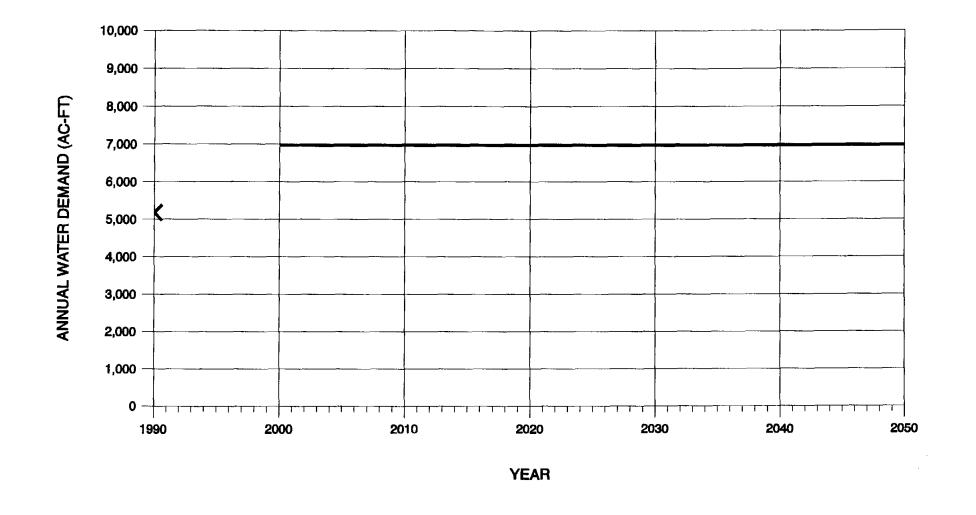
County	1990¹ Use	2000	2010	2020	2030	2040	2050
BEXAR	1,376	1,245	1,245	1,245	1,245	1,245	1,245
MEDINA	1,560	2,001	2,001	2,001	2,001	2,001	2,001
UVALDE	994	1,869	1,869	1,869	1,869	1,869	1,869
COMAL ³	158	234	234	234	234	234	234
HAYS³	169	194	194	194	194	194	194
GUADALUPE ³	515	725	725	725	725	725	725
CALDWELL ³	_408	<u>_708</u>	<u>_708</u>	708	<u>_708</u>	<u>_708</u>	<u>708</u>
Total	5,180	6,976	6,976	6,976	6,976	6,976	6,976

¹As reported to the Texas Water Development Board.

²Texas Water Development Board, High Case for 1990 through 2040, with extrapolation to 2050 at same rate as projected for 2030-2040, April 1992, Austin, Texas. ³Only a portion of these counties are located within the Edwards Aquifer area.

2.2.2.7 Total Water Demand Projections for Counties of the Edwards Aquifer Area

The sum of water used for all purposes within the Edwards Aquifer area in 1990 was 646,076 acft. TWDB projected total water demands for the area, with conservation, in 2000 is 730,808 acft, in 2020 is 853,245 acft, and in 2050 is 1,144,481 acft (Table 2-17 and Figure 2-19).


Table 2-17
Total Water Demand Projections for the Edwards Aquifer Area
West Central Area -- Trans-Texas Water Program

		Projections in Acre-Feet ²							
County	1990¹ Use	2000	2010	2020	2030	2040	2050		
ATASCOSA	336	446	508	554	613	670	727		
BEXAR	303,348	419,304	473,415	537,486	635,411	720,569	805,727		
MEDINA	164,600	119,240	114,839	115,193	115,699	115,990	116,281		
UVALDE	147,897	140,334	131,412	132,341	132,648	135,116	136,584		
COMAL ³	11,218	20,362	22,951	25,317	28,092	29,652	31,210		
HAYS³	7,882	13,923	17,163	20,113	23,030	24,712	26,394		
GUADALUPE ³	6,505	12,294	15,091	16,699	18,278	19,765	21,108		
CALDWELL ³	_4,290	4,905	_5,220	_5,542	_5,844	<u>6,076</u>	6,311		
TOTAL	646,076	730,808	780,899	853,245	960,615	1,052,550	1,144,481		

¹As reported to and estimated by the Texas Water Development Board.

²Texas Water Development Board, High Case for 1990 through 2040, with extrapolation to 2050 at same rate as projected for 2030-2040, April 1992, Austin, Texas.

³Only a portion of these counties are located within the Edwards Aquifer area.

1990 USE

--- WATER DEMAND PROJECTIONS

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA LIVESTOCK WATER DEMAND PROJECTIONS COUNTIES OF THE EDWARDS AQUIFER AREA

HDR Engineering, Inc.

2.2.3 Water Demand Projections for River Basins and Adjacent Areas

In Section 2.1.3, Table 2-3, the population projections for the 33-county study area were summarized and tabulated for each of the Nueces, San Antonio, Guadalupe, and Lower Colorado Basins. Since parts of some study area counties are located in areas adjacent to river basin boundaries, the adjacent areas were grouped with the appropriate study area river basin in order to include an appropriate portion of the water needs of these adjacent areas. In the following sections, the water demand projections of the 33 counties of the study area are grouped and presented for the respective study area river basins and their associated or adjacent areas (see Figure 2-1 for basin boundaries). In this way, the projected demands upon the individual basins can be compared to the respective basins' water supplies for purposes of calculating shortages and/or surpluses for the basins.

2.2.3.1 Municipal Water Demand Projections for River Basins and Adjacent Areas

In 1990, municipal water use of the 33-county study area was 498,128 acft, of which 20,722 acft (4 percent) was located in the Nueces River Basin, 239,393 acft (48 percent) was used within the San Antonio Basin, 52,958 acft (11 percent) was used within the Guadalupe Basin, 138,203 acft (28 percent) was used within the Lower Colorado River Authority's service area within the Colorado Basin, and 46,852 acft (9 percent) was used in all other coastal and inland areas of the study area that are adjacent to the main river basin boundaries (Table 2-18, column one). Projected municipal water demands (high case with conservation) at year 2050 for the 33-county study area are 1,420,211 acft (Table 2-18). Projected municipal water demands (high case with conservation) at year 2050 for the San Antonio Basin are 708,223 acft (50 percent) (Figure 2-20). Projected municipal water demands for the area within the boundaries of the Lower Colorado Basin are 375,671 acft (26 percent). Within the Guadalupe and Nueces River Basins projected year 2050 demands total 120,219 acft (8 percent) and 40,777 acft (3 percent) respectively. Projected water use in all other coastal and inland areas of the study area total 175,321 acft (12 percent).

Table 2-18
Municipal Water Demand Projections for River Basins and Adjacent Areas
West Central Area -- Trans-Texas Water Programs

				Projections	in Acre-Fe	eet ³	
BASIN ¹	1990² Use	2000	2010	2020	2030	2040	20
NUECES	-						
Total In-Basin	32,450	41,412	44,834	47,205	50,815	54,241	57
Study Area Subtotal⁴	20,722	27,356	30,012	31,995	34,995	<u>37,886</u>	40
Remainder of Basin	11,728	14,056	14,822	15,210	15,820	16,355	16
SAN ANTONIO							
Total In-Basin	239,393	352,963	404,974	460,729	545,243	626,733	708
Adjacent Area ⁵	59	80	83	84	90	96	102
Study Area Subtotal	239,452	353,043	405,057	460,813	545,333	626,829	708
GUADALUPE							į
Total In-Basin	52,958	76,247	88,135	97,199	106,717	113,468	120
Adjacent Area ⁶	<u>8,165</u>	<u>9,458</u>	<u>10,342</u>	<u>10,922</u>	<u>11,590</u>	12,126	12
Study Area Subtotal	61,123	85,705	98,477	108,121	118,307	125,594	132
LOWER COLORADO							
Total In-Basin	138,203	206,215	241,246	278,171	322,217	348,944	375
Adjacent Coastal Area ⁷	10,904	_14,231	14,842	15,190	<u>16,091</u>	16,866	17
Study Area Subtotal	149,107	220,446	256,088	293,361	338,308	365,810	393
Adjacent Inland Area8	27,724	<u>51,358</u>	66,612	81,708	109,000	126,958	144
Study Area Subtotal	176,831	271,804	322,700	375,069	447,308	492,768	538
RIVER BASIN TOTALS	463,004	676,837	779,189	883,304	1,024,992	1,143,386	1,261
STUDY AREA TOTALS ¹⁰	498,128	737,908	856,246	975,998	1,145,943	1,283,077	1,420

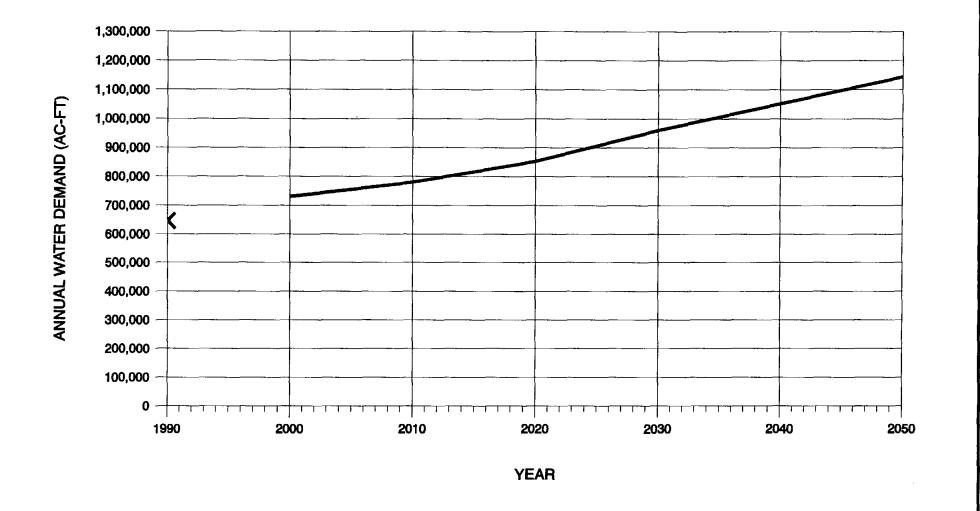
¹Study Area

²As reported to and/or estimated by the Texas Water Development Board.

Texas Water Development Board, High Case for 1990 through 2040, with extrapolation to 2050 at same rate as projected for 2030-2040, April 19 Austin, Texas.

^{*}Counties of Nueces Basin included in study area are: Uvalde, Medina, Zavala, Frio, Atascosa, and parts of Bexar, Wilson and Karnes.

⁵Part of Goliad County located in adjacent San Antonio-Nueces Coastal Basin.

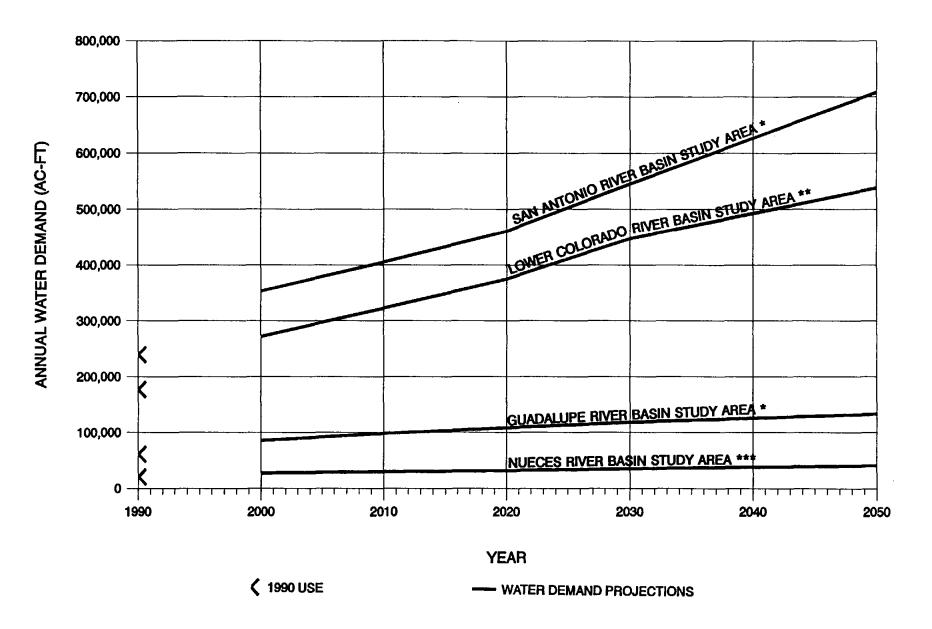

Part of Victoria County located in adjacent Lavaca-Guadalupe Coastal Basin, plus all of Refugio and Calhoun counties.

⁷Parts of Colorado, Wharton, and Matagorda counties located in adjacent coastal basins.

Parts of Fayette, Lee, Williamson, and Burnet counties located in adjacent basins.

⁹Total for counties and parts of counties located within basin boundaries.

¹⁰Total for 33-county study area.


〈 1990 USE

- WATER DEMAND PROJECTIONS

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA TOTAL WATER DEMAND PROJECTIONS COUNTIES OF THE EDWARDS AQUIFER AREA

HDR Engineering, Inc.

^{*} In basin plus adjacent areas that obtain water from the basin.

*** Includes only study area counties of the Nueces Basin.

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA MUNICIPAL WATER DEMAND PROJECTIONS RIVER BASIN STUDY AREAS

HDR Engineering, Inc.

^{**} in basin plus adjacent coastal areas that obtain water from the Colorado Basin. Does not include parts of study area counties located in the Brazos Basin.

2.2.3.2 Industrial Water Demand Projections for River Basins and Adjacent Areas

In 1990, industrial water use was 83,307 acft in the 33-county study area, of which 58,467 acft (70 percent) was located within the boundaries of the Nueces, San Antonio, Guadalupe and Lower Colorado Basins (Table 2-19, column one). The high case, with conservation projections of industrial water demand for the period 2000 through 2050, are shown in Table 2-19 and Figure 2-21 for basins and areas adjacent to each basin for the 33-county study area.

Table 2-19
Industrial Water Demand Projections for River Basins and Adjacent Areas
West Central Area -- Trans-Texas Water Programs

	10002		P	Projections	in Acre-Fe	n Acre-Feet ³			
BASIN ¹	1990 ² Use	2000	2010	2020	2030	2040	20		
NUECES									
Total In-Basin9	4,306	4,263	4,980	5,875	6,911	8,027	9,		
Study Area Subtotal4	2,149	<u>1,768</u>	2,170	2,652	3,229	<u>3,926</u>	4,		
Remainder of Basin	2,157	2,495	2,810	3,223	3,682	4,101	4,		
SAN ANTONIO									
Total In-Basin9	14,323	19,794	24,695	30,405	36,904	43,149	49,		
Adjacent Area ⁵	0	0	0	0	0	0	0		
Study Area Subtotal	14,323	19,794	24,695	30,405	36,904	43,149	49,		
GUADALUPE									
Total In-Basin9	26,263	46,352	59,038	73,113	85,326	98,987	112,		
Adjacent Area ⁶	24,539	73,297	83,156	<u>94,154</u>	103,934	114,509	125,		
Study Area Subtotal	50,802	119,649	142,194	167,267	189,260	213,496	237,		
LOWER COLORADO									
Total In-Basin ⁹	13,575	25,526	33,454	41,841	51,400	62,715	74,		
Adjacent Coastal Area ⁷	2,082	5,022	<u>11,666</u>	22,137	<u>27,651</u>	38,052	_48,		
Subtotal	15,657	30,548	45,120	63,978	79,051	100,767	122,		
Adjacent Inland Area8	376	638	<u>836</u>	1,044	1,297	1,509	1,		
Study Area Subtotal	16,033	31,186	45,956	65,022	80,348	102,276	124,		
RIVER BASIN TOTALS'	58,467	95,935	122,167	151,234	180,541	212,878	245,		
STUDY AREA TOTALS ¹⁰	83,307	172,397	215,015	265,346	309,741	362,847	415,		

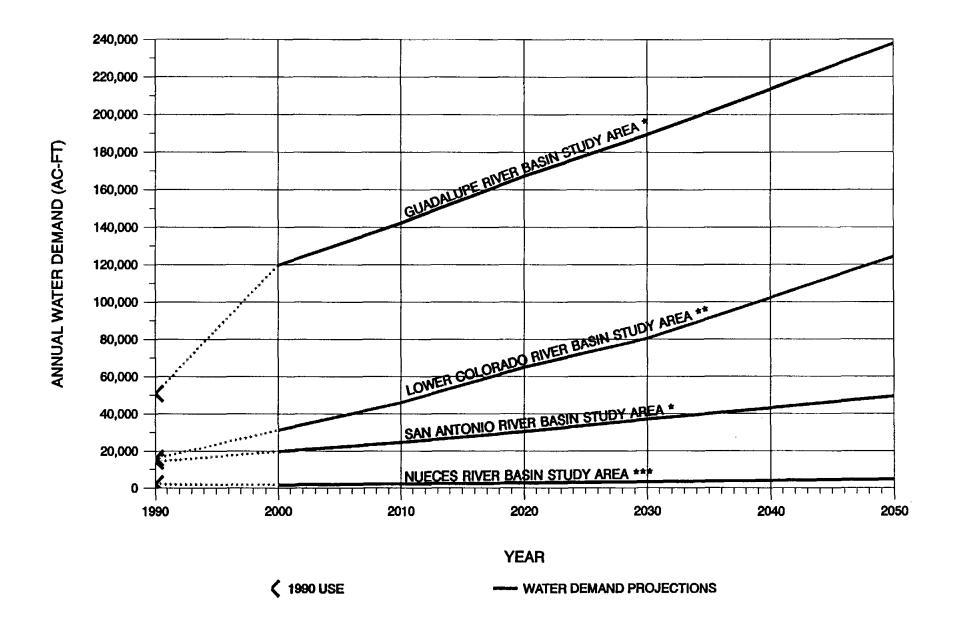
¹Study Area

²As reported to and/or estimated by the Texas Water Development Board.

Texas Water Development Board, High Case for 1990 through 2040, with extrapolation to 2050 at same rate as projected for 2030-2040, April 19 Austin, Texas.

⁴Counties of Nueces Basin included in study area are: Uvalde, Medina, Zavala, Frio, Atascosa, and parts of Bexar, Wilson and Karnes.

⁵Part of Goliad County located in adjacent San Antonio-Nueces Coastal Basin.


⁶Part of Victoria County located in adjacent Lavaca-Guadalupe Coastal Basin, plus all of Refugio and Calhoun counties.

⁷Parts of Colorado, Wharton, and Matagorda counties located in adjacent coastal basins.

Parts of Fayette, Lee, Williamson, and Burnet counties located in adjacent basins.

Total for counties and parts of counties located within basin boundaries.

¹⁰Total for 33-county study area.

^{*} In basin plus adjacent areas that obtain water from the basin.

Includes only study area countles of the Nueces Basin.

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA INDUSTRIAL WATER DEMAND PROJECTIONS RIVER BASIN STUDY AREAS

HDR Engineering, Inc. FIGURE 2 - 21

^{**} In basin plus adjacent coastal areas that obtain water from the Colorado Basin. Does not include parts of study area counties located in the Brazos Basin.

2.2.3.3 Steam-Electric Power Water Demand Projections for River Basins and Adjacent Areas

In 1990, 98,755 acft of water was used (consumed through evaporation) by steamelectric power plants located in the 33-county study area (Table 2-20). The distribution of use among river basins, together with projections of quantities (high case, with conservation) needed for electric power generation in the 2000 - 2050 projection period are shown in Table 2-20 and Figure 2-22. Table 2-20
Steam-Electric Water Demand Projections for River Basins and Adjacent Areas
West Central Area -- Trans-Texas Water Program

		Projections in Acre-Feet ³						
BASIN ¹	1990 ² Use	2000	2010	2020	2030	2040	2050	
NUECES							<u>.</u>	
Total In-Basin ⁹	6,007	17,000	17,000	22,000	27,000	32,000	37,000	
Study Area Subtotal ⁴	3,660	14,000	14,000	19,000	24,000	29,000	34,000	
Remainder of Basin	2,347	3,000	3,000	3,000	3,000	3,000	3,000	
SAN ANTONIO								
Total In-Basin ⁹	24,263	36,000	41,000	46,000	56,000	56,000	56,000	
Adjacent Area ⁵	0	0	0	0	0	0	0	
Study Area Subtotal	24,263	36,000	41,000	46,000	56,000	56,000	56,000	
GUADALUPE								
Total In-Basin ⁹	13,052	42,000	42,000	47,000	47,000	47,000	47,000	
Adjacent Area ⁶	<u>62</u>	200	200	200	200	200	200	
Study Area Subtotal	13,114	42,200	42,200	47,200	47,200	47,200	47,200	
LOWER COLORADO								
Total In-Basin ⁹	57,718*	43,000	53,000	58,000	63,000	68,000	73,000	
Adjacent Coastal Area ⁷	0	26,000	26,000	26,000	_26,000	26,000	26,000	
Subtotal	57,718	69,000	79,000	84,000	89,000	94,000	99,000	
Adjacent Inland Area8	0	0	0	0	0	0	0	
Study Area Subtotal	57,718	69,000	79,000	84,000	89,000	94,000	99,000	
RIVER BASIN TOTALS ⁹	101,040°	138,000	153,000	173,000	193,000	203,000	213,000	
STUDY AREA TOTALS ¹⁰	98,755	161,200	176,200	196,200	216,200	226,200	236,200	

¹Study Area

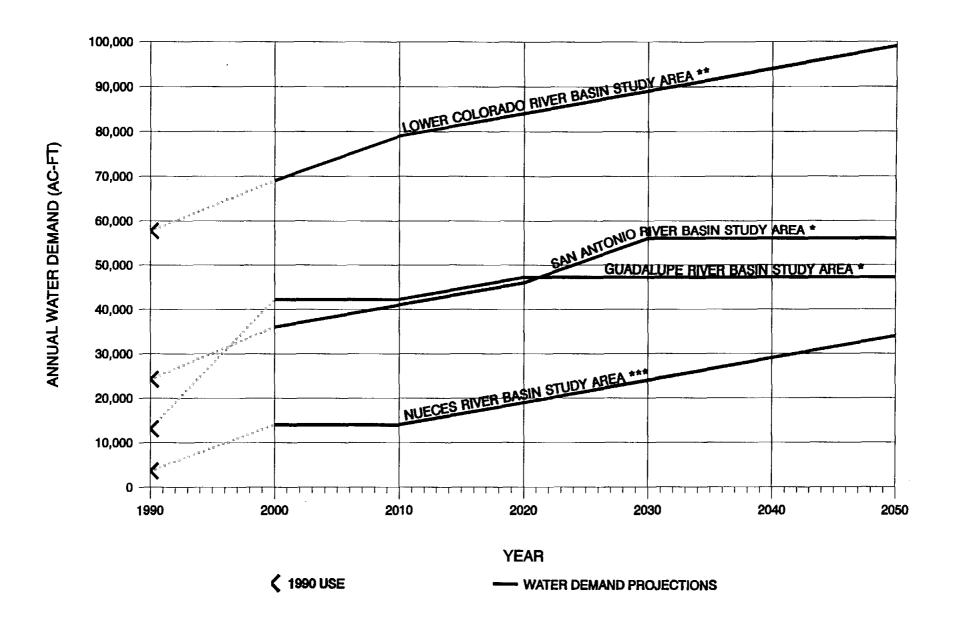
²As reported to and/or estimated by the Texas Water Development Board.

Texas Water Development Board, High Case for 1990 through 2040, with extrapolation to 2050 at same rate as projected for 2030-2040, April 1992, Austin, Texas.

⁴Counties of Nueces Basin included in study area are: Uvalde, Medina, Zavala, Frio, Atascosa, and parts of Bexar, Wilson and Karnes.

⁵Part of Goliad County located in adjacent San Antonio-Nueces Coastal Basin.

Part of Victoria County located in adjacent Lavaca-Guadalupe Coastal Basin, plus all of Refugio and Calhoun counties.


⁷Parts of Colorado, Wharton, and Matagorda counties located in adjacent coastal basins.

Parts of Fayette, Lee, Williamson, and Burnet counties located in adjacent basins.

⁹Total for counties and parts of counties located within basin boundaries.

¹⁰Total for 33-county study area.

Includes quantity from Lower Colorado that was used in neighboring basin.

^{*} in basin plus adjacent areas that obtain water from the basin.

*** Includes only study area countles of the Nueces Basin.

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA STEAM-ELECTRIC POWER WATER DEMAND PROJECTIONS RIVER BASIN STUDY AREAS

HDR Engineering, Inc. FIGURE 2 - 22

^{**} in basin plus adjacent coastal areas that obtain water from the Colorado Basin. Does not include parts of study area counties located in the Brazos Basin.

2.2.3.4. Irrigation Water Demand Projections River Basins and Adjacent Areas

Irrigation water use in 1990 was estimated at 1,411,579 acft for the 33-county study area (Table 2-21). Of this total, 521,282 acft (37 percent) were used in the Nueces Basin study area counties (Uvalde, Medina, Atascosa, Zavala, Frio, and parts of Karnes, Wilson, and Bexar counties), 72,393 acft (5 percent) were used in the San Antonio Basin, 58,400 acft (4 percent) were used in the Guadalupe and adjacent areas, and 759,504 acft (54 percent) were used in the Lower Colorado and adjacent areas (Table 2-21). The TWDB high case, with conservation, irrigation water demand projection in 2050 is 918,400 acft or 35 percent less than was used in 1990. The 2050 projections show 378,272 acft (41 percent) of irrigation water demand in the study area counties of the Nueces Basin, 38,298 acft (4 percent) in the San Antonio Basin and adjacent areas, 46,032 acft (5 percent) in the Guadalupe Basin and adjacent areas and 455,798 acft (50 percent) in the Lower Colorado Basin and adjacent areas (Table 2-21). The projections for the planning period 2000 through 2050 are shown in Table 2-21 and Figure 2-23 for each river basin and adjacent areas of the 33-county study area. The downward trend in irrigation water demand projections is due to both the projection of improved irrigation efficiency and declining irrigation acreages that are expected to result from poor economic conditions for irrigation agriculture.

Table 2-21
Irrigation Water Demand Projections for River Basins and Adjacent Areas
West Central Area -- Trans-Texas Water Program

		Projections in Acre-Feet ³						
BASIN ¹	1990 ² Use	2000	2010	2020	2030	2040	2050	
NUECES		-						
Total In-Basin ⁹	551,697	469,617	425,948	413,371	408,761	404,166	399,571	
Study Area⁴	521,282	447,145	403,579	391,765	387,258	382,765	378,272	
Remainder of Basin	30,415	22,472	22,369	21,606	21,503	21,401	21,299	
SAN ANTONIO							İ	
Total In-Basin ⁹	72,393	49,244	43,775	42,354	40,974	39,633	38,292	
Adjacent Area ⁵	0	6	6	6	6	6	6	
Study Area Subtotal	72,393	49,250	43,781	42,360	40,970	39,639	38,298	
GUADALUPE Total In-Basin ⁹	11,275	13,229	13,068	13,007	12,951	12,894	12,837	
Adjacent Area ⁶	47,125	38,784	37,513	36,316	<u>33,</u> 989	33,592	33,195	
Study Area Subtotal	58,400	52,013	50,581	49,323	46,940	46,486	46,032	
LOWER COLORADO	100 500	07 400	04.500	01 002	70.000	75.062	70.042	
Total In-Basin ⁹	122,502	87,189	84,500	81,093	78,083	75,063	72,043	
Adjacent Coastal Area ⁷	<u>636,449</u>	<u>465,536</u>	<u>450,041</u>	<u>427,983</u>	<u>409,183</u>	<u>392,372</u>	<u>371,481</u>	
Subtotal	758,951	552,725	534,541	509,076	487,266	467,435	443,524	
Adjacent Inland Area8	15,553	14,440	<u>13,231</u>	<u>13,171</u>	12,848	12,307	<u>12,274</u>	
Study Area Subtotal	759,504	567,165	547,772	522,247	500,114	479,742	455,798	
RIVER BASIN TOTALS	757,867	619,279	567,291	549,825	540,769	531,756	522,743	
STUDY AREA TOTALS ¹⁰	1,411,579	1,115,573	1,045,713	1,005,695	975,282	948,632	918,400	

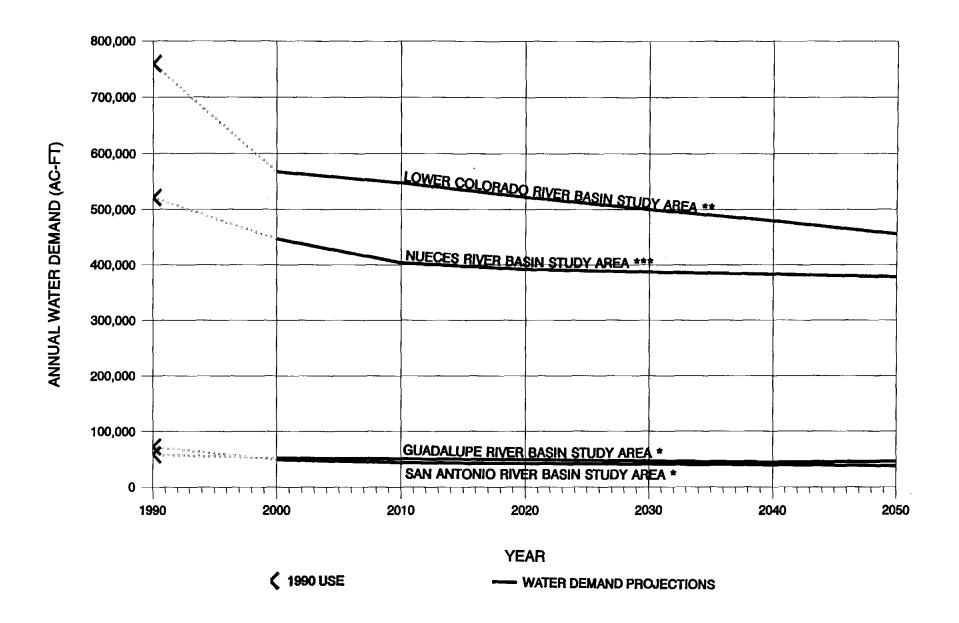
¹Study Area

²As reported to and/or estimated by the Texas Water Development Board.

³Texas Water Development Board, High Case for 1990 through 2040, with extrapolation to 2050 at same rate as projected for 2030-2040, April 1992, Austin, Texas.

^{*}Counties of Nueces Basin included in study area are: Uvalde, Medina, Zavala, Frio, Atascosa, and parts of Bexar, Wilson and Karnes.

⁵Part of Goliad County located in adjacent San Antonio-Nueces Coastal Basin.


Part of Victoria County located in adjacent Lavaca-Guadalupe Coastal Basin, plus all of Refugio and Calhoun counties.

⁷Parts of Colorado, Wharton, and Matagorda counties located in adjacent coastal basins.

⁸Parts of Fayette, Lee, Williamson, and Burnet counties located in adjacent basins.

⁹Total for counties and parts of counties located within basin boundaries.

¹⁰Total for 33-county study area.

In basin plus adjacent areas that obtain water from the basin.

*** Includes only study area countles of the Nueces Basin.

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA IRRIGATION WATER DEMAND PROJECTIONS RIVER BASIN STUDY AREAS

HDR Engineering, Inc.

in basin plus adjacent coastal areas that obtain water from the Colorado Basin. Does not include parts of study area counties located in the Brazos Basin.

2.2.3.5 Mining Water Demand Projections for River Basins and Adjacent Areas

In 1990, water use in the 33-county study area for mining purposes was 47,360 acft. TWDB high case projections for 2050 mining water demand are 48,663 acft (Table 2-22). Over 85 percent of mining water use in the study area in 1990 was in the Lower Colorado Basin and adjacent areas. The 2050 projection of mining water demands shows 58 percent for the Lower Colorado Basin and adjacent areas, with the projections for the other basin areas increasing from the level of use in 1990 (Table 2-22 and Figure 2-24).

Table 2-22
Mining Water Demand Projections for River Basins and Adjacent Areas
West Central Area -- Trans-Texas Water Program

			P	rojections	in Acre-Fee	≥t³	
BASIN ¹	1990 ² Use	2000	2010	2020	2030	2040	2050
NUECES							
Total In-Basin ⁹	6,183	8,507	8,454	8,702	8,955	9,284	9,622
Study Area Subtotal ⁴	1,706	2,592	2,742	2,918	3,104	3,318	<u>3,536</u>
Remainder of Basin	4,477	5,915	5,712	5,784	5,851	5,966	6,086
SAN ANTONIO							
Total In-Basin ⁹	1,993	5,049	5,086	6,260	7,425	8,637	9,862
Adjacent Area ⁵	0	5	3	1	1	0	0
Study Area Subtotal	1,993	5,054	5,089	6,261	7,426	8,637	9,862
GUADALUPE							
Total In-Basin ⁹	3,486	6,517	5,733	5,205	4,820	4,518	4,231
Adjacent Area6	89	1,131	1,288	1,440	<u>1,601</u>	1,830	2,064
Study Area Subtotal	3,575	7,648	7,021	6,645	6,421	6,348	6,295
LOWER COLORADO							
Total In-Basin ⁹	34,169	18,936	17,175	18,046	19,471	21,261	23,061
Adjacent Coastal Area ⁷	4,079	_4,278	3,195	2,650	2,316	2,177	2,114
Subtotal	38,248	23,214	20,370	20,696	21,787	23,438	25,175
Adjacent Inland Area8	1,841	2,219	2,499	2,787	3,076	3,431	3,795
Study Area Subtotal	40,086	25,423	22,869	23,483	24,863	26,869	28,970
RIVER BASIN TOTALS'	45,831	39,009	36,448	38,213	40,671	43,700	46,776
STUDY AREA TOTALS ¹⁰	47,360	40,717	37,721	39,307	41,814	45,172	48,663

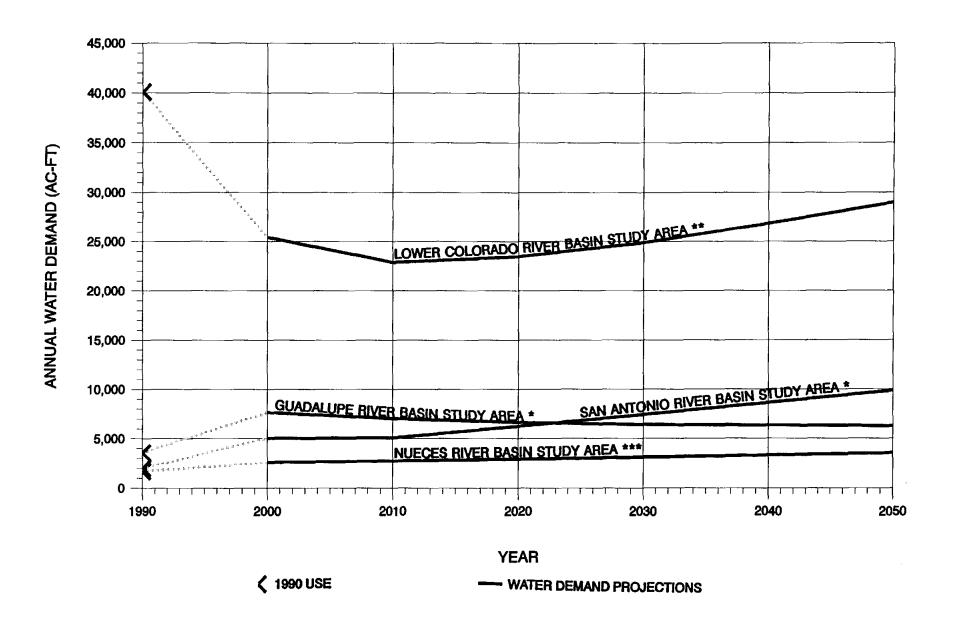
¹Study Area

²As reported to and/or estimated by the Texas Water Development Board.

Texas Water Development Board, High Case for 1990 through 2040, with extrapolation to 2050 at same rate as projected for 2030-2040, April 1992, Austin, Texas.

^{*}Counties of Nueces Basin included in study area are: Uvalde, Medina, Zavala, Frio, Atascosa, and parts of Bexar, Wilson and Karnes.

⁵Part of Goliad County located in adjacent San Antonio-Nueces Coastal Basin.


Part of Victoria County located in adjacent Lavaca-Guadalupe Coastal Basin, plus all of Refugio and Calhoun counties.

⁷Parts of Colorado, Wharton, and Matagorda counties located in adjacent coastal basins.

Parts of Fayette, Lee, Williamson, and Burnet counties located in adjacent basins.

Total for counties and parts of counties located within basin boundaries.

¹⁰Total for 33-county study area.

^{*} In basin plus adjacent areas that obtain water from the basin.

*** Includes only study area counties of the Nueces Basin.

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA MINING WATER DEMAND PROJECTIONS RIVER BASIN STUDY AREAS

HDR Engineering, Inc.

^{**} in basin plus adjacent coastal areas that obtain water from the Colorado Basin. Does not include parts of study area counties located in the Brazos Basin.

2.2.3.6 Livestock Water Demand Projections for River Basins and Adjacent Areas

Livestock water use in the 33-county study area in 1990 was estimated at 37,876 acft. TWDB high case projections for the period 2000 through 2050 is 50,282 acft, with 18 percent in the Nueces study area counties, 14 percent in the San Antonio Basin and adjacent areas, 28 percent in the Guadalupe Basin and adjacent areas, and 40 percent in the Lower Colorado and adjacent areas (Table 2-23 and Figure 2-25).

Table 2-23
Livestock Water Demand Projections for River Basins and Adjacent Areas
West Central Area -- Trans-Texas Water Program

	2	Projections in Acre-Feet ³						
BASIN ¹	1990² Use	2000	2010	2020	2030	2040	2050	
NUECES						-	" -	
Total In-Basin9	11,574	16,744	16,744	16,744	16,744	16,744	16,744	
Study Area Subtotal⁴	5,984	8,965	8,965	8,965	<u>8,965</u>	8,965	<u>8,965</u>	
Remainder of Basin	5,590	7,779	7,779	7,779	7,779	7,779	7,779	
SAN ANTONIO								
Total In-Basin ⁹	5,536	6,554	6,554	6,554	6,554	6,554	6,554	
Adjacent Area ⁵	344	<u>495</u>	<u>495</u>	<u>495</u>	<u>495</u>	<u>495</u>	<u>495</u>	
Study Area Subtotal	5,880	7,049	7,049	7,094	7,094	7,094	7,094	
GUADALUPE								
Total In-Basin9	9,485	12,131	12,131	12,131	12,131	12,131	12,131	
Adjacent Area ⁶	1,460	2,095	2,095	2,095	2,095	2,095	<u>2,095</u>	
Study Area Subtotal	10,945	14,226	14,226	14,226	14,226	14,226	14,226	
LOWER COLORADO								
Total In-Basin ⁹	8,492	11,516	11,516	11,516	11,516	11,516	11,516	
Adjacent Coastal Area ⁷	2,429	3,317	_3,317	<u>3,317</u>	_3,317	3,317	3,317	
Subtotal	10,921	14,833	14,833	14,833	14,833	14,833	14,833	
Adjacent Inland Area8	4,146	_5,209	_5,209	_5,209	<u>5,164</u>	_5,209	<u>5,209</u>	
Study Area Subtotal	15,067	20,042	20,042	20,042	19,997	20,042	20,042	
RIVER BASIN TOTALS	35,087	46,945	46,945	46,945	46,945	46,945	46,945	
STUDY AREA TOTALS ¹⁰	37,876	50,282	50,282	50,282	50,282	50,282	50,282	

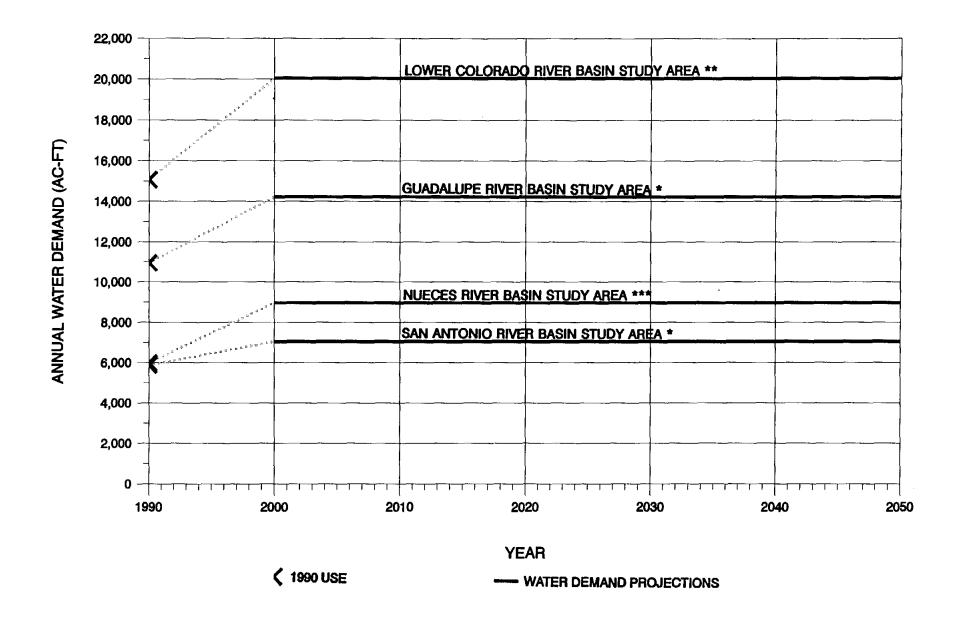
Study Area

²As reported to and/or estimated by the Texas Water Development Board.

Texas Water Development Board, High Case for 1990 through 2040, with extrapolation to 2050 at same rate as projected for 2030-2040, April 1992, Austin, Texas.

^{*}Counties of Nueces Basin included in study area are: Uvalde, Medina, Zavala, Frio, Atascosa, and parts of Bexar, Wilson and Karnes.

⁵Part of Goliad County located in adjacent San Antonio-Nueces Coastal Basin.


⁶Part of Victoria County located in adjacent Lavaca-Guadalupe Coastal Basin, plus all of Refugio and Calhoun counties.

⁷Parts of Colorado, Wharton, and Matagorda counties located in adjacent coastal basins.

^{*}Parts of Fayette, Lee, Williamson, and Burnet counties located in adjacent basins.

⁹Total for counties and parts of counties located within basin boundaries.

¹⁰Total for 33-county study area.

- * In basin plus adjacent areas that obtain water from the basin.
- In basin plus adjacent coastal areas that obtain water from the Colorado Besin. Does not include parts of study area counties located in the Brazos Basin.

*** Includes only study area countles of the Nueces Basin.

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA LIVESTOCK WATER DEMAND PROJECTIONS RIVER BASIN STUDY AREAS

HDR Engineering, Inc. FIGURE 2 - 25

2.2.3.7 Total Water Demand Projections for River Basins and Adjacent Areas

Total water use in the 33-county study area in 1990 was 2,177,005 acft, of which 555,503 acft (26 percent) were in the Nueces Basin study area counties, 358,304 acft (16 percent) were in the San Antonio Basin and adjacent areas, 197,959 acft (9 percent) were in the Guadalupe Basin and adjacent areas, and 1,065,239 acft (49 percent) were in the Lower Colorado Basin and adjacent areas (Table 2-24). TWDB high case, with conservation, projected total water demands in 2050 are 3,089,709 acft for the 33-county study area, with 470,173 acft (16 percent) in Nueces Basin study area counties, 868,325 acft (28 percent) in the San Antonio Basin and adjacent areas, 484,366 acft (16 percent) in the Guadalupe Basin and adjacent areas, and 1,266,242 acft (41 percent) in the Lower Colorado Basin and adjacent areas (Table 2-24 and Figure 2-26). Projections for other decadal points within the 2000 - 2050 planning period are shown for the respective study area river basins and adjacent areas are shown in Table 2-24 and are graphed in Figure 2-26.

Total Water Demand Projections for River Basins and Adjacent Areas West Central Area -- Trans-Texas Water Program Projections in Acre-Feet³ 1990^{2} BASIN1 2000 2010 2020 2030 2040 20 Use **NUECES** Total In-Basin9 612,217 557,543 517,960 513,897 519,186 524,462 529, Study Area Subtotal4 555,503 501,826 461,468 457,295 461,551 465,860 470. Remainder of Basin 56,714 55,717 56,492 56,602 57,635 58,602 59. SAN ANTONIO Total In-Basin9 357,901 469,604 526,084 592,302 693,100 780,706 868, Adjacent Area5 592 403 <u>586</u> <u>587</u> <u>586</u> 597 603 470,190 358,304 526,671 592,888 693,692 Study Area Subtotal 781,303 868, **GUADALUPE** Total In-Basin9 116,519 196,476 220,105 247,655 268,945 288,998 309, Adjacent Area⁶ 124,965 81,440 134,594 145,127 153,409 164,352 175, 197,959 321,441 354,699 392,782 422,354 453,350 484. Study Area Subtotal LOWER COLORADO Total In-Basin9 374,659 392,382 440,891 488,667 545,687 587,499 629, Adjacent Coastal Area7 655,943 518,384 509,061 497,277 484,558 478,784 469. Subtotal 1,030,602 910,766 949,952 985,944 1,030,245 1,066,283 1,098, 73,854 88,387 167, Adjacent Inland Area8 <u>34,637</u> 103,918 <u>131,385</u> <u> 149,414</u> 984,620 1,038,339 1,089,863 1,266, Study Area Subtotal 1,065,239 1,161,630 1,215,697

Table 2-24

1,705,040

2,381,177

1,842,521

2,532,828

2,026,918

2,739,262

2,181,665

2,916,210

2,336,

3,089,

1,616,005

2,278,077

1,461,296

2,177,005

RIVER BASIN TOTALS⁹

STUDY AREA TOTALS¹⁰

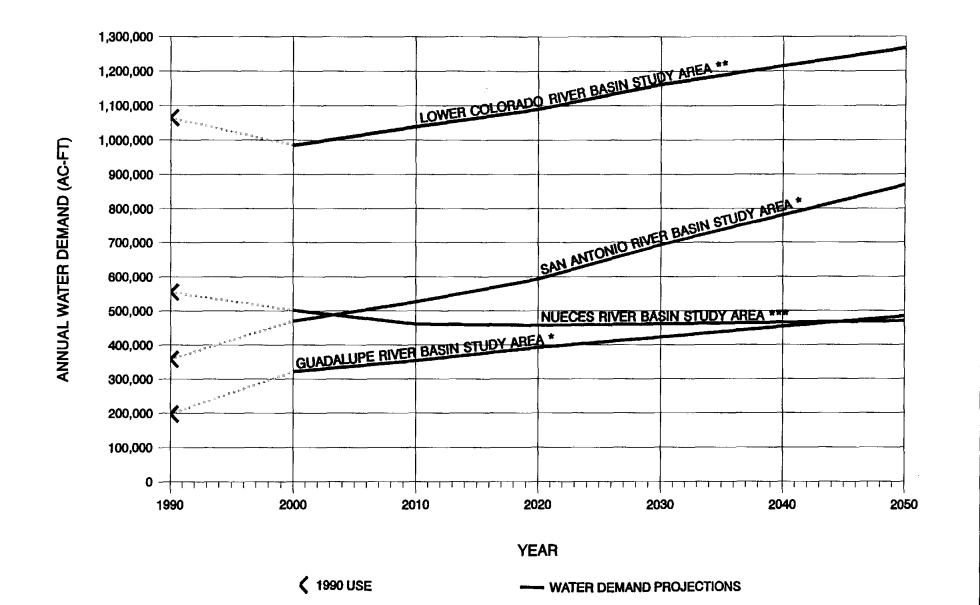
¹Study Area

²As reported to and/or estimated by the Texas Water Development Board.

Texas Water Development Board, High Case for 1990 through 2040, with extrapolation to 2050 at same rate as projected for 2030-2040, April 19 Austin, Texas.

^{*}Counties of Nueces Basin included in study area are: Uvalde, Medina, Zavala, Frio, Atascosa, and parts of Bexar, Wilson and Karnes.

⁵Part of Goliad County located in adjacent San Antonio-Nueces Coastal Basin.


Part of Victoria County located in adjacent Lavaca-Guadalupe Coastal Basin, plus all of Refugio and Calhoun counties.

⁷Parts of Colorado, Wharton, and Matagorda counties located in adjacent coastal basins.

^{*}Parts of Fayette, Lee, Williamson, and Burnet counties located in adjacent basins.

⁹Total for counties and parts of counties located within basin boundaries.

¹⁰Total for 33-county study area.

* in basin plus adjacent areas that obtain water from the basin.

*** Includes only study area counties of the Nueces Basin.

TRANS-TEXAS WATER PROGRAM WEST CENTRAL STUDY AREA TOTAL WATER DEMAND PROJECTIONS RIVER BASIN STUDY AREAS

HDR Engineering, Inc.

FIGURE 2 - 26

^{**} In basin plus adjacent coastal areas that obtain water from the Colorado Basin. Does not include parts of study area counties located in the Brazos Basin.

2.3 Water Supply Projections

In previous sections, population and water demand projections have been presented for each of the study area counties and for cities of the Edwards Aquifer area counties. In addition, the population and water demand projections have been summarized and tabulated for the river basins (Nueces, San Antonio, Guadalupe, and Lower Colorado) and their respective adjacent areas. In this section, the companion groundwater and surface water supply projections are presented.

2.3.1 Groundwater Supply Projections

In 1990, total water use in the 33-county study area was 2,177,005 acft, of which 1,126,762 acft or 51.75 percent was from groundwater sources (Table 2-25). Of the total groundwater use, 31.9 percent was for municipal purposes, 2.3 percent was for industrial purposes, 0.6 percent was for steam-electric power generation, 63.2 percent was for irrigation, 0.9 percent was for mining, and 1.0 percent was for livestock (Table 2-25).

Total surface water use in the 33-county study area in 1990 was 1,050,243 acft or 48.25 percent of total water use that year (Table 2-26). The distribution among uses for each of the study area counties can been seen in Table 2-25 and Table 2-26 for groundwater and surface water, respectively.

The Texas Water Development Board projects that the 33-county West Central Trans-Texas Study Area has an average annual groundwater supply of 1,144,946 acft for the 2000 through 2050 period, of which 400,000 acft or 35 percent is the supply available to the Edwards Aquifer area from the Edwards Balcones Fault Zone Aquifer, as specified in Senate Bill 1477, 1993 Regular Session, Texas Legislature (Table 2-27). The groundwater supply data are tabulated for each of the study area counties, however, the quantity (i.e., 450,000 acft per year till the year 2008 when use is limited to 400,000 acft) from the Edwards Balcones Fault Zone Aquifer is shown in the table as a lump sum, since it has not yet been allocated by the issuance of permits to individuals and cities of the Edwards Aquifer area, as specified by Senate Bill 1477. Thus, when viewing the groundwater supply table (Table 2-27), the reader should be aware that the entries for Atascosa, Bexar, Caldwell, Comal, Guadalupe, Hays, Medina, and Uvalde counties contain only the quantities

Table 2-25
1990 Groundwater Use -- 33-County West Central Area
Trans-Texas Water Program

	1990 Use ² (Acre-Feet)						
COUNTIES1	Municipal	Industrial	Steam- Electric	Irrigation	Mining	Livestock	To
Atascosa	5,670	0	3,622	47,208	664	160	57,3
Bandera	1,417	0	0	151	20	260	1,8
Bastrop	6,234	26	0	323	10	572	7,1
Bexar	224,762	13,911	1,408	27,399	1,319	137	268,9
Blanco	646	0	0	425	0	443	1,5
Burnet	1,240	8	0	114	174	410	1,9
Caldwell	3,589	0	0	674	27	81	4,3
Calhoun	515	1,812	62	1,984	1	175	4,5
Colorado	2,927	96	0	44,280	993	837	49,1
Comal	10,338	1,237	0	469	946	253	13,2
DeWitt	3,494	91	0	274	129	182	4,1
Fayette	3,397	32	0	80	7	203	3,7
Frio	3,045	0	38	81,568	313	109	85,0
Goliad	916	0	136	205	0	87	1,3
Gonzales	1,487	618	0	2,124	21	410	4,6
Guadalupe	4,949	131	0	1,376	8	102	6,5
Hays	11,635	293	0	0	0	66	11,9
Karnes	2,187	270	0	1,831	187	135	4,6
Kendall	1,734	2	0	274	0	312	2,3
Kerr	2,607	2	0	187	73	307	3,1
Lee	2,991	5	0	164	0	559	3,7
Llano	151	0	0	1,043	65	863	2,1
Matagorda	5,225	3,514	1,158	26,717	250	673	37,5
Medina	5,254	286	0	77,694	120	155	83,5
Refugio	1,227	0	0	0	77	56	1,3
San Saba	363	0	0	573	86	897	1,9
Travis	8,139	412	21	448	0	471	9,4
Uvalde	5,213	557	0	137,856	399	497	144,5
Victoria	11,545	489	865	13,151	2,409	763	29,2
Wharton	6,218	396	0	155,474	4	728	162,8
Williamson	14,787	233	0	18	1,654	150	16,8
Wilson	3,745	50	0	11,642	281	180	15,8
Zavala	2,349	<u>1,306</u>	0	<u>76,296</u>	116	<u>71</u>	80,1
Total	359,996	25,777	7,310	712,022	10,353	11,304	1,126,7

²As reported to and/or estimated by the Texas Water Development Board. Note: Source in unpublished planning data, Texas Water Development Board, 1992.

Table 2-26
1990 Surface Water Use -- 33-County West Central Area
Trans-Texas Water Program

		1990 Use ² (Acre-Feet)						
COUNTIES ¹	Municipal	Industrial	Steam- Electric	Irrigation	Mining	Livestock	То	
Atascosa	0	0	0	0	0	1,453	1,4	
Bandera	28	0	0	139	0	65	2	
Bastrop	0	1	2,967	322	6	859	4,1	
Bexar	295	138	22,855	9,613	272	1,239	34,4	
Blanco	258	0	0	58	0	110	4	
Burnet	2,286	1,108	0	186	762	410	4,7	
Caldwell	1,342	0	0	701	0	735	2,7	
Calhoun	3,401	22,727	0	33,437	0	116	59,6	
Colorado	0	982	0	172,200	30,974	558	204,7	
Comal	77	2,011	0	10	0	63	2,1	
DeWitt	62	0	0	11	0	1,658	1,7	
Fayette	0	0	11,701	320	0	1,834	13,8	
Frio	0	0	0	1,665	0	988	2,6	
Goliad	0	0	12,029	480	0	7 97	13,3	
Gonzales	2,345	247	0	1,416	0	3,698	7,7	
Guadalupe	4,678	1,530	0	1,270	0	929	8,4	
Hays	74	0	0	320	0	610	1,0	
Karnes	0	0	0	203	0	1,236	1,4	
Kendall	396	0	0	106	0	77	5	
Kerr	3,214	26	0	663	0	75	3,9	
Lee	0	0	0	119	0	839	9	
Llano	2,337	0	937	79	0	45	3,3	
Matagorda	0	3,293	34,757	178,110	0	447	216,6	
Medina	0	0	0	79,686	0	1,405	81,0	
Refugio	0	0	0	0	0	507	5	
San Saba	909	0	0	5,161	0	224	6,2	
Travis	106,670	5,831	6,177	352	2,288	471	121,7	
Uvalde	65	0	0	2,813	0	497	3,3	
Victoria	0	19,543	22	548	0	508	20,6	
Wharton	0	0	0	172,746	2,646	485	175,8	
Williamson	9,695	93	0	142	59	1,358	11,3	
Wilson	0	0	0	2,055	0	1,633	3,6	
Zavala	0	0	0	<u>34,626</u>	0	643	35,2	
Total	138,132	57,530	91,445	699,557	37,007	26,572	1,050,2	

¹Study Area

Note: Source in unpublished planning data, Texas Water Development Board, 1992.

²As reported to and/or estimated by the Texas Water Development Board.

Table 2-27
1990 Water Use and Projected Groundwater Supplies -- 33-County West Central Area
Trans-Texas Water Program

	1990 Wat	er Use (Acre-l	Feet) ²	Projected Groundwater Supplies (Acre-Feet)				Acre-Feet)	
COUNTIES ¹	Ground	Surface	Total	2000	2010	2020	2030	2040	2050
Atascosa*	57,324	1,453	58,777	47,134*	47,134 *	47,134*	47,134 *	47,134 "	47,134 °
Bandera	1,848	232	2,080	7,285	7,285	7,285	7,285	7,285	7,285
Bastrop	7,165	4,155	11,320	41,548	41,548	41,548	41,548	41,548	41,548
Bexar*	268,936	34,412	303,348	19,125*	19,125*	19,125*	19,125*	19,125*	19,125*
Blanco	1,514	426	1,940	7,737	7,737	7,737	7,737	7,737	7,737
Burnet	1,946	4,752	6,698	16,280	16,280	16,280	16,280	16,280	16,280
Caldwell*	4,371	2,778	7,149	10,383*	10,383*	10,383*	10,383*	10,383*	10,383*
Calhoun	4,549	59,681	64,230	2,940	2,940	2,940	2,940	2,940	2,940
Colorado	49,133	204,714	253,847	31,659	31,659	31,659	31,659	31,659	31,659
Comal*	13,243	2,161	15,404	1,800*	1,800*	1,800*	1,800*	1,800*	1,800*
DeWitt	4,170	1,731	5,901	15,866	15,866	15,866	15,866	15,866	15,866
Fayette	3,719	13,855	17,574	37,829	37,829	37,829	37,829	37,829	37,829
Frio	85,073	2,653	87,726	30,914	30,914	30,914	30,914	30,914	30,914
Goliad	1,344	13,306	14,650	12,809	12,809	12,809	12,809	12,809	12,809
Gonzales	4,660	7,706	12,366	46,560	46,560	46,560	46,560	46,560	46,560
Guadalupe*	6,566	8,407	14,973	12,583*	12,583*	12,583*	12,583*	12,583*	12,583*
Hays'	11,994	1,004	12,998	1,810	1,810*	1,810*	1,810*	1,810*	1,810 °
Karnes	4,610	1,439	6,049	18,780	18,780	18,780	18,780	18,780	18,780
Kendall	2,322	579	2,901	4,840	4,840	4,840	4,840	4,840	4,840
Кетг	3,176	3,978	7,154	9,810	9,810	9,810	9,810	9,810	9,810

(continued)

Table 2-27
1990 Water Use and Projected Groundwater Supplies -- 33-County West Central Area
Trans-Texas Water Program

	1990 Water Use (Acre-Feet) ²			Projected Groundwater Supplies (Acre-Feet)					
COUNTIES1	Ground	Surface	Total	2000	2010	2020	2030	2040	2050
Lee	3,719	958	4,677	24,943	24,943	24,943	24,943	24,943	24,943
Llano	2,122	3,398	5,520	11,882	11,882	11,882	11,882	11,882	11,882
Matagorda	37,537	216,607	254,144	26,000	26,000	26,000	26,000	26,000	26,000
Medina*	83,509	81,091	164,600	7,826*	7,826	7,826*	7,826*	7,826*	7,826*
Refugio	1,360	507	1,867	7,768	7,768	7,768	7,768	7,768	7,768
San Saba	1,919	6,294	8,213	30,224	30,224	30,224	30,224	30,224	30,224
Travis	9,491	121,789	131,280	8,855	8,855	8,855	8,855	8,855	8,855
Uvalde*	144,522	3,375	147,897	8,213*	8,213 °	8,213*	8,213 *	8,213 *	8,213 *
Victoria	29,222	20,621	49,843	41,130	41,130	41,130	41,130	41,130	41,130
Wharton	162,820	175,877	338,697	100,000	100,000	100,000	100,000	100,000	100,000
Williamson	16,842	11,347	28,189	6,341	6,341	6,341	6,341	6,341	6,341
Wilson	15,898	3,688	19,586	60,597	60,597	60,597	60,597	60,597	60,597
Zavala	80,138	35,269	115,407	30,475	30,475	30,475	30,475	30,475	30,475
Edwards Aquifer**				450,000**	400,000**	400,000**	400,000**	400,000**	<u>400,000</u> **
Total	1,126,762	1,050,243	2,177,005	1,191,946	1,141,946	1,141,946	1,141,946	1,141,946	1,141,946

¹Study Area

²As reported to and/or estimated by the Texas Water Development Board.

³Unpublished planning data, Texas Water Development Board, 1992.

^{*}Does not include Edwards Balcones Fault Zone Aquifer.

^{**}As specified in S.R. 1477; to be allocated among Bexar, Comal, Hays, Medina, Uvalde, and parts of Atascosa, Caldwell, and Guadalupe counties.

available from aquifers other than the Edwards Balcones Fault Zone Aquifer. When either the 450,000 or the 400,000 acft that is available from the Edwards Aquifer, as specified by S.B. 1477, is permitted, then the total of the permits of each Edwards Aquifer area county can be added to the quantities available from other aquifers in order to obtain the total quantity of groundwater supply for these Edwards Aquifer area counties.

The quantities of groundwater available in each study area county other than those of the Edwards Aquifer area can be viewed in Table 2-27. It should be noted that in 1990, groundwater use in eight of the non-Edwards Aquifer area counties was greater than the projected average long-term annual supply (Table 2-27), meaning that in these counties (i.e., Calhoun, Colorado, Frio, Matagorda, Travis, Wharton, Williamson, and Zavala) groundwater overdrafting or mining is occurring. However, in 16 of the non-Edwards Aquifer area counties (i.e., Bastrop, Blanco, Burnet, DeWitt, Fayette, Goliad, Gonzales, Karnes, Kendall, Kerr, Lee, Llano, Refugio, San Saba, Victoria, and Wilson) 1990 groundwater use was less than projected annual supply, which means that groundwater resources can perhaps meet some projected growth in water demands in some of these counties (Table 2-27), depending upon location of demands.

2.3.2 Surface Water Supply Projections

The existing surface water supplies of the West Central Trans-Texas Study Area include: (1) reservoirs that have a firm yield; (2) storage reservoirs for steam-electric cooling; (3) storage reservoirs for water supply management and recreation; and (4) run-of-river water rights to flows of the streams. Information about each of these surface water supply types is presented below.

Lakes and Reservoirs

Medina Lake is located on the Medina River at the boundaries of Medina and Bandera counties, with Diversion Lake on the Medina River downstream of Medina Lake. These lakes are owned by the Bexar-Medina-Atascosa Counties Water Control and Improvement District No. 1 and are used primarily to supply irrigation water to irrigation farms located in Bexar and Medina counties (Table 2-28). In addition to supplying

Table 2-28 Reservoirs and Surface Water Supplies -- West Central Study Area Trans-Texas Water Program*

Reservoir	Owner	Firm Yield (acft/yr)	Average Supply ² (acft/yr)	Permit (acft/yr)	Purposes
0 1 1 1 1 1 1					
San Antonio Basin Medina Lake	Bexar-Medina-Atascosa District	8,770¹	57,970	66,750	Irrigation, municipal, domestic, livestock
Diversion Lake	Bexar-Medina-Atascosa District				Irrigation, municipal, domestic, livestock
Applewhite Reservoir⁴ Victor Braunig Lake	City of San Antonio City Public Service Board of San Antonio	7,700 ⁵	47,060 ⁵	57,700 ⁵ 12,000 ⁶	Municipal Steam-electric power
Calaveras Lake	City Public Service Board of San Antonio			37,000 ⁷	generation Steam-electric power generation
Guadalupe Basin** Canyon Lake	Guadalupe-Blanco River Authority/USCOE	50,000 ³		50,000³	Municipal, industrial, steam- electric & hydropower, irrigation, flood protection
Coleto Creek	Central Power and Light Company			12,500	irrigation, flood protection Steam-electric power generation
Colorado Basin Highland Lakes***	Lower Colorado River Authority	445,266***		1,500,000	
Lake Austin	City of Austin				Steam-electric power, water supply storage, rec.
Town Lake	City of Austin				Steam-electric power, water supply storage, rec.
Decker Lake Lake Bastrop	City of Austin Lower Colorado River Authority			36,456	Steam-electric power Steam-electric power
Cedar Creek	Lower Colorado River Authority				Steam-electric power
Eagle Lake South Texas Project TOTAL	Lower Colorado River Authority Houston Light & Power	504,036***			Irrigation storage Steam-electric power

^{&#}x27;See Table 2-29 for reference to run-of-river permits.

"Does not include Applewhite.

"Includes Lakes Travis, Marble Falls, LBJ, Inks and Buchanan.

Maximum firm yield based on uniform monthly diversion directly from Medina Lake.

Average supply based on the 1934-89 historical period.

Based on subordination of GBRA hydropower rights to 600 cfs at Lake Dunlap.

Reservoir permitted and partially constructed.

Firm yield, average supply, and permit based on exclusion of Leon Creek diversion (12,300 acft/yr) to Applewhite Reservoir.

Includes the rights to divert up to 12,000 acft/yr from the San Antonio River to Braunig Lake and to consume up to 12,000 acft/yr at Braunig Lake.

Includes the rights to divert up to 60,000 acft/yr of reclaimed wastewater from the San Antonio River to Calavares Lake and to consume up to 37,000 acft/yr at Calavaras Lake.

irrigation water, percolation through the lake and river beds recharges the Edwards Aquifer. Although the maximum firm yield of Medina Lake is only about 8,770 acft/yr (Section 3.13), the computed average annual water supply of Medina Lake and Diversion Lake is 57,970 acft (Table 2-28).

Braunig and Calaveras Lakes are located in Bexar County to the southeast of San Antonio and are used for electric power plant cooling water (Table 2-28). Runoff from the watersheds above the lakes, diversion from the San Antonio River, and diversions of San Antonio reclaimed wastewater are used to maintain the necessary lake levels and meet the cooling water demands (24,263 acft in 1990 -- see Table 2-13).

Canyon Lake in the Guadalupe Basin is located in Comal County on the main stem of the Guadalupe River. The purposes of the lake include water supply for municipal, industrial, steam-electric power generation, irrigation, hydroelectric power generation, flood protection, and recreation (Table 2-28). The firm annual water supply of 50,000 acft from Canyon Lake is permitted to the Guadalupe Blanco River Authority (GBRA) by the TNRCC and made available by GBRA to water users within the basin.

Lakes Dunlap, McQueeny, Placid, Nolte, H-4, and Wood form hydroelectric power generation pools and are the sites of hydroelectric power plants on the Guadalupe River in the reach from New Braunfels to about eight miles west of Gonzales (Table 2-28). The lakes and the water rights are owned by GBRA, and although hydroelectric power generation is a nonconsumptive use of water, these rights and permits to Guadalupe River flows for these purposes are being taken into account in the water supply analyses of the basin.

Coleto Creek Reservoir, owned by Central Power and Light Company is located at the borders of Victoria and Goliad counties in the lower Guadalupe Basin and is a cooling reservoir for steam-electric power generation. The source of water is drainage from the Coleto Creek watershed, with diversions from the Guadalupe River, backed by storage in Canyon Lake, when needed. The reservoir supplies water for steam-electric power generation at a power plant located in Goliad County (12,165 acft in 1990 -- Table 2-6).

The Highland Lakes (Travis, Marble Falls, LBJ, Inks, and Buchanan) located on the main steam of the Colorado River upstream of Austin are owned by the Lower Colorado River Authority (LCRA) (Table 2-28). The purposes of the Highland Lakes are water supply for municipal, industrial, steam-electric power generation, hydroelectric power generation, irrigation, flood protection, and recreation. The firm yield of the Highland Lakes, as reported by the TWDB¹¹ in the 1990 Texas water plan is 445,266 acft. The water supply of the Highland Lakes is made available by LCRA through contracts with various downstream water users for municipal, industrial, steam-electric power generation, and irrigation purposes within the Colorado River Basin and adjacent coastal basins. In addition, LCRA uses water released from the lakes for hydroelectric power generation.

Downstream of the Highland Lakes at Austin on the main steam of the Colorado River are Lake Austin and Town Lake, both owned by the City of Austin. The three City of Austin municipal water intakes are located on these lakes and Town Lake supplies steam-electric cooling water to Austin (Table 2-28). In addition to these main stem reservoirs, there are four steam-electric power cooling lakes (Decker, Bastrop, Cedar Creek, and the South Texas Project) and one irrigation storage reservoir (Eagle Lake in Colorado County) on tributaries to the Colorado River. These lakes are authorized to capture and store local runoff, with provisions for diversions from the Colorado River when needed. In the case of steam-electric power water demands, the Colorado River tributary cooling lakes are the sites of steam-electric power water use as projected for Bastrop, Fayette, Matagorda, and Travis counties (Table 2-6).

In the West Central Study Area, the estimated firm water supply from storage reservoirs is 504,036 acft per year (Table 2-28). Of this total, 8,770 acft are in the San Antonio Basin, 50,000 acft are in the Guadalupe Basin, and 445,266 acft are in the Colorado Basin (Table 2-28).

Run-of-River Water Rights

In addition to surface water from reservoirs, rights have been issued by the TNRCC and predecessor agencies to individuals, cities, industries, and water districts and authorities

¹¹Water for Texas -- Today and Tomorrow, 1990, Texas Water Development Board, Austin, Texas, December, 1990.

for diversion from flowing streams of the West Central Study Area. Each right bears a priority date, location for diversion, dates for diversion, rates of diversion, annual quantity of diversion, river flow conditions below which diversions are not to be made, and perhaps other conditions. The principle of prior appropriation or "first-in-time-first-in-right" is applied, which means that the oldest rights (earliest date of permit) have first call on flows, with the second, third, and more recent rights having second, third, and later standings for diversions. This procedure gives senior rights holders priority when stream flows are low, as in periods of drought, and renders junior rights less reliable during droughts; i.e., the most junior rights holders may not be able to divert any water during critical droughts.

It is important to note that many run-of-river rights are for irrigation purposes, where chances are taken upon crop production failures, while more of the municipal, industrial, and steam-electric power demands are for more reliable supplies than are available from river flows and, thus, are placed upon reservoirs having firm yields, or, as in the case of Austin and the South Texas Project, run-of-river rights are firmed up through contracts and agreements with LCRA for stored water from the firm yield of the Highland Lakes. Similar agreements have been made in the Guadalupe Basin for stored water from Canyon Lake to firm up downstream run-of-river rights.

Run-of-river permits have been summarized for the streams of the West Central Study Area (Table 2-29). For the Nueces upstream of the Edwards recharge zone, the total is 18,095 acft/yr (Table 2-29). These quantities are available in that area to meet a part of the local area irrigation water demands as projected in Section 2.0. For the Nueces downstream of the Edwards recharge zone in Zavala, Frio, and Atascosa counties total run-of-river water rights are 35,302 acft, all of which are for irrigation purposes in those counties as projected in Section 2.0.

In the San Antonio Basin on the Medina River, upstream of Medina Lake, there are 1,083 acft of run-of-river rights, with 10,503 acft of such rights downstream of Medina Lake (Table 2-29). On the San Antonio River from San Antonio to Goliad, 35,222 acft of run-of-river rights have been awarded (Table 2-29). Most, if not all, of these rights are for irrigation and livestock water, and can be viewed as supply available to meet those needs

Table 2-29 Summary of Run-of-River Water Rights West Central Study Area Trans-Texas Water Program

River Basin and Segment	Sum of Permits (acft)
Nueces Basin Study Area	
Upstream Edwards Recharge Zone	18,095
Downstream Edwards Recharge Zone	<u>35,302</u>
Subtotal	53,397
San Antonio Basin Study Area	
Medina Upstream Medina Lake	1,083
Medina Downstream Medina Lake	10,503
Downstream San Antonio to Goliad	<u>35,222</u>
	46,808
Guadalupe Basin Study Area	
Upstream of Canyon Lake	13,229
Downstream Canyon Lake to Victoria	44,599 ¹
Downstream Goliad and Victoria (consumptive)	214,499 ¹
Subtotal	272,327
Colorado Basin Study Area	
Upstream of Highland Lakes (Study Area)	36,491
City of Austin	$334,009^2$
Travis County to Colorado County	34,146
Gulf Coast Irrigation ³	262,500 ⁴
Garwood Irrigation ³	168,000 ⁴
Lakeside Irrigation ³	131,250 ⁴
Pierce Ranch Irrigation ³	110,0004
South Texas Project (HL&P/LCRA) ³	$102,000^{5}$
Subtotal	1,178,396
TOTAL FOR STUDY AREA	1,550,928

Source: Data from Water Rights Records of Texas Natural Resource Conservation Commission.

¹Totals shown include only consumptive right for irrigation, industrial, and steam-electric cooling water. Does not include hydroelectric right of 600 cfs at Lake Dunlap, which is a non-consumptive right and, therefore, these flows can be used for other purposes downstream of the last hydroelectric power plant near Gonzales.

²Through agreement with LCRA for stored water 290,156 acft is firm supply during drought of record.

³Source: "LCRA Drought Management Plan," Lower Colorado River Authority, Austin, Texas, July, 1990.

⁴LCRA staff estimates that during the critical period of record (1946-1957), the dependable supply from all of these permits is about 350,921 acft annually. "Water Supply and Demand Assessment of Wharton County," Lower Colorado River Authority, Austin, Texas, October, 1991.

Through agreement with LCRA for stored water, the 102,000 is firm supply during drought of record.

in areas along the Medina and San Antonio Rivers. (Note: the Medina Lake rights are shown in Table 2-28.)

Total run-of-river rights in the Guadalupe Basin upstream of Canyon Lake are 13,229 acft, and downstream of Canyon to Victoria are 44,599 acft. These are for irrigation, with some rights for municipal and industrial purposes. In addition, GBRA and Seguin have hydroelectric power generation rights -- 600 cfs at Dunlap for GBRA and 365 cfs at Seguin for Seguin. Since this is a nonconsumptive use, these flows can be used for other purposes once they have passed the most downstream hydroelectric plant, which in this case, is GBRA's plant at Lake Wood near Gonzales.

In the Guadalupe and San Antonio Basin downstream of Victoria and Goliad, respectively, total run-of-river rights are 214,499 acft/yr considering only consumptive rights for irrigation and industrial process water (Table 2-29).

In the Colorado Basin, run-of-river water rights holders include the City of Austin (334,009 acft), Gulf Coast Irrigation Division (262,500 acft), Garwood Irrigation Company (168,000 acft), Lakeside Irrigation Division (131,250 acft), Pierce Ranch Irrigation (110,000 acft), and the South Texas Nuclear Project (102,000 acft). Austin's right is for municipal and steam-electric power generation, the South Texas Project right is for steam-electric power generation, and the others are for irrigation. Within the study area upstream of the Highland Lakes there are 36,491 acft of run-of-river rights, and in the stretch from Austin to Colorado County there are 34,146 acft of such rights. The estimated dependable supply from Colorado River flows in the river stretch from Colorado County to the Gulf of Mexico is about 350,921 acft/yr during the critical drought of record¹².

In the West Central Study Area, the sum of the major consumptive run-of-river permitted water rights is 1,550,928 acft/yr (Table 2-29). The supply from run-of-river rights (1,550,928 acft/yr) plus the firm yield of reservoirs (504,036 acft/yr) is the existing surface water supply for the study area.

¹²"Water Supply and Demand Assessment of Wharton County," Lower Colorado River Authority, Austin, Texas, October, 1991.

2.4 Water Demand and Supply Comparisons

In this section, projections of water demand presented in Section 2.2 are compared with projections of water supplies from existing sources presented in Section 2.3 for the following areas: (1) Edwards Aquifer area; (2) Nueces River Basin Study area; (3) San Antonio River Basin; (4) Guadalupe River Basin; and (5) Lower Colorado River Basin Study area. For purposes of this presentation, it has been assumed that the provisions of SB 1477 apply to quantities of water that can be withdrawn from the Edwards Aquifer; i.e., total pumpage will be limited to 450,000 acft annually through year 2007, and 400,000 acft annually thereafter. It is further assumed for purposes of this study only, that these totals will be allocated among eligible users by permits, on the basis of use as reported to the TWDB (estimated by TWDB for irrigation) for calendar year 1990. The TWDB 1990 water use information for counties was used to allocate the Edwards Aquifer pumpage of 450,000 acft and 400,000 acft among the counties of the Edwards Aquifer area (Table 2-30). The county estimates were allocated to the river basins in which each county or portion of a county is located (Table 2-31).

Table 2-30 Edwards Aquifer Water Use Edwards Aquifer Area West Central Study Area Trans-Texas Water Program										
	Estimated Quantities as Provided by SB 1477									
County	Percent of 450,000 acft 400,000 acft Acre-Feet Total limit limit									
Uvalde	144,522¹	27.80	125,117	111,215						
Medina	83,5091	16.06	72,296	64,264						
Atascosa	336	0.06	271	241						
Bexar	268,936 ¹	51.74	232,827	206,956						
Comal	11,218	2.16	9,721	8,641						
Hays	7,882	1.52	6,841	6,081						
Guadalupe	Guadalupe 2,970 0.57 2,566 2,281									
Caldwell										
TOTAL	519,796 ¹	100.00	450,000	400,000						

From water use reports to TWDB for all purposes except irrigation, which was estimated from the cooperative irrigation survey by the Texas State Soil and Water Conservation Board and the Texas Water Development Board.

Estimates include small quantities of supply from other aquifers.

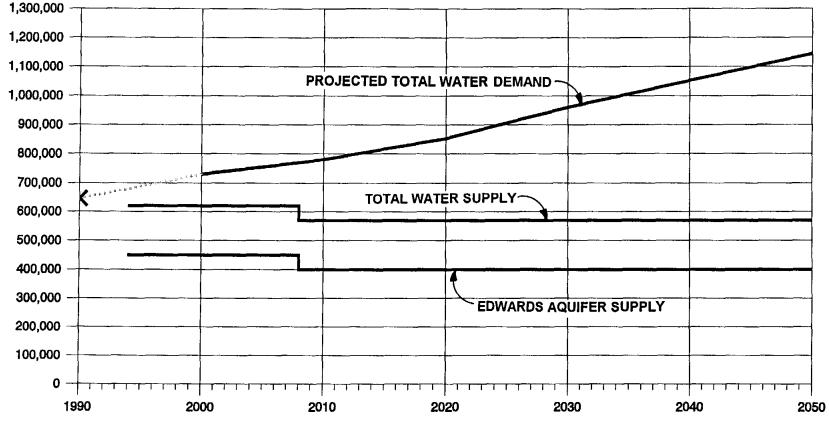
2-9

Table 2-31 Edwards Aquifer Water Use by River Basin West Central Study Area Trans-Texas Water Program

	450,000 acft Pumpage Limit					400,000 acf	t Pumpage Lim	nit
		River Basin (acft/yr)			R	tiver Basin (acf	t/yr)	
County	Total (acft/yr)	Nueces	San Antonio	Guadalupe	Total (acft/yr)	Nueces	San Antonio	Guadalupe
Uvalde	125,117	125,117			111,215	111,215		
Medina	72,296	55,957	16,339		64,264	49,741	14,523	
Atascosa	271	271			241	241		
Bexar	232,827		232,827		206,956		206,956	
Comal	9,721		149	9,572	8,641		132	8,509
Hays	6,841			6,841	6,081			6,081
Guadalupe	2,566		709	1,857	2,281		630	1,651
Caldwell	361			<u>361</u>	321			321
TOTAL	450,000	181,345	250,024	18,631	400,000	1 <u>61,197</u>	222,241	16,562

^{*}Allocated to counties in same proportions as reported and estimated use in 1990. Allocated to river basins on basins of location of counties and parts of counties in each river basin, using best estimates of location of water using entities and irrigated acreages.

For purposes of this analysis, the quantity of groundwater from the Carrizo and other aquifers is set at the TWDB estimates of long-term dependable supplies (estimated average annual recharge). It should be noted that this water is widely distributed beneath the surface of privately owned land in all or parts of the 33 counties of the study area, with a large proportion being from the Carrizo Aquifer which underlies all or parts of nine study area counties.


Surface water supplies include firm yield of reservoirs and run-of-river supplies authorized for use through permits issued by the Texas Natural Resource Conservation Commission (TNRCC). Using these and groundwater data, as described above, water demand and water supply comparisons are presented below.

2.4.1 Edwards Aquifer Area

For the Edwards Aquifer area, total water use in 1990 was 646,076 acft and the high case, with conservation projection in 2050 is 1,144,481 acft (Table 2-17). Under SB 1477 the supply that could be obtained from the Edwards Aquifer would be 450,000 acft per year until year 2008, at which time it would be decreased to 400,000 acft per year. Supply for the area from the Carrizo and other aquifers is estimated at 39,750 acft per year (Table 2-27 and Figure 2-27). For the Edwards Aquifer area, supplies of firm yield surface water from Canyon Lake are 11,720 acft per year (New Braunfels and San Marcos contracts for canyon water). Average annual supply from Medina Lake under full diversion rights could be 57,970 acft per year (Table 2-28).

In addition to supplies listed above, there are 10,503 acft of run-of-river rights within the Edwards Aquifer area (Table 2-29), and 49,000 acft of permits (Braunig and Calaveras Lakes) for diversions of runoff and wastewater flows from the San Antonio River for steam-electric cooling water at San Antonio's power plants. Although the run-of-river rights, average supply from Medina Lake and a part of the steam-electric permits are not firm supplies, when these are added to the groundwater quantities stated above (489,750 acft until 2008 and 439,750 acft thereafter), the totals for the period 1994 through 2007 are 618,943 acft, and for the period beginning in 2008 are 569,125 acft per year. These quantities of supply from existing sources for the period 1994 through 2007 (618,943 acft per

ESTIMATED WATER SUPPLY (ACFT/YR)								
WATER SOURCE	THRU 2007	AFTER 2007						
EDWARDS AQUIFER	450,000	400,000						
OTHER AQUIFERS	39,750	39,750						
CANYON LAKE (NEW BRAUNFELS CONTRACT)	6,720	6,720						
CANYON LAKE (SAN MARCOS CONTRACT)	5,000	5,000						
MEDINA LAKE - AVERAGE SUPPLY	57,970	57,970						
MEDINA RIVER - RUN-OF-RIVER RIGHTS	10,503	10,503						
BRAUNIG LAKE	12,000	12,000						
CALAVERAS LAKE	37,000	37,000						
TOTAL	618,943	569,125						

YEAR

TRANS TEXAS WATER PROGRAM / WEST CENTRAL STUDY AREA

HR

HDR Engineering, Inc.

TOTAL WATER DEMAND AND SUPPLY PROJECTIONS EDWARDS AQUIFER AREA

FIGURE 2-27

year) are 27,133 acft less than the 1990 use of 646,076 acft, and the projected 2050 supply from sources existing in 1994 (569,125 acft) is 575,356 acft less than the projected 2050 demands of 1,144,481 acft per year.


2.4.2 Nueces River Basin Study Area

The present water supplies of that part of the Nueces River Basin which is included in the West Central Study Area include water from the Edwards Aquifer, the Carrizo and other aquifers, and surface water that can be diverted from streams of the area under run-of-river permits. Estimated supplies for the Nueces Basin from the Edwards Aquifer through year 2007 are 181,300 acft per year, with supplies from other aquifers of 133,200 acft per year and run-of-river rights of 52,700 acft per year, giving a total of 367,200 acft per year (Figure 2-28). After 2007, supply from the Edwards Aquifer would be reduced to 161,200 acft per year, giving a total supply of 347,100 acft per year (Figure 2-28). In 1990, Nueces Basin Study area water use was 555,503 acft, with projected 2050 demands (high case with conservation) of 470,173 acft (Table 2-24). Projected demands decrease due to increased water conservation in irrigation. Projected Nueces Basin Study area demands in year 2000 are 501,826 acft which are 134,626 acft greater than the 367,200 acft of supply from existing sources. The projected deficit in 2050 would be 123,073 acft per year.

In the Nueces Basin, overdrafting or mining of groundwater is occurring, which explains the condition of 1990 water use being greater than supplies tabulated here. If groundwater mining continues, the supplies would be higher in the near term than those shown here and lower in later years (Figure 2-28). Thus, the deficits in 2050 would be greater than computed here (Figure 2-28).

2.4.3 San Antonio River Basin

Water use in the San Antonio Basin in 1990 (reported and estimated) was 358,304 acft with projections (high case, with conservation) to 2050 of 868,928 acft (Table 2-24). Water supplies from existing sources for the period 1994 through 2007 are estimated at 512,920 acft per year, of which 250,020 acft are from the Edwards Aquifer, 109,200 acft are from the Carrizo and other aquifers, 46,800 acft are run-of-river permits, and 57,970 acft is

ESTIMATED WATER SUPPLY (ACFT/YR)						
WATER SOURCE	THRU 2007	AFTER 2007				
EDWARDS AQUIFER	181,300	161,200				
OTHER AQUIFERS	133,200	133,200				
RUN-OF-RIVER RIGHTS	<u>52,700</u>	<u>52,700</u>				
TOTAL	367,200	347,100				

HR

HDR Engineering, Inc.

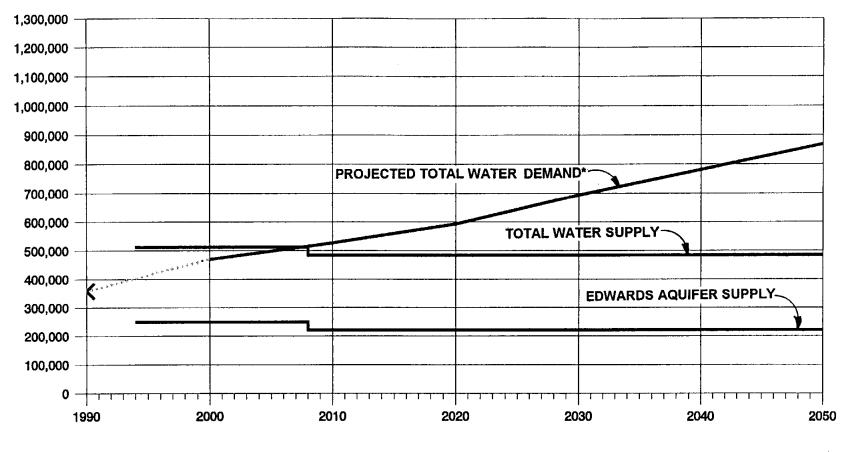
TRANS TEXAS WATER PROGRAM / WEST CENTRAL STUDY AREA

TOTAL WATER DEMAND AND SUPPLY PROJECTIONS NUECES BASIN STUDY AREA

* Includes only study area counties of the Nueces Basin.

FIGURE 2-28

the average supply from Medina Lake (Figure 2-29).


In addition to supplies listed above, City Public Service Board has permits for river diversions and wastewater reuse resulting in the consumptive use of 49,000 acft per year (Braunig and Calaveras Lakes). With these permits, total supply available to the basin from existing sources for the period 1994 through 2007 could be 512,920 acft, which is equal to high case projected demands in about the year 2008 (Figure 2-29). However, at year 2050 projected demands of 868,928 acft are almost 1.8 times projected supplies from sources existing in 1994 (485,140 acft). The projected deficit in year 2050 would be 383,788 acft per year, if high case demands occur and if no new supplies are developed (Figure 2-29).

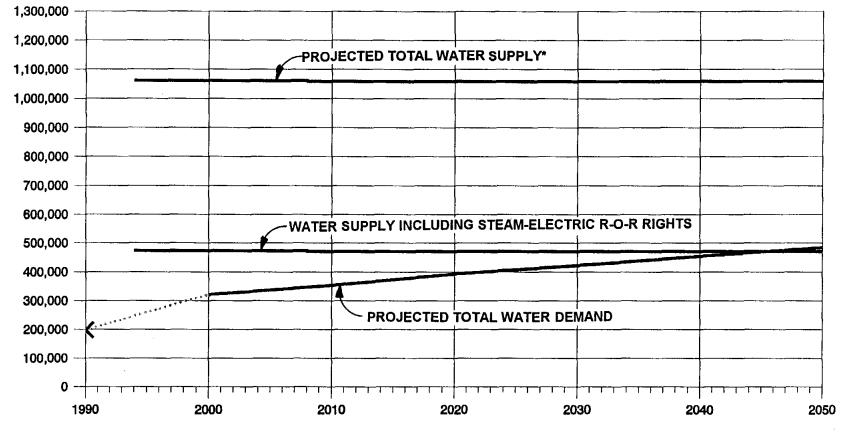
2.4.4 Guadalupe River Basin

In 1990, water use in the Guadalupe Basin and adjacent coastal areas that obtain water from the Guadalupe was 197,959 acft, with high case projections of 484,366 acft of demand in 2050 (Table 2-24). At the present time, available supplies from existing sources are as follows: 18,630 acft from the Edwards Aquifer under SB 1477, 144,700 acft from the Carrizo and other aquifers, 50,000 acft of firm yield from Canyon Lake, and run-of-river permits of 259,100 acft for consumptive use (irrigation and industrial process water) (Figure 2-30). In addition, there are non-consumptive run-of-river hydroelectric power rights at Lake Dunlap of 600 cfs. Since hydroelectric power generation is a nonconsumptive use, these flows can be used to meet several hydroelectric permits downstream of Lake Dunlap and can be used for other purposes downstream of the last hydroelectric power plant at Lake Wood near Gonzales. Thus, the hydroelectric power permits are recognized in the tabulations but are not included in either the demand or supply totals.

A comparison of projected water demands and supplies from existing sources for the Guadalupe Basin show that supply exceeds demand throughout the projection period (Figure 2-30), when groundwater and run-of-river rights are included; i.e., the total of permits, groundwater, and Canyon Lake permits is 472,430 acft per year (1,059,930 acft if once through cooling water is included), which exceeds projected demands through about year 2046. According to these projections, total supplies from existing sources, as expressed above, exceed projected demands by 150,989 acft in 2000, and 77,578 acft in 2020 (Figure

ESTIMATED WATER SUPPLY (ACFT/YR)								
WATER SOURCE THRU 2007 AFTER 200								
EDWARDS AQUIFER	250,020	222,240						
OTHER AQUIFERS	109,200	109,200						
RUN-OF-RIVER RIGHTS	46,800	46,800						
MEDINA LAKE - AVERAGE SUPPLY	57,900	57,900						
BRAUNIG LAKE	12,000	12,000						
CALAVERAS LAKE	37,000	37,000						
TOTAL	512,920	485,140						

* In-basin plus adjacent coastal areas that obtain water from the Colorado Basin, Does not include parts of study area counties located in the Brazos Basin.



TRANS TEXAS WATER PROGRAM / WEST CENTRAL STUDY AREA

TOTAL WATER DEMAND AND SUPPLY PROJECTIONS SAN ANTONIO BASIN STUDY AREA

HDR Engineering, Inc.
FIGURE 2-29

ESTIMATED WATER SUPPLY (ACFT/YR)				
WATER SOURCE	THRU 2007	AFTER 2007		
EDWARDS AQUIFER	18,630	16,560		
OTHER AQUIFERS	144,700	144,700		
CANYON LAKE	50,000	50,000		
CONSUMPTIVE RUN-OF-RIVER RIGHTS	259,100	<u>259,100</u>		
SUBTOTAL	472,430	470,360		
PASS-THROUGH INDUSTRIAL AND STEAM ELECTRIC RUN-OF-RIVER RIGHTS	<u>587,500</u>	587,500		
TOTAL	1,059,930	1,057,860		
NOTE: HYDROELECTRIC RIGHT AT I	DUNLAP IS 600 C	FS.		

^{*} In-basin plus adjacent areas that obtain water from the basin.

YEAR

TRANS TEXAS WATER PROGRAM / WEST CENTRAL STUDY AREA

HDR

HDR Engineering, Inc.

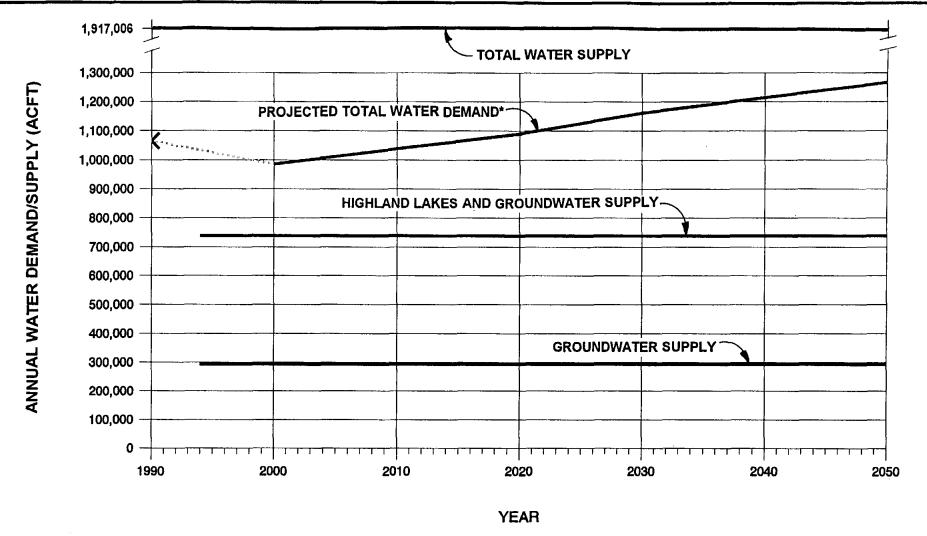
FIGURE

TOTAL WATER DEMAND AND SUPPLY PROJECTIONS GUADALUPE BASIN STUDY AREA

FIGURE 2-30

2-30). When once through industrial cooling water permits are included, projected supplies exceed projected demands through 2050.

2.4.5 Colorado River Basin Study Area


The Lower Colorado Basin Study area includes the counties of the Lower Colorado River Authority and adjacent coastal and inland areas that obtain water from the Colorado River. In 1990, water use of this area was estimated at 1,065,239 acft and is projected at 1,266,242 acft in 2050 (high case with conservation) (Table 2-24). Rice irrigation in the coastal counties is a major water user, reporting more than 636,000 acft of use in 1990 and with increased conservation is projected to use 371,000 acft in 2050 (Table 2-21).

Total supply available from existing sources includes 293,300 acft from the Carrizo and other aquifers, including the Barton Springs Edwards Aquifer which is not included in the boundaries established by SB 1477, 445,300 acft of firm yield from the Highland Lakes, and 1,178,396 acft of run-of-river permits (Figure 2-31). Of the latter, 671,750 acft are for irrigation in Colorado, Wharton, and Matagorda counties near the Gulf Coast (Table 2-29). Groundwater together with firm yield from the Highland Lakes gives a supply of 738,600 acft per year for the projection period, which is less than projected demands in 2000 by 246,020 acft, and in 2050 by 527,642 acft (Figure 2-31). When run-of-river rights are included, the totals of groundwater, firm yield from lakes, and run-of-river permits exceed demand in 2000 by 932,386 acft and in 2050 by 650,764. However, if the run-of-river supplies in the coastal counties yield a critical period supply of 350,921 acft, as estimated by LCRA staff (Section 2.3.2), then dependable supply from existing sources of the Lower Colorado Basin would be approximately 1,089,521 acft per year, which exceeds projected high case, with conservation, demand to about year 2020, and would be about 176,721 acft below projected demands in 2050.

2.4.6 Summary of Water Demand and Water Supply Projections

Water Demand Projections

The Texas Water Development Board has made water demand projections for the period 1990 through 2050. High case water demand projections, with conservation, were

ESTIMATED WATER SUPPLY				
WATER SOURCE	ESTIMATED SUPPLY (ACFT/YR)			
GROUNDWATER	293,300			
HIGHLAND LAKES	445,300			
RUN-OF-RIVER RIGHTS	<u>1,178,406</u>			
TOTAL	1,917,006			

HR

HDR Engineering, Inc.

In-basin plus adjacent coastal areas that obtain water from the Colorado Basin. Does not include parts of study area counties located in the Brazos Basin. TRANS TEXAS WATER PROGRAM / WEST CENTRAL STUDY AREA

TOTAL WATER DEMAND AND SUPPLY PROJECTIONS COLORADO BASIN STUDY AREA

FIGURE 2-31

specified by the TWDB for use in all Trans-Texas studies, and are tabulated and shown in various figures for each of the following areas: (a) 33-county West Central Study Area; (b) Edwards Aquifer area; and (c) river basins and adjacent areas.

In 1990, total water use in the 33-county study area was 2.2 million acft, of which 646,000 acft (30 percent) was in the Edwards Aquifer area. Projected year 2050, total water demand for the 33-county study area is 3.1 million acft (a 41 percent increase), of which 1.1 million acft is in the Edwards Aquifer area (a 70 percent increase). In the Edwards Aquifer area, the two major water use categories are municipal and irrigation. Municipal use is projected to increase from 260,000 acft in 1990 to 765,000 acft in 2050, a 195 percent increase. Conversely, irrigation use is projected to decline from 335,000 acft in 1990 to 240,000 acft in 2050, a 28 percent decrease.

Table 2-32 contains a summary of total water demand projections through year 2050 for the study area, Edwards Aquifer area, river basins, and selected cities. Table 2-33 contains a summary of current and projected water demand by type of use.

Table 2-32 Total Water Demand Projections ¹ (in Acre-Feet ²)				
Area	1990	2020	2050	
33 Counties	2,177,005	2,532,828	3,089,709	
Edwards Aquifer Area ³	646,076	853,245	1,144,481	
River Basin Study Areas				
Nueces	555,503	457,295	470,173	
San Antonio	358,304	592,888	868,928	
Guadalupe	197,959	392,782	484,366	
Colorado	1,065,239	1,089,836	1,266,242	

¹Source: Texas Water Development Board; High Case Projection with Conservation. ²One acre-foot equals 325,851 gallons. ³As defined by SB 1477.

Table 2-33 Water Demand Projection by Type of Use ¹								
	1990 Use			2050 Projections				
Type of Water	33-Cour Study A	· '		33-County Study Area		Edwards Aquifer Area		
Use	Acft	%	Acft	%	Acft	%	Acft	%
Municipal	498,128	22.9	259,330	40.1	1,420,211	45.9	765,017	66.8
Industrial	83,307	3.8	19,263	3.0	415,953	13.5	66,519	5.8
Steam-Elec.	98,755	4.5	24,263	3.8	236,200	7.6	56,000	4.9
Irrigation	1,411,579	64.8	335,061	51.9	918,400	29.7	239,880	21.0
Mining	47,360	2.2	2,979	0.4	48,663	1.6	10,089	0.9
Livestock	<u>37,876</u>	1.7	5,180	0.8	_50,282	_1.7	6,976	0.6
TOTAL	2,177,005	100.0	646,076	100.0	3,089,709	100.0	1,144,481	100.0
Source: Texas Water Development Board; High Case Projection with Conservation.								

Water Supply Information

Water supply information is listed in Table 2-34 for the Edwards Aquifer Area, and in Tables 2-35 through 2-38 for the river basins of the study area. Water supplies from the Edwards Aquifer are based on SB 1477 (450,000 acft/yr thorough 2007 and 400,000 acft/yr thereafter).

Table 2-34 Estimated Edwards Aquifer Area Water Supply (acft/yr)					
Water Source	Thru 2007	After 2007			
Edwards Aquifer	450,000	400,000			
Other Aquifers	39,750	39,750			
Canyon Lake (New Braunfels Contract)	6,720	6,720			
Canyon Lake (San Marcos Contract)	5,000	5,000			
Medina Lake - Average Supply	57,970	57,970			
Medina River - Run-of-River Rights	10,503	10,503			
Braunig Lake	12,000	12,000			
Calaveras	<u>37,000</u>	<u>37,000</u>			
Total	618,943	569,125			

Table 2-35 Estimated Nueces River Basin Water Supply (acft/yr)					
Water Source Thru 2007 After 2007					
Edwards Aquifer	181,300	161,200			
Other Aquifers	133,200	133,200			
Run-of-River Rights	52,700	<u>52,700</u>			
Total	367,200	347,100			

Table 2-36 Estimated San Antonio River Basin Water Supply (acft/yr)					
Water Source Thru 2007 After 2007					
Edwards Aquifer	250,020	222,240			
Other Aquifers	109,200	109,200			
Run-of-River Rights	46,800	46,800			
Medina Lake - Average Supply	57,900	57,900			
Braunig Lake	12,000	12,000			
Calaveras	<u>37,000</u>	<u>37,000</u>			
Total	512,920	485,140			

Table 2-37 Estimated Guadalupe River Basin Water Supply (acft/yr)					
Water Source Thru 2007 After 2007					
Edwards Aquifer	18,630	16,560			
Other Aquifers	144,700	144,700			
Canyon Lake	50,000	50,000			
Consumptive Run-of-River Rights	259,100	_259,100			
Subtotal	472,430	470,360			
Pass-Through Industrial and Steam Electric Run-of-River Rights*	<u>587,500</u>	_587,500			
Total	1,059,930	1,057,860			

Table 2-38 Estimated Lower Colorado River Basin Water Supply			
Water Source Estimated Supply (acft/yr)			
Groundwater	293,300		
Highland Lakes	445,300		
Run-of-River Rights	<u>1,178,406</u> *		
Total	1,917,006		
*Estimated supply during critical drought 350,921 acft			

Water supply information for the 33-county study area is summarized below:

- Water supply from the Edwards Aquifer, as specified in SB 1477, is as follows:
 - Through 2007, 450,000 acft; and
 - Beginning in 2008, 400,000 acft.
- Groundwater supply information for the Carrizo and other aquifers of the 33-county study area:
 - Recharge (long-term dependable supply), 680,400 acft;
 - Overdrafting is occurring in nine counties;
 - Significant underdevelopment is present in seven counties. (Note: this groundwater is beneath private land and in many cases is more than 50 miles from municipal and industrial users.)
- Annual surface water supply of the 33-county study area are as follows:

-	Nueces Basin Study Area Firm Yield	0 acft
-	San Antonio Basin (Medina Lake) Firm Yield	8,770 acft
-	San Antonio Basin (Medina Lake) Average Supply	57,900 acft
-	Guadalupe Basin (Canyon Lake) Firm Yield	50,000 acft
-	Colorado Basin (Highland Lakes) Firm Yield	445,266 acft
-	Nueces Basin Run-of-River Permits	53,397 acft
-	San Antonio Basin Run-of-River Permits	46,808 acft
-	San Antonio Basin Reuse Permit (Calaveras)	37,000 acft
-	San Antonio Basin Cooling Lake Permit (Braunig)	12,000 acft
-	Guadalupe Basin Run-of-River/Consumptive Permits	272,327 acft
-	Colorado Basin Run-of-River Permits	1,178,406 acft

Comparison of Supply and Demand

The projected water demands are compared with water supplies from existing sources for the Edwards Aquifer area and each of the river basins of the West Central Study Area, as follows:

- Shortages are projected for the Edwards Aquifer area in the immediate future:
 - Year 2000 shortage of 111,865 acft; and
 - Year 2050 shortage of 575,356 acft.
- Shortages are projected for the Nueces Basin Study area in the immediate future:
 - Year 2000 shortage of 134,626 acft; and
 - Year 2050 shortage of 123,073 acft.
- Shortages are projected for the San Antonio Basin after year 2008:
 - Year 2010 shortage of 41,531 acft; and
 - Year 2050 shortage of 383,788 acft.
- For the Guadalupe Basin and adjacent areas, projected demands are less than projected supplies to year 2046, when run-of-river consumptive permits are considered. When once-through industrial and electric power permits of 587,500 acft are included as available supplies for downstream diversion, then supplies exceed demand through 2050.
- For the Lower Colorado Basin and adjacent areas, projected demands are less than the sum of firm yields from lakes, groundwater, and run-of-river surface water rights throughout the planning period (surplus of 932,386 acft in 2000 and 650,764 acft in 2050). However, for drought-of-record conditions (when 1,178,396 acft of run-of-river rights are estimated to yield 350,921 acft), supply equals projected demands in year 2020 and there would be a shortage of 176,721 acft for projected demands in year 2050.