GROUND-WATER RESOURCES OF REFUGIO COUNTY, TEXAS

Charle and the

No. of the other

TEXAS WATER COMMISSION BULLETIN 6312

OCTOBER 1963

TEXAS WATER COMMISSION

Joe D. Carter, Chairman O. F. Dent, Commissioner H. A. Beckwith, Commissioner

BULLETIN 6312

GROUND-WATER RESOURCES OF

REFUGIO COUNTY, TEXAS

Bу

Curtis C. Mason, Geologist United States Geological Survey

Prepared by the U. S. Geological Survey in cooperation with the Texas Water Commission and the Refugio County Water Control and Improvement District No. 2

October 1963

TABLE OF CONTENTS

	Page
ABSTRACT	1
INTRODUCTION	3
Purpose and Scope	3
Location and Physical Features	4
Climate	4
Economic Development	8
Previous Investigations	8
Well-Numbering System	8
Acknowledgments	9
GEOLOGY	11
General Geology	11
Tertiary System	11
Pliocene Series	11
Goliad Sand	11
Quaternary System	14
Pleistocene Series	14
Lissie Formation	14
Beaumont Clay	14
Pleistocene and Recent Alluvium and Windblown Deposits	14
GROUND WATER	15
Occurrence	15

TABLE OF CONTENTS (Cont'd.)

Page

Aquifer Tests	16
Ground-Water Development	22
Public Supply	22
Industrial	26
Irrigation	26
Domestic and Livestock	26
Changes in Water Levels	26
Problems of Well Construction	27
Chemical Quality of Ground Water	28
Goliad Sand and Lissie Formation, Undifferentiated	35
Lissie Formation and Beaumont Clay, Undifferentiated	35
FUTURE DEVELOPMENT	36
SELECTED REFERENCES	47

TABLES

1.	Well numbers used in this report and corresponding numbers previously used in Refugio County by Muenster and Michal (1938)	10
		10
2.	Geologic formations and their water-bearing properties, Refugio County	12
3.	Results of aquifer tests in Refugio County	21
4.	Records of wells in Refugio County and adjacent areas	49
5.	Drillers' logs of wells in Refugio County and adjacent areas	72
6.	Chemical analyses of water from wells in Refugio County and adjacent areas	116

ILLUSTRATIONS

Figures

1.	Index Map of Texas Showing Location of Refugio County	5
2.	Annual Precipitation at Woodsboro, Texas	6
3.	Monthly Evaporation and Temperature at Beeville and Monthly Precipitation at Woodsboro, Texas	7
4.	Geologic Map of Refugio County and Adjacent Areas	13
5.	Approximate Altitude of the Base of Fresh to Slightly Saline Water in the Goliad Sand and Lissie Formation, Undifferen- tiated, Refugio County and Adjacent Areas	17
6.	Approximate Thickness of Sand Containing Fresh to Slightly Saline Water in the Goliad Sand and Lissie Formation, Undifferentiated, Refugio County and Adjacent Areas	19
7.	Theoretical Maximum Drawdown Due to Pumping	23
8.	Theoretical Drawdown Due to Pumping in an Infinite Aquifer	24
9.	Average Daily Pumpage of Ground Water by City of Refugio	25
10.	Approximate Altitude of Water Levels in Wells in the Goliad Sand and Lissie Formation, Undifferentiated, Refugio County, 1961-62	29
11.	Diagram for the Classification of Irrigation Waters	34
1 2.	Chloride and Dissolved-Solids Content of Water from Selected Wells in the Goliad Sand and Lissie Formation, Undifferen- tiated, Refugio County	37
13.	Chloride and Dissolved-Solids Content of Water from Selected Wells in the Lissie Formation and Beaumont Clay, Undifferen- tiated, Refugio County and Adjacent Areas	39
14.	Map Showing Potential of Ground-Water Development from the Goliad Sand and Lissie Formation, Undifferentiated, Refugio County	43
15.	Estimated Future Water Requirements for Approximate Refugio County Area	45

TABLE OF CONTENTS (Cont'd.)

Plates

Follows

1.	Map Showing Location of Wells in Refugio County and Adjacent Areas	Page 12	22
2.	Geologic Section A-A', San Patricio, Refugio, and Victoria Counties	Plate	1
3.	Geologic Section B-B', Goliad, Refugio, and Victoria Counties	Plate	2
4.	Geologic Section C-C', Bee, Refugio, and Calhoun Counties	Plate	3
	Geologic Section D-D', Bee, Refugio, and Aransas Counties	Plate	4

GROUND-WATER RESOURCES OF

REFUGIO COUNTY, TEXAS

ABSTRACT

Refugio County occupies an area of 771 square miles and is in the West Gulf Coastal Plain in south Texas. The principal city is Refugio, with a population of 4,944 in 1960. It is 120 miles southeast of San Antonio and 45 miles north of Corpus Christi. The county has a mild climate with an average rainfall of 33.76 inches per year. The economy is dependent upon livestock raising, petroleum production, and diversified crop growing.

The principal water-bearing formations in Refugio County are the Goliad Sand, Lissie Formation, and Beaumont Clay. These formations crop out in belts roughly parallel with the coast and dip to the southeast at a rate greater than the dip of the land surface. They consist chiefly of sand, silt, and clay. The contacts between the formations are difficult to determine in the subsurface in drillers' or electric logs. As a consequence, the water-bearing sands in the Goliad Sand and Lissie Formation, in wells that are more than about 600 feet deep, are considered as a single aquifer. Similarly, the Lissie Formation and Beaumont Clay in wells that are less than about 600 feet deep are considered as a single aquifer.

In 1961, approximately 2,800 acre-feet, or 2,500,000 gpd (gallons per day), of ground water was pumped, of which 746 acre-feet, or 665,000 gpd, was for public supply and nearly an equal amount, 655,000 gpd, was pumped for industrial use. About 1,000 acre-feet was used for domestic and livestock purposes and about 365 acre-feet was used for irrigation.

Aquifer tests showed that the coefficient of transmissibility ranged from 13,000 to 77,000 gpd per foot in the Goliad Sand and Lissie Formation, undifferentiated, and from 2,500 to 8,500 gpd per foot in the Lissie Formation and Beaumont Clay, undifferentiated.

Formerly all wells producing water from the Goliad and Lissie were flowing wells, but by 1961 most of the wells in the northern part of the county had ceased to flow.

Water in the Goliad Sand and Lissie Formation, undifferentiated, in the northwestern part of the county generally contains less than 300 ppm (parts per million) chloride and less than 1,000 ppm dissolved solids. The water becomes

more highly mineralized toward the southeast. The quality of the water in the Lissie Formation and Beaumont Clay, undifferentiated, ranges from fresh (less than 1,000 ppm dissolved solids) to moderately saline (3,000 to 10,000 ppm dissolved solved solids).

From available data, on the order of 10 to 20 million acre-feet of ground water is estimated to be in storage in Refugio County. The maximum rate of withdrawal of ground water containing less than 300 ppm chloride from the Goliad Sand and Lissie Formation, undifferentiated, is on the order of 42,000 acre-feet a year for an indefinite period. It seems probable, therefore, that the predicted future needs of more than 11,000 acre-feet a year for industry and public supply can be obtained safely from the Goliad Sand and Lissie Formation, undifferentiated.

GROUND-WATER RESOURCES OF REFUGIO COUNTY, TEXAS

INTRODUCTION

Purpose and Scope

Since the creation of the Refugio County Water Control and Improvement District No. 2, the officials of the district have been aware of the importance of information concerning the availability of a water supply of good chemical quality for industrial and municipal use in Refugio County. In 1960, the district estimated the future water needs for Refugio County and adjacent areas and investigated methods of supplying the needs from surface-water sources (Lockwood, Andrews, and Newnam, 1960). In 1961, the district entered into a cooperative agreement with the Texas Board of Water Engineers (changed to Texas Water Commission, January 1962) and the U. S. Geological Survey to make a study of the ground-water resources of Refugio County and adjoining areas.

The ground-water study of Refugio County was designed to fulfill the following specific objectives:

1. To describe the thickness and extent of the water-bearing units.

2. To delineate areas within the county which are most favorable for the development of ground-water supplies suitable for municipal and industrial use.

3. To estimate the quantity of ground water available.

4. To determine the vertical and lateral variations in the quantity and quality of the ground-water supplies.

5. To determine the hydraulic characteristics of the water-bearing units.

6. To estimate the yields and other characteristics of wells which might be drilled in the county.

7. To evaluate any evident problems related to ground-water development.

In order to meet these objectives, records from 452 selected wells (Table 4), 88 electric logs of wells, and 68 drillers' logs (Table 5) were collected and studied. Aquifer tests were made on 5 wells to determine the hydraulic characteristics of the water-bearing units. Water samples from 88 wells were collected and analyzed chemically in the laboratory of the U. S. Geological

Survey in Austin, Texas, and in addition, the results from 80 analyses made in 1936-37 by the Works Progress Administration were studied. The results of the analyses are given in Table 6. Fieldwork on the project was started in September 1961 and continued through March 1962.

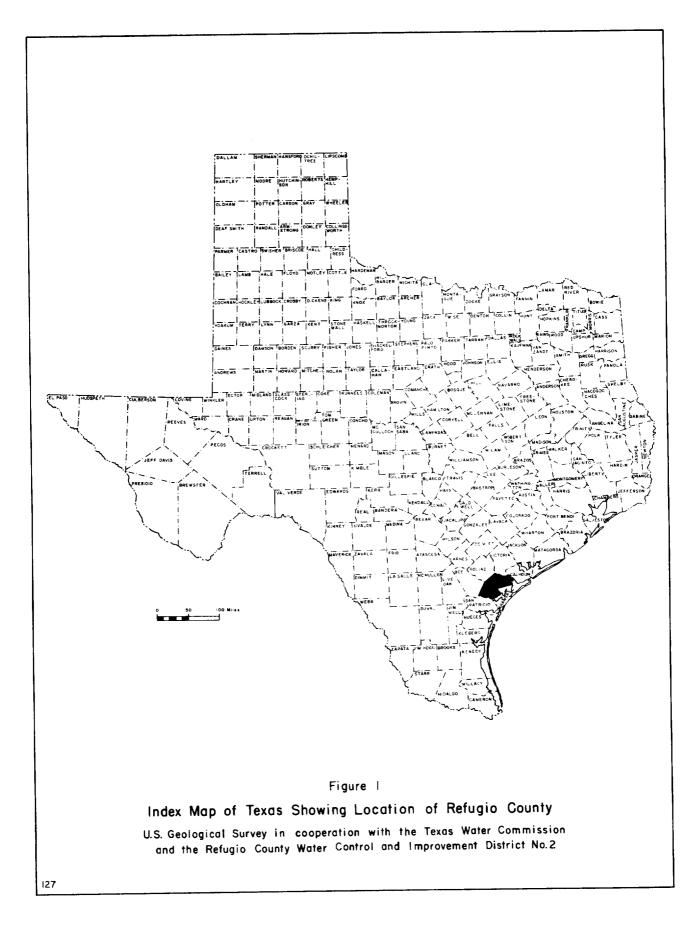
For purposes of this report, small quantities are defined as 0 to 100 gpm (gallons per minute), moderate quantities as 100 to 1,000 gpm, and large quantities as more than 1,000 gpm. Also, fresh water contains less than 1,000 ppm (parts per million) dissolved solids, slightly saline water contains from 1,000 to 3,000 ppm dissolved solids, and moderately saline water contains 3,000 to 10,000 ppm dissolved solids.

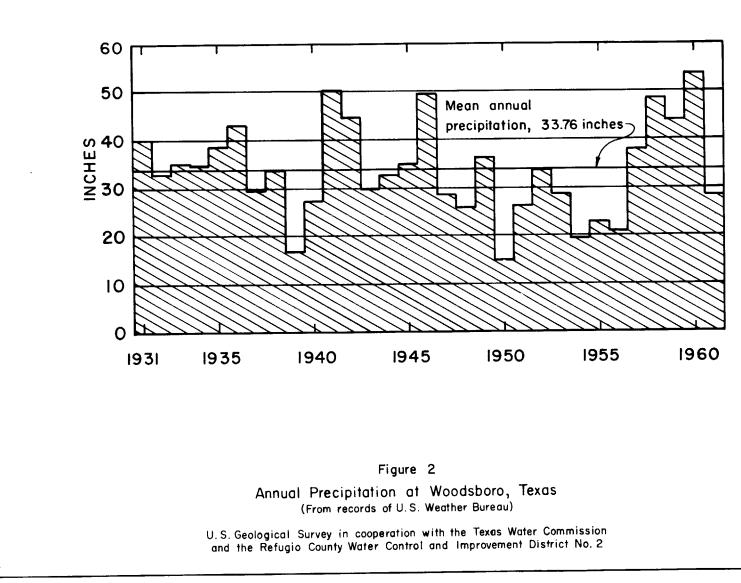
The investigation was made under the immediate supervision of A. G. Winslow, district geologist of the U. S. Geological Survey in charge of ground-water investigations in Texas.

Location and Physical Features

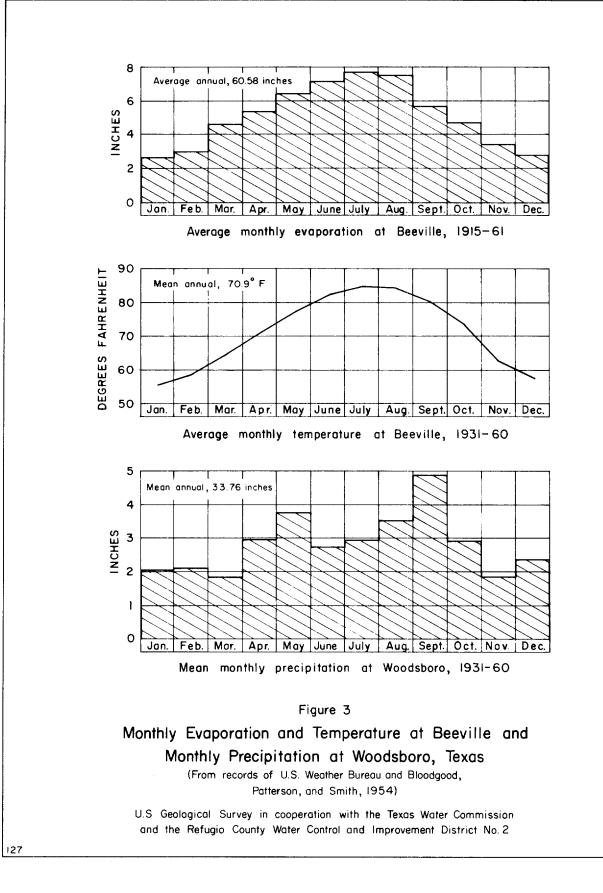
Refugio County, which has an area of 771 square miles, is in the West Gulf Coastal Plain in south Texas. It is bounded on the south and southeast by San Patricio and Aransas Counties, on the west and northwest by Bee and Goliad Counties, on the north by Victoria County, and on the east by Calhoun County (Figure 1).

The topography of Refugio County is nearly flat; the land surface slopes toward the southeast at the rate of about 4 feet per mile. The altitude ranges from sea level along the shoreline of the bays to 96 feet along the Refugio-Goliad county line in the northern part of the county.


Refugio County is drained by low-gradient, sluggish streams. The San Antonio and Guadalupe Rivers and their tributaries drain the northern part of the county; the Mission River and its tributaries drain the central part; and the Aransas River and its tributaries drain the southern part. Much of the county is typical of the brush country of south Texas, being covered by mesquite, huisache, cenizo, live oak, prickly pear, and other similar vegetation.


Refugio, the county seat of Refugio County, is the largest city in the county, having a population of 4,944 in 1960. Refugio is about 45 miles north of Corpus Christi and 120 miles southeast of San Antonio. Other communities in the county are Woodsboro, Tivoli, Austwell, and Bayside.

Climate


The climate in Refugio County is subhumid and mild. The mean annual precipitation at Woodsboro during the period 1931-60 was 33.76 inches. Figure 2 shows that the precipitation was less than 20 inches in only 3 years since 1931 and more than 40 inches in 7 years. Figure 3 shows that, on the average, the wettest months are May and September and the driest are March and November.

Long-term records of evaporation and temperature are not available in Refugio County; the nearest station having such records is at Beeville, about 30 miles west of Refugio. The mean annual temperature at Beeville is 70.9°F; the

mean monthly temperature in January is 56°F and in July 84°F (Figure 3). The average monthly evaporation at Beeville ranges from 7.7 inches in July to 2.6 inches in January. The annual evaporation rate is 60.6 inches (Figure 3), or nearly twice the mean annual precipitation.

Economic Development

The economy of Refugio County is dependent chiefly upon diversified crop growing, livestock raising, and oil production; cotton, grain sorghum, and flax are the principal crops. During 1958, more than 14 million barrels of oil was produced in the county, and the total value of gas and oil production in 1958 was \$65,299,548.

The county is served by several hard-surfaced roads and Federal and State highways and one railroad. U. S. Highway 77, the principal traffic artery, passes through the county in a northeasterly direction. U. S. Highway 183 enters the county from the northwest and terminates at Refugio.

Previous Investigations

Little detailed information concerning ground water in Refugio County had been obtained prior to the present study. A report by Muenster and Michal (1938) contains records of wells in Refugio County and a part of Goliad County, together with tables of well logs and water analyses. A report on the public-water supplies of south Texas (Broadhurst, Sundstrom, and Rowley, 1950) contains records of the public water-supply wells in Refugio, Woodsboro, and Austwell. In 1960-61, a reconnaissance study of the ground-water resources of the Gulf Coast region, which includes Refugio County, was made by Wood, Gabrysch, and Marvin (1963).

Detailed reports have been published on the ground-water resources of several counties adjacent to Refugio County. Dale, Moulder, and Arnow (1957) reported on the ground-water resources of Goliad County, and Marvin, Shafer, and Dale (1962) reported on the ground-water resources of Victoria and Calhoun Counties.

Detailed reports on the geology of Refugio County have not been published; however, the general geology of the area was described by Sellards, Adkins, and Plummer (1932), and many others. The geology of the area is shown in a generalized manner on the Geologic Map of Texas (Darton and others, 1937). Doering (1956), in his paper on the Quaternary deposits of the Gulf Coast, has suggested changes to the Geologic Map of Texas, particularly in the mapping of the Pleistocene units. Much of this work is pertinent to Refugio County.

Well-Numbering System

The well-numbering system used in this report is one adopted by the Texas Water Commission for use throughout the State and is based on longitude and latitude. Under this system, each 1-degree quadrangle in the State is given a number consisting of 2 digits. These are the first 2 digits appearing in the well number. Each 1-degree quadrangle is divided into 7-1/2 minute quadrangles which are also given 2-digit numbers from Ol to 64. These are the third and fourth digits of the well number. Each 7-1/2 minute quadrangle is subdivided into 2-1/2 minute quadrangles and given a single-digit number from 1 to 9. This is the fifth digit of the well number. Finally, each well within a 2-1/2 minute quadrangle is given a 2-digit number in the order in which it is inventoried starting with Ol. These are the last 2 digits of the well number. In addition to the 7-digit well number, a 2-letter prefix is used to identify the county. The prefixes for Refugio and adjacent counties are as follows:

County	Prefix
Aransas	АН
Вее	AW
Calhoun	BW
Goliad	KP
Refugio	WH
San Patricio	WW
Victoria	YT

Thus, well WH-79-46-604 is in Refugio County, in the 1-degree quadrangle number 79, in the 7-1/2 minute quadrangle 46, the 2-1/2 minute quadrangle 6, and was the fourth well (04) inventoried in that 2-1/2 minute quadrangle.

On the well-location map of this report (Plate 1), the 7-1/2 minute quadrangles are shown and numbered in the northwest corner of each quadrangle. The 3-digit number shown with the well symbol contains the number of the 2-1/2 minute quadrangle in which the well is located and the number of the well within that quadrangle. Table 1 shows the well numbers used in this report and corresponding numbers previously published.

Acknowledgments

The author is grateful to Mr. J. G. Heard, president of the Refugio County Water Control and Improvement District No. 2, for his cooperation in making the city of Refugio wells available for various tests. The farmers and ranchers of the area cooperated by supplying information on their wells and allowing access to their land. Mr. Kelly of Kelly Water Wells in Refugio and his employees and Mr. Hobbs of H. & S. Well Service in Victoria were helpful in supplying drillers' logs and completion records of many wells in the county.

New Number	Old Number	New Number	01d Number	New Number	01d Number	New Number	01d Number
WH-79-38-801	256	WH-79-46-503	83	WH-79-48-503	605	WH-80-25-701	517
902	2 51	504	70	601	601	80-33-202	5 2 8
79-39-102	225	60 2	2 86	602	603	204	523
201	219	608	21	702	611	401	552
402	229	702	102	79-53-101	413	403	551
403	230	703	94	102	414	501	546
404	248	804	90	404	415	603	535
502	236	806	91	505	416	604	544
601	242	79-47-203	269	603	419	701	550
79-40-101	2 10	204	2 70	904	125	703	548
201	208	207	2 7 2	79-54-104	103	801	547
401	560	504	282	105	114	802	545
501	558	601	280	107	106	803	577
503	559	602	2 78	204	109	80-34-101	532
701	561	603	277	205	110	80-41-101	576
702	562	801	303	207	101	102	573
901	567	802	306	403	115	103	594
902	566	803	308	701	126	201	575
79-45-804	410	903	281	79-55-201	307	202	578
79-46-101	40	79-48-101	274	301	309	402	600
102	46	102	606	79-56-102	310	501	593
103	65	104	563	401	311	801	598
201	55	201	565	502	312	80-42-101	586
402	68	502	610	79-63-101	161		

Table 1.--Well numbers used in this report and corresponding numbers previously used in Refugio County by Muenster and Michal (1938)

GEOLOGY

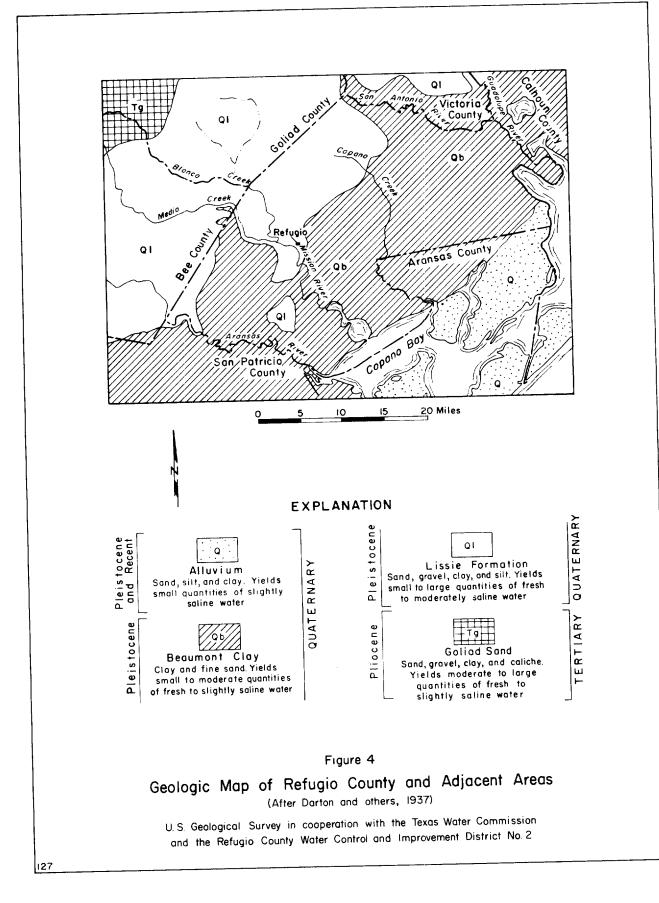
General Geology

The principal fresh water-bearing formations underlying Refugio County are the Goliad Sand of Pliocene age and the Lissie Formation and Beaumont Clay of Pleistocene age (Table 2). Alluvial deposits of Pleistocene and Recent age are not an important source of ground water, although they supply water for a few livestock wells. The Lissie Formation, Beaumont Clay, and the alluvium are exposed in Refugio County; the Goliad Sand underlies the younger formations and is exposed in Goliad County to the northwest (Figure 4). The formations, except for the alluvium, dip to the southeast toward the Gulf of Mexico at a greater rate than the slope of the land surface; thus, the formations generally are found at greater depths toward the coast. The formations thicken in the downdip direction also, consequently, the older beds dip more steeply than the younger ones. The dip of the formations probably ranges from about 10 to 40 feet per

The sediments are nonmarine in origin and consist chiefly of sand, clay, and gravel. In general, they become finer and the sand content decreases downdip. The heterogeneous character of the sediments makes correlation of individual sand or clay beds difficult even over short distances. The deposits generally are lenticular, the lenses of clay, sand, or gravel pinching out, coalescing, or grading into each other within short distances. The variations in lithology are shown in the geologic sections (Plates 2, 3, 4, and 5). The contacts between the Goliad Sand, Lissie Formation, and Beaumont Clay are difficult to determine in the subsurface in drillers' or electric logs owing to the similarity of the sediments, and the formations have not been differentiated on the cross sections.

The major structural feature in Refugio County affecting the occurrence of ground water is the homoclinal dip of the formations to the southeast. Faults are of major importance to the occurrence of oil; however, the displacement along the faults is small at shallow depths (Honea, 1956, p. 54), and they apparently have little or no effect on the occurrence of ground water in Refugio County.

Tertiary System


Pliocene Series

Goliad Sand

The Goliad Sand, the oldest formation of importance as a source of ground water in Refugio County, lies unconformably on older rocks of Tertiary age, and is, in turn, overlain unconformably by the Lissie Formation. The Goliad crops out in Bee and Goliad Counties (Figure 4) in a northeastward-trending belt of irregular width and dips southeastward toward the Gulf of Mexico at an estimated maximum rate of about 40 feet per mile.

Table 2Geolog	ic formations	and	their water	-bearing	properties,	Refugio	County
---------------	---------------	-----	-------------	----------	-------------	---------	--------

System	Series	Formation of unit	Approximate thickness (feet)	Lithology	Water-bearing properties
	Recent and Pleistocene	Alluvium	0 - 50	Fine sand, silt, and clay.	Yields small quantities of slightly saline water to livestock wells.
Quaternary			0 - 600	Predominantly clay interbedded with layers of medium to fine-grained sand.	Yields small to moderate quantities of fresh to slightly saline water to wells in Refugio County.
	r ierstocene-	Unconformity ——— Lissie Formation	400 - 600	Chiefly sand with lentils of gravel, interbedded with clay and silt.	Yields small to large quantities of fresh to moderately saline water to wells in Refugio County.
Tertiary	Pliocene	-Unconformity Goliad Sand	300 - 600	Sand or sandstone interbedded with layers of gravel and clay. Con- tains caliche in outcrop.	Yields moderate to large quantities of fresh to slightly saline water to wells in Refugio County.

The Goliad Sand consists chiefly of sand or sandstone, which is interbedded with layers of gravel and clay. On the outcrop, the sand is fine to coarse, gray or pinkish-gray, and much of it has a salt-and-pepper appearance due to the presence of grains of black chert. In many places, especially on the outcrop, the formation is characteristically white owing to the abundance of caliche, a calcareous deposit usually formed near the surface. The thickness of the Goliad ranges from 300 to 600 feet; the top of the formation in Refugio County is more than 600 feet deep at all places.

The Goliad Sand yields moderate to large quantities of fresh to slightly saline water to wells in Refugio County.

Quaternary System

Pleistocene Series

Lissie Formation

The Lissie Formation crops out in a belt about 20 miles wide in the western and northwestern parts of Refugio County and in southeastern Goliad and Bee Counties (Figure 4). The Lissie unconformably overlies the Goliad Sand and is overlain unconformably by the Beaumont Clay. In the subsurface, it is difficult to determine accurately the contacts between these formations because of the lithologic similarities. The Lissie consists of thin- to thick-bedded sand, which contains lentils of gravel and interbedded clay and silt. The formation has a thickness ranging from about 400 to 600 feet.

The Lissie Formation in Refugio County yields small to large quantities of fresh to moderately saline water.

Beaumont Clay

The outcrop area of the Beaumont Clay occupies about the southeastern twothirds of Refugio County (Figure 4). The Beaumont lies unconformably on the Lissie Formation and is, in turn, overlain unconformably by Pleistocene and Recent alluvial deposits and windblown sand in the eastern part of the county and in Aransas County. The Beaumont is predominantly clay interbedded with layers of medium to fine sand, the formation ranging in thickness from 0 to about 600 feet.

The Beaumont Clay yields small to moderate quantities of fresh to slightly saline water to wells in Refugio County.

Pleistocene and Recent Alluvium and Windblown Deposits

Alluvium, consisting of fine sand, silt, and clay, mantles a small area in the eastern tip of Refugio County (Figure 4). Minor occurrences of the deposits are found also in some of the stream valleys; however, these are not shown on the geologic map. Some windblown deposits overlie the alluvium but are not differentiated from the alluvium in this report. The deposits range from 0 to about 50 feet in thickness and yield small quantities of slightly saline water to livestock wells. The alluvium is not an important source of water for public supply, industry, or irrigation in Refugio County.

GROUND WATER

Occurrence

The following is a brief description of the principles of occurrence of ground water as they apply to Refugio County. For a comprehensive treatment of the general principles, the reader is referred to Meinzer and others (1942) and Tolman (1937).

The source of all ground water in Refugio County is precipitation on the surface of Refugio and adjoining counties. Most of the precipitation is evaporated, transpired by plants, or runs off to the Gulf of Mexico. A small part, which falls on or flows across the outcrops of the water-bearing formations, percolates downward to the water table, filling the pore spaces to become ground water. The water in the outcrop is unconfined and is said to be under watertable conditions. As the water moves down the dip of the formations and passes beneath layers of less permeable material, the water becomes confined and is said to be under artesian conditions.

The water in the aquifers underlying Refugio County is in transient storage, moving slowly, generally less than 100 feet a year, from the outcrop southeastward toward the Gulf. Ground water in the county is discharged naturally through springs and seeps in the outcrop (rejected recharge), by evapotranspiration where the water table is near the surface, by vertical seepage through semiconfining beds, and by subsurface movement out of the county toward the southeast. The quantity of water discharged by wells is relatively small compared to the quantity discharged by natural means.

Although ground water in Refugio County occurs in the Goliad Sand, Lissie Formation, and Beaumont Clay, the geologic formations do not comprise individual aquifers. For the purposes of this report, wells that are screened below about 600 feet are considered as tapping the Goliad Sand and Lissie Formation, undifferentiated. Similarly, wells that obtain water from sands above about 600 feet are considered as tapping the Lissie Formation and Beaumont Clay, undifferentiated. Thus, for practical purposes, there are two principal aquifers in Refugio County, the boundary between the two being an ill-defined horizon in the Lissie Formation. The 600-foot depth to the boundary is only approximate; the actual depth may range between about 500 and 700 feet, depending on the location in the county.

The Goliad Sand and Lissie Formation, undifferentiated, underlies all of Refugio County and contains fresh to slightly saline water throughout the county. The approximate altitude of the base of the fresh to slightly saline water in the unit ranges from about 1,700 feet below sea level in the northeastern part of the county to less than 500 feet in the extreme southern part (Figure 5). The base of fresh to slightly saline water is at least 1,800 feet below sea level in the southeastern part of Victoria County. The control used in the preparation of Figure 5 was based principally on the interpretation of electric logs of oil tests. Chemical analyses of water from wells near oil tests for which electric logs were available showed that, in general, sands having an apparent resistance of 10 ohms were saturated with water containing from 1,000 to 3,000 ppm of dissolved solids. Thus, sands having an electrical resistance of 10 or more ohms on the lateral or long normal curve were considered as containing fresh to slightly saline water.

The slope of the base of fresh to slightly saline water is very irregular as is shown in the geologic sections (Plates 2 to 5) and in Figure 5. The irregularity is due, in part, to a decrease in sand content in the downdip direction, which results in a decrease in the rate of movement of the water and an accompanying increase in mineralization. The marked rise in the base of the fresh to slightly saline water west of Refugio, as shown in Figure 5, is attributed to a decrease in the sand content. Near the eastern edge of the county, the base rises sharply (Plates 4 and 5 and Figure 5), indicating the approximate downdip extent of fresh to slightly saline water in the Goliad Sand and Lissie Formation, undifferentiated.

The approximate thickness of fresh to slightly saline water-bearing sands in the Goliad Sand and Lissie Formation, undifferentiated, in Refugio and adjacent counties is shown in Figure 6. The thickness ranges from about 600 feet in a small area in the southwest corner of the county near the intersection of Goliad, San Patricio, and Refugio Counties to less than 100 feet in the southern corner. At Refugio, the thickness is about 300 feet.

Aquifer Tests

Aquifer tests were made in five wells in Refugio County to determine the ability of the aquifers to transmit and store water. The results of the tests are given in Table 3. The data from the tests were analyzed using the Theis non-equilibrium method as modified by Cooper and Jacob (1946, p. 526-534) and the Theis recovery method (Wenzel, 1942, p. 94-97).

The ability of an aquifer to transmit water is expressed as its coefficient of transmissibility, which is defined as the amount of water in gallons per day that will pass through a vertical strip of the aquifer having a width of 1 foot and a height equal to the saturated thickness of the aquifer under a hydraulic gradient of 1 foot per foot at the prevailing aquifer temperature. The coefficient of storage of an aquifer is defined as the volume of water it releases or takes into storage per unit surface area of the aquifer per unit change in the component of head normal to that surface.

Aquifer tests were made in three wells (WH-79-31-901, WH-79-46-604, and WH-79-46-608, Table 3) that tap the Goliad Sand and Lissie Formation, undifferentiated. The coefficients of transmissibility ranged from 13,000 gpd (gallons per day) per foot in wells WH-79-46-604 and WH-79-46-608 to 77,000 gpd per foot in well WH-79-31-901. The coefficients of storage obtained from tests in well WH-79-46-608 averaged 0.00021, which is in the range generally attributed to artesian aquifers. The specific capacities ranged from 4.7 gpm (gallons per minute) per foot of drawdown in well WH-79-46-604, which yielded 595 gpm, to 28 gpm per foot of drawdown in well WH-79-31-901, which yielded 2,770 gpm.

Aquifer	Well number	Screened interval (feet)	Average discharge during test (gpm)	Coefficient of transmissibility (gpd/ft.)	<pre>Specific capacity (gpm/ft.)</pre>	Coefficient of storage	Remarks
Goliad Sand and Lissie Formation, undifferentiated	WH-79-31-901	160-946	2,770	77,000	28		Recovery of pumped well.
Do.	WH-79-46-604	578 - 875	595	13,000	4.7		Do.
Do.	WH-79-46-604	578 - 875	600	16,000			Do.
Do.	WH-79-46-608	800-875	600	13,000		0.00022	Drawdown in observation well.
Do.	WH-79-46-608	800 - 875	600	13,000		0.00020	Recovery in observation well.
Lissie Formation and Beaumont Clay, undiffer- entiated.	WH-79-54-203	180-270	290	2,500			Recovery of pumped well.
Do.	WH-79-54-803	? -331	540	8,500	12.0		Do.

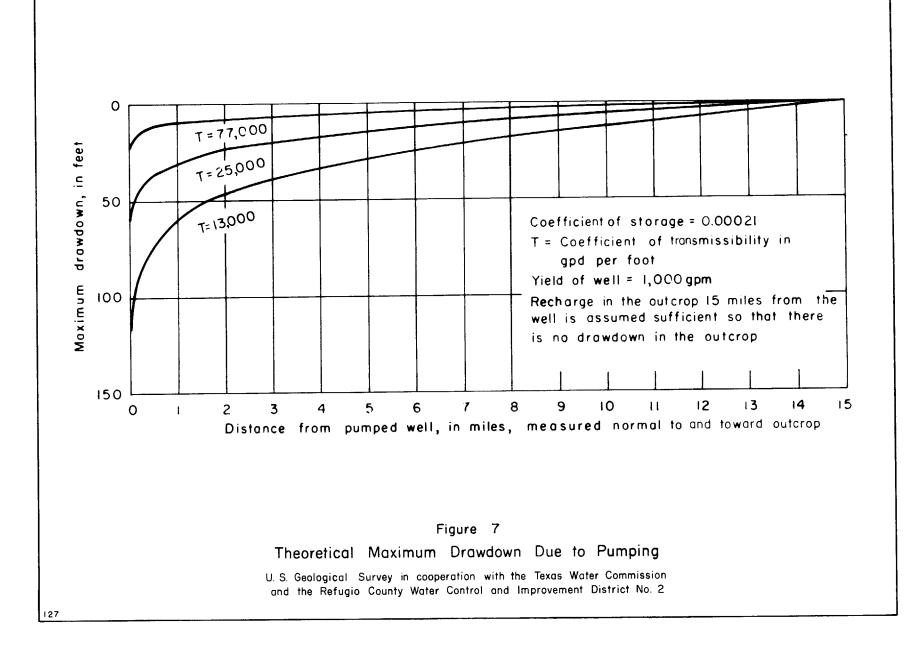
Table 3.--Results of aquifer tests in Refugio County

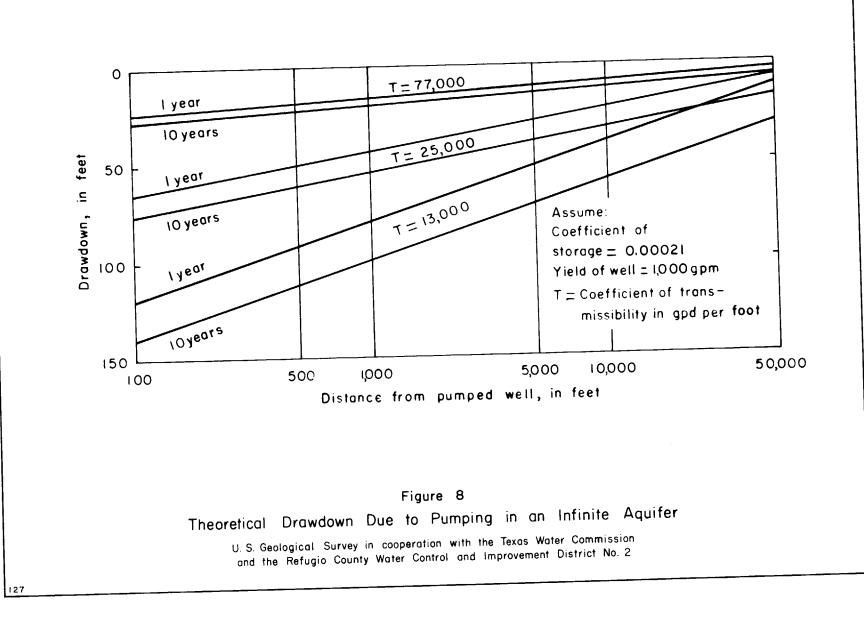
.

A comparison of the specific capacities with the coefficients of transmissibility indicate that the wells probably have been developed to their full potential.

Results of aquifer tests in two wells that tap the Lissie Formation and Beaumont Clay, undifferentiated, show that the coefficients of transmissibility were low, ranging from 2,500 gpd per foot in well WH-79-54-203 to 8,500 gpd per foot in well WH-79-54-803. The specific capacity of well WH-79-54-803, which yielded 540 gpm, was 12.0 gpm per foot of drawdown; the specific capacity was not determined for well WH-79-54-203 (Table 3).

The coefficients of transmissibility and storage may be used to predict the drawdown of water levels caused by pumping. Figures 7 and 8 show the theoretical effects that a pumping well will have on the water levels at various distances from the well. The values used in plotting the curves in the illustrations were computed for three different coefficients of transmissibility values: 77,000, 25,000, and 13,000 gpd per foot and assuming the following conditions. The outcrop is a straight line of infinite length 15 miles from the pumped well, recharge is sufficient so that there is no drawdown in the outcrop, and the well has been pumped long enough for maximum drawdown to have occurred. In Figure 8 it is assumed that the aquifer is of infinite areal extent and that the well has pumped continuously for periods of 1 year or 10 years. In both figures it is assumed that the aquifer is homogeneous, has a coefficient of storage of 0.0021, and that the well has been pumped at a continuous rate of 1,000 gpm. The conditions of the assumptions are not entirely met in Refugio County; however, they are close enough so that the use of the curves as approximations probably is valid.


Ground-Water Development


Ground water in Refugio County is used principally for domestic and livestock purposes, and to a lesser extent for public supply, industry, and irrigation. During 1961, approximately 2,800 acre-feet, or 2,500,000 gpd of water was withdrawn from the ground-water reservoir.

Public Supply

The average daily pumpage for public supply in 1961 was about 665,000 gpd (746 acre-feet per year), Refugio and Woodsboro being the largest users of water in the county. Refugio, which obtains its water supply from three wells tapping the Goliad Sand and Lissie Formation, undifferentiated, used 460,000 gpd in 1961. Woodsboro pumped an average of 100,000 gpd in 1961 from three wells tapping the Lissie Formation and Beaumont Clay, undifferentiated. Other public supplies in the county include Tivoli, which used 72,000 gpd from the Goliad Sand and Lissie Formation, undifferentiated, and Austwell, which pumped an estimated 33,000 gpd from the Lissie Formation and Beaumont Clay, undifferentiated.

Early records of pumpage from the cities of Refugio and Woodsboro are not available. Broadhurst, Sundstrom, and Rowley (1950, p. 92, 93) estimated that in 1945 Refugio and Woodsboro pumped 300,000 and 60,000 gpd, respectively. Figure 9 shows the average daily pumpage of ground water by the city of Refugio for the years for which records are available. The figure shows that the

Million gallons per day 0.2 incomplete incomplete incomplete missing or Record Record Record 0.1 0.0 1946 1947 1945 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 Figure 9 Average Daily Pumpage of Ground Water by City of Refugio (From records of Texas State Department of Health and Broadhurst, Sundstrom, and Rowley, 1950, p. 92) U.S. Geological Survey in cooperation with the Texas Water Commission and the Refugio County Water Control and Improvement District No. 2

0.6

0.5

0.4

0.3

127

pumpage has been somewhat greater than in 1961. In 1957, the last year of a long period of drought, the pumpage was slightly more than 500,000 gpd.

Industrial

The use of ground water for industry in Refugio County is only slightly smaller than that for public supply. In 1961, withdrawal of ground water by 12 industrial wells averaged about 655,000 gpd, or about 734 acre-feet. Most of the industrial pumpage was for cooling purposes at compressor stations and natural gas processing plants.

Irrigation

Irrigation in Refugio County has been on a small scale and for supplemental purposes only. In 1961, approximately 365 acre-feet of water (326,000 gpd) was withdrawn by four wells. Of these, well WH-79-31-901 obtained water from the Goliad Sand and Lissie Formation, undifferentiated, and wells WH-79-54-803, WH-80-41-301, and WH-80-42-104 obtained water from the Lissie Formation and Beaumont Clay, undifferentiated. The wells ranged in yield from 540 gpm to about 1,200 gpm. Four other wells, formerly used for irrigation in the county, were abandoned prior to 1961. Three of these wells, which were in the vicinity of Austwell, yielded water which was of unsatisfactory quality for irrigation. The fourth well, about 5 miles southeast of Woodsboro, was abandoned because the well became partly filled with sand. All of these abandoned wells tapped the Lissie Formation and Beaumont Clay, undifferentiated.

Domestic and Livestock

The largest single use of water in Refugio County is for domestic and livestock purposes. In 1961, approximately 1,000 acre-feet of water was withdrawn from the ground-water reservoir for domestic and livestock purposes. About half of this water was produced from uncontrolled flowing wells. The use of uncontrolled flowing wells has been a major factor in causing the overall decline of water levels in Refugio County.

Changes in Water Levels

Water levels in wells in Refugio County and adjacent areas fluctuate almost continuously, mainly in response to changes in withdrawal rates and changes in ground-water storage. However, a change in the physical condition of a well such as damage to the casing, deepening, or partial plugging also may cause a change in the water level in the well. This type of change in water level occurs because the well bore has gained or lost hydraulic connection with one or more sand zones containing water under a different head. A change in chemical quality of water also may occur in such wells because the quality of water commonly is somewhat different in each sand bed or sand zone.

Relatively rapid changes in water level in a few hours or several days are commonly due to local changes in the withdrawal rates of nearby wells and generally affect a rather small area. Substantially long-term changes in water levels over a period of weeks, months, or years may be caused by changes in the withdrawal rates of wells or by changes in ground-water recharge. Long-term changes in water levels generally affect a large area.

Prior to extensive ground-water development in Refugio County, practically all of the wells tapping the Goliad Sand and Lissie Formation, undifferentiated, flowed above the land surface. In most of the county, the water levels have declined in recent years due to increased pumping, and as a result, many wells have stopped flowing or their flows have decreased. Except for a few wells in the river valleys, wells north and west of the line shown in Figure 10 were no longer flowing as of 1961. In this part of Refugio County, the water levels in several wells, which flowed in 1938, have declined to depths of 20 to 30 feet below the land surface. In the area between Bayside and Woodsboro, the decrease in the artesian pressure in several flowing wells ranged from 2.7 to 11.6 pounds per square inch, or the equivalent decline in water level of 6.3 to 26.8 feet during the period 1946-62. Although the declines in water levels or artesian pressures have resulted in the installation of pumping units on some wells, the declines have not been serious and the quantity of ground water in storage has not changed appreciably.

Figure 10 shows the approximate altitude of the water levels in wells tapping the Goliad Sand and Lissie Formation, undifferentiated, in 1961-62. The slope of the piezometric surface in Refugio County is fairly gentle, being steepest in the vicinity of Refugio because of the relatively heavy pumping in that area and nearly flat in the northeastern part of the county. The piezometric surface slopes generally southeastward at about 2 feet per mile.

The changes in water levels in wells tapping the Lissie Formation and Beaumont Clay, undifferentiated, have been small. During the period 1936-38 to 1959-62, the changes ranged from a decline of 3 feet to a rise of 12 feet. The waterlevel declines were not restricted to any particular area, but were irregularly distributed through the county.

Problems of Well Construction

The major problems of well construction in Refugio County are related to the fine grain size of much of the sand and the occurrence of saline water overlying the fresh water-bearing sands in some parts of the county. Because of the unconsolidated nature of the materials penetrated, most wells are completed with wire-wrapped screen or slotted pipe, ranging in diameter from 2 to 12 inches. However, where large yields and sand-free water are required, screens or slotted casing may be ineffective in controlling the passage of sand into the well. For example, well WH-79-55-701, which taps the Lissie Formation and Beaumont Clay, undifferentiated, was completed with 12-inch diameter slotted pipe. The well, which reportedly pumped 1,200 gpm, subsequently was abandoned probably because the slots were too wide to hold out the sand effectively. In addition to the use of a screen of proper size, the sand production may be controlled by enlarging the well bore opposite the water-bearing zones by underreaming and packing the space with gravel. Underreaming increases the area of the face of the well bore and reduces the entrance velocity of the water, thereby increasing the volume of sand-free water pumped. The gravel pack stabilizes and supports the walls of the well, preventing caving and the consequent decrease in yield. In some wells, however, the gravel may be of improper size to control the sand

production. For example, well WH-80-41-301, an irrigation well tapping the Lissie Formation and Beaumont Clay, undifferentiated, is gravel packed but still yields a large amount of sand.

Domestic and livestock wells generally are completed with about 20 feet of small-diameter slotted casing or stainless steel screen. Because the casing above the screen generally is not cemented, the Goliad Sand and Lissie Formation, undifferentiated, may be in hydraulic connection with the overlying Lissie Formation and Beaumont Clay, undifferentiated.

In some parts of the county, the water may move from the deeper aquifer into the shallower aquifer through leaks in the casing. This may be the cause for the cessation of flow in some wells and subsequent resumption of flow after repair of the casing. Large-scale development of ground water from the Goliad Sand and Lissie Formation, undifferentiated, however, may result in a reduction in head below that in the Lissie Formation and Beaumont Clay, undifferentiated. Such a condition would result in a potential reversal in the direction of flow. Therefore, in areas where saline water overlies the chief aquifer, such as between Woodsboro and Bayside, the casings should be cemented to prevent contamination by water moving either through leaks in the casing or along the casing from one aquifer to the other.

Chemical Quality of Ground Water

The mineral constituents of ground water are dissolved principally from the soil and rocks through which the water has passed; consequently, the differences in chemical character of ground water reflect in a general way the nature of the geologic formations that have been in contact with the water. Most deep ground water is free from contamination by organic matter, but the chemical content of ground water usually increases with depth. The temperature of ground water near the land surface generally approximates the mean annual air temperature of the region and increases with depth.

The major factors that determine the suitability of a water supply are the limitations associated with the contemplated use of the water. Various criteria for water-quality requirements have been developed covering most categories of water quality, including bacterial content, physical characteristics, and chemical constituents. Usually, water-quality problems of the first two categories can be alleviated economically, but the removal or neutralization of undesirable chemical constituents can be difficult and expensive. For many purposes the dissolved-solids content constitutes a major limitation on the use of the water. A general classification of water based on dissolved-solids content is as follows (Winslow and Kister, 1956, p. 5):

Description	Dissolved-solids content, in parts per million
Fresh	Less than 1,000
Slightly saline	1,000 to 3,000
Moderately saline	3,000 to 10,000
Very saline	10,000 to 35,000
Brine	More than 35,000

The United States Public Health Service has established standards of drinking water to be used on common carriers engaged in interstate commerce. The standards are designed to protect the traveling public and may be used to evaluate public-water supplies. According to the standards, chemical constituents should not be present in a water supply in excess of the listed concentrations shown in the following table, except where other more suitable supplies are not available. Some of the standards adopted by the U. S. Public Health Service (1962, p. 2152-2155) are as follows:

Substance	Concentration (ppm)
Chloride (Cl)	250
Fluoride (F)	(*)
Iron (Fe)	.3
Manganese (Mn)	.05
Nitrate (NO ₃)	45
Sulfate (SO ₄)	250
Total dissolved solids	500

*When fluoride is present naturally in drinking water, the concentration should not average more than the appropriate upper limit shown in the following table:

Annual average of maximum daily air temperatures (°F)	Recommended control limits of fluoride concentrations (ppm)		
	Lower	Optimum	Upper
50.0 - 53.7	0.9	1.2	1.7
53.8 - 58.3	.8	1.1	1.5
58.4 - 63.8	.8	1.0	1.3
63.9 - 70.6	.7	.9	1.2
70.7 - 79.2	.7	.8	1.0
79.3 - 90.5	.6	.7	.8

Water having concentrations of chemical constituents in excess of the recommended limits may be objectionable for various reasons. In areas where the nitrate content of water is in excess of 45 ppm, a potential danger exists. Concentrations of nitrate in excess of 45 ppm in water used for infant feeding have been related to the incidence of infant cyanosis (methemoglobinemia or "blue baby" disease), a reduction of the oxygen content in the blood constituting a form of asphyxia (Maxcy, 1950, p. 271). High concentrations of nitrate may be an indication of pollution from organic matter, commonly sewage. Excessive concentrations of iron and manganese in water cause reddish-brown or dark-gray precipitates that stain clothes and plumbing fixtures. Water having a chloride content exceeding 250 ppm may have a salty taste, and sulfate in water in excess of 250 ppm may produce a laxative effect. Excessive concentrations of fluoride in water may cause teeth to become mottled; however, fluoride in concentrations of about 1 ppm may reduce the incidence of tooth decay (Dean, Arnold, and Elvove, 1942, p. 1155-1179).

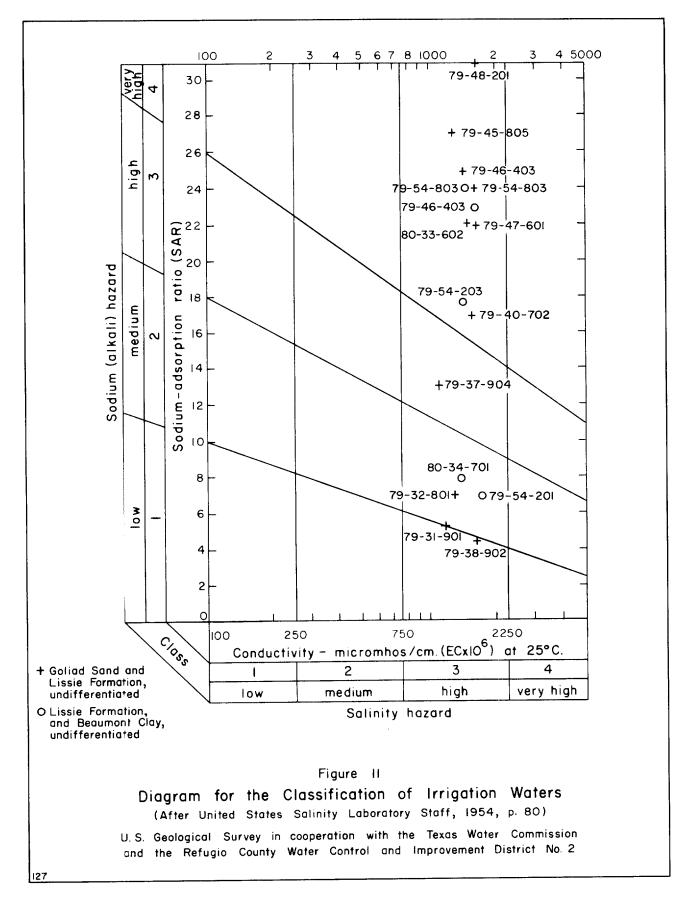
Calcium and magnesium are the principal constituents in water that cause hardness. Excessive hardness causes increased consumption of soap and induces the formation of scale in hot water heaters and water pipes. The commonly accepted standards and classifications of water hardness are shown in the following table:

Hardness range (ppm)	Classification	
60 or less	Soft	
61 - 120	Moderately hard	
121 - 180	Hard	
More than 180	Very hard	

The quality of water for industry is not necessarily referred to potability. A water suitable for industrial use may or may not be acceptable for human consumption. Ground water used for industry may be classified into three principal categories--cooling water, process water, and boiler water.

Cooling water usually is selected on the basis of its temperature and source of supply, although its chemical quality is significant also. Any characteristic which may affect adversely the heat exchange surfaces is undesirable. Substances such as calcium, magnesium, aluminum, iron, and silica may cause the formation of scale. Corrosiveness, another objectionable feature, is that property which makes the water aggressive to metal surfaces. Calcium and magnesium chloride, sodium chloride in the presence of magnesium, acids, and the gases oxygen and carbon dioxide are among the substances that make water corrosive.

The quality of water for the production of steam must meet rigid requirements. Here the problems of corrosion and encrustation are intensified. Some treatment of boiler water may be needed and it may be better to appraise the water source from the viewpoint of suitability for treatment rather than for direct use of raw water. The presence of silica in boiler water is undesirable because it forms a hard scale or encrustation, the scale-forming tendency increasing with pressure in the boiler.


Process water, water incorporated into or coming in contact with manufactured products, is subject to a wide range of quality requirements. Usually rigidly controlled, these requirements commonly involve physical, chemical, and biological factors. In general, water used in the manufacture of textiles must be low in dissolved-solids content and free of staining effects of iron and manganese. The paper industry, especially where high-grade paper is made, requires water in which all heavy metals are either absent or in small concentrations. Water free of iron, manganese, and organic substances normally is required by many beverage industries. Unlike cooling and boiler water, much of the process water is consumed or undergoes a change in quality in the manufacturing process and generally is not available for reuse.

In appraising the quality of water for irrigation, both the concentration and the composition of dissolved constituents should be considered. The chemical characteristics that appear to be most important in evaluating the quality of water for irrigation in most areas, including Refugio County, are (1) relative proportion of sodium to other cations (an index of the sodium hazard), (2) total concentration of soluble salts (an index of the salinity hazard), (3) amount of residual sodium carbonate (RSC), and (4) concentration of boron.

A system of classification commonly used for judging the quality of a water for irrigation was proposed in 1954 by the U. S. Salinity Laboratory Staff (1954, p. 69-82). The classification is based primarily on the salinity hazard as measured by the electrical conductivity of the water and the sodium hazard as measured by the sodium-adsorption ratio (SAR). Figure 11 is a diagram which can be used for evaluating water to be used for irrigation by plotting the SAR and specific conductance.

The relative importance of the dissolved constituents of water to be used for irrigation is dependent upon the degree to which the constituents accumulate in the soil. Kelley (1951, p. 95-99) cited areas having an average annual precipitation of about 18 inches in which salts did not accumulate in the irrigated soil. Wilcox (1955, p. 15) stated that the system of classification of irrigation water proposed by the Salinity Laboratory Staff "...is not directly applicable to the supplemental waters used in areas of relatively high rainfall." Thus, in Refugio County, where the average annual precipitation is 33.8 inches, the system of classification probably is not fully applicable. Wilcox (1955, p. 16) indicated that water generally may be used safely for supplemental irrigation if its conductivity is less than 2,250 micromhos per centimeter at 25°C and its SAR is less than 14. Each individual situation should be appraised when consideration is being given to irrigating with water of which the specific conductance and SAR exceed these limits, or where soil or drainage conditions are unfavorable, or when the crop to be grown is especially sensitive to the hazards of sodium and salinity.

When the content of carbonate and bicarbonate, in epm (equivalents per million), exceeds that of calcium plus magnesium, residual sodium carbonate (RSC) will be present if the calcium and magnesium in the irrigation water are precipitated as carbonates. Thus, the formation of RSC will accompany the increase in percent sodium. The RSC will cause the water to be alkaline and the organic material of the soil to tend to dissolve. The soil may become a grayish black and the land areas affected are referred to as "black alkali." Wilcox, Blair, and Bower (1954, p. 265) report from results of determinations made on irrigated noncalcareous soil, "...it has been concluded that waters containing more than 2.5 me/l (milliequivalents per litre) of 'residual Na₂CO₃' are not suitable for irrigation, that those containing between 1.25 and 2.5 me/l are marginal, and that those containing less than 1.25 me/l are probably safe. These conclusions

are, of course, tentative, and subject to change as more data are obtained. Furthermore, degree of leaching will modify permissible limit to some extent."

An excessive concentration of boron also will make water unsuitable for irrigation. Wilcox (1955, p. 11) has indicated that a boron concentration of as much as 1.0 ppm is permissible for irrigating sensitive crops; a concentration of as much as 3.0 ppm is permissible for tolerant crops.

Chemical analyses of water from 155 wells in Refugio County and adjacent areas are given in Table 6. Also, the chloride and dissolved-solids content of water from wells tapping the Goliad Sand and Lissie Formation, undifferentiated, and the Lissie Formation and Beaumont Clay, undifferentiated, are shown in Figures 12 and 13.

Goliad Sand and Lissie Formation, Undifferentiated

The water in the Goliad Sand and Lissie Formation, undifferentiated, in Refugio County generally ranges from fresh to slightly saline, although in a small area about 7 miles south of Woodsboro the water is moderately saline (Figure 12). In nearly all the samples analyzed (Table 6), the dissolved-solids content exceeded the limits recommended by the U. S. Public Health Service. Furthermore, the chloride content of most samples exceeded 250 ppm except in a northeastward-trending belt less than 4 miles wide in the western part of the county. In general, the water is soft to moderately hard and low in sulfate and fluoride.

Figure 12 shows that, in general, the water increases in mineralization southeastward. It shows also that in the part of the county northwest of a line that trends northeastward through Refugio, the water contains less than 1,000 ppm dissolved solids and less than 300 ppm of chloride. Southeast of this line, the chloride content increases rapidly and the water may be unsatisfactory for public supply.

According to the diagram for the classification of water for irrigation (Figure 11), the water in the Goliad Sand and Lissie Formation, undifferentiated, is high in salinity hazard and ranges from low to very high in sodium hazard, indicating that the water may not be suitable for continuous irrigation, although under certain circumstances it probably can be used as a supplemental supply. The residual sodium carbonate (RSC) in 33 samples (Table 6) ranged from 0.9 to 9.6 and averaged 5.6 me/l. The boron content of 3 samples ranged from 2.3 ppm in well WH-80-33-602 to 3.5 ppm in well WH-79-46-604, indicating that boron may be a problem for the irrigation of most crops in Refugio County and adjacent areas.

Lissie Formation and Beaumont Clay, Undifferentiated

The quality of the water in the Lissie Formation and Beaumont Clay, undifferentiated, ranges from fresh to slightly saline except in a small area about 8 miles southwest of Woodsboro, where the water is moderately saline, and in an area between Woodsboro and Bayside, where the water from wells less than 150 feet deep may be moderately or very saline (Muenster and Michal, 1938, p. 33-41). In general, the dissolved-solids and chloride content exceeds the U. S. Public Health standards, and the water is hard to very hard, although several widely scattered wells yield soft water. Hydrogen sulfide has been reported in some wells in a narrow northwestward-trending belt about 3 miles southwest of Refugio. Although hydrogen sulfide is objectionable, it may be removed by aeration.

Figure 13 shows that water containing less than 250 ppm chloride and less than 1,000 ppm dissolved solids may be obtained from a large area northeast of Refugio. However, no clear pattern of distribution of either chloride or dissolved-solids content is evident. The unpredictable quality of the water may be explained by the high degree of lenticularity of the sands in the Lissie Formation and Beaumont Clay, undifferentiated, as compared with the sands in the Goliad Sand and Lissie Formation, undifferentiated.

Analyses of water from 5 wells in the Lissie Formation and Beaumont Clay, undifferentiated, show that the water is high in salinity hazard and medium to very high in sodium hazard (Figure 11) and has a residual sodium carbonate ranging from 3.0 to 5.6. The boron content of 4 samples ranged from 0.9 ppm in well WH-79-54-203 to 1.8 ppm in well WH-79-46-403.

FUTURE DEVELOPMENT

The future development of ground water in Refugio County is dependent upon many hydrologic factors, the most important of which are the rates of recharge to the aquifers, the amount of water in storage, and the ability of the aquifers to transmit water. The rate of recharge to the aquifers in Refugio County is important only in a determination of the maximum rate of withdrawal beyond which water will be appreciably removed from storage. An accurate determination of the recharge rate generally requires a rather long period of hydrologic observations and was beyond the scope of the present investigation. However, based on estimates of future water requirements in the Refugio County area, it is probable that the rate of recharge is sufficient to supply these needs.

Another important factor in determining the amount of water available for development from an aquifer is the quantity of water in storage. It is estimated that on the order of 10 to 20 million acre-feet of water is in storage in the aquifers in Refugio County. However, these figures are not significant in themselves because much of the water is not available to wells because of the economics of pumping lifts and because much of the water will not drain freely from the sands.

The primary factor in a determination of the availability of ground water in Refugio County is the ability of the aquifer to transmit water to wells. In computing the maximum rate of withdrawal for various areas in the county, the following assumptions were made in addition to the assumptions inherent in the formulas used to determine the hydraulic properties of the aquifers: (1) Water is being discharged by a line of wells parallel with the strike of the aquifers; (2) the distance from the line of wells to the outcrop is 15 miles; (3) the maximum permissible drawdown at the line of discharge is 400 feet; (4) the coefficients of transmissibility used are the average for each area; (5) there is no drawdown in the outcrop; (6) there is no effect of withdrawals from adjoining areas; (7) each well in the line of discharge pumps continuously at a rate of 1,000 gpm; and (8) the hydraulic gradient from the outcrop to the line of discharge is uniform. The delineation of areas favorable for the development of ground water in Refugio County is based principally on two factors--the saturated sand thickness and the quality of the water. The areas most favorable for future development are those that contain water having less than 300 ppm chloride content (Figure 12) and a total saturated sand thickness of 400 feet or more (Figure 6).

On the basis of these factors, a map (Figure 14) was prepared showing the areas which are most favorable for ground-water development from the Goliad Sand and Lissie Formation, undifferentiated. Such a map was not prepared for the Lissie Formation and Beaumont Clay, undifferentiated, because of the lenticularity of the sands and the extreme variability of the quality of water in that aquifer.

Figure 14 shows two areas northeast of Refugio as the most favorable for large-scale development. On the basis of the above-mentioned assumptions of discharge and a coefficient of transmissibility of 77,000 gpd per foot, approximately 18,000 acre-feet of water per year could be pumped in this area continuously for an indefinite period of time.

Figure 14 also shows an area along the Bee-Refugio county line west of Refugio as probably being favorable for large-scale development. The coefficient of transmissibility of the aquifer in this area was not determined; however, it has been estimated to be about 25,000 gpd per foot on the basis of a proportionately greater sand thickness than that at Refugio, where the coefficient of transmissibility averaged 13,000 gpd per foot. On this basis, the area probably is capable of yielding about 13,000 acre-feet of water per year indefinitely. Adjoining this area on the south is a narrow belt which probably could produce similar quantities of water; however, the water has a chloride content ranging from 300 to 400 ppm.

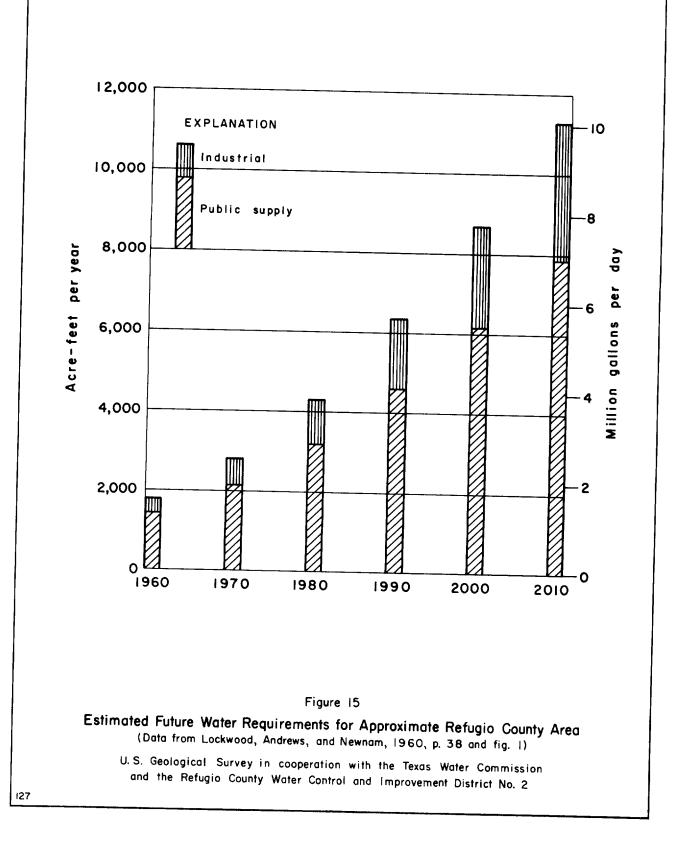

Figure 14 shows an area including the northern part of the city of Refugio that probably is favorable for moderate future development. Assuming an average transmissibility of 13,000 gpd per foot for this area, about 11,000 acre-feet of water per year could be pumped on an indefinite basis.

Figure 14 also shows other areas where moderate to large quantities of water could be developed, but the chloride content of the water ranges between 300 and 400 ppm and in localized areas it may even exceed 400 ppm.

The area shown as being unfavorable for ground-water development occupies a belt of irregular width along the southern and southeastern edges of the county. The water in this area has a chloride content in excess of 400 ppm and the sand thickness is considerably less than that in the areas that are considered to be favorable for development.

In summary, about 42,000 acre-feet of water containing less than 300 ppm of chloride probably could be pumped each year indefinitely from the Goliad Sand and Lissie Formation, undifferentiated, in the areas indicated. These estimates probably are conservative for several reasons. The computations are based strictly on the ability of the aquifer to transmit water into the areas and no allowance is made for the water which would be removed from storage during the period of pumping. The estimates also may be conservative because allowance was not made for water moving into the areas from adjacent areas or from the overlying Lissie Formation and Beaumont Clay, undifferentiated. In addition, considerable quantities of water might be obtained from the Lissie Formation and Beaumont Clay, undifferentiated. Because of the extreme variability of the quality of water and the transmissibility of this aquifer, no attempt was made to estimate the potential development; however, throughout much of Refugio County, especially in the eastern part of the county, small yields are possible from the aquifer, and locally the water is of very good chemical quality. The areas where the aquifer is 300 or more feet thick, as between Woodsboro and Bayside and near Austwell, yields of 500 gpm and possibly more may be obtained from the Lissie Formation and Beaumont Clay, undifferentiated. However, in some of these areas the water may be too highly mineralized for most purposes.

Predictions of the future water needs for public supply and industrial purposes in an area including Refugio County were made in an engineering report prepared for the Refugio County Water Control and Improvement District No. 2 (Lockwood, Andrews, and Newnam, 1960, p. 38). The predictions covering the 50-year period, 1960-2010, show that the water requirements are expected to increase from approximately 1,800 acre-feet in 1960 to more than 11,000 acre-feet per year in 2010 (Figure 15) in an area which approximately covers Refugio County. Thus, it is probable that the Goliad Sand and Lissie Formation, undifferentiated, is capable of supplying considerably more than the predicted 2010 requirements for public supply and industrial use in the Refugio County area. It should be pointed out that the estimates of future water requirements do not include irrigation requirements. A large irrigation development using ground water in Refugio County or in southeastern Bee and Goliad Counties could have a serious effect on the availability of water for public supply and industrial use in Refugio County.

- Bloodgood, D. W., Patterson, R. E., and Smith, R. L., Jr., 1954, Water evaporation studies in Texas: Texas Agr. Expt. Sta. Bull. 787, 83 p.
- Broadhurst, W. L., Sundstrom, R. W., and Rowley, J. H., 1950, Public water supplies in southern Texas: U. S. Geol. Survey Water-Supply Paper 1070, 114 p.
- Cooper, H. H., Jr., and Jacob, C. E., 1946, A generalized graphical method for evaluating formation constants and summarizing well-field history: Am. Geophys. Union Trans., v. 27, no. IV, p. 526-534.
- Dale, O. C., Moulder, E. A., and Arnow, Ted, 1957, Ground-water resources of Goliad County, Texas: Texas Board Water Engineers* Bull. 5711, 93 p.
- Darton, N. H., Stephenson, L. W., and Gardner, Julia, 1937, Geologic map of Texas: Dept. of Interior, U. S. Geol. Survey.
- Dean, H. T., Arnold, F. A., and Elvove, Elias, 1942, Domestic water and dental caries: Public Health Repts., v. 57, p. 1155-1179.
- Dean, H. T., Dixon, R. M., and Cohen, Chester, 1935, Mottled enamel in Texas: Public Health Repts., v. 50, p. 424-442.
- Doering, J. A., 1956, Review of Quaternary surface formations of Gulf Coast region: Am. Assoc. Petroleum Geologists Bull., v. 40, no. 8, p. 1816-1862.
- Honea, J. W., 1956, Sam Fordyce-Vanderbilt fault system of southwest Texas, <u>in</u> Gulf Coast Assoc. Geol. Societies Trans., v. 6, p. 51-54.
- Kelley, W. P., 1951, Alkali soils: New York, Reinhold Pub. Corp., 176 p.
- Lockwood, M. G., Andrews, W. M., and Newnam, F. H., Jr., 1960, Water resources development plan for watersheds in and bordering Refugio County: Unpublished engineering rept., 62 p.
- Marvin, R. F., Shafer, G. H., and Dale, O. C., 1962, Ground-water resources of Victoria and Calhoun Counties, Texas: Texas Board Water Engineers* Bull. 6202, 147 p.
- Maxcy, K. F., 1950, Report on the relation of nitrate concentrations in well waters to the occurrence of methemoglobinemia: Natl. Research Council Bull. Sanitary Engineering and Environment, p. 265-271, App. D.
- Meinzer, O. E., and others, 1942, Physics of the earth, v. 9, Hydrology: New York, McGraw-Hill Book Co., 712 p.
- Muenster, R. A., and Michal, E. J., 1938, Refugio County and part of Goliad County, Texas, records of wells, drillers' logs, and water analyses, and maps showing location of wells: Texas Board Water Engineers* dupl. rept., 92 p.
- Sellards, E. H., Adkins, W. S., and Plummer, F. B., 1932, Stratigraphy, v. 1, in The Geology of Texas: Univ. Texas Bull. 3232, 1007 p.

Tolman, C. F., 1937, Ground water: New York, McGraw-Hill Book Co., 593 p.

- U. S. Public Health Service, 1962, Drinking water standards: Federal Register, Mar. 6, p. 2152-2155.
- U. S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U. S. Dept. Agriculture, Agr. Handbook 60, 160 p.
- Wenzel, L. K., 1942, Methods for determining permeability of water-bearing materials with special reference to discharging-well methods: U. S. Geol. Survey Water-Supply Paper 887, 192 p.
- Wilcox, L. V., 1955, Classification and use of irrigation waters: U. S. Dept. Agriculture Circ. 969, 19 p.
- Wilcox, L. V., Blair, G. Y., and Bower, C. A., 1954, Effect of bicarbonate on suitability of water for irrigation: Soil Sci., v. 77, no. 4, p. 259-266.
- Winslow, A. G., and Kister, L. R., Jr., 1956, The saline water resources of Texas: U. S. Geol. Survey Water-Supply Paper 1365, 105 p.
- Wood, L. A., Gabrysch, R. K., and Marvin, Richard, 1963, Reconnaissance investigation of the ground-water resources of the Gulf Coast region, Texas: Texas Water Commission Bull. 6305, 114 p.

^{*} Name of Agency changed to Texas Water Commission January 30, 1962.

Refugio County

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well WH-79-31-901

Owner: J. F. Welder Estate. Driller: Leonard W. Mickelson.

<u>г</u>		· · · · · · · · · · · · · · · · · · ·	Y	······································
Soil and clay	23	23	Shale, hard 27	516
Clay and sand layers	29	52	Sand 12	528
Clay	24	76	Shale, hard 21	549
Sand	30	106	Shale, sticky 31	580
Clay, hard	23	129	Sand 15	595
Sand and shale layers	58	187	Shale 17	612
Lime	20	207	Sand 60	672
Sand and shale	61	268	Lime and shale 49	721
Lime	24	292	Sand 24	745
Sand and shale	33	325	Shale, sandy 20	765
Lime and shale	5	330	Shale, sticky 41	806
Sand and shale	14	344	Sand 21	827
Lime	21	365	Shale 5	832
Sand, rocky	15	380	Sand 112	944
Lime, gumbo and shale	97	477	Shale, hard sticky 40	984
Sand and shale	12	489	Sand and shale 28	1,012

Well WH-79-32-801

Owner: O'Connor Bros. Driller: Kelley Well Service.

Sand	6	6	Sand and caliche streaks	11	56
Clay	8	14	Clay	29	85
Sand	16	30	Sand	5	90
Clay	15	45	Caliche and clay	30	120

Refugio County

	ickness feet)	Depth (feet)	Thickness (feet)	Depth (feet)				
Well WH-79-32-801Continued								
Sand	6	126	Sand, hard streaks 23	300				
Clay and caliche	5	131	Caliche and sand 27	327				
Sand	17	148	Sand, soft 9	336				
Sand, hard streaks	10	158	Shale 52	388				
Caliche, sand streaks	7	165	Sand 20	408				
Shale	32	197	Shale 20	428				
Sand, hard streaks	15	212	Shale and hard lime 12	440				
Shale	36	248	Red bed 25	465				
Sand, hard	12	260	Shale 55	520				
Shale	17	277	Sand 40	560				

Well WH-79-32-804

Owner: O'Connor Bros. Driller: Kelley Well Service.

		T		
Surface	10	10	Sand 10	290
Sand	45	55	Shale 25	315
Shale	5	60	Sand 25	340
Sand	20	80	Shale 12	352
Shale	20	100	Sand 10	362
Sand	15	115	Shale 23	385
Shale	25	140	Sand 17	402
Sand	28	168	Shale 51	453
Shale	112	280	Sand 8	461

(Continued on next page)

.

	hickness (feet)	Depth (feet)	Thickn (feet	
	Well W	H-79-32-	804Continued	
Shale	101	562	Sand 12	632
Sand	12	574	Shale 43	675
Shale	46	620	Sand 29	704
			Shale 12	716

Refugio County

Well WH-79-37-903 Partial Log

Owner: Jimmie Jacks. Driller: Kelley Well Service.

Surface	63	63	Shale, broken 105	193
Sand	25	88	Sand 15	208

Well WH-79-37-904

Owner: Jimmie Jacks. Driller: Kelley Well Service.

Surface	12	12	Sand	12	372
Sand	10	22	Shale	63	435
Sand and caliche	13	35	Shale, red	22	457
Shale	188	223	Shale, sandy	56	513
Sand	10	233	Shale	31	544
Caliche	37	270	Sand	10	554
Sand	44	314	Shale	8	562
Shale	8	322	Sand	52	614
Sand	22	344	Shale	7	621
Shale	16	360	Sand	35	656
	1-		I		

(Continued on next page)

.

Th (ickness feet)	Depth (feet)	Thie (fe	ckness eet)	Depth (feet)		
Well WH-79-37-904Continued							
Shale	2	658	Shale, sandy	7	700		
Sand	35	693	Sand	30	730		

Refugio County

Well WH-79-38-503

Owner: Mrs. Cyrus Fox. Driller: Kelley Well Service.

Surface	20	20	Caliche and sand 60	110
Caliche	20	40	Sand 10	120
Sand	10	50	Shale 128	248
			Sand 24	272

Well WH-79-39-801

Owner: Humble Oil and Refining Co. Driller: Layne-Texas Company.

Surface	4	4	01	
	4	4	Clay 13	159
Clay	14	18	Sand, broken and clay 23	182
Sand	17	35	Sand 11	193
Clay	5	40	Clay 35	228
Sand	16	56	Sand and clay streaks 17	245
Sand, broken and clay	21	77	Clay 51	296
Clay	20	97	Clay, sandy and sand	
Sand	5	102	streaks 12	308
Clay	39	141	Sand 6	314
Sand	5	146	Clay 20	334
			Sand 7	341

Refugio County

	ickness feet)	Depth (feet)	Thickness (feet)	Depth (feet)
	Well W	M-79-39	-801Continued	
Clay	34	375	Clay with a few boulders 44	715
Sand	8	383	Sand 14	729
Clay	47	430	Clay 5	734
Clay, sandy and sand streaks	10	440	Sand, clay breaks 7	741
Sand	14	454	Clay, sand breaks 8	749
Clay	8	462	Sand (cut clean) 26	775
Sand	2	464	Clay, sand streaks 3	778
Clay	12	476	Sand, few clay breaks 51	829
Sand, clay, and sand			Clay 17	846
streaks	10	486	Sand and layers of clay- 62	908
Clay	35	521	Sand and clay 12	920
Sand, broken and clay	8	529	Sand and fine sand 18	938
Sand (cut clean)	20	549	Clay 16	954
Sand, broken and clay	41	590	Clay, sandy and sand streaks 37	
Sand, clay, and layers			streaks 37	991
of clay	15	605	Clay 3	994
Sand	8	613	Sand, clay streaks and . fine sand 23	1 01 7
Clay	4	617		1,017
Sand, broken and clay	5	622	Clay 12	1,029
Clay	23	645	Clay, sandy 9	1,038
Sand, clay, and sand streaks	26	671	Sand, few clay streaks and fine sand 42	1,080
	20	0/1	Clay 6	1,086

Refugio County

Thickness Dep (feet) (fe		Depth (feet)
-----------------------------	--	-----------------

Well WH-79-39-802

Owner: Humble Oil and Refining Company. Driller: Layne-Texas Company.

		r 1		· · · · · · · · · · · · · · · · · · ·	
Surface soil	4	4	Clay with a few sand streaks 4	¥4	690
Clay	14	18	Clay 2	29	719
Sand, broken and clay	65	83		12	731
Sand	19	102		5	736
Sand, broken and clay	78	180	Clay		
Sand	18	198	Sand and clay streaks	6	742
Sand, broken and clay	31	229	Clay, sandy	6	748
Sand	16	245	Sand (cut clean) 2	29	777
			Clay and sand streaks	2	779
C1ay	52	297	Sand with few clay		
Sand, broken and clay	22	319	streaks5	51	830
Clay	13	332	Clay 1	18	848
Sand	10	342	Sand and clay layers	57	905
Clay	30	372	Clay, sandy 1	17	922
Sand	8	380	Sand 3	18	940
Clay	51	431	C1ay 1	15	955
Clay, sandy	9	440	Clay, sandy with sand	39	994
Sand	15	455		25	1,019
C1ay	68	523			
Sand	22	545		13	1,032
Sand, broken and clay	70	615	Sand, few clay layers	49	1,081
Clay	31	646	Clay	11	1,092

Refugio County

Thickness				
(feet)	(feet)	(Teer)	(Leec)	

Well WH-79-39-901 Partial Log

Owner: C. L. Heard. Driller: Carl Vickers.

Gravel, clay, and			Shale, sand streaks 32	786
caliche	211	211	Sand, firm 17	803
Clay, yellow	93	304		0.00
Shale	128	432	Shale 3	806
Sand	9	441	Sand 40	846
Shale	48	489	Shale 46	892
Sand	6	495	Sand 40	932
Shale	95	590	Shale 21	953
Sand	43	633	Sand 42	995
Shale	5	638	Shale 16	1,011
Sand	2 1	659	Sand 55	1,066
No record	95	754	Shale 1	1,067

Well WH-79-45-902

Owner: F. B. Rooke and Sons. Driller: Harsdorf Well Drillers.

Sand, shale	80	80	Sand, black with streaks 38	230
Sand	10	90	Sand 20'	250
Shale, yellow	15	105	Sand, layers not more than 6 feet thick 185	435
Sand	23	128	Sand 33	468
Shale, with sand streaks	52	180	Shale 7	475
Sand	12	192	Sand 38	513

	Thickness (feet)	Depth (feet)	Thickness (feet)	Depth (feet)
1	Well W	H-79-45-	-902Continued	-£
Shale, white	- 47	560	Sand 7	725
Sand	- 24	584	Shale 40	765
Shale	- 57	641	Sand 7	772
Sand	- 26	667	Shale 40	812
Shale, sticky	- 35	702	Sand with hard streaks 8	820
Shale	- 16	718	Sand 26	846

Refugio County

Well WH-79-45-904

Owner: F. B. Rooke and Sons. Driller: W. E. Eads.

Surface	2	2	Sand	20	527
Sand	74	76	Shale	67	594
Clay	6	82	Sand, good	16	610
Sand with caliche	43	125	Shale	40	650
Clay, white	57	182	Sand, good	18	668
Sand (good water sand)-	36	218	Shale	30	698
Clay, white	48	266	Sand	18	716
Sand	6	272	Shale	38	754
Clay, white	58	330	Sand	16	770
Sand	82	412	Shale	10	780
Shale	6	418	Sand	12	792
Sand	42	460	Shale	42	834
Shale	47	507	Sand	29	863

Refugio	County
---------	--------

	ckness eet)	Depth (feet)	Thickness (feet)	Depth (feet)		
Well WH-79-45-904Continued						
Shale	13	876	Shale 28	938		
Sand	6	882	Sand 14	952		
Shale	14	896	Shale 8	960		
Sand	14	910	Sand 28	988		

Well WH-79-46-104

0	Clay Rirmingham	Driller:	Kelley	Well	Service.

Owner: Clay Dilmingham				
Surface	10	10	Shale 15	60
Sand	15	25	Sand 5	65
Caliche	10	35	Shale 93	158
Sand	10	45	Sand 22	180
Sand	10	45	Sand	<u> </u>

Well WH-79-46-401

Owner: B. Kelley and F B. Rooke and Sons. Driller: Kelley Well Service.

Owner: D. Kelley and I	D. 10001			
Surface	15	15	Shale 8	213
Sand	5	20	Sand 20	233
Caliche and shale	35	55	Shale 12	245
Sand	10	65	Sand 17	262
Shale	75	140	Shale 26	288
Sand	20	160	Sand 17	305
Shale	22	182	Shale 17	322
	23	205	Sand 23	345
Sand	23	205	Shale 5	350
			Share	

Refugio County

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well WH-79-46-403

Owner: J. B. Kelley. Driller: Kelley Well Service.

Sand, streaks of caliche	22	22	Sand 12	107
Caliche	8	30	Shale 178	285
Shale	10	40	Sand, fine 20	305
Sand (good)	13	53	Rock 4	309
Shale Sand, streaks of shale	7	60	Shale, sandy with streaks of sand 78	387
and caliche	25	85	Sand, streaks of shale 17	404
Shale	10	95	Sand 32	436

Well WH-79-46-408

Owner: Jimmie Jacks. Driller: Kelley Well Service.

Clay, sandy	20	20	Shale, sandy	30	280
Sand with streaks of caliche	50	70	Sand	15	295
Shale with streaks of			Shale, sandy	50	345
sand	25	95	Shale	23	368
Sand	15	110	Sand	10	378
Shale with streaks of sand	45	155	Shale	42	420
Sand with streaks of sh		199	Sand	15	435
shale	30	185	Shale	25	460
Shale	35	220	Sand with streaks of	0 F	
Sand with streaks of			shale	35	495
shale	30	250	Sand	28	523

	ckness eet)	Depth (feet)	Thickness (feet)	Depth (feet)			
Well WH-79-46-408Continued							
Shale	25	548	Sand 15	930			
Sand	74	622	Shale 6	936			
Shale, sandy	33	655	Sand 12	948			
Sand	18	673	Shale 26	974			
Shale	57	730	Sand with streaks of shale 16	990			
Sand	17	747	Sand 30	1,020			
Shale	133	880	Shale 6	1,026			
Sand	15	895	Shale with streaks of				
Shale	20	915	hard sand 92	1,118			
			Sand 39	1,157			

Refugio County

Well WH-79-46-409

Owner: Jimmie Jacks. Driller: Kelley Well Service.

	10	10	Shale with streaks of		
Clay	10	10	sand	40	362
Sand	30	40	Shale	68	430
Shale	52	92	Sand	15	445
Sand	33	125	Shale	11՝	456
Shale	57	182	Sand	22	478
Sand	26	208	Shale	19	497
Shale	114	322	Sand	15	512
			Shale	23	535
			Sand	38	573

Refugio County

Thickness Dep (feet) (fe		•
-----------------------------	--	---

Well WH-79-46-501

Owner: United Gas Pipe Line Company. Driller: Layne-Texas Company.

Topsoil	2	2	Rock	1	321
Clay and caliche,		42	Sand and shale layers	25	346
sandy	40		Shale	41	387
Sand	43	85	Rock	2	389
Sand, caliche and hard streaks	17	102	Shale and rock layers	23	412
Caliche (hard)	72	174	Shale, sandy and sand	12	424
Rock, hard	4	178	Shale	41	465
Shale, hard and rock	<u>,</u>	107	Sand and shale, sandy	17	482
1ayers	9	187	Shale and rock layers	23	505
Shale, sandy	33	220	Sand and sandy shale	30	535
Shale, hard green	23	243	Sand and shale breaks	37	572
Shale and sandy shale	41	284	Shale, sandy	10	58 2
Shale, sandy and sand streaks	25	309	Sand	17	599
Shale and hard layers	3	312	Shale	6	605
Rock (hard)	2	314	Rock	1	606
Sand and shale	6	320	Shale	5	611

Well WH-79-46-502

Owner: United Gas Pipe Line Company. Driller: Layne-Texas Company.

Topsoil and clay	19	19	Sand with rock streaks	21	66		
Sand	26	45	Sand and clay streaks	23	89		
(Continued on next page)							

Refugio County

	nickness (feet)	Depth (feet)	Thickness (feet)	Depth (feet)
	Well W	H-79-46.	-502Continued	
Clay, sandy	23	112	Shale, hard streaks 9	290
Sand with clay and sand	F 1	1.62	Rock 2	292
streaks	51	163	Shale and rock streaks 3	295
Shale, sandy and shale-	33	196	Rock 5	300
Shale and rock layers	4	200	Sand and rock streaks 20	320
Sand and shale streaks-	13	213	Sand 21	341
Shale, sandy	6	219	Shale 23	364
Rock, hard	18	237	Shale, sandy 38	402
Shale, hard green and rock layers	6	243	Sand 18	420
Shale	4	247	Shale 35	455
Rock	1	248	Sand and hard streaks 22	477
Shale	15	263	Shale, hard sandy 41	518
Rock	3	266	Sand streaks and shale 25	543
Shale, sandy and sand	16	0.01	Sand 23	566
streaks	15	281	Shale 20	586

Well WH-79-46-601

Owner: City of Refugio. Driller: Layne-Texas Company.

Surface soil	3	3	Sand, white	10	60
Clay, white	5	8	C1ay	20	80
Sand	7	15	Sand, white	35	115
Clay	35	50	Shale	45	160

Thickness (feet)		Depth (feet)	Thicknes (feet)	s Depth (feet)				
Well WH-79-406-601Continued								
Shale, hard sandy	40	200	Rock 1	386				
Shale	60	260	Sand and rock layers 19	405				
Sand	5	265	Shale 13	418				
Rock, sand	15	280	Sand (cut good and					
Shale, sandy and rock	35	315	clean) 27	445				
Sand	12	327	Shale 5	450				
Rock	1	328	Sand (cut good and clean) 20	470				
Sand	17	345	Sand and boulders 15	485				
Shale and rock	35	380	Sand and shale, streaks- 15	500				
Sand	5	385	Sand (cut good) 15	515				
			Sand, coarse and shale 10	525				

Refugio County

Well WH-79-46-604

Owner: City of Refugio. Driller: Layne-Texas Company.

Surface soil	2	2	Shale	20	485
Clay	58	60	Sand	25	510
Shale and sand streaks-	328	388	Shale	32	542
Sand	17	405	Sand	36	578
Shale	11	416	Shale	9	587
Sand	25	441	Sand	28	615
Shale	13	454	Shale	12	627
Sand	11	465	Shale and boulders	84	711

Refugio County	(erugio	County	
----------------	---------	--------	--

	ckness eet)	Depth (feet)		ckness eet)	Depth (feet)
Well WH-79-46-604Continued					
Sand (good)	19	730	Sand and shale streaks	28	840
Gumbo and boulders	66	796	Gumbo	12	852
Sand	16	812	Sand	23	875
			Gumbo	10	885

Well WH-79-46-607

Owner: City of Refugio. Driller: Layne-Texas Company.

Surface soil	2	2	Shale 13	370
Clay	22	24	Rock 1	371
Sand	32	56	Sand 16	387
Clay	23	79	Shale 12	399
Sand	29 [°]	108	Sand, broken 39	438
Clay and sand breaks	65	173	Shale 68	506
Sand	18	191	Sand and shale 10	516
Clay, tough	23	214	Sand 43	559
Rock	. 1	215	Shale 16	575
Sand	23	238	Sand 16	591
Shale	7	245	Shale, sandy 117	708
Sand	12	257	Sand, broken 23	731
Shale	46	303	Shale 50	781
Sand	17	320	Sand 49	830
Shale, sandy	37	357	Rock 3	833

	Thickness (feet)	Depth (feet)	Thickness (feet)	Depth (feet)
1	Well W	H-79-46	-607Continued	()
Shale	- 36	869	Sand 30	1,089
Shale and hard layers-	- 30	899	Rock 2	1,091
Shale, sandy	- 22	92 1	Sand 27	1,118
Shale and hard layers-	- 54	975	Rock 3	1,121
Sand	- 41	1,016	Shale, sandy and hard	1,121
Shale	- 12	1,028	layers 22	1,143
Shale, sandy	- 12	1,040	Shale 40	1,183
Sand, broken	- 18	1,058	Sand, broken 47	1,230
Rock	1	1,059	Shale, hard 21	1,251

Refugio County

Well WH-79-46-608

Lay de Tenas Company.						
Clay	58	58	Shale 33	320		
Sand	8	66	Sand 12	332		
Shale	129	195	Shale 57	389		
Sand	12	207	Sand 16	405		
Shale	38	245	Shale 11	416		
Sand	8	253	Sand 25	441		
Rock	1	254	Shale 19	460		
Sand	18	272	Sand 8			
Shale	8	280	Shale 20	468		
Sand	7	287	Sand 22	488		
	(0	11	22	510		

Owner: City of Refugio. Driller: Layne-Texas Company.

	ckness eet)	Depth (feet)	Thickness (feet)	Depth (feet)
	Well W	H-79-46-	.608Continued	
Shale	34	544	Rock 2	734
Sand, hard	35	579	Shale, sticky 61	795
Shale	9	588	Sand, good 24	819
Sand	83	671	Shale 10	829
Shale and boulders	28	699	Sand, good 10	839
Sand	10	709	Rock 2	841
Rock	1	710	Shale 16	857
Sand	7	717	Sand, good 20	877
Rock	3	720	Shale 16	893
Sand	12	732	Rock and sand 5	898
			Shale 22	920

Refugio County

Well	WH-	79	-46-	.703
------	-----	----	------	------

Owner: F. B. Rooke and Sons. Driller: E. T. Ellwood.

Clay	20	20	Clay, white 22	185
Sand	10	30	Sand, coarse 5	190
Grave1	10	40	Shale, brown 50	240
Sand and boulders	45	85	Sand 23	263
Clay, white	35	120	Clay, white 19	282
Sand	6	126	Limerock 3	285
Clay, white	24	150	Clay 2	287
Sand	13	163	Gravel 6	293

	nickness (feet)	Depth (feet)	Thickness (feet)	Depth (feet)
	Well W	TH-79-46	-703Continued	•
Clay, mud	9	302	Clay, mixed 33	475
Sand	8	310	Shale, red 30	505
Clay	12	322	Clay, mixed 60	565
Sand and boulder	15	337	Sand 11	576
Clay, mud	17	354	Clay, white 9	585
Sand, coarse	2	356	Sand 6	591
Clay	16	372	Clay 6	597
Sand	5	377	Sand 25	622
Clay	1	378	Clay 6	628
Sand	30	408	Sand 5	633
Clay, red	26	434	Clay 10	643
Sand	8	442	Sand 39	682

Refugio County

Well WH-79-47-101

Owner: Lawrence Wood. Driller: Kelley Well Service.

Caliche	30	30	Shale and sand streaks 51	160
Ch = 1				160
Shale	33	63	Shale 178	338
Sand	12	75	Sand 5	343
Shale	27	102	Shale 25	368
Sand	. 6	108	Shale and sand streaks 10	378
Roc k	1	109	Shale 142	520
			Sand 31	551

Refugio County

Thickness I (feet)		Thickness (feet)	•	I
-----------------------	--	---------------------	---	---

Well WH-79-47-201

Owner: Lawrence Wood. Driller: Kelley Well Service.

Clay	78	78	Sand 13	553
Sand with streaks of		100	Shale 5	558
caliche	22	100	Sand 4	562
Shale	40	140	Shale 33	595
Sand	15	155	Sand 48	643
Shale	145	300		
Shale and sand streaks-	15	315	Shale 147	790
	15		Sand and shale streaks 25	815
Shale	37	352	Shale 65	880
Sand	10	362		
Shale	103	465	Sand and thin shale streaks 44	924
Sand	12	477	Sand 78	1,002
Shale	43	520	Shale 28	1,030
Sand and shale streaks-	15	535	Sand 20	1,050
Shale	5	540	Shale 44	1,094
			Sand 56	1,150

Well WH-79-47-202

Owner: Lawrence Wood. Driller: Kelley Well Service.

Clay and caliche	40	40	Shale, sticky 10	90
Sand	20	60	Sand 5	95
Shale, sandy	20	80	Shale, sticky 30	125

	ickness feet)	Depth (feet)		ckness eet)	Depth (feet)			
Well WH-79-47-202Continued								
Sand	20	145	Sand and shale	35	650			
Sand and shale	45	190	Sand	15	665			
Shale, sandy	30	220	Shale, hard	50	715			
Gumbo, sticky	20	240	Sand	10	725			
Shale, sticky	85	325	Red bed	50	775			
Sand	10	335	Shale, sticky	15	790			
Shale	20	355	Sand	20	810			
Sand	25	380	Shale, hard	50	860			
Shale, sandy	20	400	Sand, hard	30	890			
Shale, hard	35	435	Shale	35	925			
Sand	10	445	Shale, sticky	40	965			
Shale, sticky	45	490	Sand, broken	50	1,015			
Sand	5	495	Sand, hard and shale	20	1,035			
Shale, sandy	55	550	Sand	20	1,055			
Sand, good	65	615	Shale, sandy	25	1,080			
			Sand	58	1,138			

Refugio County

Well WH-79-47-210 Partial Log

Owner: Lawrence Wood. Driller: Kelley Well Service.

01dho1e 1,150	1,150	Sand	28	1,255
Sand and shale streaks- 55	1,205	Shale	10	1,265
Shale 22	1,227	Sand	25	1,290
		Shale	45	1,335

Refugio County

	ickness feet)	Depth (feet)	Thick (feet		Depth (feet)			
	Well WH-79-47-301							
Owner: United Gas Pipe 1	Owner: United Gas Pipe Line Company. Driller: Layne-Texas Co.							
Soil, black	3	3	Shale, gray 12	2	585			
Clay, white and yellow-	15	18	Shale, sandy gray 12	2	597			
Sand, red	6	24	Shale, brown and gray 22	2	619			
Clay, yellow	25	49	Sand, coarse gray 12	2	631			
Sand, red	4	53	Shale, tough blue 105	5	736			
Clay, yellow	10	63	Shale, pink and gray 11	1	747			
Sand, fine, yellow	9	72	Shale, pink and white 23	3	770			
Clay, yellow and gray	22	94	Sand, coarse gray and	_	0.05			
Sand, coarse, white	14	108	shale breaks 65		835			
Clay, crumbly gray	167	075	Shale, pink and white 11		846			
and yellow	167	275	Sand, gray and shale 13		859			
Clay, yellow and white-	37	312	Shale, pink and white 22	2	881			
Sand, coarse gray and shale breaks	9	321	Shale, blue and sand layers 29	9	910			
Shale, yellow and white	45	366	Shale, pink and white 25	5	935			
Shale, sandy	24	390	Sand, gray and shale		05.0			
Shale, white and gray	80	470	breaks 15		950			
Shale, gray and brown	28	498	Shale, blue and pink 17		967			
Shale, gray	64	562	Sand, gray and few shale breaks 39)	1,006			
Shale, sandy gray	11	573	Shale, white and blue 15	5	1,021			

Refugio County

Thickness		Thickness	Depth	
(feet)	(feet)	(feet)	(feet)	

Well WH-79-47-701

Owner: Humble Oil and Refining Company. Driller: Carl Vickers.

		7		
Surface soil	4	4	Shale 35	100
Shale	11	15	Sand 40	140
Sand	7	22	Shale 293	433
Shale	20	42	Sand 16	449
Sand	23	65	Shale 148	597
			Sand 48	645

Well WH-79-47-702

Owner: L. W. O'Connor Estate. Driller: Kelley Well Service.

		1		
Surface	15	15	Caliche5	90
Caliche	60	75	Sand 8	98
Sand	10	85	Shale 86	184
			Sand 16	200

Well WH-79-47-801

Owner: Tom O'Connor Esta	ite. Dr	iller:	Kelley Well Service.	
Clay	25	25	Sand 35	155
Sand	15	40	Shale 5	160
Shale	40	80	Sand 30	190
Sand	30	110	Shale 15	205
Caliche streaks	10	120	Sand 15	220

Refugio	County
---------	--------

	ickness feet)	Depth (feet)	Thickness (feet)	Depth (feet)
	Well W	H -79-4 7.	-801Continued	
Shale	50	270	Shale 18	940
Shale, sandy	20	290	Sand 13	953
Sand	35	325	Shale 19	972
Shale	117	442	Sand 58	1,030
Sand	54	496	Shale 10	1,040
Shale	73	569	Sand 12	1,052
Sand	7	576	Shale 4	1,056
Shale	32	608	Sand 5	1,061
Shale, sandy	42	650	Shale 16	1,077
Sand	35	685	Sand 24	1,101
Shale	50	735	Shale 9	1,110
Sand	25	760	Sand 24	1,134
Shale	77	837	Shale 3	1,137
Sand	28	865	Sand 14	1,151
Shale	40	905	Shale 2	1,153
Sand	17	922	Sand 19	1,172

Well WH-79-48-103

Owner: Tom O'Connor Estate. Driller: Kelley Well Service.

Surface	20	20	Sand 1	15	180
Sand	30	50	Shale 2	20	200
Shale	115	165	Sand 4	40	240

	Thickness (feet)	Depth (feet)	Thickness (feet)	Depth (feet)
	Well W	H-79-48-	103Continued	
Shale	- 20	260	Shale 35	824
Sand	- 15	275	Sand 11	835
Shale	- 335	610	Shale 13	848
Sand	- 80	690	Sand 17	865
Shale	- 15	705	Shale 52	917
Sand	- 26	731	Sand 44	961
Shale	- 22	753	Shale 3	964
Sand	- 36	789	Sand 48	1,012

Refugio County

Well WH-79-53-301

Owner: F. B. Rooke and	50113.	DI IIICI,	Kelley well Service.	
Clay and caliche	54	54	Sand with lime streaks 15	315
Sand	16	70	Sand 15	330
Clay	10	80	Shale 78	408
Sand	15	95	Sand 22	430
Sand, shale and	10	127	Shale 10	440
caliche	42	137	Sand 42	482
Sand, with streaks of caliche	48	185	Shale 170	652
Shale	22	207	Sand 25	677
Sand	13	220	Shale 17	694
Shale	80	300	Sand with streaks of shale 91	785

Owner: F. B. Rooke and Sons. Driller: Kelley Well Service.

	Thickness (feet)		Thickness (feet)		Depth (feet)
	Well W	H-79-53-	301Continued		
Shale	65	850	Shale	15	1,090
Sand	10	860	Sand, hard streaks	20	1,110
Shale	30	890	Shale	45	1,155
Sand with streaks of			Sand	12	1,167
shale	35	925	Shale	45	1,212
Shale	60	985	Sand	28	1,240
Sand (test 6 gpm)	25	1,010	Shale	25	1,265
Shale	50	1,060	Sand	30	1,295
Sand, hard streaks	15	1,075	Shale	20	1,315
			Sand, salt water	39	1,354

Refugio County

Well WH-79-53-601

Owner: Hewit and Dougherty. Driller: Kelley Well Service.

Clay	20	20	Shale and sand streaks 68	293
Sand and caliche	16	36	Sand 52	345
Shale	28	64	Shale 15	360
Sand and clay	26	90	Sand and shale streaks 24	384
Sand	36	126	Shale 54	438
Shale	69	195	Sand 17	455
Sand	30	225	Sand and shale 5	460
			Sand 20	480

Re	fug	io C	ounty
1.0	ւսը.	LU U	Ouncy

Thickness De (feet) (f		Depth (feet)
---------------------------	--	-----------------

Well WH-79-53-602

Owner: F. B. Rooke and Sons. Driller: W. E. Eads.

Surface	2	2	Sand	25	178
Clay, brown	56	58	Shale, blue	68	246
Sand	92	150	Sand	12	258
Shale, blue	3	153	Shale	6	264
			Sand	6	270

Well WH-79-53-904

Owner: F. B. Rooke and Sons. Driller: E. T. Ellwood.

Soi1	2	2	Clay and sand mixed	20	330
Clay	33	35	Gumbo, blue	25	355
Sand, brown	13	48	Sand	30	385
Clay, joint	27	75	Gumbo	25	410
Sand	1.6	91	Gravel	5	415
Sand and clay	69	160	Gumbo	25	440
Clay, brown	1.0	170	Sand	20	460
Rock	1	171	Shale, red and brown	80	540
Sand and rock strips	26	197	Clay and boulders	25	565
Mud, blue	55	252	Rock, with sand strips	51	616
Sand, coarse	10	262	Shale, brown and blue	17	633
Clay, blue	36	298	Broken formation	17	650
Sand, blue	12	310	Shale, blue and brown	44	694

Refugio	County
---------	--------

	ickness feet)	Depth (feet)	Thickness (feet)	Depth (feet)					
Well WH-79-53-904Continued									
Sand	58	752	Clay, soft 16	856					
Clay	88	840	Sand and clay strips 19	875					
			Sand 14	889					

Well WH-79-54-105

Owner: F. B. Rooke and	Sons.	Driller:	E. T. Ellwood.		
Soi1	6	6	Shale, soft	18	204
Clay, joint	9	15	Gumbo	32	236
Sand	7	22	Mud	8	244
Clay, joint	5	27	Shale, mixed	6	250
Clay, tough	12	39	Sand	10	260
Sand	8	47	Shale, tough	18	278
Shale, mixed	25	72	Sand, broken	57	335
Sand and rock	44	116	Gumbo	13	348
Shale	1	117	Sand	7	355
Sand	9	126	Gumbo	23	378
Shale	4	130	Shale, soft	4.	382
Rock and sand	9	139	Sand	5	387
Gumbo	16	155	Gumbo	3	390
Shale, soft and boulders	12	167	Sand, broken	30	420
Gumbo	12	187	Clay, tough	30	450
	17	100	Sand	5	455

Owner: F. B. Rooke and Sons. Driller: E. T. Ellwood.

	Thickness (feet)	Depth (feet)	Thickness (feet)	Depth (feet)
	Well W	M-79-54-	105Continued	
Gumbo, brown	- 40	1	Rock 2	632
Shale, soft	- 5		Sand 1	633
Sand and strips of clay	- 45	545	Mud and sand 7 Gumbo 18	640
Sand, broken	- 61	606	Gumbo 18 Mud and strips of sand 8	658 666
Gumbo	- 24	630	Gumbo 24	690
			Sand, good 13	703

Refugio County

Well WH-79-54-106

Owner:	F.	В.	Rooke	and	Sons.	Driller:	Harsdorff	Well	Drillers.
--------	----	----	-------	-----	-------	----------	-----------	------	-----------

Shale	70	70	Sand 25	575
Sand	125	195	Shale 63	638
Shale	45	240	Sand 17	655
Sand	20	260	Shale 68	723
No record	170	430	Sand, broken 17	740
Sand	40	470	Sand 25	765
Shale	8	478	Shale 45	810
Sand	32	510	Sand, hard and shale 10	820
Shale	40	550	Sand 26	846

Refugio County

Thickne		Depth		ckness	Depth	
(feet)		(feet)	(f	eet)	(feet)	
Well WH-79-54-107						
Owner: F. B. Rooke and Sons. Driller: E. T. Ellwood.						
Soil 2		2	Sand and rocks	10	413	
Clay, yellow 13	i	15	Clay	12	425	
Sand 7	,	22	Sand	9	434	
Clay, brown 38	5	60	Clay	11	445	
Sand, fine 12		72	Sand and boulders	10	455	
Clay 3	L.	75	Clay, red and white	40	495	
Limerock 5	5	80	Rock	9	504	
Sand and limerock 35	,	115	Clay	6	510	
Clay, red and white 15	•	130	Sand	10	520	
Sand, strips of clay 38	}	168	Clay	2	522	
Rock 1		169	Rock	5	527	
Sand 3	6	172	Clay, red and blue	11	538	
Clay, white 20)	192	Sand	12	550	
Sand, fine and rocks 5	5	197	Clay	2	552	
Clay, red 42	2	239	Sand	10	562	
Rock 1	-	240	Rock	2	564	
Sand, good 27	7	267	Sand	17	581	
Clay and strips of sand 58	}	325	Clay	7	588	
Sand, coarse 17	7	342	Rock	2	590	
Clay, red 61	-	403	Rock and sand	10	600	

Т	hickness (feet)	Depth (feet)	Thickne (feet)			
	Well WH-79-54-107Continued					
Clay	5	605	Sand and boulders 19	762		
Sand	21	626	Shale, hard 8	770		
Clay, red and blue	80	706	Sand 4	774		
Rock and sand		709	Clay 4	778		
C1ay	. 3	712	Sand 5	783		
Rock		713	Rock, soft 7	790		
Sand and rocks		724	Clay, hard red 32	822		
Clay		743	Sand, good 15	837		

Refugio County

Well WH-79-54-201

· · · · · · · · · · · · · · · · · · ·				1
Surface, subsoil	2	2	Clay 10	105
Clay	28	30	Sand 35	140
Sand and clay	30	60	Clay 12	152
Sand and boulders	35	95	Sand and shale 35	187
			Sand, fine 16	203

Owner: City of Woodsboro. Driller: Texas Water Wells.

Well WH-79-54-202

١

Owner: City of Woodsboro. Driller: Texas Water Wells.

Surface soil	2	2	Sand	2	33
Clay, yellow	18	20	Clay, sandy and sand streaks	19	52
Clay and sandy clay streaks	11	31	Clay, sandy	7	59

Refugio Co	unty
------------	------

Thickness (feet)		Depth (feet)	Thickness (feet)	Depth (feet)
W	ell W	H-79-54-	202Continued	
Sand with hard	10	70	Sand with boulders 13	93
	19	78	Clay 9	102
Grave1 2	80	Sand 33	135	
			Clay, heavy 10	145

Well WH-79-54-203

Owner: City of Woodsboro. Driller: Layne-Texas Company.

Cumface coil	2	2	Clay and and 14	227
Surface soil	۷	4	Clay, sandy and sand 14	221
Clay	44	46	Sand and clay streaks 28	255
Sand, coarse, white	15	61	Sand 11	266
Sand and clay streaks	13	74	Clay 33	299
Rock	1	75	Clay, sandy 36	335
Sand, coarse gray	11	8 6	Sand, coarse gray 25	360
Clay	20	106	Clay and clay sandy 34	394
Sand, coarse gray	26	132	Sand coarse 16	410
Clay	6	138	Clay 7	417
Sand, coarse gray	10	148	Sand, fine gray 25	442
Clay	31	179	Clay, sandy 9	451
Sand, coarse	34	213	Sand, coarse gray 29	480
			Clay 21	501

Refugio County

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well WH-79-54-206 Partial Log

Owner: F B. Rooke and Sons. Driller: W. E. Eads.

No record	212	212	Shale 22	512
Sand	20	232	Sand 53	565
Shale, blue	38	270	Shale 30	595
Sand	48	318	Sand 32	627
Shale, blue	128	446	Shale 44	671
Sand	44	490	Sand 43	714

Well WH-79-54-403

Owner: F. B. Rooke & Sons.	Driller:	Ε.	т.	Ellwood.
----------------------------	----------	----	----	----------

Soil	2	· 2	Sand	8	173
Clay	18	20	Shale, brown	22	195
Sand	6	26	Sand, hard	10	205
Clay, brown	40	66	Clay, mixed	35	240
Sand and limerock	19	85	Sand, good	16	256
C1ay	9	94	Clay	1	257
Sand	8	102	Sand, coarse	7	264
Shale, brown	6	108	Clay, brown and blue	26	290
Sand, coarse	11	119	Sand	22	312
Clay	11	130	Gumbo, red and blue	66	378
Sand, good	32	162	Sand, fine	7	385
Clay	3	165	Clay, mixed	25	410

	ckness Teet)	Depth (feet)	Thickness (feet)	Depth (feet)
	Well W	H-79-54-	403Continued	
Clay, soft	7	417	Clay 4	508
Sand, good	10	427	Sand and grave1 12	520
Clay	1	428	Clay, red 15	535
Sand, fine	2	430	Sand, good 15	550
Gumbo, blue	28	458	Clay, soft and mud 20	570
Sand, coarse	15	473	Sand and gravel 13	583
Gumbo	7	480	Gumbo, blue 14	597
Sand, good	14	494	Sand, coarse 6	603
Clay	2	496	Clay and soft rock 27	630
Sand	8	504	Clay, mixed and shale 110	740
			Sand and grave1 35	775

Refugio County

Well	WH -	79-	54-	504
------	------	-----	-----	-----

Owner: H. Schirmer. Driller: Kelley Well Service.

Surface	20	20	Shale 25	295
Sand	50	70	Sand 25	320
Shale	10	80	Shale 60	380
Sand	100	180	Sand 30	410
Shale	40	220	Shale 55	465
Sand	22	242	Sand 45	510
Shale	8	250	Shale 135	645
Sand	20	270	Sand 25	670

	ickness feet)	Depth (feet)	- Thickness (feet)	Depth (feet)	
Well WH-79-54-504Continued					
Shale	25	670	Shale 5	846	
Sand	51	746	Sand 29	875	
Shale	49	795	Shale 85	960	
Sand	10	805	Sand 35	995	
Shale	5	810	Rock 5	1,000	
Sand	31	841	Sand 10	1,010	

Refugio County

Well WH-79-54-701

Owner: F. B. Rooke and Sons. Driller: E. T. Ellwood.

.

T*************************************				
Soil	2	2	Lime and sand 5	255
Clay	12	14	Shale, brown and blue 12	267
Sand	6	20	Sand, good 35	302
Clay, brown	55	75	Rock 3	305
Sand and boulders	30	105	Sand, fine 23	328
Clay	5	110	Clay, soft 10	338
Sand, coarse	40	150	Sand, coarse 10	348
Shale, blue and brown	27	177	Shale, hard blue 12	360
Sand and boulders, strips clay	19	196	Sand, fine and rock 10	370
			Sand, coarse 23	393
Gumbo, blue	29	225	Gumbo, mixed 69	462
Sand, good	13	238		402
Gumbo, blue	1 2	250	Sand and limerock 14	476
			Clay, red and blue 20	496

	.ckness leet)	Depth (feet)	Thickness (feet)	Depth (feet)
	Well W	H-79-54-	701Continued	
Sand, coarse	8	504	Sand, fine, and rock 5	608
Clay, soft	13	517	Gumbo, blue 14	622
Sand	9	526	Sand, coarse 10	632
Gumbo, blue	12	538	Clay, mixed 23	65 ⁵
Sand, coarse	7	545	Sand, good 105	760
Clay	8	553	Shale 1	761
Sand, good	21	574	Sand 4	765
Rock	2	576	Gumbo 7	772
Gumbo	4	580	Sand 8	780
Sand, good	16	596	Clay, mixed 52	832
Shale, red	7	603	Sand, good 32	864

Refugio County

Well WH-79-54-802

Owner: Otto Salch. Driller: W. E. Eads.

No record	1 42	142	Shale, blue 12	270
Sand with shale streaks	44	186	Sand 8	278
Shale, blue	8	194	Shale 22	300
Sand	64	258	Sand 31	331

Well WH-79-55-503

Owner: Tom O'Connor Estate. Driller: Kelley Well Service.

C1ay	62	62	Shale, sandy	59	132
Sand, coarse	11	73	Sand, hard 4	44	176

]	hickness (feet)	Depth (feet)	Thickness (feet)	Depth (feet)
	Well W	M-79-55	-503Continued	
Shale	18	194	Sand 17	577
Sand	16	210	Shale and sand streaks 208	785
Shale	100	310	Sand 30	815
Sand, hard	15	325	Shale 45	860
Shale	32	357	Sand 18	878
Sand	18	375	Shale 29	907
Shale and sand streaks-	185	560	Sand 29	936

Refugio County

Well WH-79-55-602

Owner:	Tom O'Connor	Estate.	Driller:	Kelley	Well	Service.
--------	--------------	---------	----------	--------	------	----------

· · · · · · · · · · · · · · · · · · ·				
Clay and caliche	30	30	Shale, sticky 60	460
Sand	10	40	Sand 20	480
Shale, shell and sand	80	120	Shale, sandy 20	500
Sand	20	140	Shale, sticky 40	540
Shale, sandy	25	165	Shale, sandy 10	550
Sand	10	175	Sand 40	590
Shale, sandy	45	220	Shale, sandy 45	635
Shale	60	280	Sand 20	655
Sand	15	295	Shale, sandy 45	700
Shale, sandy	40	335	Shale 30	730
Shale, sticky	35	370	Sand 25	755
Shale, sandy	30	400	Shale 15	770

	ickness feet)	Depth (feet)	Thickness (feet)	Depth (feet)		
We11 WH-79-55-602Continued						
Shale, sandy	40	810	Red beds 20	860		
Sand	.15	825	Shale 55	915		
Shale	15	840	Sand 35	950		

Refugio County

Well WH-79-55-701 Partial Log

Owner: Mrs. Alfred Vogas. Driller: O. B. Martin.

		T		
Shale	130	130	Shale 3	289
Sand, broken	85	215	Sand 25	314
Shale	31	246	Shale 32	346
Sand	11	257	Sand 22	368
Shale	17		Shale 44	412
Sand	12	286	Sand 16	428

Well WH-79-56-601

Owner: Tom O'Connor Estate. Driller: Kelley Well Service.

		1		
Clay	80	80	Sand and shale streaks 45	440
Sand	18	98	Shale 30	470
Shale	147	245	Sand and shale streaks 40	510
Sand	10	255	Shale 60	570
Shale	20	275	Sand 110	680
Sand	65	340	Shale 137	817
Shale	55	395	Sand 16	833

Refugio	County
---------	--------

	ckness eet)	Depth (feet)	Thickness (feet)	Depth (feet)			
Well WH-79-56-601Continued							
Shale	47	880	Sand 22	1,100			
Sand	29	909	Shale 40	1,140			
Shale, sticky	56	965	Sand 23	1,163			
Shale	97	1,062	Shale 65	1,228			
Sand and shale streaks-	16	1,078	Sand 22	1,250			

Well WH-79-63-102

Owner: O. W. Gilbert. Driller: Youngblood Well Service.

Clay	60	60	Shale 70	710
Clay with sand streaks-	13	73	Shale, sandy 20	730
Sand	32	105	Sand 20	750
Sand with shale streaks	- 135	240	Shale, sandy 25	775
Sand	45	285	Sand 53	828
Shale, sandy	90	375	Shale 147	975
Sand	35	410	Sand 12	987
Shale, sandy	145	555	Shale, sandy 10	997
Sand	15	570	Sand 13	1,010
Shale	30	600	Shale 23	1,033
Sand	40	640	Sand 22	1,055

Well WH-79-63-202

Owner: J. E. Bauer. Dri	11er:	Kelley W	Vell Service.		
C1ay	125	125	Shell	3	148
Sand	20	145	Sand	12	160

	ickness feet)	Depth (feet)	Thickness (feet)	Depth (feet)
	Well W	н - 79 - 63.	-202Continued	
Shale	47	207	Sand 8	388
Sand, fine	63	270	Shale 6	394
Hard streaks	2	272	Sand 26	420
Shale, hard streaks	8	280	Shale 205	625
Sand, coarse	26	306	Sand 10	635
Shale	74	380	Shale 90	725
			Sand 30	755

Refugio County

Well WH-80-33-602

Owner: City of Tivoli. Driller: H & S Well Service.

Clay	20	20	Shale 35	265
Sand and clay streaks	35	55	Sand (tested) 35	300
Shale	63	118	Shale and sand streaks 115	415
Sand	27	145	Sand and shale streaks 25	400
Shale	33	178	Sand, shale and sand	
Sand	12	190	streaks 355	795
Clay	20	210	Sand 50	845
Sand	20	230	Shale 8	853

Well WH-80-34-502

Owner:	Mrs.	Mary	Duncan.	Driller:	Kelley	Well	Service.
--------	------	------	---------	----------	--------	------	----------

Surface	15	15	Sand 45	120	
Shell	60	75	Shale 55	175	

Thickness (feet)		Depth (feet)	Thickness (feet)	Depth (feet)				
We11 WH-80-34-502Continued								
Sand	30	205	Shale 50	405				
Shale	60	265	Sand 10	415				
Sand	28	293	Shale 69	484				
Shale	12	305	Sand 21	505				
Sand	50	355	Shale 2	507				

Refugio County

Well WH-80-34-503

Owner:	Mrs.	Mary	Duncan.	Driller:	Kelley	Well	Service.
--------	------	------	---------	----------	--------	------	----------

Shale	95	95	Sand 15	238
Sand	25	120	Shale 7	245
Shale	43	163	Sand 25	270
Sand	17	180	Shale 40	310
Shale	10	190	Sand 45	355
Sand	20	210	Shale 25	380
Shale	13	223	Sand 49	429

Well WH-80-34-707

Owner: City of Austwell. Driller: H & S Well Service.

Clay	42	42	Sand and grave1 18	123
Sand	2	44	Shale 16	139
Clay	19	63	Sand 6	145
Shale and sand streaks-	42	105	Shale 9	154

	ickness feet)	Depth (feet)	Thickness (feet)	Depth (feet)					
	Well WH-80-34-707Continued								
Sand and grave1	19	173	Sand 7	286					
Shale	33	206	Shale 13	299					
Sand and gravel	50	256	Sand 11	310					
Shale	10	266	Shale and sand streaks 15	325					
Sand	9	275	Sand 25	350					
Shale	4	279	Sand streaks 12	362					
			Shale 1	363					

Refugio County

Well WH-80-41-403

Owner: Lydia Hunt Herbert Trust. Driller: H & S Well Service.

C1ay	10	10	Shale 116	320
Sand	10	20	Shale, sandy 35	355
Shale	25	45	Shale 35	390
Sand	23	68	Sand and shale streaks 110	500
Shale	30	98	Shale, sandy 40	540
Sand	30	128	Shale 160	700
Shale	17	145	Sand, fine 15	715
Sand and shale streaks-	29	174	Shale 245	96 0
Sand	30	204	Sand, fine 55	1,015
			Shale 15	1,030

Thickness (feet)		Depth (feet)	

Refugio County

Well WH-80-41-404

Owner: Lydia Hunt Herbert Trust. Driller: H & S Well Service.

Clay	10	10	Sand 22	120
Sand	10	20	Shale 13	133
Shale	25	45	Sand 12	145
Sand	23	68	Shale 25	170
Shale	30	98	Sand and gravel 34	204
			Shale 4	208

Well WH-80-42-207

Owner: J. E. Bauer. Driller: Kelley Well Service.

Clay and shell	95	95	Shale	54	170
Sand	21	116	Sand	21	191

Well WH-80-42-208

Owner: J. E. Bauer. Driller: Kelley Well Service.

Clay, surface	10	10	Shell and sand streaks 64	88
Sand	14	24	Shale 97	185
			Sand 25	210

Goliad County

Thickness (feet)		

Well KP-79-37-601

Owner: Jimmie Bauer. Driller: Kelley Well Service.

Surface	10	10	Shale	64	148
Caliche and sand		I I	Shale and sand	6	154
streaks	74	84	Shale	99	253
			Sand	20	273

Well KP-79-38-401

Owner: Wallace Shay. Driller: Kelley Well Service.

Surface	20	20	Sand 11	95
Sand	20	40	Shale 17	112
Shale	44	84	Sand 58	170

Well KP-79-38-402

Owner: Wallace Shay. Driller: Kelley Well Service.

Surface	20	20	Sand 16	56
Caliche	10	30	Shale 101	157
Sand	8	38	Sand 18	175
Caliche	2	40	Shale 5	180

Well KP-79-38-403

Owner: Wallace Shay. Driller: Kelley Well Service.

Surface	10	10	Shale	20	75
Sand	45	55	Sand	20	95

Goliad County

Thicknes (feet)	s Depth (feet)	Thickness (feet)	Depth (feet)			
We11 KP-79-38-403Continued						
Shale, hard 48	143	Shale 12	155			
		Sand 15	170			

Well KP-79-38-404

Owner: Wallace Shay. Driller: Kelley Well Service.

Surface	15	15	Sand 3	83
Sand	45	60	Shale 153	236
Shale	20	80	Sand 22	258

Well KP-79-38-702

Surface	20	20	Shale	22	100
Sand	20	40	Sand	10	110
Shale	30	70	Shale	13	123
Sand	8	78	Sand	25	148

Owner: Wallace Shay. Driller: Kelley Well Service.