A SPECIAL INVESTIGATION

Prepared by
U.S. DEPARTMENT OF THE INTERIOR bUREAU OF RECLAMATION
SOUTHWEST REGIONAL OFFICE
AMARILLO, TEXAS
NOVEMBER 1982

CHAPTER IV - HYDROLOGY

This chapter concentrates on the hydrological characteristics of playa lakes in the study area--the quantity of water in the lakes and the dependability of that water. Many lakes in the study area were investigated individually.

Selection of Playa Lakes to be Monitored

The main goal in selecting the playa lakes to be monitored was to establish the relationship between precipitation and runoff for the monitored lakes. This relationship would then be applied to the entire study area. Other goals were to determine the relationship between drainage area and runoff and the effect of irrigation on runoff.

Criteria for selecting playa lakes included providing a large number of soil types, varying levels of precipitation, and a range in the percentages of irrigated land in the playa lake drainage areas. Modified and unmodified lakes were included.

Maps at $1: 250,000 \mathrm{scale}$ were studied and candidate playa lakes were selected. Because of distance, time, and expense limitations, an elimination process was begun to reduce the number of playas to be monitored. One of the main considerations was accessibility of the lakes. Local water conservation district offices were contacted to obtain information for each lake. Many candidate lakes were eliminated after these contacts. Maps at $1: 24,000$ scale were obtained for the remaining lakes and field checking for established criteria was begun.

In choosing lakes to be monitored, all States in the study area were considered, but only lakes in Texas fulfilled the criteria for selection. Ultimately, 36 playa lakes were selected for the monitoring program (figure IV-1).

The Monitoring Program

The 1:24,000 maps (U.S. Geological Survey (USGS) 7-1/2 minute quadrangles) for the 36 lakes were assembled and the latitude and longitude of each lake was determined. These coordinates were sent to the Bureau's Engineering and Research (E\&R) Center for its use in LANDSAT evaluation of the lakes. The E\&R Center provided major assistance in the conduct of the Llano Estacado study. Table IV-1 lists the coordinates of each lake, the county and State locations, and the covering USGS quadrangle. The drainage area of each playa was delineated on the quadrangles and planimetered (table IV-2)*.

[^0]Play Lake number

Gray, TX
Gray, TX
Deaf Smith, TX
Deaf Smith, TX Deaf Smith, TX Deaf Smith, TX Deaf Smith, TX Parmer, TX Moore Co., TX Moore Co., TX Sherman Co., TX Hartley Co., TX
ochiltree Co., Hansford Co., Swisher, IX Swisher, TX Castro, TX Castro, TX Castro, TX Lubbock Co., TX Lubbock Co., TX Lubbock Co., TX Lubbock Co., TX Terry Co., TX Terry Co., TX Terry Co., TX Crosby Co., TX Crosby Co., TX Crosby Co., TX Floyd Co., TX Floyd Co., TX Lamb Co., TX Hale Co., TX Hale Co., TX Carson, TX Carson, TX

USGS Quad
Kingsmill, TX
Hoover, TX
Hereford, TX
Westway, TX
Hereford, TX
Westway, TX
Westway, NE, TX
Tam Anne, TX Bautista, TX Dumas, North, TX onlen, TX Hartley, SE, TX Holt, TX Tam Anne, TX Tam Anne, Lakeview, TX Lakeview, TX Nazareth, TX Shallowater, TX New Home, TX Slaton, TX
Slaton, TX
Sundown, SE, TX Pool, TX
Pool, TX
Ralls, SE, TX
Ralls, TX
Ra11s, NE, TX Lockney 4, SW, TX South Plains, TX Cofferville, TX Hale Center, SW, TX Halfway, TX
Panhandle, West, TX Panhandle, West, TX

Latitude
$35^{\circ} 27^{\prime} 44^{\prime \prime}$ $35^{\circ} 32^{\prime} 30^{\prime \prime}$ $34^{\circ} 46^{\prime} 30^{\prime \prime}$ $34^{\circ} 47^{\prime} 16^{\prime \prime}$ $34^{\circ} 50^{\prime} 02^{\prime \prime}$
$34^{\circ} 49^{\prime} 58^{\prime \prime}$ $34^{\circ} 4^{\circ} 4^{\circ} 58^{\prime \prime}$ $34^{\circ} 54^{\prime} 08^{\prime \prime}$
$34^{\circ} 30^{\prime} 08^{\prime \prime}$ $35^{\circ} 41^{\circ} 30^{\prime \prime}$ $35^{\circ} 41^{\prime} 30^{\prime \prime}$ $35^{\circ} 59^{\prime} 08^{\prime \prime}$ $36^{\circ} 07^{\prime} 59^{\prime \prime}$ $35^{\circ} 49^{\prime} 26^{\prime \prime}$
$36^{\circ} 11^{\prime} 10^{\prime \prime}$ $36^{\circ} 11^{\prime} 10^{\prime \prime}$
$36^{\circ} 05^{\prime} 43^{\prime \prime}$ $36^{\circ} 05^{\prime} 43^{\prime \prime}$
$34^{\circ} 37^{\prime} 00^{\prime \prime}$ $34^{\circ} 37^{\prime} 00^{\prime \prime}$

$34^{\circ} 37^{\prime} 20^{\prime \prime}$ $34^{\circ} 35^{\prime} 18^{\prime \prime}$ | $34^{\circ} 35^{\circ} 18^{\prime \prime}$ |
| :--- |
| |
| $2^{\circ} 24^{\prime}$ | $34^{\circ} 22^{\prime} 30^{\prime}$ $33^{\circ} 44^{\prime} 04^{\prime \prime}$ $33^{\circ} 29^{\prime} 56^{\prime \prime}$ $33^{\circ} 24^{\prime} 50^{\prime \prime}$ $33^{\circ} 25^{\prime} 08^{\prime \prime}$ $33^{\circ} 20^{\prime} 30^{\prime \prime}$ 33 ${ }^{\circ} 19^{\prime} 33^{\prime \prime}$ $33^{\circ} 18^{\prime} 29^{\prime \prime}$ $33^{\circ} 33^{\prime \prime} 32^{\prime \prime}$ $33^{\circ} 40^{\prime} 38^{\prime \prime}$ $33^{\circ} 44^{\prime} 17^{\prime \prime}$ $34^{\circ} 03^{\prime} 00^{\prime \prime}$ $34^{\circ} 13^{\prime} 04^{\prime \prime}$ $34^{\circ} 00^{\prime} 40^{\prime \prime}$ $34^{\circ} 04^{\prime} 26^{\prime \prime}$ $34^{\circ} 11^{\prime} 18^{\prime \prime}$ $35^{\circ} 17^{\circ} 30^{\circ}$ $35^{\circ} 15^{\prime} 00^{\prime \prime}$

Longitude
$101^{\circ} 03^{\prime} 14^{\prime \prime}$ $101^{\circ} 51^{\prime} 48^{\prime \prime}$ $102^{\circ} 28^{\prime} 58^{\prime \prime}$ $102^{\circ} 30^{\prime} 54^{\prime \prime}$ $102^{\circ} 29^{\prime} 04^{\prime \prime}$ $102^{\circ} 32^{\prime} 16^{\prime \prime}$ $102^{\circ} 38^{\prime} .06^{\prime \prime}$ $102^{\circ} 02^{\prime} 30^{\prime \prime}$ $102^{\circ} 02^{\prime} 30^{\prime \prime}$ $101^{\circ} 55^{\prime} 08^{\prime \prime}$
$102^{\circ} 08^{\prime} 40^{\prime \prime}$ $102^{\circ} 15^{\prime} 18^{\prime \prime}$ $101^{\circ} 15^{\prime} 8^{\prime \prime}$ $01^{\circ} 04^{\prime} 50^{\prime \prime}$
$101^{\circ} 14^{\prime} 11^{\prime \prime}$ $01^{\circ} 32^{\prime} 12^{\prime \prime}$ $101^{\circ} 35^{\prime} 36^{\prime \prime}$ $101^{\circ} 55^{\prime} 06^{\prime \prime}$ $102^{\circ} 03^{\prime} 14^{\prime \prime}$ $102^{\circ} 20^{\prime} 00^{\prime \prime}$ 0154'55" $101^{\circ} 50^{\prime} 03^{\prime \prime}$ $101^{\circ} 42^{\prime} 57^{\prime \prime}$ $101^{\circ} 43^{\prime 2} 7^{\prime \prime}$ $02^{\circ} 17^{\prime} 24^{\prime \prime}$ $02^{\circ} 22^{\prime} 48^{\prime \prime}$ $102^{\circ} 24^{\prime} 35^{\prime \prime}$ 101 $17^{\circ} 12^{\prime \prime}$ 101 ${ }^{\circ} 28^{\prime} 11^{\prime \prime}$ 101年17'32" $101^{\circ} 13^{\prime} 50^{\prime \prime}$ $101^{\circ} 18^{\prime} 48^{\prime \prime}$ $102^{\circ} 18^{\circ} 22^{\prime \prime}$ $101^{\circ} 57^{\prime 2} 22^{\prime \prime}$ $1^{\circ} 27^{\prime} 34^{\prime \prime}$ $1^{\circ} 28^{\prime} 40^{\prime \prime}$

Table IV-2 Drainage Areas of Monitored Playa Lakes*

* Drainage areas from USGS 1:24,000 quadrang1es.

Three types of instruments were then placed at the lakes: automatic recording rain gages, nonrecording rain gages, and staff gages for measuring water levels in the lakes. Twelve lakes had recording gages, all lakes had 2 to 3 nonrecording gages, and all lakes had one staff gage. All lakes were monitored in cording gages, and all lakes had one staff gage
1979 and 1980, and some were monitored in 1981.

Upon each visit to a playa lake, monitoring personnel estimated air temperature, wind velocity, percentage of cloud cover, general weather conditions, and obtained precipitation and water level readings from the gages. Periodically, the owner or lessee was contacted for information so that playa lake usage and tailwater volumes could be determined. Information was obtained about irrigat schedules, when irrigation occurred, acreage irrigated, and length of irrigation. From this and other information, volumes of tailwater were estimated. Once per growing season, irrigation practices in playa lake drainage areas recorded. Such practices

LANDSAT

A major use of LANDSAT was for estimating playa lake water volumes during wet and dry and dry periods beginning in 1972 , when Landes of data were provided the E\&R Center for use in estimating the volumes:

1. Curves of time versus surface area, from August 1980 through October 1980, for all 36 playa lakes were provided. These curves were used in the correlation of LANDSAT and aerial photography.
2. The surface areas for all 36 lakes on October 13, 1980, and October 30, 1980, were provided.

The wettest and driest periods since the start of LANDSAT imagery for scene (photographs) containing all 36 lakes were provided.
4. For use in correlating monitored data and
driest pertods in 1979 or 1980 were provided.
5. For use in map-generation control, county maps for the study area were provided (figure IV-2)

Surface area versus capacity data for several lakes were grouped. Equations for the groups were developed and provided the E\&R Center.

These six types of data are discussed in detail below.

为
LANDSAT SCENE AND COUNTY MAP BOUNDARIES June 1982

Time versus surface area curves
Staff gage readings from August to October 1980 were obtained. Based on these readings, surface areas were obtained from the area-capacity tables developed from field surveys for each lake. Then curves of time versus surface area for each lake from August through October 1980 were drawn. If necessary, surface areas between data points were estimated using evaporation, automatic rain gage, or weather station data. At another point in the study, time versus surface area curves were developed again from operation studies of each lake.

Surface areas during October 1980
The surface areas for all playa lakes on October 13 and 30 , 1980, were taken from the above curves. LANDSAT images for these dates were available to the E\&R Center.

Determination of wettest and driest LANDSAT periods
LANDSAT scene boundaries were drawn on a map showing locations of monitored playa lakes. Then, all lakes within a scene were grouped. Precipitation records for the weather station closest to each lake were obtained. Only records for these 20 stations from the beginning of LANDSAT imagery were used. Monthly precipitation at each station was recorded. Average precipitation and rough evaporation estimates were used to determine the wettest and driest months during this period for each station so that corresponding LANDSAT scenes could be selected.

The 5 wettest months and the 5 driest months for each station within each scene were determined. The wet months for all stations in a scene were compared and the 5 wettest months common to the stations in the scene were determined. The 5 driest months were based on the last month in a long period of below average As with the 5 wettest months per scene, the 5 driest months common to all stations in a scene were determined.

The 5 wettest and driest months for each scene were compared to determine the wettest and driest months for the entire study area. The wettest month was August 1974. It occurred in 4 of the 5 scenes* and included 33 of the 36 monitored playas. In the fifth scene, it was the sixth wettest month. Wetness was based on the cumulative precipitation at all stations (within one scene).
driest month, which terminated the longest dry period, was April 1978. It occurred in all five scenes. Dryness was based on the number of cumulative consecutive below normal rainfalls at all stations (within one scene).

* The five scenes covering the monitored playa lakes were used to develop the wettest months.

Correlation of monitored data with LANDSA

Data from monitored lakes were collected in 1979 and 1980. The wettest month and driest period during those years for the entire study area was determined in the following manner
recipitation records during 1979 and 1980 were obtained for the 20 weather stations previously mentioned. Then the stations were grouped on the basis of playa lakes closest to the stations within a scene. The totals of monthly precipitation, using the grouped stations, were compared and the 5 wettest months per scene were determined. When evaluated, the 4 wettest months were common to all 5 scenes.

The recorded data from monitored lakes were evaluated to determine which month had the most recorded data. June-1979 had the greatest precipitation but only half the recorded data of May 1980 (the second wettest month for precipitation but the best month for field data). May 1980 was investigated to determine when n May to evaluate wet scenes. Half the rainfall occurred on May 15 th and 16 and 25 percent on May 27-29. LANDSAT imagery for the same area occurs every 18 days, so the optimum LANDSAT data would be obtained from May 19-26 or May 30 -June 7 .

The driest months occurred when field equipment was not monitored. As before, dry months were based on the last month in a long period of below average predry months were based on the last month in a long period of below average preof the dry periods common to all scenes. Then daily precipitation records were evaluated to determine which LANDSAT data would best display the driest scenes. LANDSAT data from February 17-March 22 were selected.

County maps

Output by the E\&R Center's computer would be by county. Therefore, county maps we provided for use as control in establishing county corners and latitude and longitude of playa lakes and for use in eliminating nonplaya lake water bodies. Maps for counties beyond the boundary of the Ogallala, partially contained in the study area, or not having any playa lakes were not provided. The latitude and longitude of each monitored lake and of all nonplaya lake water bodies were also provided.

Area-capacity equations

To translate surface areas into volumes using LANDSAT data, equations were developed from playa lakes grouped within subareas of the study area. The monitored lakes were divided into three areas based on soil type: hard lands oil north of the Canadian River, hard lands soil south of the Canadian, and ixed lands soil south of the Canadian. The three areas were divided into total of eight subareas, based on changing precipitation in the study area (figure IV-3; see also figure II-3 for average annual precipitation). Also

considered in the assignment of lakes to subgroups were various conditions which affect playa lake behavior such as percent of drainage area irrigated and whether the lake was modified.

Area and capacity data for each playa lake were plotted and a smooth curve drawn through the points. Using coordinates from the curve, areas were determined for the lakes for selected capacities. All area values for a subarea and capacity were totaled and average areas for given capacities were plotted. A smooth curve was drawn through the averaged data and used to develop the area-capacity equation, $y=a x^{b}$, where y equals the capacity, x equals the area, and a and b are constants.

Four equations were developed for each subarea. For most lakes, the capacity increased sharply at about 50 acres and again, but to a lesser degree, at about 100 acres. Beyond 100 acres, most curves approached a straight line, but for consistency all third equations ranged from 100 to 150 acres and the fourth equation from 150 to 200 acres. The equations were used by the E\&R Center to determine the range in capacity, based on area, for wet and dry scenes.

Analysis

The goal of the analysis was to determine the reliability* of runoff into the playa lakes for the entire study area. The analysis included evaluation of the monitored lakes, LANDSAT data interpretations, and areal extension of findings on monitored lakes to the rest of the study area based on information such as soil type and precipitation-runoff relationships.

The data base required for the analysis was developed from field data and istoric records. All monitored data were placed in computer files; the files were used to develop curves (see Graphs developed below) for each playa lake.

The study area was divided into quadrangles of one degree of latitude by one degree of longitude (figure IV-4). Then data from two or three precipitation stations and all evaporation stations within each quadrangle were stored in computer files. A computer program (SYMAP) determined the average monthly precipitation and evaporation for each quadrangle. There were 102 precipitation stations and 66 evaporation stations in the study area. Study area data rom January 1940 to July 1981 were combined into a master file for precipita tion and a master file for evaporation. Monthly precipitation or evaporation for any year at any playa lake in the study area can be estimated by using the two files. The files were used to develop precipitation-runoff curves.
Completion of two tasks facilitated the analysis of the data. The first task was to estimate how wet and dry the LANDSAT scenes were, based on precipitation duration curves. Duration is the percent of the time a given amount of a parameter (in this case precipitation) can be expected to occur. The second task was to estimate playa lake reliability using evaporation-duration curves.

* Reliability measures how long water in a lake remains available for use.

The final task in completing the data base for the analysis was the development of area-capacity equations for each of the 36 playa lakes. These equations were used in generating operation studies for the lakes. Although area-capacity equations were developed for subareas of the study area to assist LANDSAT data interpretation, they were not developed on an individual basis for each monitored lake. Therefore, area and capacity monitored data were input to a computer program which developed the least squares fit for a nonlinear regression power curve. The equation used was $\mathrm{y}=\mathrm{ax}{ }^{\mathrm{b}}$, where x equals area and y equals capacity To obtain the best correlation coefficient, some lakes required two equations. For the lakes with two equations (area-capacity curves broke sharply), the equations were solved to determine which equation to use for a given area.
pon completion of these tasks, operation studies for each playa lake were developed.

Operation Studies

An operation study of each monitored playa lake was compiled by the computer.* The monitoring program had resulted in weekly records of lake content (water volume) and precipitation for all playa lakes during the $1979-1980$ period and selected represe (ative in which the lakes are located. Using this each quadrangle (figure $10-4$) in which the lakes are located. ormin ondere and seepare the average water-surface area was sing the area-capacity equations developed for each playa lake. The freeusing the area-capacity equations developed for each playa lake. Man evaporation water-surface evaporation rate was assumed free-water-surface evaporation minus rate. The net evaporation rate used was ${ }^{\text {precespationtion. Evaporation equaled average area times the net evaporation }}$ rate. Unadjusted runoff was change in content plus evaporation. Seepage wa derived from the correlation (discussed below) between average content and negative unadjusted runoff. Adjusted runoff was unadjusted runoff plus seepage.

Precipitation versus unadjusted runoff curves

The first set of operation studies were run to determine unadjusted runof. A thorough examination of the operation study of each lake was made. Events that appeared to be the result of incorrect staff or precipitation data were eliminated and the reason recorded. Plots of data** versus time and of runoff versus precipitation were made which did not include the eliminated data. The operation studies show all of the data, including the eliminated data.

* See Data Packages for Monitored Playa Lakes in Appended Material.
** Content, average water-surface area, free-water-surface evaporation rate, precipitation, net evaporation rate, seepage, and runoff per mi ${ }^{2}$.

Snadjusted runoff per square mile (mi ${ }^{2}$) versus precipitation data points were nadjusted unadjusted runoff per mi ${ }^{2}$ versus precipitation graph were made. Lines were drawn on the overlays beginning at .5 inch precipitation and zero runoff per mi 2 indicating $100,50,33-1 / 3,25$, and 20 percent, respectively, of excess precipitation (runoff). These overlays were used for each playa lake. Any data point greater than the 50 percent excess line was eliminated as impossible.

Next, the correlation between seepage and content was determined. The seepage (Negative unadjusted runoff) versus content data points were plotted on graphs by the computer. A best-fit straight line, starting at zero content and zero seepage, was drawn manually through the points to develop the seepage versu content correlation.

Precipitation versus adjusted runoff curves
There compute seepage using the above correlation The operation studies were rerun to compute seepage us the operation studies show and omitting data previously elimina

The precipitation versus adjusted runoff per mi ${ }^{2}$ plots were examined with the overlays. Any a han mally through these plots of precipitation en ${ }^{2}$. Values for the equation $y=a x b$ were developed asing $y=a+b x$, was used from the point assumed to be 100 percent runoff

Historical runoff

Within certain areal limits (see General results below and figure IV-7 (later (h) in this chapter), the equationsted runoff per mi^{2} versus precipitation correextend (by quadrangle) to all playa lakes, monitored and unmonitored, for the January 1940June 1981 period. In addition, adjusted runoff-duration curves were constructed for each of the 23 playa lakes with monitored runoff, and precipitation-duration for each of the evaporation-duration curves were constructed for all quadrangles in the study area (although the adjusted runoff-precipitation relationships were projected areally only to a limited extent).

Graphs developed
In general, the graphs listed below, which cover the period 1979-1981, were developed for each monitored playa lake from the operation studies. Because of insufficient data, not all graphs were generated for each lake. The graphs ar not included in this report; however, an example of the included in the Appended Materlal (Data Packas the graphs for other monitored lakes are available upon request.
$\overline{\text { Thirteen of }}$ the playa lakes had no runoff to plot

1. Content versus time
2. Water-surface evaporation rate versus time.
3. Free-water-surface evaporation rate versus time.
4. Precipitation versus time.
5. Net evaporation rate versus time.
6. Evaporation versus time.
7. Seepage versus time.
8. Runoff per mi^{2} versus time.
9. Seepage versus content.
10. Precipitation versus adjusted runoff per mi^{2}.

Land-Use Patterns

Land-use patterns of the 36 monitored playa lakes and their watersheds were analyzed from low-altitude aerial photographs to determine whether land use affected inflow to the lakes and to provide ground-truthing information for checking the accuracy of LANDSAT data analysis. The analysis was conducted n the following manner
reliminary watershed boundaries were determined from 7.5-minute U.S. Geological Survey quadrangles. Field surveys conducted in February and March 1981 were used to adjust the boundaries. The adjustments were required because of altera used to adjust the boundaries. The adjustments were required because of al construction.

The adjusted watershed boundaries were drawn on low-altitude photographs take of the playa lakes and their watersheds in September and October 1980. Then, the photographs were studied and land-use areas drawn on them. Using information from the February and March 1981 field survey, the photographs were further marked to identify crops, condition of rangelands, types of human development, and other details not discernable on the photographs.

Land-use acreages were then calculated using a digitizer. Twenty-eight categories of land use were used. These categories were then grouped into seven categories to produce table IV-3.

* In addition to these acreages, for reference purposes, wetland types and acreages occurring in the 36 water sheds were also determined from Nationa Wetlands Inventory maps obtained from the U.S. Fish and Wildlife Service.

Analysis of the information in table IV-3 shows that watersheds in the north part of the study area were generally larger and had more rangeland than those in the south part.

Results of Hydrology Studies

General results

The results of hydrologic studies were dependent on the analysis of hydrologic data pertaining to playa lake reliability, on the areal extension of monitored data based on soil analysis, and on determination of playa lake surface areas and volumes by LANDSAT data interpretation.

After operation studies were developed for each playa lake, contents over time were evaluated to determine playa lake reliability. Modified and unmodified lakes, pumped lakes, and lakes without pumps were evaluated. To reduce pumping effects, pumped lakes were analyzed following a heavy rain and for only
2 weeks. To reduce the effects of modification, no data with known tailwater flows were used

Reliability data were divided into three groups based on soil type. The data show that playa lakes decrease in reliability to the southwest. Lakes in hard show that playa lakes decrease in reliability to the southwest. Lakes in hard
lands soils north of the Canadian River lost nearly 25 percent of their content lands soils north of the Canadian River lost nearly 25 percent of their cont
within 2 weeks. Lakes in hard lands soils south of the Canadian lost about one-third of their content. Lakes in mixed lands soils lost nearly 60 percent of their content. No monitoring occurred in sandy lands soils, but if the above trend continued, over two-thirds of the content would probably be lost within 2 weeks (table IV-4 and figure IV-5).

These reliability evaluations are based on all losses throughout the period of record. As such, they must be categorized as a general assessment based on conditional variables. This tends to obscure the causes of loss. The most notable variable that was observed, because of its persistence, was season. Reliability is greater in winter than in summer. That means that during times of high irrigation demand, when the water is most needed, the reliability may be somewhat less than these overall values indicate.

Since playa lake surface area and reliability are both related to soil type, observations of playa lake surface areas give an indication of reliability. Inf rared (low-altitude) photographs of the 36 lakes were evaluated for total wetlands. Figure IV-6 shows the results of the analysis. These data indicate that reliability decreases to the south and west (from 117 to 18 , as shown on figure IV-6).*

* The average surface area of typical playa lakes in New Mexico will be smaller than in other parts of the study area. Also, extrapolation of data from the monitored playa lakes to lakes in New Mexico will be inexact because of the recognized lower rainfall in New Mexico. (SCS 1982b)
(SCs ranoe

ercent oss

14	no data	-		-
15	753	655		601
16	504	419		355
17	2,318	2,101		1,873
21	733	627		514
22	181	131		100
	4,489	3,933	12	3,443

1	582	343		234		
3	358	290		173		
5	79	47		38		
6	57	35		22		
7	195	167		144		
8	140	99		60		
9	323	266		235		
13	472	370		302		
25	186	115		75		
27	22	11		0		
28	-	-		-		
30	152	133		119		
33	167	95		46		
34	98	42		14		
44	600	528		462		
47	2	2		0		
50	456	406		366		
51	74	51		34		
53	25	18		15		
61	-	-		-		
64	103	81		52		
65	1,175	1,023		900		
66	1,593	1,384		1,202		
	6,859	5,506	20	4,493	18	34

Myxed lands

36				116
37	278	192		20
38	73	38	4	
39	11	8		-
41	-	-		-
42	66	-	47	
58	-	-		-
	428	285	33	178

Hard lands north of the Canadian

Hard lands south of the Canadian

UNITED STATES DEPARTMENT OF THE INTERIOR LANO ESTACADO playa lake WATER RESOURCES STUDY

RELIABILITY (Content vs. Time)

 OF MONITORED PLAYA LAKES JUNE 1982

- soll-type boundary (GENERALIZED)
total wetlands (acres)
AVE. I8 AVERAGE ACRES OF WETLANDS PER

TOTAL WETLANDS

Soil analyses were made to areally extend the hydrological analysis of the monitored lakes to the rest of the study area. It was hoped that, using precipimonitored lakes to the rest of the study area. It was hoped that, using precipi tation, evaporation, and soil-type data, the findings for monitored la

However, for general planning purposes, data collected in the monitoring program can be projected only on a limited basis to adjacent areas; to extend the data to the entire study area would be very questionable. Throughout the study area soils of playa lake bottoms and of lands adjacent to the lakes are variable, especially where soil types adjoin or are intermixed. Specific playa lake modification will require specific soil analyses to determine the kind and xtent of soils present. Figure IV-7 shows the area to which data from the monitoring program may be projected based on soil-type information.

Relationship of hydrological results to LANDSAT results

Tables IV-5 and IV-6 give the total number of playa lakes per county as determined by Guthrey et al.** (1981)(see chapter VIII), the number of playa lakes shown by LANDSAT imagery during wet and dry periods, historic monthly precipitation prior to the date of the LANDSAT scene, and the probability of occurrence of that monthiy precipitation during wet and dry periods. Wet scene data ind aring perion 00000 acre-feet .
 lakes of about 7,000 acre-feet.

The above data indicate that wet scene LANDSAT values generally depict unusually wet periods and represent close to the maximum amounts of water which would be wet periods and represent close to the maximum amounts of water which would be LANDSAT flyover) with a 90 percent or better probability of being the maximum, yet these playa lakes represented only about 29 percent of the lakes with water yet these playa lakes represented only about 29 percent of the lakes with water.
The 90 percent or better percent values represent the percentage of all monthly precipitation amounts for the 41 years of record which were drier than the monthly precipitation (prior to LANDSAT flyover) indicated.

* The average surface area of typical playa lakes in New Mexico will be smaller than in other parts of the study area. Also, extrapolation of data from the monitored playa lakes to lakes in New Mexico will be inexact because of the recognized lower rainfall in New Mexico. (SCS 1982b)
** In both tables, the number of lakes determined by Guthrey et al. includes a11 lakes (wet and dry), and the number of lakes shown by LANDSAT includes only those with water.

AREAL PROJECTION OF monitoring program data

Selected Analysis of wet Scene LANDSAT Data

County	No. of playa lakes		Percent of all lakes (wet and dry) which contained water Col. 1 . Col. 2	$\begin{gathered} \text { Monthly PPT } \\ \text { prior to } \\ \text { LANDSAT Flyover } \\ \hline \text { Column } 3 \\ \hline \end{gathered}$	Percent of time precipitation will be:	
	Colum 1	Column 2			< Col. 3	Col. 3
LANDSAT scene of 9-11-74						
Beaver	20	84	23.8	2.24	72	28
Borden	20	-	-	4.91	96	4
Carson	50	535	09.3	2.75	79	21
Crosby	170	925	18.4	6.57	98.7	1.3
Dawson	6	702	00.9	2.96	84	16
Gaines	68	65	104.6	4.69	96.5	3.5
Garza	47	283	16.6	4.30	93	7
Gray, TX	43	752	05.7	2.37	72	28
Hansford	20	345	05.8	2.05	72	28
Hemphill	15	9	166.7	2.83	81	19
Hutchison	35	167	21.0	3.59	88	12
Lipscomb	2	18	11.1	4.92	95	5
Lubbock	214	934	22.9	4.44	94	6
Lynn	63	842	07.5	2.99	82	18
Ochiltree	13	590	02.2	2.62	77	23
Roberts	2	20	10.0	1.87	62	38
terry	117	532	22.0	6.23	98.5	1.5
texas	35	237	14.8	2.27	75	25
Wheeler	14	10	140.0	. 90	39	61
Subtotal	934	7,050	13.2 (Av.)			
LANDSAT scene of 10-13-80						

Bailey	18	598	03.0	2.30	78	22
Castro	44	621	07.1	2.10	74	26
Cimarron	26	264	09.8	. 00	. 2	99.8
Curry	18	524	03.4	1.34	66	34
Dallam	22	220	10.0	. 00	. 2	99.8
Deaf Smith	106	451	23.5	3.02	87	13
Hartley	37	123	30.1	. 75	43	57
Lamb	25	1,280	02.0	3.23	86	14
Moore	85	195	43.6	. 43	30	70
Oldham	29	75	38.7	2.42	78	22
Parmer	49	455	10.8	2.80	85	15
Potter	78	69	113.0	. 97	45	55
Quay	22	228	09.6	. 74	50	50
Roosevelt	37	535	06.9	1.83	73	27
Sherman	48	219	21.4	. 15	10	90
Texas	35	237	14.8	. 00	. 2	99.8
Subtotal	679	6,094	11.1			

Table IV-6
Selected Analysis of Dry Scene LANDSAT Data
County

Cor playa lakes | Norcent of all |
| :--- |
| lakes (wet and |
| dry) which |

LANDSAT scene of 4-20-74

Beaver	3	84	3.6
Carson	7	535	1.3
Gray, KS	-	-	-
Gray, TX	10	752	1.3
Hansford	8	345	2.3
Haskell	-	701	-
Hemphill	9	9	100.0
Hutchison	19	167	11.4
Lipscomb	1	18	5.6
Meade	-	712	-
Ohiltree	4	590	.7
Roberts	0	20	.0
Texas	14	237	5.9
Wheeler	9	10	$\underline{0.0}$
Subtotal	84	2,767	3.0 (Av.)

LANDSAT scene of 4-26-78

Armstrong	2	676	. 3	. 37	23	77
Borden	7	-	-	. 26	20	80
Briscoe	6	787	. 8	. 60	32	68
Crosby	13	925	1.4	. 08	10	90
Dawson	2	702	. 3	. 54	33	67
Donley	3	114	2.6	. 25	15	85
Floyd	5	1,783	. 3	. 13	13	87
Gaines	2	65	3.1	. 28	26	74
Garza	6	283	2.1	. 24	19	81
Glasscock	-	-	-	. 00	. 2	99.8
Hale	11	1,383	. 8	. 50	28	72
Howard	-	185	-	. 26	20	80
Lubbock	18	934	1.9	. 21	18	82
Lynn	9	842	1.1	. 12	13	87
Martin	-	-	-	. 10	9	91
Midland	-	-	-	. 06	11	89
Randall	6	564	1.1	. 55	29	71
Swisher	20	910	2.2	. 28	16	84
Terry	13	532	$\underline{2.4}$. 16	26	74

Table IV-7
Selected Wet Scene LANDSAT Data

Percent of all lakes (wet and akes (wet an dry) which Col. $1=$ Col. 2

Monthly PPT prior to $\frac{\text { LANDSAT Flyover }}{\text { Column } 3}$

All LANDSAT scenes

Terry	117	532	22.0	11.35	99.7	. 3
Gaines	68	65	104.6	10.55	99.8	. 2
Hockley	400	1,171	34.2	10.12	99.6	. 4
Lea	425	1,175	36.2	9.05	99.6	. 4
Yoakum	42	38	110.5	8.69	99.5	. 5
Crosby	170	925	18.4	6.57	98.7	1.3
Terry	117	532	22.0	6.23	98.5	1.5
Howard	140	185	75.7	5.99	98.1	1.9
Lipscomb	2	18	11.1	4.92	95	5
Gaines	68	65	104.6	4.69	96.5	3.5
Lubbock	214	934	22.9	4.44	94	.
Garza	47	283	16.6	4.30	93	7
Roosevelt	37	535	6.9	4.01	96	4
Total	1,847	6,458	28.6			

Over the years, the possibility of using playa lake water to recharge the Ogallala Aquifer has been a subject of interest and study in the High Plains. Various methods of recharge have been evaluated. Because the methods are expensive or become inoperable (aquifer clogs with sediment) after a period of time, the economic feasibility of using playa lake water for ground water recharge appears questionable at this time.

Two basic methods of artificial recharge have been studied. One is the use of water-spreading basins from which water infiltrates to the water table, the second is the use of injection wells to pump water into the aquifer. Both methods are considered to have significant value in the High Plains area, but both methods are subject to limitations and failure.
Experiment and field tests indicate that spreading basins are probably the most economical method of recharge in many areas; however, in some areas this is not successful because of the low permeability of the surface material. The lake bottoms are blanketed with Randall clay which prevents measurable percolation, but the (in more permeable mater spreading to ror near the playa lake A February 1979 proposal (Wendt 1979) to evaluate this method was submitted by the Texas Water Resources Institute, Texas A\&M
University, to the Federal Office of Water Research and Technology. If possible the basins would be situated near an irrigation well so that infiltrating water the basins would be situated near an irrigation well so that infiltrating water would move toward and remain near the well. Dvoracek and Wheaton (Dvoracek and
Wheaton 1969 from Aronovici et al. 1972) recharged playa lake water through pits excavated in the bottom of a lake near Lubbock, Texas. The maximum percolation rate was 1.5 feet per day, but the recharge pits were inundated by large storms and required frequent maintenance to remove the sediment.

Where the spreading-basin method cannot be used because of the depth of the clay soil or absence of permeable soils, water can be recharged through injection wells. Several researchers have investigated dual-purpose wells for injecting playa lake water into the underlying aquifer. The main limitation of these dual-purpose wells is the formation sealing caused by suspended solids in the playa lake water. Recharging sediment-laden water into a fine sand formation rapidly reduces the effectiveness of the well for both pumping and recharging.

Because suspended sediment in playa lake water is of major concern (particularly if injection well marge), it mast be reduced as much as possible ment load is through use of chemical flocculation. This operation has been used with varying area. (Brown et al. 1978). However this operation is expensive.*

* Imported water would probably not contain problem levels of suspended mole old gallala Aquifer

CHAPTER V - LANDSAT

Previous Studies

In June 1973, the Texas Natural Resources Information System (TNRIS) and predecessor agencies of the TDWR became closely associated with NASA-Johnson Space Center (JSC) in regard to the development of an operational remote sensing technique for the detection and mapping of surface water bodies. This technique was developed by JSC working cooperatively with the U.S. Army Corps of Engineers in support of the National Program of Inspection of Dams established by Public Law 92-367. The system used data from LANDSAT, a series of satellites each equipped with an onboard multispectral scanner for recording images of the earth. The success of this technique led the Texas Water Development Board (a TDWR predecessor agency) to initiate work in the spring of 1975 on a project to determine the feasibility of using digital data from LANDSAT imagery to determine the surface area of playa lakes. This work continued until October 1977 at which time the Bureau asked the TDWR to assess the utility of using LANDSAT data analysis technology for the Llano Estacado study. The continued interest of the Bureau, the TDWR, and TNRIS resulted in a cooperative project to develop a methodology for inventorying and determining the availability of water in the playa lakes. (IDN 1980) The result of the project was the report (IDWR by the Texas Dep "Play of Water Resources (in cooperation with ind Bureau) entitled "Playa Lake Monitoring for the Llano Estacado Total Wate Management Study, Texas, Oklah, a report on pilot studies, usig Lubbock County, Texas, area. The report formed the basis for the LANDSAT
studies (described below) conducted by the Bureau's E\&R Center

Engineering and Research Center Procedures *

This study required several years of intensive research and development of the techniques required to perform the inventory of playa lakes using LANDSAT data

Because of the large area to be studied, the Llano Estacado study has, from its inception, emphasized use of LANDSAT 1magery. Further, because various unofficial estimates had placed the number of playa lakes as high as 30,000 , it was realized that computer analysis of the imagery would be required. This med to inventory the playa lakes that contain water and provide a measure of wate availability in wet and dry periods.

The E\&R Center used a computer system for LANDSAT fmage analysis called Interactive Digital Image Analysis System (IDIAS). The course of investigation using IDIAS for the study consisted of two phases, a technique development and feasibility demonstration phase and a playa inventory phase.

* This section was abstracted from the April 29, 1982, E\&R Center memorandum
from Head, Remote Sensing Section, to Chief, Applied Sciences Branch
int. "Summary of Results of the Playa Lakes Inventory in the
解
Llano Estacado sing Digital Image Processing, principal investigator,

Data Packages for Monitored Playa Lakes

The items listed below were prepared for each playa lake. The items for Playa Lake No. 9 follow this page. Copies of the items for other monitored playa lakes are available upon request.

1. Graphs of various parameters versus time for playa lake. (Note that items 1 and 2 were prepared following preparation of item 7.)
2. Seepage vs. content and adjusted runoff vs. precipitation for playa lake.
3. Map showing location of playa lake within the study area.
4. County map showing location of playa lake.
5. Map showing drainage area of playa lake based on aerial photographs and field checking.
6. Characteristics of the playa lake.
7. Precipitation-duration curve for quadrangle in which the playa lake is located.
8. Evaporation-duration curve for quadrangle in which the playa lake is located.
9. Operation study of playa lake.
10. Table of historical precipitation for playa lake.
11. Table of estimated historical runoff for playa lake (corresponding to 8).
12. Estimated runoff-duration curve for playa lake.


```
SEEPAGE vS CONTENT, PLAYA 9
```


ADJUSTED RUNOFF / PRECIPITATION, PLAYA 9

Box highlights location of playa lake no. 9

Playa No. 9 is found in the south-central portion of Deaf Smith County. It is found in hardlands (clay) soils with the drainage area for the playa covering about 2,900 acres. The playa is modified and pumps are used to withdraw water fom the playa. About 93 percent of the drainage area is used as cropland with urrow irrigation as the principal irrigation practice. Playa No. 9 does receive tailwater; but based on infrared photography of the soil and vegetation, total wetlands have not exceeded 71 acres.

QUAD C-05 FOR THE LLANO ESTACADO STUDY
 PERCENT OF TIME GREATER-EQUAL INDICATED AMOUNT

82/03/24

1. RUNOFF EXCEEDS AMOUNT EXPECTED FOR PRECIPITATION.

YEAR	JAN	FEB	MAR	$A P R$	MAY	UUN	UUL	AUG	SEP	OCT	Nov	DEC	TOTAL
1940	6	1.7	2	5.2	12.5	5.0	2.7	16.8	1.4	8	32.9	2.3	82.1
1941	1	. 3	13.2	9.8	268.1	77.0	33.4	16.6	69.8	235.5	2	1.0	725.0
1942	0.0	. 2	1.1	48.3	. 3	18.3	9.5	72.8	23.0	35.3	0.0	6.3	215.1
1943	0.0	0.0	0.0	5.6	5.8	7.8	19.4	2.0	4.1	1	8	22.9	68.5
1944	1.0	1.2	0.0	4.1	18.8	21.9	12.1	13.9	12.7	2.5	7	2.8	91.7
1945	1.0	. 2	. 2	1.4	2	. 8	8.4	34.9	18.6	1.6	0.0	0.0	67.3
1946	2.2	0.0	. 3	2.1	1.3	3.1	4.0	18.2	18.7	75.6	7	. 5	126.7
1947	. 4	0.0	. 8	5.5	51.8	4.0	3.6	9.9	1	1	1.1	2.8	80.1
1948	. 7	6.7	. 6	. 3	23.4	9.4	4.5	35.3	6.7	1.7	2.2	. 1	91.6
1949	8.7	1.3	5	7.8	84.9	45.1	24.6	16.5	6.9	5.5	0.0	. 3	202.1
1950	0.0	0.0	0.0	. 9	2.7	17.0	253.1	17.6	39.0	2.7	0.0	0.0	333.0
1951	1.1	2.1	. 3	. 3	103.1	12.3	17.0	3.3	2.5	6.4	. 3	. 7	149.4
1952	. 7	. 1	. 3	22.2	1.4	15.2	18.6	5.8	1.4	0.0	2.9	. 6	69.2
1953	.4	.1	1.3	3.8	5.2	0.0	15.3	11.8	. 1	21.8	4	2	60.4
1954	0.0	. 1	. 1	2.3	14.5	6.3	3.1	32.4	. 3	8.1	0.0	. 1	67.3
1955	2	0.0	0.0	2.2	19.9	5.3	16.0	2.8	16.0	. 3	0.0	0.0	62.7
1956	0.0	5.0	0.0	0.0	12.9	11.1	3.3	3.0	2	1.8	0.0	0.0	37.3
1957	. 1	1.9	10.8	5.2	26.1	11.4	1.8	7.6	4.8	19.2	2.2	0.0	91.1
1958	5.8	5	12.2	7. 1	4.1	7.4	34.7	6.8	28.5	1.2	1.4	. 2	109.9
1959	0.0	0.0	3	2.2	16.4	39.4	22.3	20.7	1.3	11.7	0.0	25.8	140.1
1960	5.0	2.1	1.0	2.4	1.7	57.2	271.3	7.2	9.3	77.0	0.0	4.4	438.6
1961	6	. 6	10.7	. 1	2.7	18.6	26.1	13.1	4.3	1.4	11.3	4	89.9
1962	1.4	. 6	. 5	1.4	1.0	39.4	56.4	2.0	22.6	4.0	8	4	130.5
1963	0.0	1.9	0.0	. 2	24.4	83.8	16.2	28.8	2.1	. 4	1.6	1	159.5
1964	0.0	3.1	. 1	0.0	3.2	23.0	3	5.8	13.9	1	7.4	6	57.5
1965	. 1	. 7	1.7	1.0	10.7	131.1	13.2	8.3	3.8	4.5	0.0	. 7	175.8
1966	. 6	. 3	0.0	1.0	1.8	32.5	6.0	91.0	7.5	0.0	. 3	0.0	141.0
1967	0.0	3	2	1.8	8	57.8	45.1	5.9	3.2	. 2	. 1	. 9	116.3
1968	5.5	4	2.0	1.1	8.8	3.3	9.7	12.3	1.9	1.0	. 9	.1	47.0
1969	0.0	1.6	2.1	3.5	50.7	19.5	13.0	6.8	23.6	36.2	. 9	1.0	158.9
1970	. 2	1	3.4	2.0	3	16.8	7.1	9.3	6.4	2.3	0.0	0.0	47.9
1971	0.0	1.6	0.0	3.1	4.2	8.1	9.2	46.7	32.0	6.4	11.0	1.9	124.2
1972	. 2	. 1	. 1	0.0	15.9	14.1	19.4	14.3	23.3	19.6	10.0	. 8	117.8
1973	1.3	1.1	17.7	14.3	3.0	5.9	41.4	1.8	5.2	2.4	0.0	2	94.3
1974	. 6	. 1	1.3	. 2	. 6	5.9	3.5	88.3	13.5	53.5	. 2	8	168.5
1975	. 2	3.0	. 3	7.2	4.1	11.6	23.3	4.7	5.8	0.0	1.0	1	61.3
1976	0.0	0.0	. 9	3.0	3.1	8.7	7.9	26.1	20.1	2.0	. 5	0.0	72.3
1977	. 2	4	. 8	7.2	21.9	7.1	1.6	40.2	1.7	1.5	. 1	0.0	82.7
1978	7	1.5	. 2	. 7	21.9	21.9	4.9	13.6	23.9	. 3	11.7	. 3	101.6
1979	1.3	- 1	2.2	5.2	12.9	44.4	10.9	18.6	2.3	2.7	. 3	. 3	101.2
1980	. 9	1.1	. 3	1.9	25.2	2.6	. 8	9.2	13.4	1.2	2.0	1	58.7
$\begin{aligned} & 1981 \\ & \text { rotals } \end{aligned}$. 2	. 2	5.1	3.4	2.8	8.9	--	--	--	--	--	--	20.6
	42.0	42.3	92.8	197.0	895.1	940.0	1094.7	802.7	495.9	648.6	105.9	79.7	5436.7
averages	1.0	1.0	2.2	4.7	21.3	22.4	26.7	19.6	12.1	15.8	2.6	1.9	131.0

ESTIMATED RUNOFF FOR PLAYA 9

PERCENT OF TIME GREATER-EQUAL INDICATED AMOUNT

[^0]: * See Data Packages for Monitored Playa Lakes in Appended Material.

