
District Management Plan

2018 - 2028

Adopted: March 13, 2018

603 East 1st Street P.O. Box 795 Dumas, Texas 79029 www.northplainsgcd.org

Board of Directors

Harold Grall President Moore County

Danny Krienke Vice President Ochiltree County

Bob Zimmer

Secretary

Hansford and Hutchinson Counties

Director

Gene Born

Lipscomb County

Justin Crownover Director Sherman County

Mark Howard Director Hartley County

Zac Yoder Director

Dallam County

2018 Management Plan Z

Table of Contents

Ι.	DISTRICT MISSION STATEMENT	8
н.	PURPOSE OF MANAGEMENT PLAN	8
III.	CRITERIA FOR PLAN CERTIFICATION	8
PF	ROPOSAL OF PLAN	9
Ρι	JBLIC HEARINGS	9
ΡL	AN ADOPTION	9
Co	DORDINATION WITH SURFACE MANAGEMENT ENTITIES	9
IV.	DISTRICT INFORMATION	9
CF	REATION	9
Lc	DCATION AND EXTENT	9
	Figure 1: Map of the District's Jurisdiction	10
	Table 1: The Area of the District in Square Miles.	
	Table 2: Projected Population for the District	
BA	ACKGROUND	12
A	JTHORITY AND FRAMEWORK	12
G	ROUNDWATER MANAGEMENT AREA AND JOINT PLANNING	13
	Ogallala and Rita Blanca Aquifers' Desired Future Conditions	13
	Dockum Aquifer's Desired Future Conditions	13
v.	DISTRICT RULES AND MANAGEMENT OF GROUNDWATER	14
A	PPLICATIONS, PERMITS, AND REGISTRATIONS OF WELLS	14
CL	ASSIFICATION, SPACING, AND DENSITY OF WELLS	14
	Table 3: Classification, and Spacing Rules for all Non-Exempt Wells in the District	
G	ROUNDWATER PRODUCTION UNITS	15
Aı	LOWABLE ANNUAL PRODUCTION, AND REPORTING	15
A	CHIEVING DESIRED FUTURE CONDITIONS	15
W	ASTE OF GROUNDWATER	15
VI.	GENERAL GEOLOGY AND HYDROLOGY	15
Lc	DCAL AQUIFERS	16
	Figure 2: The Ogallala Aquifer	
	Figure 3: The Dockum Aquifer	17
	Figure 4: The Rita Blanca Aquifer	18
VII.	AVAILABLE GROUNDWATER AND PROJECTED WATER SUPPLY NEEDS	19
Μ	IODELED AVAILABLE GROUNDWATER	19
	Table 4: Modeled Available Groundwater for the Ogallala and Rita Blanca Aquifers	
	Table 5: Modeled Available Groundwater for the Dockum Aquifer	
Es	TIMATED GROUNDWATER USE	
	Table 6: Groundwater Production Collected through the District's Production Reporting Process.	
	Table 7: Average Non-Agriculture Groundwater Use Estimate for the District.	
	Table 8: Average Agriculture Groundwater Use Estimate for the District.	

Esti	IMATED SURFACE WATER USE	21
	Table 9: Projected Surface Water Supply	21
ESTIM	ATED ANNUAL AQUIFER RECHARGE	21
	Table 10: Annual Aquifer Recharge in the District	21
Esti	IMATED ANNUAL AQUIFER DISCHARGE TO SPRINGS, LAKES, STREAMS, AND RIVERS	
	Table 11: Annual Aquifer Discharge in the District	
Esti	IMATED AQUIFER ANNUAL FLOW VOLUME INTO AND OUT OF THE DISTRICT AND BETWEEN AQUIFERS	22
	Table 12: Groundwater Flow for the Aquifers in the District	22
Pro	DJECTED SURFACE WATER SUPPLY	22
	Table 13: Projected Surface Water Supply for the East Management Zone	22
	Table 14: Projected Surface Water Supply	
	DJECTED TOTAL WATER DEMAND	
Esti	IMATED WATER SUPPLY NEEDS	24
VIII.	PROJECTED WATER MANAGEMENT STRATEGIES	24
WA	ter Savings from Implementation of Management Strategies	24
IX.	METHODOLOGY TO TRACK DISTRICT PROGRESS IN ACHIEVING MANAGEMENT GOALS	25
х.	ACTIONS, PROCEDURES, PERFORMANCE, AND AVOIDANCE FOR DISTRICT IMPLEMENTATION OF	
۸.	MANAGEMENT PLAN	25
XI.	GROUNDWATER MANAGEMENT GOALS	26
A.	Providing for the Most Efficient use of Groundwater	26
	1. Groundwater Reporting	26
2	2. Well Registrations and Permitting	26
	3. Conservation Demonstration and Education	26
4	4. Financial Assistant	26
ļ	5. Technical Assistance	27
В.	CONTROLLING AND PREVENTING THE WASTE OF GROUNDWATER	27
С.	Controlling and Preventing Subsidence	27
D.	Addressing Conjunctive Surface Water Management Issues	27
Ε.	Addressing Natural Resource Issues that Impact the Use and Availability of Groundwater and which ar	E
	IMPACTED BY THE USE OF GROUNDWATER	27
-	1. Aquifer Monitoring	27
2	2. Deteriorated Wells	28
3	3. Aquifer Information	28
F.	Addressing Drought Conditions	28
1	1. Current Drought Conditions	28
2	2. Conservation Education	28
G.	Conservation, Recharge Enhancement, Rainwater Harvesting, Precipitation Enhancement, and Brush C	ONTROL,
	WHERE APPROPRIATE AND COST-EFFECTIVE	29
-	1. Conservation	
2	2. Recharge Enhancement	29
-	3. Rainwater Harvesting	30
2	4. Precipitation Enhancement	30

	5.	Brush Control	
н		Addressing the Desired Future Conditions)
	1.	Compare DFCs to Aquifers' Conditions	
	2.	Joint Planning)
	3.	Allowable Production Limitation	1
١.		OTHER MANAGEMENT GOALS INCLUDED IN THE PLAN BY THE DISTRICT	L
XII.		REFERENCES	2
XIII.		APPENDIX A: BOARD OF DIRECTOR'S RESOLUTION	5
XIV.		APPENDIX B: NOTICE OF PUBLIC HEARINGS	7
xv.		APPENDIX C: TRANSCRIPT OF PUBLIC HEARINGS40)
XVI.		APPENDIX D: SURFACE WATER MANAGEMENT ENTITIES	3
XVII.		APPENDIX E: MANAGEMENT PLAN REQUIRED DATA REPORT FOR THE DISTRICT	,

I. District Mission Statement

The mission of the North Plains Groundwater Conservation District as adopted by the Board of Directors:

Maintaining our way of life through conservation, protection, and preservation of our groundwater resources.

II. Purpose of Management Plan

During the 1997 Texas legislative session, the legislature enacted into law Senate Bill 1 (SB 1) which established a comprehensive statewide water planning process.

SB 1 requires groundwater conservation districts to prepare and have approved by the Texas Water Development Board a 50-year management plan. The management plan establishes the framework to achieve aquifer Desired Future Conditions (DFC), identifies water supply resources and needs, identifies management strategies, and specifies the management goals of the District. The management plan must be readopted or revised at least every five years, and serves as a guide to the District when making decisions.

Senate Bill 2 (SB 2) was enacted by the Texas Legislature in 2001, and House Bill 1763 (HB 1763) was enacted in 2005 building on the planning requirements of SB 1 and to further clarify the actions necessary for districts to manage and conserve the groundwater resources in the State of Texas. The management plan must address the following management goals, as applicable:

- 1. Providing the most efficient use of groundwater;
- 2. Controlling and preventing waste of groundwater;
- 3. Controlling and preventing subsidence;
- 4. Addressing conjunctive surface water management issues;
- 5. Addressing natural resource issues;
- 6. Addressing drought conditions;
- 7. Addressing conservation, recharge enhancement, rainwater harvesting, precipitation enhancement, or brush control, where appropriate and cost-effective; and
- 8. Addressing the desired future conditions (DFC) adopted by the district.

North Plains Groundwater Conservation District's (District) management plan satisfies the requirements of SB 1, SB 2, HB 1763, the statutory requirements of Chapter 36 of the Texas Water Code, and the administrative requirements of the TWDB Rules.

III. Criteria for Plan Certification [1, 2, 3]

This management plan will be in effect upon approval of the Texas Water Development Board (TWDB) and will remain in force until it is replaced by a revised management plan approved by

the TWDB. The District is required to review and readopt with or without amendment at least once every five years, or more frequently if the District deems necessary or appropriate.

Proposal of Plan

The District's Board of Directors (Board) proposed the management plan at the Board meeting held on _____.

Public Hearings

The District held two public hearings on ______ and _____. A total of ______ stakeholders attended the meetings. Copies of the notice of hearing and transcripts of the hearings are in Appendix B and C respectively.

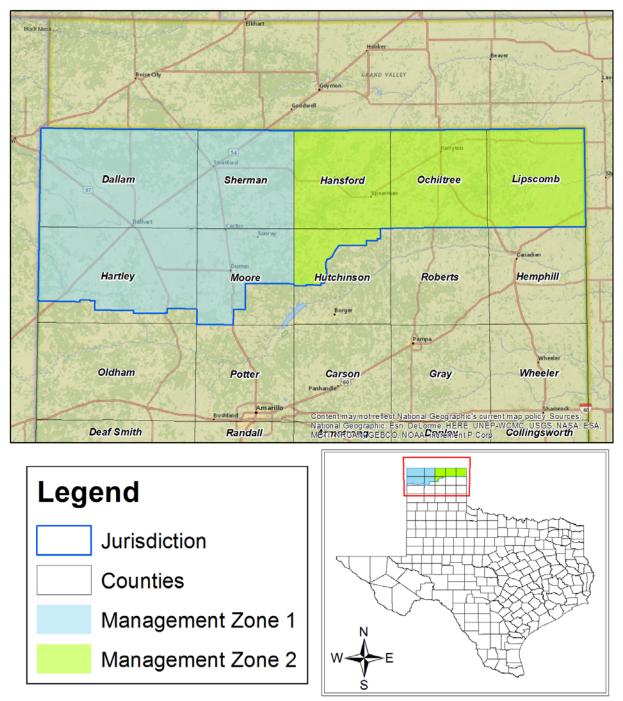
Plan Adoption

The Board approved the adoption of the management plan on _____, and a copy of the resolution is in Appendix A.

Coordination with Surface Management Entities

Three water management entities, Palo Duro Water District (PDWD) Red River Authority of Texas and the Canadian River Municipal Water Authority (CRMWA, have a portion of their jurisdiction located within the District's jurisdiction. The District coordinated with the Canadian River Municipal Water Authority, The Red River Authority and Palo Duro Water District. Copies of the correspondences between the District and the other entities are in Appendix D.

IV. District Information


Creation

In 1949, the Texas Legislature authorized the creation of underground water conservation districts to perform certain prescribed duties, functions, and hold specific powers as outlined in Article 7880-3c, Texas Civil Statutes. The Legislature codified this portion of the Texas Civil Statutes into Chapter 52 of the Texas Water Code. Later, the Legislature amended the Texas Water Code and moved the statutes into Chapter 36. In 1955, voters created the District through a confirmation election. The District was established under Texas Constitution, Article III, Section 52 or Article XVI, Section 59. The District has the authority to regulate the spacing of water wells, the production from water wells, or both, with the goals of conserving and protecting the underground water resources of Texas and preventing the waste of groundwater.

Location and Extent

The District's area of management responsibility extends over 7,335 square miles in the northern Texas Panhandle encompassing all of Dallam, Hansford, Lipscomb, Ochiltree, and Sherman

Counties, as well as parts of Hartley, Hutchinson, and Moore Counties. The District is located north of Amarillo and north of the Canadian River.

Figure 1: Map of the District's Jurisdiction.

Since the District does not cover all of Hartley, Hutchison, and Moore counties, data provided by the TWDB was used for all estimates related to demand based on a proportional area percentage. This percentage was derived by dividing the number of acres or square miles covered by the

District by the total number of acres or square miles contained within each county. The entire county areas, the total county areas in the District, and the TWDB computation of the percentage of county areas within the District are as follows:

County	County Area	Area in District	Percent
Dallam	1,505	1,505	100.00%
Hartley	1,463	1,244	83.56%
Moore	914	699	76.51%
Sherman	916	916	100.00%
Hutchinson	894	278	30.55%
Lipscomb	934	934	100.00%
Hansford	907	907	100.00%
Ochiltree	907	907	100.00%
West	4,798	4,365	
East	3,642	3,026	
Totals	8,440	7,390	

Table 1: The Area of the District in Square Miles.

Groundwater is the primary water supply source for an agricultural economy within the eight counties of the District. In 2014, the value of agriculture within the region was \$2.847 billion. The TWDB provided population projections for each of the counties, and the projected population in the District's counties totaled 76,662 people for 2020 and projected to grow to 105,413 people by 2070. The following table reflects the TWDB projected population for each of the District's counties.

County	2020	2030	2040	2050	2060	2070
Dallam	7,744	8,720	9,747	10,759	11,733	12,671
Hartley	5,248	5,541	5,696	5,807	5,907	5,986
Moore	19,714	22,471	25,407	28,388	31,497	34,680
Sherman	3,294	3,571	3,720	3,853	3,949	4,020
Hansford	1,740	1,859	1,959	2,049	2,140	2,229
Hutchinson	24,017	24,877	25,098	25,098	25,098	25,098
Lipscomb	3,599	3,858	4,011	4,211	4,350	4,465
Ochiltree	11,305	12,158	13,075	14,061	15,122	16,264
West	36,000	40,303	44,571	48,808	53,086	57,357
East	40,661	42,753	44,143	45,419	46,710	48,056
Total	76,662	83,056	88,714	94,227	99,797	105,413

 Table 2: Projected Population for the District [4].

Background

The District's main office is located at 603 East 1st Street, Dumas, Texas 79029. The District's office hours are from 8:00 am to 12:00 pm and from 1:00 pm to 5:00 pm Monday through Friday except holidays.

The District is governed by an elected seven-member Board of Directors. Each Director is elected from a defined area within the District for a four-year term. The elections are held in November of each even-numbered year in accordance with Chapter 36 and the Texas Election Code. The Board elect's officers after each Director election and these officers serve for two-year terms. The Board of Directors holds regular meetings at the Richard S. Bowers Conservation Learning Center located at 6045 W Road E, Dumas, Texas 79029.

The Board develops and adopts the Rules and programs, establishes practices, hires the general manager, sets the annual budget, and determines the tax rate necessary to carry out the operations of the District. The Directors conduct themselves in a manner consistent with sound ethical and business practices; consider the public interest in conducting District business; avoid impropriety, or the appearance of impropriety, ensure and maintain public confidence in the District; and control and manage the affairs of the District lawfully, fairly, impartially, and without discrimination, and in accordance with the stated purposes of the District. In September 2005, the Board developed and adopted a document which sets forth the District's Director Policies.

The District employs a general manager to manage the administrative affairs of the District and who, in the absence of the Secretary of the Board, may act as secretary to the Board and may attest on behalf of the District. The general manager performs all duties outlined in the Rules, personnel policies, and the job description of the general manager to the reasonable satisfaction of the Board of Directors. The general manager's duties specifically include the employment and supervision of personnel, oversight of the financial matters, attendance of Board and Board committee meetings, and the submission of reports to the Board concerning all phases of the services and operations of the District. Further, the general manager's duties include the continued review, development, and enforcement of the Rules. The general manager also performs any other duties which may be assigned to him by the Board from time-to-time.

The District maintains a qualified staff to assist water users in protecting, preserving, and conserving the aquifers. The Directors bases its decisions on the best data available and treats all water users equitably and equally. The Directors determine the programs and activities that the District shall undertake to provide the best possible management of the area. The Rules are enforced to protect the quality of the groundwater and to prevent the waste of this precious resource.

Authority and Framework

The District derives its authority to manage groundwater within its jurisdiction by the powers granted and authorized under Section 59, Article XVI, Texas Constitution, Texas Water Code,

Chapter 36, and Government Code Chapter 8870. The District, acting under such authority, assumes all the rights and responsibilities of a groundwater conservation district specified in TWC Chapter 36. The District's goal is to provide sound management of groundwater resources and make every effort to ensure that an abundant supply of potable water will be available for many future generations.

Groundwater Management Area and Joint Planning

TWC Chapter 36 requires joint planning among groundwater conservation districts (GCDs) that are in the same Groundwater Management Area (GMA). These GCDs must establish the DFCs of the aquifers within their respective GMA every five years. Through this process, the GCDs consider the varying uses and conditions of the aquifer within the management area that differs substantially from one geographic area to another. The District is entirely in Groundwater Management Area 1 (GMA-1), which also includes Hemphill County Underground Water Conservation District, Panhandle Groundwater Conservation District, and part of High Plains Underground Water Conservation District. This management plan utilizes information from GMA-1 joint planning cycle completed by the districts in 2017.

GMA-1 and the District adopted DFCs relative to the area during the joint planning process. Based on the specified DFCs, TWDB's executive administrator provides each district with the modeled available groundwater (MAG) in the management area. TWC Chapter 36 requires these management plans to include the aquifers' DFCs within the district's jurisdiction and the MAG for each aquifer. Well owners within the District withdraw groundwater from three aquifers: Ogallala, Rita Blanca, and Dockum Aquifers.

Ogallala and Rita Blanca Aquifers' Desired Future Conditions

GMA 1 included the Rita Blanca Aquifer in the Ogallala Aquifer DFC. In places, the Rita Blanca Aquifer is hydraulically connected to the Ogallala Aquifer and the underlying Dockum Aquifer. Though the report goes on to say that irrigation accounts for most of the groundwater use from this aquifer, Texline being the only community that uses the aquifer for municipal water supply. GMA-1 and the District adopted Ogallala Aquifer DFCs inclusive of the Rita Blanca Aquifer within the District's jurisdiction as follows:

- 40% volume in storage remaining in 50 years in Dallam, Hartley, Sherman and Moore Counties; and
- 50% volume in storage remaining in 50 years in Hansford, Hutchinson, Ochiltree and Lipscomb Counties.

Dockum Aquifer's Desired Future Conditions

GMA-1 and the District adopted a DFC for the Dockum Aquifer in Dallam, Hartley, Moore and Sherman counties in the District that at least 40 percent of the available drawdown will remain in the next 50 years.

V. District Rules and Management of Groundwater [5]

With substantial input and feedback from stakeholders the District's Board of Directors established the District's Rules in accordance with state law to successfully implement the management plan. The Rules are strictly and fairly enforced. The District may amend the Rules as necessary to comply with changes to Texas law and to ensure the best management of the groundwater within the District. The Rules govern the management strategies of the District, including, but not limited to, well permitting, well spacing, production reporting, annual allowable production, waste of groundwater, achieving DFCs, and establishing a groundwater conservation reserve. The District executes its responsibilities with transparency and places stakeholder involvement as a priority, exceeding the legal requirements for notice and hearings on meetings and other District activities. All District documents are made available to the public pursuant to the Texas Public Information Act. In addition to the District's management plan, the District's Rules can be obtained online from the District's website: <u>http://northplainsgcd.org/aquifer-management-Rules/district-Rules/</u> and from the District's office.

Applications, Permits, and Registrations of Wells

The District requires all wells must be registered or have a test hole permit or well permit issued by the District prior to the construction of a well. District Rules require all newly permitted wells or modification to the original permit require a flow meter be installed on the permitted well and all other wells located within the water rights owner's groundwater production unit. Each permitted well must be fitted with a check valve to prevent aquifer contamination.

Classification, Spacing, and Density of Wells

The District allows a groundwater rights owner one well per 64 acres in a groundwater production unit. All new non-exempted wells are required to be spaced at least fifty yards away from an existing exempted well. All non-exempted wells are subjected to the following classification and spacing Rules:

Pumping Capacity (gallons per minute)			Minimum Distance from Property Line	
		Permitted Well	(Yards)	
		(Yards)		
0 - 17	S	50	17	
18 - 100	А	150	100	
101 – 400	В	250	100	
401 - 800	С	400	100	
Greater than 801	D	500	100	

Table 3: Classification, and Spacing Rules for all Non-Exempt Wells in the District.

Groundwater Production Units

An owner may join contiguous parcels of groundwater rights within the District's jurisdiction in one single unit of groundwater rights called a groundwater production unit (GPU). A GPU cannot contain more than 1,600 acres, and the most distant diagonal corners of the GPU cannot exceed 25,000 feet apart.

Allowable Annual Production, and Reporting

A groundwater user may pump up to 1.5 acre-feet of groundwater per acre of the GPU per year, termed allowable annual production. Additional production may be added from the owner's groundwater conservation reserve, up to 0.5 acre-feet of groundwater per acre of the GPU per year. An owner accumulates any unused allowable annual production in a groundwater conservation reserve program. If the reserve is not utilized within a five-year period, any accumulated reserve for that year is terminated. Annually, an owner will file a production report on all the owner's GPUs by March 1st immediately following the end of the calendar year. The District allows six different methods to measure groundwater production, flow meters, center pivot nozzle package, hour meter, CAFOs, natural gas consumption, and electric consumption. The District's preferred method for measuring groundwater production is flow meters.

Achieving Desired Future Conditions

To achieve the DFCs, the Board added Chapter 8 to the District's Rules. The allowable annual production limit will be reviewed if the average annual production in a management zone exceeds the average MAG amount for the first three years after the beginning of a GMA joint planning cycle. If the mean annual production did exceed the average MAG amounts, the Board may choose to lower the allowable annual production limit for a management zone based on the MAG data.

Waste of Groundwater

Chapter 9 in the District's Rules outline the District enforcement for the control and prevention of the waste of groundwater as defined by the Texas Water Code.

VI. General Geology and Hydrology

The Ogallala Aquifer is the primary groundwater source within the District. Water-bearing areas of the Ogallala formation are hydraulically connected except where the Canadian River has partly or wholly eroded through the formation to separate the North and South Plains. The Rita Blanca Aquifer in the western part of Dallam and Hartley Counties underlies the Ogallala Aquifer. The Dockum Aquifer in Dallam, Hartley, Moore and Sherman counties underlie the Rita Blanca where present and the Ogallala Aquifer. These aquifers are hydraulically connected.

Local Aquifers

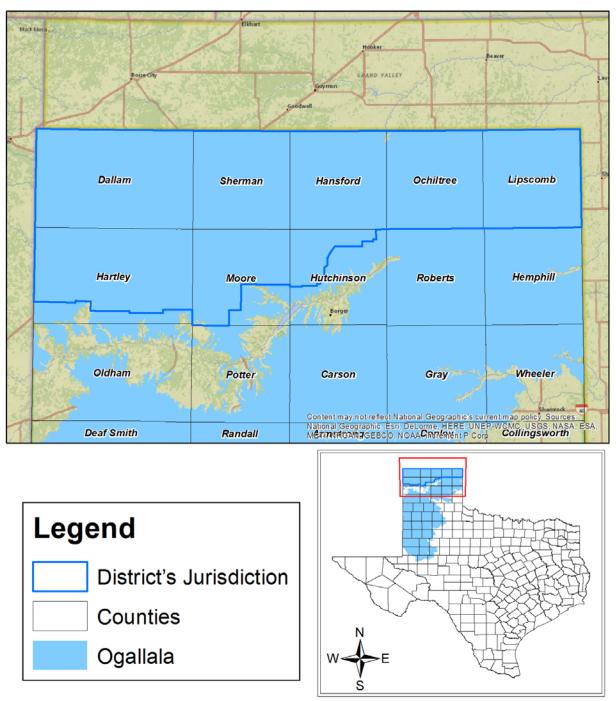
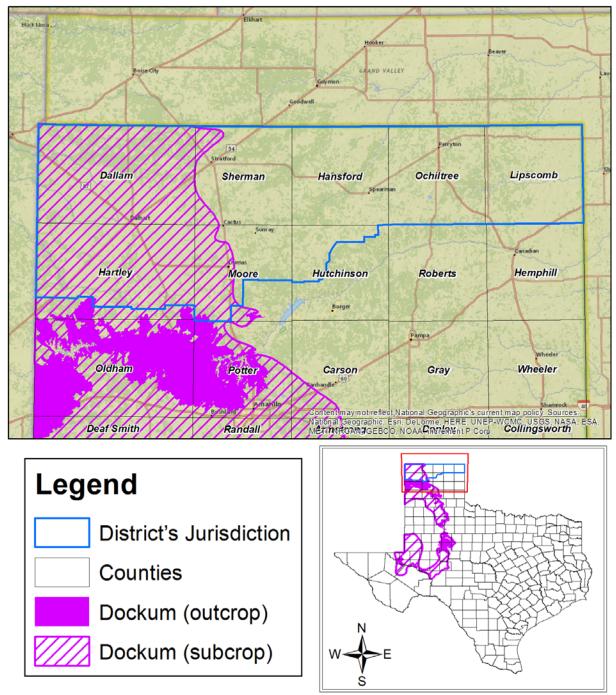



Figure 2: The Ogallala Aquifer.

Note: Outcrop indicates portion of a water-bearing rock unit exposed at the land surface, and subcrop indicates portion of a water-bearing rock unit existing below other rock units.

Figure 3: The Dockum Aquifer.

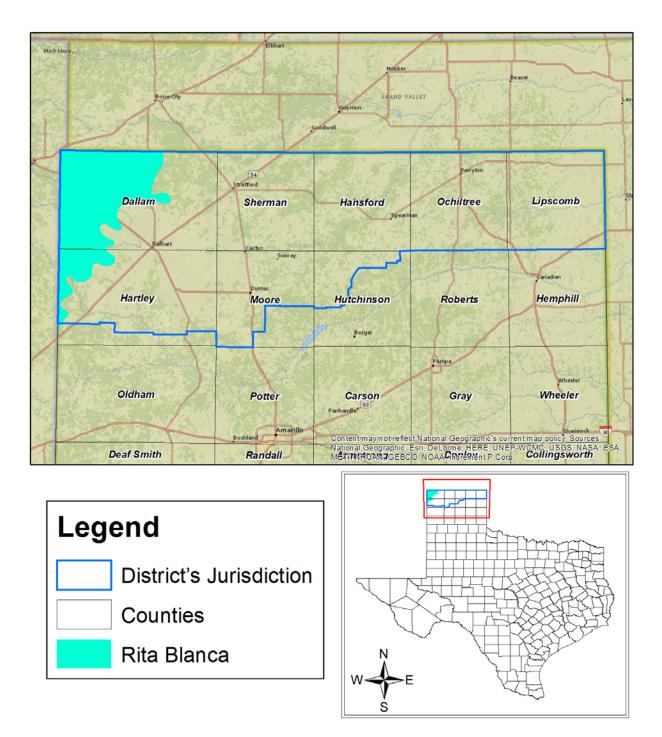


Figure 4: The Rita Blanca Aquifer.

VII. Available Groundwater and Projected Water Supply Needs

Modeled Available Groundwater [6, 7]

The District uses the groundwater availability modeling (GAM) along with information collected by the District and other resources during management planning. The TWDB's executive administrator provided the District with the data from the GAMs of the northern portion of the Ogallala Aquifer, which includes the Rita Blanca and Dockum Aquifers (TWDB GAM Run 16-029 MAG). The tables below are developed from the data provided.

County	2020	2030	2040	2050	2060	2062
Dallam	387,471	287,205	225,573	166,890	112,864	103,258
Hartley	397,585	271,523	212,321	154,433	100,407	90,842
Moore	214,853	172,621	139,322	105,016	73,384	67,650
Sherman	398,056	348,895	281,690	212,744	148,552	136,776
Hansford	275,016	272,656	271,226	270,281	269,589	269,479
Hutchinson	62,803	64,522	65,652	66,075	66,027	65,956
Ochiltree	243,778	243,932	244,002	244,051	244,082	244,085
Lipscomb	266,809	266,710	266,640	266,591	266,559	266,557
West	1,397,965	1,080,244	858,906	639,083	435,207	398,526
East	848,406	847,820	847,520	846,998	846,257	846,077
Total	2,246,371	1,928,064	1,706,426	1,486,081	1,281,464	1,244,603

Table 4: Modeled Available Groundwater in acre-feet for the Ogallala and Rita Blanca Aquifers [8]⁻

Table 5: Modeled Available Groundwater in acre-feet for the Dockum Aquifer [8].

Sherman	127	10,700	10,321	10,300	95	93
Charman	11,002	10,700	10,521	10,500	10,015	10,075
Moore	11,602	10,766	10,524	10,560	10,815	10,895
Hartley	4,801	4,532	4,493	4,417	4,289	4,261
Dallam	14,192	14,188	14,186	14,184	14,184	14,184
County	2020	2030	2040	2050	2060	2062

Estimated Groundwater Use [9, 10, 11]

Over the last five years, groundwater withdrawals in the district averaged 1.7 million acre-feet per year. The eastern four counties' (Hansford, Hutchinson, Lipscomb, and Ochiltree) groundwater production averaged 399 thousand acre-feet per year; while the western four counties' (Dallam, Hartley, Moore, and Sherman) production averaged 1.3 million acre-feet per year. The east and west groundwater pumping averaged 23.5%, and 76.5%, respectively, of the total groundwater production. Table 6 summarizes the groundwater production for the District in acre-feet.

County	2012	2013	2014	2015	2016	Average
Dallam	372,000	399,300	393,700	297,000	339,200	360,240
Hartley	458,700	459,000	442,100	332,700	391,600	416,820
Moore	234,700	228,300	210,000	156,700	185,700	203,080
Sherman	348,100	346,700	361,400	251,700	285,300	318,640
Hansford	218,800	202,000	211,700	148,800	170,400	190,340
Hutchinson	72,300	69,800	74,000	57,700	67,600	68,280
Lipscomb	55,600	42,600	48,800	39,400	42,300	45,740
Ochiltree	109,300	98,300	106,300	77,400	81,400	94,540
West	1,413,500	1,433,300	1,407,200	1,038,100	1,201,800	1,298,780
East	456,000	412,700	440,800	323,300	361,700	398,900
Total	1,869,500	1,846,000	1,848,000	1,361,400	1,563,500	1,697,680

Table 6: Groundwater Production in acre-feet Collected through the District's Production Reporting Process.

Table 7: Average Non-Agriculture Groundwater Use Estimate in acre-feet for the District.

County	Municipal	Manufacturing	Mining	Steam Electric
Dallam	1,706.9	5.9	0.0	0.0
Hartley	1,084.6	0.0	4.6	0.0
Moore	3,387.8	5,980.7	15.9	1,319.0
Sherman	671.4	2.2	7.8	0.0
Hansford	1,171.9	279.1	17.2	0.0
Hutchinson	1,152.8	7,068.1	24.6	0.0
Lipscomb	658.6	179.4	99.5	0.0
Ochiltree	2,292.2	10.9	122.3	0.0
West	6,850.6	5,988.8	28.3	1,319.0
East	5,275.5	7,537.6	263.6	0.0
Total	12,126.1	13,526.3	291.8	1,319.0

Note: The data was averaged from 2000 through 2015. For more information on this data, see Appendix E.

Table 8: Average Agriculture Groundwater Use Estimate in acre-feet for the District.

County	Irrigation	Livestock
Dallam	408,052.1	5,471.6
Hartley	318,371.1	3,810.6
Moore	182,072.8	2,376.3
Sherman	323,985.6	4,573.7
Hansford	183,536.7	3,267.9
Hutchinson	15,475.4	88.1
Lipscomb	33,550.4	506.7
Ochiltree	79,772.8	1,628.6
West	1,232,481.7	16,232.2
East	312,335.4	5,491.2
Total	1,544,817.1	21,723.4

Note: The data was averaged from 2000 through 2015. For more information on this data, see Appendix E.

Estimated Surface Water Use [12, 13]

According to the 2017 State Water Plan's estimates of each county associated with the District, the estimated historical surface water use amounts in acre-feet are as follows:

County	Municipal	Manufacturing	Mining	Irrigation	Livestock	Total
Dallam	0.0	0.0	0.0	140.3	1,284.1	1,424.3
Hartley	0.0	0.0	1.1	0.0	1,694.4	1,695.5
Moore	0.0	0.0	1.1	38.8	481.7	521.6
Sherman	0.0	0.0	0.9	0.0	656.9	657.8
Hansford	0.0	0.0	3.0	192.8	1,810.1	2,005.9
Hutchinson	176.1	422.0	7.8	115.5	75.1	796.6
Lipscomb	0.0	0.0	29.6	1.3	283.3	314.1
Ochiltree	0.0	0.0	26.3	0.0	951.8	978.1
West	0.0	0.0	3.1	179.0	4,117.1	4,299.2
East	176.1	422.0	66.7	309.6	3,120.3	4,094.7
Total	176.1	422.0	69.8	488.6	7,237.4	8,393.9

Table 9: Estimated Historical Surface Water Use in acre-feet

Note: The data was averaged from 2000 through 2015. For more information on this data, see Appendix E.

Estimated Annual Aquifer Recharge(Source TWDB GAM Run 17-008) [14, 15]

The total annual recharge for the Ogallala Aquifer is 137,029 acre-feet from precipitation within the District. The total annual recharge for the Dockum Aquifer is 49 acre-feet from precipitation within the District.

Table 10: Annual Aquifer Recharge in the District (in acre-feet) [1]	16	5].
--	----	-----

Aquifer	Recharge		
Ogallala	137,029		
Rita Blanca	0		
Dockum	49		
Total	137,078		

Estimated Annual Aquifer Discharge to Springs, Lakes, Streams, and Rivers (Source TWDB GAM Run 17-008) [17, 18]

The total estimated annual volume of water that discharges from the Ogallala Aquifer to springs and any surface water body including lakes, streams, and rivers is 26,368 acre-feet. The Dockum and Rita Blanca Aquifer currently have no discharge to springs or any other surface water bodies.

Aquifer	Discharge			
Ogallala	26,368			
Rita Blanca	0			
Dockum	0			
Total	26,368			

Table 11: Annual Aquifer Discharge in the District (in acre-feet) [16].

Estimated Aquifer Annual Flow Volume into and out of the District and Between Aquifers (Source TWDB GAM Run 17-008) [19, 20]

The estimated annual Ogallala Aquifer flow volume into and out of the District as well as the annual volume of flow between the Ogallala, Rita Blanca, and Dockum in the District is expressed in acre-feet as follows:

Table 12: Groundwater Flow in acre-feet for the Aquifers in the District [16].

Aquifer	Into the District	Out of the District	Between Aquifer
Ogallala	50,186	94,559	3,807 ^[A]
Rita Blanca	902	229	3,464 ^[B]
Dockum	4,097	2,293	1,997 ^[C]

^[A] Total flow from the Ogallala to the Rita Blanca and Dockum Aquifers.

^[B] Total flow from the Ogallala and Dockum Aquifers into the Rita Blanca Aquifer.

^[C] Total flow from the Dockum to the Ogallala and Rita Blanca Aquifers.

Projected Surface Water Supply [12, 13]

According to the 2017 State Water Plan's estimates of each county associated with the District, the projected surface water supply amounts in acre-feet are as follows:

Table 13: Projected Surface Water Supply in acre-feet for the East Management Zone

Years	Hansford	Hutchinson	Lipscomb	Ochiltree	Total
2020-2070	2,639	116	176	421	3,352

Note: For more information on this data, see Appendix E.

Table 14: Projected Surface Water Supply in acre-feet

Years	Dallam	Hartley	Moore	Sherman	Total
2020-2070	2,488	2,668	770	1,084	7,010

Note: For more information on this data, see Appendix E.

Projected Total Water Demand [21]

According to "Estimated Historical Groundwater Use And 2017 State Water Plan Datasets" the projected total water demand in acre-feet is as follows:

0		0 0				
County	2020	2030	2040	2050	2060	2070
Dallam	376,493	354,620	326,399	291,512	256,648	221,798
Hartley	295,428	279,595	258,663	231,273	203,930	176,631
Moore	124,614	119,021	111,763	102,536	93,607	84,759
Sherman	225,104	212,287	195,370	174,359	153,357	132,400
Hansford	140,089	132,184	121,356	108,403	95,471	82,824
Hutchinson	25,198	25,028	24,496	23,677	23,117	22,617
Lipscomb	23,142	21,891	20,273	18,089	16,086	14,184
Ochiltree	65,358	61,562	57,102	51,612	46,367	41,271
Total	1,275,426	1,206,188	1,115,422	1,001,461	888,583	776,484

Table 15: Projected Water Demand in acre-feet for the District [21].

Table 16: Summarized Projected Water Demand in acre-feet for the West Management Zone. [21]

Use	2020	2030	2040	2,050	2060	2070
Irrigation	988,848	930,414	854,733	759,762	664,793	569,822
Livestock	16,129	17,118	18,189	19,350	20,606	21,970
Manufacturing	6,939	7,319	7,694	8,024	8,568	9,148
Mining	53	225	168	113	58	34
Municipal	8,395	9,253	10,159	11,114	12,132	13,163
Steam Electric Power	153	0	0	0	0	0
Other	1,112	1,194	1,252	1,317	1,385	1,451
Total	1,021,639	965,523	892,195	799,680	707,542	615,588

Table 17: Summarized Projected Water Demand in acre-feet for the East Management Zone. [21]

Use	2020	2030	2040	2050	2060	2070
Irrigation	224,368	210,821	193,397	171,908	150,420	128,931
Livestock	8,854	8,442	8,722	9,018	9,334	9,668
Manufacturing	7,943	8,406	8,848	9,233	9,879	10,645
Mining	2,555	2,586	1,603	646	77	17
Municipal	9,150	9,472	9,695	9,9802	10,300	10,645
Other	917	938	962	996	1,031	1,067
Total	253,787	240,665	223,227	201,781	181,041	160,896

Projected Water Supply Needs [22]

According to the 2017 State Water Plan, the estimated water supply needs in acre-feet are as follows:

There is Distinuited white Supply needs in dere jeer										
County	2020	2030	2040	2050	2060	2070				
Dallam	-79,908	-92,469	-95,342	-88,952	-79,729	-70,513				
Hartley	-77,545	-93,712	-99,092	-93,227	-84,020	-74,803				
Moore	-2,750	-4,376	-6,014	-8,940	-15,699	-20,761				
Sherman	0	0	0	0	0	0				
Hansford	0	0	-111	-479	-738	-978				
Hutchinson	-167	-1,642	-3,066	-4,538	-5,834	-7,128				
Lipscomb	0	0	-98	-326	-445	-558				
Ochiltree	-478	-963	-1,440	-1,884	-2,352	-2,803				
Total	-160,848	-193,162	-205,163	-198,346	-188,817	-177,544				

Table 18: Estimated Water Supply Needs in acre-feet

Note: Negative numbers denote shortages the District is projected to experience unless Groundwater strategies are implemented. For more information on this data, see Appendix E.

VIII. Projected Water Management Strategies [22]

To meet the long-term water supply needs of the District, the 2017 State Water Plan recommends four water management strategies. Those management strategies and the county that they would be applicable to are as follows:

Management Strategy	Dallam	Hansford	Hartley	Hutchinson	Lipscomb	Moore	Ochiltree	Sherman
Develop Groundwater Supply	✓	\checkmark	~	✓	\checkmark	✓	\checkmark	
Irrigation Conservation	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Municipal Conservation	\checkmark	\checkmark	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Water Audits and Leak Repair	✓	\checkmark		~		✓		\checkmark
Weather Modification				×				

Table 19: Water Management Strategies [23].

Water Savings from Implementation of Management Strategies

According to the 2017 State Water Plan, if the above-listed management strategies are fully implemented, the water savings in acre-feet are as follows:

Management Strategy	2020	2030	2040	2050	2060	2070
Develop Groundwater Supply	10,285	12,000	13,785	22,192	23,073	24,160
Irrigation Conservation	113,063	203,034	355,380	402,316	437,791	463,479
Municipal Conservation	92	99	104	107	114	120
Water Audits and Leak Repair	361	400	437	478	517	557
Total	123,801	215,533	369,706	425,093	461,495	488,316

Table 20: Potential Water Savings in acre-feet if Management Strategies are Fully Implemented.

IX. Methodology to Track District Progress in Achieving Management Goals

The District staff will produce an annual report for the Board each year for providing information on the progress of District activities and programs. The report will specifically contain status updates on the management goals, objectives and standards as presented in this management plan. This report will be submitted to the Board in a timely manner, taking into consideration seasonal workloads and events, such as legislative sessions. The District will continue to enforce its Rules to conserve, preserve, protect, and prevent the waste of the groundwater resources under its jurisdiction. The Board periodically reviews the District's Rules and makes revisions as needed to manage the groundwater resources within the District under TWC Chapter 36. The Board will consider all groundwater uses and needs and will develop Rules which are fair and impartial to implement this management plan. A copy of the most current annual report and the current approved District Rules is available for public review on the District website at <u>www.northplainsgcd.org</u> and the District office.

X. Actions, Procedures, Performance, and Avoidance for District Implementation of Management Plan [24]

This management plan, as required by TWC Chapter 36, explains the goals, objectives and standards that will be used to conserve, protect and preserve the groundwater resources in the District. The District will implement and utilize the provisions of this management plan for determining the direction or priority for all District activities. District operations, all agreements entered by the District, and any additional planning efforts in which the District may participate will be consistent with the provisions of this plan. The District shall attempt to treat all citizens fairly. The District, as needed, shall seek the cooperation of state, regional, and local water management entities in the implementation of this plan and management of groundwater supplies within the District.

XI. Groundwater Management Goals

A. Providing for the Most Efficient use of Groundwater [25, 26]

1. Groundwater Reporting

Management Objective: Monitor total annual groundwater withdrawals through water use reporting by all producing groundwater right owners that have a well capable of producing more than 25,000 gallons of groundwater a day.

Performance Standards: Annually, the District will collect production reports on all properties containing non-exempt wells and calculate annual groundwater withdrawals for the District.

2. Well Registrations and Permitting

Management Objective: All exempt and non-exempt wells constructed within the jurisdiction of the District are required to be registered or permitted in accordance to the District's Rules.

Performance Standards: District staff will verify all wells within a Groundwater Production Unit(s) are registered or permitted in accordance with the District Rules during any site visits.

3. Conservation Demonstration and Education

Management Objective: Provide support through the District's North Plains Water Conservation Center, demonstrations, and other district education programs to promote groundwater conservation.

Performance Standards: At least annually, conduct field days and/or other events to educate stakeholders regarding water use efficiency technologies and practices. The District will publish reports on the activities at the North Plains Water Conservation Center and other demonstrations and education programs.

4. Financial Assistance

Management Objective: The District will encourage the adoption of technologies that promote efficient use of groundwater and conserve water by providing the means to purchase the technology.

Performance Standards: At least annually, the District will seek financial assistance for stakeholders regarding conservation equipment and practices.

5. Technical Assistance

Management Objective: The District will assist stakeholders in collecting information and knowledge about practices and technologies that promote efficient use of groundwater.

Performance Standards: The District will provide technical assistance to stakeholders when requested, and the information is beneficial for the efficient use of groundwater.

B. Controlling and Preventing the Waste of Groundwater [27, 28]

Management Objective: Control and prevent the waste of groundwater as defined by State law.

Performance Standards: The District will pursue any reported violations of the District's Rules concerning groundwater waste.

C. Controlling and Preventing Subsidence [29, 30]

Due to the depth of the water and the nature of the geology within the District, subsidence is unlikely and the District's Board of Directors, upon recommendation from qualified staff, have determined that this goal is not applicable to the District.

D. Addressing Conjunctive Surface Water Management Issues [31, 32]

Management Objective: Address conjunctive water use issues with organizations that have relevant authority or jurisdiction.

Performance Standard: Annually, District's representatives will attend at least 75% of Region A: Panhandle Regional Water Planning Group's meetings. To further address conjunctive water use issues, The District will submit a copy of its Management Plan to The Canadian River Municipal Water Authority, Palo Duro Water District, and Red River Authority for their consideration and review.

E. Addressing Natural Resource Issues that Impact the Use and Availability of Groundwater and which are Impacted by the Use of Groundwater [33, 34]

1. Aquifer Monitoring

Management Objective: Monitor aquifer characteristics that affect utilization and availability of groundwater and which are affected by the use of groundwater through District programs by maintaining a network of monitor wells.

Performance Standards:

i. District staff will periodically collect and analyze water samples from appropriate monitor wells.

- ii. District staff will perform water quality analyses for select constituents for well owners upon request.
- iii. Annually, District staff will summarize their water quality activities and make the information available to the Board and the public.
- iv. District staff will collect aquifer water level measurements annually.
- v. Annually, District staff will summarize groundwater level declines and average depth to water and make the information available to the Board and the public.
- vi. At least on a two-year cycle, District staff will summarize or update aquifer saturated material information and make the information available to the Board and the public.

2. Deteriorated Wells

Management Objective: Investigate and address deteriorated wells that may pose a threat to water quality.

Performance Standard: District staff will pursue repair or plugging of deteriorated wells.

3. Aquifer Information

Management Objective: The District will provide easy access to public information available about the aquifers and wells within the District's jurisdiction.

Performance Standards: The District will maintain a web-based application for providing information about the groundwater resources in the region.

F. Addressing Drought Conditions [35, 36]

North Plains Groundwater Conservation District lies in an area of the state of Texas that has a year-round semi-arid climate. Semi-drought conditions are experienced year-round, and the District works to educate the public about methods to conserve water all year, but particularly during dry periods.

1. Current Drought Conditions

Management Objective: Provide information about the current drought conditions in the area.

Performance Standards: Maintain information about the current drought conditions on the District's website.

2. Conservation Education

Management Objective: Provide stakeholders with information and tools to conserve during dry and peak use periods.

Performance Standards: Annually, the District will conduct water conservation communications and education activities.

G. Conservation, Recharge Enhancement, Rainwater Harvesting, Precipitation Enhancement, and Brush Control, Where Appropriate and Cost-Effective [37, 38]

- 1. Conservation
 - a) Groundwater Conservation Reserve Program

Management Objective: Provide program allowing permitted well owners that timely report their groundwater production to retain any unused allowable annual production for future years, promoting the conservation of groundwater.

Performance Standards: Annually, District staff will report to permitted well owners the well owner's conservation reserve.

b) <u>Conservation Education</u>

Management Objective: Conduct conservation education activities to encourage water conservation and create informed and educated citizens who will be dedicated stewards of their resources.

Performance Standards: Annually, the District will disseminate groundwater conservation and waste prevention information through a variety of media, activities, and events.

c) <u>Conservation Rule Compliance</u>

Management Objective: Monitor and enforce compliance to District Rules

Performance Standards: The District staff will report the enforcement to the Board as needed.

2. Recharge Enhancement

The District has limited surface water resources to effectuate enhanced recharge through diversion or infiltration of surface water. The District explored recharge enhancement through its precipitation enhancement program, and the District discontinued funding for the program in 2006. The District could not quantify if, and to what extent, the program positively affected recharge or groundwater use in the District. The Board of Directors determined recharge enhancement through surface water diversion, infiltration, or precipitation enhancement is not currently viable or practical. For this management plan, this goal is not applicable to the District.

3. Rainwater Harvesting

Management Objective: The District promotes rainwater harvesting by maintaining rainwater harvesting information at the District Office and provides literature about its benefits at a public meeting held at least once annually.

Performance Standards: Annually District staff will report to the Board of Directors the number of people who attended the rainwater harvesting meetings.

4. Precipitation Enhancement

The District discontinued its funding for the precipitation enhancement program in 2006. The District could not quantify if, and to what extent, the program positively affected recharge or groundwater use. The Board of Directors determined that precipitation enhancement is not currently viable or practical. For this management plan, this goal is non-applicable to the District.

5. Brush Control

The District has a semi-arid climate, has very little surface water, experiences low annual rainfall and has a depth to groundwater exceeding 300 feet. Considering the District's low rainfall, depth to groundwater and lack of surface water resources; brush control as a form of recharge enhancement or groundwater conservation is not practicable or effective. The District has determined that brush control is not a viable groundwater conservation goal for this area and is therefore non-applicable.

H. Addressing the Desired Future Conditions [39, 40]

1. Compare DFCs to Aquifers' Conditions

Management Objective: Monitor the condition of the aquifers and status of groundwater production compared to the adopted DFCs.

Performance Standards: Annually review groundwater production information, GAMs, and water level measurements to characterize aquifer conditions compared to the DFCs.

2. Joint Planning

Management Objective: The District will participate in the joint planning process of the Groundwater Management Area 1 with other groundwater conservation districts.

Performance Standards: A District representative will participate in each GMA-1 joint planning meeting.

3. Allowable Production Limitation

Management Objective: Manage groundwater withdrawal amounts based on allowable production limits to achieve DFCs.

Performance Standards: The Board of Directors will review groundwater withdrawal amounts annually, and may modify annual allowable groundwater production limits consistent with its Rules to achieve the DFCs and preservation of the groundwater resurces in the region.

I. Other Management Goals Included in The Plan by The District

No other management goals are listed at this time.

References

- [1] 31 TAC §356.53(a)(3).
- [2] *TWC* §36.1071(*a*).
- [3] *31 TAC §356.51*.
- [4] "Population and Water Demand Projections," 15 May 2017. [Online]. Available: http://www.twdb.texas.gov/waterplanning/data/projections/index.asp.
- [5] 3. T. §356.52(a)(4).
- [6] 31 TAC §356.52(a)(5)(A).
- [7] TWC§36.1071(e)(3)(A).
- [8] R. R. Goswami, "TWDB GAM Run 16-029 MAG: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 1," Texas Water Development Board, Austin, Texas, 2017.
- [9] 31 TAC §356.52(a)(5)(B).
- [10] *31 TAC §356.10(2)*.
- [11] TWC§36.1071(e)(3)(B).
- [12] 31 TAC §356.52(a)(5)(F).
- [13] TWC§36.1071(e)(3)(F).
- [14] 31 TAC (356.52(a)(5)(C).
- [15] TWC§36.1071(e)(3)(C).

- [16] R. R. Goswami, "TWDB GAM Run 17-008: North Plains Groundwater Conservation District Groundwater Management Plan," Texas Water Development Board, Austin, Texas, 2017.
- [17] 31 TAC (356.52(a)(5)(D).
- [18] TWC§36.1071(e)(3)(D).
- [19] 31 TAC §356.52(a)(5)(E).
- [20] TWC§36.1071(e)(3)(E).
- [21] Allen Stephen, TWDB, "Estimated Historical Groundwater Use And 2017 State Water Plan Datasets," Texas Water Development Board, Austin Texas, 2017.

[22] TWC § 36.1071(e)(4).

[23] "2017 State Water Plan," Texas Water Development Board, Austin, TX, 2017.

[24] TWC § 36.1071(e)(2).

[25] 31 TAC §356.52(a)(1)(A).

[26] *TWC* §36.1071(*a*)(1).

[27] 31 TAC §356.52(a)(1)(B).

[28] *TWC* §36.1071(*a*)(2).

[29] 31 TAC §356.52(a)(1)(C).

 $[30] TWC \ \$36.1071(a)(3).$

[31] 31 TAC §356.52(a)(1)(D).

[32] *TWC* §36.1071(*a*)(4).

[33] 31 TAC §356.52(a)(1)(E).

[34] *TWC* §36.1071(*a*)(5).

[35] 31 TAC §356.52(a)(1)(F).

[36] *TWC* §36.1071(*a*)(6).

[37] 31 TAC §356.52(a)(1)(G).

[38] *TWC* §36.1071(*a*)(7).

[39] *31 TAC* §356.52(*a*)(1)(*H*).

[40] *TWC* §36.1071(*a*)(8).

[41] *31 TAC* §356.52(*a*)(5)(*G*).

[42] TWC § 36.1071(e)(3)(G).

XII. Appendix A: Board of Director's Resolution

BOARD RESOLUTION OF NORTH PLAINS GROUNDWATER CONSERVATION DISTRICT 2018 REVISED GROUNDWATER MANAGEMENT PLAN

WHEREAS, Texas Water Code, Chapter 36, Section 36.1071 requires the North Plains Groundwater Conservation District ("the District") to develop a comprehensive management plan to address specific management goals; and,

WHEREAS, the District issued Notice of the 2018 Groundwater Management Plan Hearing that was held on February 13, 2018 at 9:00 a.m. on January 17, 2018 by posting the said Notice on the District's website and by publishing the said Notice in the *Amarillo Globe News* on January 21, 2018 and January 28, 2018, respectively; and,

WHEREAS, the District also gave notice of the District's intent to propose the adoption of the 2018 Revised Groundwater Management Plan at its March 13, 2018 regular Board Meeting; and,

WHEREAS, the District held a public hearing on February 13, 2018 to receive public comment regarding the proposed 2018 Revised Groundwater Management Plan that was transcribed by Court Reporter, Dana Moreland; and,

WHEREAS, no members of the public appeared on February 13, 2018 to offer public comment regarding the proposed 2018 Revised Groundwater Management Plan and no oral, or written, public comment has been received by the District as of March 13, 2018; and,

WHEREAS, Texas Water Code, Section 36.1071 also requires the District to identify the performance standards and management objectives under which the District will operate to achieve its management goals; and,

WHEREAS, the Board of Directors of the North Plains Groundwater Conservation District believes that the 2018 Revised Management Plan of the District reflects the best management of the groundwater for the District and meets the requirements of Section 36.1071 as applicable; and,

WHEREAS, the Board further believes that the description of activities, programs, and procedures of the District included in the Revised Management Plan provide performance standards and management goals and objectives necessary to affect the Revised Plan in accordance with Section 36.1071.

NOW, THEREFORE, BE IT RESOLVED, AND IT IS HEREBY RESOLVED, THAT the Board of Directors of the North Plains Groundwater Conservation District does hereby adopt the 2018 North Plains Groundwater Conservation District Revised Management Plan on this 13th day of March, 2018.

Harold Grall, President

Daniel L. Krienke, Vice-President

Mark Howard, Director

Bob B. Zimmer, Secretary

rector

Justin Crownover, Director

XIII. Appendix B: Notice of Public Hearings

Amarillo Globe News P.O. Box 2901, Amarillo, Texas 806-376-4488 Legal Notice

Amarillo Daily News

NORTH PLAINS GROUNDWATER CONSERVATION DISTRICT P O BOX 795 DUMAS TX 79029

REFERENCE: 1000053248 1002433816 2018 NOTICE OF PUBLIC HEARING FOR REVISED MGMT PLAN

THE STATE OF TEXAS BEFORE ME, a Notary Public in and for the State of Texas, personally appeared

LEGAL CLERK of the Amarillo Globe-News Publishing Company, after being by me duly sworn did dispose and state that the above statement is true and correct and the attached was published on the dates set forth therein.

PUBLISHED ON:	01/21/2018 01/28/2018	CYNTHIA PEREZ LEDESMA Notary Public, State of Texas Comm. Expires 10-17-2020 Notary ID 130864117
FILED ON:	01/18/2018	
Sworn and su	ibscribed to before me the <u>Notary Public Stat</u>	Tay of Elmand 2018 Carona e of Texas

MARCH

Marchers made their Methans made their way from the Park to the lawn of Potter County Gourthouse, where load women from community groups shared their stories of hope and struggle, in-cluding original poems and encouraging words. Seeing the arosion of women's nights to have a way in their mediad care brought physicia. Journs Walknot out to march. "The political and middle

"The political and medi-cal ostablishment is taking, slowly, women's rights away from them. It's scan-tific facts, not political. It's science ... if I don't want to

15: ALL INTERDITED PERSONS.

Aperana a

Our Town

The Rev. Nell Newton says a prayer for the Women's March on the slaps of the Potter County Courthouse. (Photos by Nell Starkey / For the Amarilio Globe-News)

Amarillo Globe-News A15

Marches for women's rights slam Trump, encourage voting

<text><text><text><text><text><text><text>

emonstrators. that's happened during Longoria, who started his first year in office.

What do YOU need? A GREAT MOVE IN SPECIAL?

WE OFFER THAT AND MUCH MORE

Benji Hillside, LLC Luxury Duplexes & Townhomes (806) 341-9356

www.benjihillside.com · info@benjihillside.com

b. Blick instantial.
b. Blick instantial of the second value of the descented by and in the static base of the second part of the blick instantial of the second value of the blick instantial of the blick instantial of the blick instantial of the second value of the blick is an experimental of the second value of the blick is an experimental of the second value of the blick is an experimental of the second value of the blick is an experimental blick is an experimental of the second value of the blick is an experimental blic

MERCY PLANS AND WORKEER CONSERVICEN DISTORY'S METRIC OF PORCE NEARING FOR THE PORCESS OF ADDITION REPORTS MEMORY FLAN

(a) Support to Commit: Then not be either to be the of the stand of a standard be and a standard be standard by the standard be specified as a support of the standard be by the tract of the data of the standard beam of the standard beam of the proposed relation to Detect Wates and the standard begins the standard beam of the standard beam of the standard beam of the standard beam of the beam of the standard beam of the beam of the standard beam of the beam of the standard beam of the

- ne percent menagement was, weigen für fölgstöng för Berland Management Plan. Gapter of The gruppend Herngement Planmaphe stitutent frem the Statisticky:

- Carlie of the papers of the partner in the papers of the p

- Another present Meeting present Meeting the same of presenteer in modulate acades in magnetic the large the same set analysis of equivalence or we have been added by the same of presenteer in many the Meeting presenteer in marks of a meeting of the same of the design of the same Meeting of the same of presenteer in the meeting of the meeting of the meeting of the same of the design of the same o

West Clan

Dele Maleux, Institut Innesa Respec Retrictud Posture Terrison Retrictudes Reconstructor Comparison Postor

preset this 12" day of January 2014.

Food establishment inspection report

<text><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text>

several implease consider in the gap. To be corrected warmen's hathroom, antified within 180 days.

here and early describe before her under produce inferent convertion. In here and engine much start much converted with DSI days. Here exclusions in half-many larger based convertion with

We Will Be Closed 4 Days

Prices Reduced Up To **75%** off

GIFTS & DECOR

212 Baltimore Street - Plainview, Texas

North Plains Groundwater Conservation District

XIV. Appendix C: Transcript of Public Hearings

PUBLIC HEARING - February 13, 2018

BEFORE THE NORTH PLAINS GROUNDWATER

CONSERVATION DISTRICT

PUBLIC HEARING

On the 13th day of February, 2018, the following Public Hearing came on to be held before the North Plains Groundwater Conservation District Board in the conference room at the Richard S. Bowers Water Conservation Learning Center Building North Plains Water Conservation Center 6045 West County Road E. Dumas, Moore County, Texas.

Proceedings reported by computerized stenotype machine in accordance with Chapter 36.1071 of the Texas Water Code.

AMARILLO COURT REPORTING 806-374-4091

1	APPEARANCES
2	DIRECTORS :
3	Mr. Daniel Krienke Mr. Bob Zimmer
4	Mr. Gene Born Mr. Mark Howard
5	Mr. Justin Crownover Mr. Zachary Yoder
6	Mr. Steve Walthour, General Manager
7	Mr. Good, General Counsel Ms. Ellen Orr
8	Ms. Kristen Blackwell Ms. Julia Stanford
9	Mr. Odell Ward Mr. Dale Hallmark
10	Mr. Curtis Schwertner
11	
12	ATTACHMENTS
13	North Dising Groupherten Generation
14	North Plains Groundwater Conservation District's Notice of Public Hearing for the Purpose of Adopting Revised Management Plan
15	Newspaper Publication
16	North Plains Groundwater Conservation District Proposed
17	Revised Management Plan
18	
19	
20	
21	
22	
23	
24	
25	
	AMARTILO COURT REPORTING

1	PUBLIC HEARING
2	MR. KRIENKE: At this time I want to recess
3	our regular meeting and open a Public Hearing to receive
4	public comment regarding North Plains Groundwater
5	Conservation District Proposed Revised Management Plan.
6	I'll turn it over to legal counsel, Keith
7	Good.
8	MR. GOOD: For the record, we have Dana
9	Moreland who is our court reporter today serving with us.
10	My name is Keith Good. I serve as General
11	Counsel for the North Plains Groundwater Conservation
12	District. It is my pleasure in that capacity this morning
13	to serve as the presiding officer of this hearing.
14	This is a formal hearing required of
15	Chapter 36.1071 of the Water Code. The District has
16	developed and proposed a management plan. I have it here
17	with me. It has submitted that plan to Texas Water
18	Development Board for review and comment. Those comments
19	have been received. The Proposed Management Plan has been
20	modified accordingly.
21	If you wish to comment, if you would please
22	stand and state your name and make your comments. The
23	comments will be reported, as I said, by Dana Moreland who
24	is the court reporter present here today.
25	District staff will make a brief

AMARILLO COURT REPORTING 806-374-4091

1	presentation regarding the Proposed Management Plan.
2	Thereafter, this hearing is opened for
3	public comments on the Proposed Management Plan.
4	MR. KRIENKE: Thank you. The General
5	Manager, Steve Walthour, will make some comments.
6	MR. WALTHOUR: For the record, my name is
7	Walthour; I'm the general manager of North Plains
8	Groundwater Conservation District. The staff has been
9	working on this plan for over six months now. Dale
10	Hallmark, Assistant General Manager of my staff, will
11	provide a short presentation of what's in the plan for the
12	public and the Board to hear.
13	You've been provided copies of the
14	electronic, and they are also located on our website. And
15	we have hard copies for anyone who would like a hard copy
16	today.
17	With that, I would like to turn it over to
18	Dale Hallmark.
19	MR. HALLMARK: My name is Dale Hallmark.
20	I'm a licensed PT. I'm an assistant general manager of
21	the North Plains Groundwater Conservation District. I'd
22	like to provide a brief summary of our Management Plan.
23	And like Steve mentioned, I have hard
24	copies if anybody would like one. This won't take very
25	long, but maybe you want to follow along.

1	I would like to start off with a schedule
2	of events. After this February 13 Board Meeting to
3	Receive Public Comment, we will distribute the proposed
4	plan to C-R-M-W-A, CRMWA, which is Canadian River
5	Municipal Water Authority. We will distribute it to Palo
6	Duro Water District, Red River Water Authority, High
7	Plains Groundwater Conservation District, Hemphill
8	Underground Water Conservation District, and Panhandle
9	Water Conservation District and receive possible comments
10	from them.
11	We would like to receive public comments
12	until March 12, which precedes the next Board meeting.
13	March 13, as in the Board notice, is the
14	date for the next board meeting, and at that time they
15	would consider public comments and possibly adopt the
16	Management Plan.
17	We have until April 30th to submit the
18	Management Plan to the Texas Water Development Board for
19	final official review and approval.
20	As we consider the Management Plan, it
21	basically falls into two main categories. The first half
22	of it is background information, and necessary
23	information, but background information. We cover that
24	fairly quickly.
25	The second half, starting with Section X,

is where we actually get into actions and procedures that 1 we will follow. 2 So just do a quick review of the first 3 part. It starts off Section I is the District Mission 4 Statement. 5 Section II provides the purpose of the 6 Management Plan. 7 And Section III outlines the criteria for 8 9 plan certification, the proposal, the public hearings, plan adoption, and coordination with surface management 10 entities. 11 Section IV gives background information on 12 the District, its creation, its location and extent, 13 provides maps, and it provides background on the District. 14 It provides a background of our authority and discusses 15 groundwater management area joint planning and desired 16 future conditions, Dockum Aquifer desired future 17 conditions and Ogallala Aquifer desired future conditions. 18 Section V deals with the District rules and 19 management of groundwater. 20 And Section VI introduces the general 21 geology and hydrology of this area. 22 Section VII talks about available 23 groundwater, projected water supply needs, modeled 24 available groundwater, estimated groundwater usage, and 25

1	estimated surface water usage.
2	There is a section starting on page 21 that
3	talks about estimated annual aquifer recharge to springs,
4	lakes, streams, rivers, interflow within the aquifers,
5	projected surface water supplies, groundwater supplies,
6	and projected total water demand of this area, and our
7	estimated water supply needs.
8	Section VIII deals with projected water
9	management strategies, and it deals with potential water
10	savings from implementation of management strategies.
11	Section IX deals with the methodology to
12	track the district progress in achieving its management
13	goals.
14	Section X is where we actually get into the
15	programs, procedures and what we do, and then it
16	actually goes slightly more detailed into that.
17	It looks like I may have left out a
18	section. I should have made this font a little bit
19	larger.
20	Section X is action, procedure,
21	performance, and avoidance for District implementation of
22	management plan.
23	Section XI starts actual programs and
24	processes. It starts with the groundwater management
25	goals. Under those goals, we address 9 or 10 major
	AMARTILIA COURT DEPORTING

sections or activities. 1 The first one is providing for the most 2 efficient use of groundwater, which is one that's required 3 by law to be addressed. The first section under is 4 5 groundwater reporting, and we have people report their groundwater production each year, and that's how we 6 address -- that's how we address that one. 7 Another way we address providing the most 8 efficient use of ground wear is through well registration 9 10 and permitting, and we address that through our permitting process. 11 A third method is conservation 12 demonstration and education. That is addressed 13 predominantly through our conservation center here, our 14 field days and other activities at the conservation center 15 here. 16 Another section deals with financial 17 assistance, and that is our meter program and our grant 18 program for efficient use of management technologies and 19 20 through our programs that we put on through the conservation center. 21 Technical assistance is another area that 22 23 we address. We provide technical assistance to area producers. That is addressed through our conservation 24 center here. We also provide VFD, variable frequency 25

1 drive, testing on the area producers.

Another major area, I guess this would be 2 Section B, controlling and preventing the waste of 3 groundwater. We do that by investigating any waste of 4 5 water complaint that comes into our office, plus we have multiple field employees that are out in the field day in 6 7 and day out, and they report any waste of water that they observe, and we investigate it and take appropriate 8 action. 9

Section C addresses controlling and preventing subsidence. We have examined the geology of this area and determined that this particular issue is not very applicable to this district and that determining the -- what do you call it -- determining one of these requirements as nonapplicable is an acceptable answer, as far as the Texas Water Development Board is concerned.

Section D, addressing conjunctive surface water management issues. We do that through our participating in joint planning. We also provide Red River, Palo Duro, and CRMWA, Canadian River Municipal Water Authority, copies of our management plan. And some of them we deal with again, as well, in regional planning; that's how we address that.

24 Section E, addressing natural resource25 issues that impact the use and availability of groundwater

1	and which are impacted by the use of groundwater. We do
2	that predominantly through our monitor well program where
3	we monitor what is happening with the programs.
4	Yes, sir?
5	MR. KRIENKE: Dale, you've mentioned twice
6	now CRMWA saying "Colorado"; don't you really mean
7	"Canadian River"?
8	MR. HALLMARK: Yes, I do. I apologize for
9	that.
10	MR. KRIENKE: You might want to make that
11	correction in the record. (Corrections made to official
12	transcript.)
13	MR. HALLMARK: Section E, addressing
14	natural resource issues that impact the use and
15	availability of groundwater and which are impacted by the
16	use of groundwater. We address that through monitor
17	wells; we measure wells each year.
18	We create maps that show the impact on the
19	aquifer. We create depth to water maps, saturated
20	material maps, decline maps, and those are available
21	online and in our office, available to the public.
22	Under that same section, we also address
23	deteriorated wells. We investigate all complaints of
24	deteriorated wells, and our field staff are in the field
25	and anything they discover that's wrong with a well, we
	AMARTILO COURT REDORTING

1	follow through with that and see that it's corrected.
2	We also address, under Section F, drought
3	conditions. And the main way we do that is through our
4	regional planning, and we provide information at the
5	District, and, I believe, on our website.
6	Section G, where we address conservation,
7	recharge enhancement, rainwater harvesting, precipitation
8	enhancement, brush control where it is appropriate and
9	cost-effective.
10	Considering a groundwater conservation
11	reserve program; that is one way we address the
12	conservation aspect of that section.
13	We also have a very active conservation
14	education program. A lot of that is through our
15	conservation center, but there are also educational
16	activities with the schools and the general public.
17	We also have conservation rules in our
18	rules, and we address those per our District Rules and by
19	enforcing them.
20	Recharge enhancement. There are multiple
21	ways that you can enhance recharge, but considering the
22	geology of this area, the usage of the groundwater, and
23	the climate that we work under, that has been determined
24	to be not viable or effective at this particular time.
25	We address rainwater harvesting. And we
'	

1	have determined that as not applicable to this area.
2	While there's no doubt that rainfall harvesting is a
3	viable process, we use water at such a scale that, for
4	agriculture, it's not applicable.
5	Precipitation enhancement is another area
6	that we examined and addressed, and we determined that
7	one, as well, as not being applicable or effective to this
8	area. I have no doubt that rainfall enhancement or
9	precipitation enhancement works, and we have proof that it
10	works. We do not have proof that it actually conserves
11	groundwater.
12	Brush control, another issue that we
13	discuss has been determined that it's not applicable or
14	practical for this district. In our brush control
15	works best in enhancing the surface water flow in rivers
16	and recharging shallow aquifers. We don't have much
17	precipitation here, and most of the time our aquifer is
18	very deep and the geology makes this one not very
19	effective for groundwater in this area.
20	Getting towards the last, Section H, which
21	is the area in the management plan where we address
22	desired future conditions, and we compare the desired
23	future conditions to the actual aquifer conditions. That
24	is done in the hydrology report and our it's also
25	addressed in our annual report.

Joint planning is an issue we address. We 1 predominantly participate in joint planning through the 2 GMA-1 process, regional planning process, and we share our 3 management plan document with various other water entities 4 in this area. 5 Also, in conjunction with DFCs, we have an 6 allowable production limitation, which is a tool that 7 allows us to meet our DFCs, and that is addressed through 8 our rules. 9 10 There are no other particular management plans or strategies at this time that we are using. We 11 may in the future. 12 Almost all of these procedures, reports and 13 activities that we are involved in are given as reports to 14 the Board throughout the year. It is included in our 15 annual report. It is also -- certain information is 16 included in our financial report done by Coy Barton. We 17 also supply to the Board and the public our hydrology 18 report and maintain an on-site -- online website. 19 Our public relations education deals with 20 social media, publications and education. And in recent 21 year, a big aspect of how we meet our management plan 22 goals is through our conservation center here. 23 That's all I have written to cover, but we 24 can certainly discuss any of these issues or answer 25

AMARILLO COURT REPORTING 806-374-4091

questions if anybody has anything they wish to say or add. 1 That's all I have. 2 MR. WALTHOUR: Thank you, Dale. This is 3 Steve Walthour, for the record. In doing a groundwater 4 management plan or district management plan, we're 5 required to do this by law. As you recall, back in 2007, 6 we had to actually get caught up on our management plan, 7 because we were ten years behind, and we have stayed 8 current ever since. 9 10 When you read through the management plan, the first thing that pops into your mind is, well, there's 11 nothing in here that says plans we're actually going to do 12 in the future. We have found that this management plan 13 essentially talks about what we're doing now and how 14 things work. 15 When we put stuff in management plans and 16 say we're going to do something new or different in the 17 future, and then we don't do it, we get nailed by the 18 State for not doing it because it was in our plan. 19 20 We tried to keep this fairly general. One of the biggest things that we've added to this is our 21 demonstration projects. The last time we really 22 23 considered this, we were not doing demonstrations on the level that we're doing today. We did not have the field 24 back in our control, and we did not -- we had started 25

1 doing demonstrations, but we had not added them to the 2 plan. That's the biggest thing that I see that we've 3 added.

Also, the other issue is under desired future conditions. The Board implemented a set of rules several years ago to address desired future conditions in the future, and we wrote those DFCs into this plan. There are two primary issues.

The annual report that Dale mentioned is a 9 method that we report to you and to the public on those 10 things that are part of the plan so that we can keep a 11 record, and we have that record for the next time that 12 we're audited, either by the State or by the District's 13 own auditor. We have two opportunities to be audited. We 14 can be audited through the Texas Commission on 15 Environmental Quality, and we can also be audited through 16 the State, I believe, comptroller's office. I believe 17 that's correct. 18

19 That's really all I have to say, as far as 20 comments. If you have any additional comments or any 21 changes that you would like to make, please contact the 22 District or the staff and provide those.

23 We will take written comment via email or 24 through the post office through March 12th. The Board 25 meeting is on the 13th. If there's anything that is

1	brought forth that we believe whatever is brought
2	forth, as far as public comments concerns of that nature
3	we'll bring it to you to the March meeting.
4	We anticipate you adopting this on
5	March 13th; however, if we need more time to do that, then
6	we can certainly do that.
7	That's all I have to say, and that
8	concludes our testimony. Thank you.
9	MR. GOOD: Thank you. Are there any
10	members of the public speaking?
11	Note for the record there are no members of
12	the public.
13	Any directors, that wish to comment?
14	MR. KRIENKE: What is your recommendation,
15	Keith, do we leave it open 5 minutes or 10 minutes, yet?
16	MR. GOOD: We certainly can do that, if you
17	want to take a break, see if any members of the public
18	appear.
19	MR. KRIENKE: Let's take a short break.
20	We'll leave the hearing open until after we get back from
21	the break.
22	(Break.)
23	MR. KRIENKE: Does any Board member or
24	anyone of the public have any comments at this time?
25	MR. GOOD: We can close the hearing.

1	N	MR. KRIENKE: At this time we'll adjourn
2	the hearing o	close the hearing and reconvene our regular
3	Board meting.	
4		(Public Hearing Closed.)
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

1	CERTIFICATION
2	I, Dana Foster Moreland, Certified Shorthand Reporter
3	in and for the State of Texas, do hereby certify that the
4	above and foregoing contains a true and correct
5	transcription of the Public Hearing of the North Plains
6	Groundwater Conservation District held on February 13,
7	2018, that the record remained open for written comment,
8	and as of 5:01 p.m. March 12, 2018, no additional written
9	comments had been received.
10	Certified to by me on this 20th day of
11	March, 2018
12	
13	Kana Moseland
14	DANA FOSTER MORELAND, CSR Texas CSR 2341
15	Amarillo Court Reporting, Inc. P.O. Box 19628
16	Houston, Texas 79114 Telephone: 806.374.4091
17	Expiration: 12/31/19
18	
19	
20	
21	
22	
23	
24	
25	

XV. Appendix D: Surface Water Management Entities

Dale Hallmark

From: Sent: To: Subject: Attachments: Dale Hallmark Thursday, February 15, 2018 9:19 AM 'ksatterwhite@crmwa.com' NPGCD 2018 Management Plan 2018 Management Plan short.pdf

Kent

The North Plains Groundwater Conservation District Board proposed to the public (February 13, 2018) for comment a REVISED Management Plan.

The Texas Water Development Board has suggested that CRMWA receive by email a copy of our Management Plan.

Specifically to receive any comments as well as address any potential Conjunctive water use issues.

We will receive Public comment until March 12, 2018.

The Board of Directors will meet March 13, 2018 to review public comment and possibly adopt the revised Management Plan.

I appreciate any comments you care to make or anyone else's at CRMWA.

Regards Dale

Dale Hallmark, P.G. Assistant General Manager / Hydrologist <u>dhallmark@northplainsgcd.org</u> 806-935-6401

Website: http://www.northplainsgcd.org/

Interactive Map: http://map.northplainsgcd.org/

לל

Dale Hallmark

From:	Dale Hallmark
Sent:	Thursday, February 15, 2018 2:11 PM
То:	'danna.bales@rra.texas.gov'
Subject:	North Plains Groundwater Conservation District, Conjunctive GW use and Management
	Plan
Attachments:	2018 Management Plan short.pdf

We (North Plains Groundwater Conservation District) recently (February 13, 2018) proposed to the public for comment a REVISED Management Plan.

The Texas Water Development Board has suggested that since the Red River Authority shares areas in our jurisdiction that

It would be advisable to email a copy of our Management Plan to the RRA. Specifically to receive any comments as well as address

any potential Conjunctive water use issues.

We will receive Public comment until March 12, 2018.

The Board of Directors will meet March 13, 2018 to review public comment and possibly adopt the revised management Plan.

1

Any comments or concerns are welcome.

Appendices are not included to keep the file size as small as possible. If you need them I can send them or send the entire document by regular mail.

Regards Dale

Dale Hallmark, P.G.

Assistant General Manager / Hydrologist <u>dhallmark@northplainsgcd.org</u> 806-935-6401

North Plains Groundwater Conservation District

Dale Hallmark

From:	Dale Hallmark
Sent:	Thursday, February 15, 2018 2:22 PM
То:	'C.E. Williams'; 'Jason Coleman'; 'Janet Guthrie'
Subject:	North Plains Groundwater Conservation District, Conjunctive GW use and Management
	Plan
Attachments:	2018 Management Plan short.pdf

We (North Plains Groundwater Conservation District) recently (February 13, 2018) proposed to the public for comment a REVISED Management Plan.

I am sending this for your review and specifically to receive any comments as well as address any potential conjunctive water use issues.

We will receive Public comment until March 12, 2018.

The Board of Directors will meet March 13, 2018 to review public comment and possibly adopt the revised management Plan.

Any comments or concerns are welcome.

Appendices are not included to keep the file size as small as possible. If you need them I can send them separately or send the entire document by regular mail.

Regards Dale

Dale Hallmark, P.G.

Assistant General Manager / Hydrologist <u>dhallmark@northplainsgcd.org</u> 806-935-6401

Website: http://www.northplainsgcd.org/

COMPLETE THIS SECTION ON DELIVERY SENDER: COMPLETE THIS SECTION A. Signature Complete items 1, 2, and 3. C Agent Print your name and address on the reverse X Address so that we can return the card to you. B/ C. Date of Delive ceived by (Printed Name) Attach this card to the back of the mailpiece, or on the front if space permits. D. Is delivery address different from item 1? Ses If YES, enter delivery address below: No 1. Article Addressed to: Palo Duro River Huthority P.O. Box 99 pearman TX 79081 3. Service Type Priority Mail Express®
 Registered Mail[™] Adult Signature
 Adult Signature Restricted Delivery
 Certified Mail®
 Certified Mail Restricted Delivery Registered Mail Restric Delivery
 Return Receipt for Merchandise 9590 9402 2664 6336 8717 14 Collect on Delivery Signature Confirmation 2. Article Number (Transfer from service tabel) 7016 1970 0000 8070 9579 il Restricted Delivery **Restricted Delivery** PS Form 3811, July 2015 PSN 7530-02-000-9053 Domestic Return Recei

XVI. Appendix E: Management Plan Required Data Report for the District

Estimated Historical Groundwater Use And 2017 State Water Plan Datasets:

North Plains Groundwater Conservation District

by Stephen Allen

Texas Water Development Board

Groundwater Division

Groundwater Technical Assistance Section

stephen.allen@twdb.texas.gov

(512) 463-7317

October 25, 2017

GROUNDWATER MANAGEMENT PLAN DATA:

This package of water data reports (part 1 of a 2-part package of information) is being provided to groundwater conservation districts to help them meet the requirements for approval of their five-year groundwater management plan. Each report in the package addresses a specific numbered requirement in the Texas Water Development Board's groundwater management plan checklist. The checklist can be viewed and downloaded from this web address:

http://www.twdb.texas.gov/groundwater/docs/GCD/GMPChecklist0113.pdf

The five reports included in this part are:

1. Estimated Historical Groundwater Use (checklist item 2)

from the TWDB Historical Water Use Survey (WUS)

2. Projected Surface Water Supplies (checklist item 6)

- 3. Projected Water Demands (checklist item 7)
- 4. Projected Water Supply Needs (checklist item 8)
- 5. Projected Water Management Strategies (checklist item 9)

from the 2017 Texas State Water Plan (SWP)

Part 2 of the 2-part package is the groundwater availability model (GAM) report for the District (checklist items 3 through 5). The District should have received, or will receive, this report from the Groundwater Availability Modeling Section. Questions about the GAM can be directed to Dr. Shirley Wade, shirley.wade@twdb.texas.gov, (512) 936-0883.

DISCLAIMER:

The data presented in this report represents the most up-to-date WUS and 2017 SWP data available as of 10/25/2017. Although it does not happen frequently, either of these datasets are subject to change pending the availability of more accurate WUS data or an amendment to the 2017 SWP. District personnel must review these datasets and correct any discrepancies in order to ensure approval of their groundwater management plan.

The WUS dataset can be verified at this web address:

http://www.twdb.texas.gov/waterplanning/waterusesurvey/estimates/

The 2017 SWP dataset can be verified by contacting Sabrina Anderson (sabrina.anderson@twdb.texas.gov or 512-936-0886).

The values presented in the data tables of this report are county-based. In cases where groundwater conservation districts cover only a portion of one or more counties the data values are modified with an apportioning multiplier to create new values that more accurately represent conditions within district boundaries. The multiplier used in the following formula is a land area ratio: (data value * (land area of district in county / land area of county)). For two of the four SWP tables (Projected Surface Water Supplies and Projected Water Demands) only the county-wide water user group (WUG) data values (county other, manufacturing, steam electric power, irrigation, mining and livestock) are modified using the multiplier. WUG values for municipalities, water supply corporations, and utility districts are not apportioned; instead, their full values are retained when they are located within the district, and eliminated when they are located outside (we ask each district to identify these entity locations).

The remaining SWP tables (Projected Water Supply Needs and Projected Water Management Strategies) are not modified because district-specific values are not statutorily required. Each district needs only "consider" the county values in these tables.

In the WUS table every category of water use (including municipal) is apportioned. Staff determined that breaking down the annual municipal values into individual WUGs was too complex.

TWDB recognizes that the apportioning formula used is not perfect but it is the best available process with respect to time and staffing constraints. If a district believes it has data that is more accurate it can add those data to the plan with an explanation of how the data were derived. Apportioning percentages that the TWDB used are listed above each applicable table.

For additional questions regarding this data, please contact Stephen Allen (stephen.allen@twdb.texas.gov or 512-463-7317) or Rima Petrossian (rima.petrossian@twdb.texas.gov or 512-936-2420).

Estimated Historical Water Use

TWDB Historical Water Use Survey (WUS) Data

Groundwater and surface water historical use estimates are currently unavailable for calendar year 2016. TWDB staff anticipates the calculation and posting of these estimates at a later date.

100% (multiplier) All values are in acre-feet

Year	Source	Municipal	Manufacturing	Mining	Steam Electric	Irrigation	Livestock	Total
2015	GW	1,592	50	0	0	290,509	6,083	298,234
	SW	0	0	0	0	185	1,521	1,706
2014	GW	1,571	60	0	0	381,546	5,952	389,129
	SW	C	0	0	0	185	1,488	1,673
2013	GW	1,725	60	0	0	391,795	5,605	399,185
	SW	C	0	0	0	185	1,401	1,586
2012	GW	1,865	60	0	0	495,720	5,800	503,445
	SW	0	0	0	0	185	1,450	1,635
2011	GW	1,929	60	0	0	492,524	2,807	497,320
	SW	0	0	0	0	185	702	887
2010	GW	1,641	60	0	0	363,654	2,410	367,765
	SW	C	0	0	0	185	603	788
2009	GW	1,597	6	0	0	419,927	5,590	427,120
	SW	C	0	0	0	185	1,398	1,583
2008	GW	1,817	6	0	0	407,938	7,382	417,143
	SW	C	0	0	0	185	1,707	1,892
2007	GW	1,649	9	0	0	366,071	8,908	376,637
	SW	C	0	0	0	191	2,074	2,265
2006	GW	1,572	9	0	0	346,414	8,538	356,533
	SW	C		0	0	191	1,974	2,165
2005	GW	1,461	9	0	0	405,495	6,923	413,888
	SW	C		0	0	191	1,599	1,790

DALLAM COUNTY

North Plains Groundwater Conservation District 67

2004	GW	1,434	9	0	0	402,698	7,147	411,288
	SW	0	0	0	0	191	1,660	1,851
2003	GW	1,595	9	0	0	391,440	3,697	396,741
	SW	0	0	0	0	0	775	775
2002	GW	1,802	1	0	0	503,761	3,424	508,988
	SW	0	0	0	0	0	687	687
2001	GW	1,876	1	0	0	410,472	3,705	416,054
	SW	0	0	0	0	0	765	765
2000	GW	1,869	0	0	0	458,870	3,575	464,314
	SW	0	0	0	0	0	741	741

100% (multiplier) All values are in acre-feet

_	Year	Source	Municipal	Manufacturing	Mining	Steam Electric	Irrigation	Livestock	Total
	2015	GW	1,127	328	3	0	146,249	3,426	151,133
		SW	0	0	1	0	0	1,468	1,469
	2014	GW	1,156	285	11	0	211,451	3,314	216,217
		SW	0	0	3	0	0	1,420	1,423
	2013	GW	1,257	204	8	0	198,601	3,241	203,311
		SW	0	0	2	0	132	1,389	1,523
-	2012	GW	1,230	232	17	0	218,645	3,630	223,754
		SW	0		2	0	134	1,556	1,692
-	2011	GW	1,092	231	35	0	233,576	3,270	238,204
	2011	SW	0		6	0	129	1,402	1,537
-	2010								
	2010	GW	1,090		113	0		2,631	132,440
		SW	0	0	19	0	170	1,128	1,317
	2009	GW	1,006	232	67	0	152,554	3,043	156,902
		SW	0	0	11	0	132	1,304	1,447
	2008	GW	1,084	369	21	0	140,900	4,835	147,209
		SW	0	0	4	0	1,940	1,376	3,320
	2007	GW	990	387	0	0	106,015	4,249	111,641
		SW	0	0	0	0	62	1,456	1,518
-	2006	GW	1,372	438	0	0	134,030	5,759	141,599
	2000								
-		SW	0	0	0	0	143	2,181	2,324
	2005	GW	1,171	454	0	0	214,532	4,241	220,398
		SW	0	0	0	0	127	1,547	1,674

69 North Plains Groundwater Conservation District

HANSFORD COUNTY

2004	GW	1,162	413	0	0	231,027	2,214	234,816
	SW	0	0	0	0	0	2,709	2,709
2003	GW	1,191	166	0	0	218,724	2,122	222,203
	SW	0	0	0	0	116	2,569	2,685
2002	GW	1,271	206	0	0	219,969	2,122	223,568
	SW	0	0	0	0	0	2,486	2,486
2001	GW	1,247	190	0	0	165,564	2,086	169,087
	SW	0	0	0	0	0	2,507	2,507
2000	GW	1,305	187	0	0	216,288	2,103	219,883
	SW	0	0	0	0	0	2,464	2,464

83.56% (multiplier) All values are in acre-feet

Year	Source	Municipal Mar	ufacturing	Mining	Steam Electric	Irrigation	Livestock	Total
2015	GW	957	0	2	0	276,676	4,545	282,180
	SW	0	0	0	0	0	1,948	1,948
2014	GW	1,012	0	55	0	341,427	4,518	347,012
	SW	0	0	14	0	0	1,936	1,950
2013	GW	1,100	0	0	0	379,326	4,192	384,618
	SW	0	0	0	0	0	1,797	1,797
2012	GW	1,186	0	8	0	383,596	4,257	389,047
	SW	0	0	2	0	0	1,824	1,826
2011	GW	1,272	0	3	0	405,919	3,926	411,120
	SW	0	0	0	0	0	1,682	1,682
2010	GW	958	0	2	0	284,567	3,380	288,907
	SW	0	0	0	0	0	1,448	1,448
2009	GW	903	0	2	0	320,110	3,870	324,885
	SW	0	0	0	0	0	1,659	1,659
2008	GW	1,034	0	2	0	304,726	4,928	310,690
	SW	0	0	1	0	0	1,747	1,748
2007	GW	999	0	0	0	270,322	4,242	275,563
	SW	0	0	0	0	0	1,453	1,453
2006	GW	1,028	0	0	0	256,746	6,040	263,814
	SW	0	0	0	0	0	2,224	2,224
2005	GW	983	0	0	0	318,898	3,963	323,844
	SW	0	0	0	0	0	1,334	1,334

HARTLEY COUNTY

2004	GW	1,012	0	0	0	338,582	3,108	342,702
	SW	0	0	0	0	0	1,975	1,975
2003	GW	1,124	0	0	0	342,288	2,883	346,295
	SW	0	0	0	0	0	1,749	1,749
2002	GW	1,212	0	0	0	326,836	2,623	330,671
	SW	0	0	0	0	0	1,489	1,489
2001	GW	1,263	0	0	0	244,629	2,361	248,253
	SW	0	0	0	0	0	1,424	1,424
2000	GW	1,310	0	0	0	299,290	2,133	302,733
	SW	0	0	0	0	0	1,422	1,422

HUTCHINSON COUNTY

30.53% (multiplier) All values are in acre-feet

Year	Source	Municipal	Manufacturing	Mining	Steam Electric	Irrigation	Livestock	Total
2015	GW	1,550	4,692	27	0	15,121	83	21,473
	SW	30	0	0	0	588	28	646
2014	GW	1,543	4,848	26	0	19,670	82	26,169
	SW	C	0	0	0	0	27	27
2013	GW	922	4,595	26	0	21,115	82	26,740
	SW	345	0	0	0	84	27	456
2012	GW	1,052	4,923	29	0	21,925	102	28,031
	SW	282	0	0	0	84	34	400
2011	GW	1,737	5,184	32	0	22,517	126	29,596
	SW	37	104	2	0	0	42	185
2010	GW	1,345	8,353	40	0	12,242	112	22,092
	SW	365	278	6	0	84	38	771
2009	GW	1,100	8,929	41	0	16,236	149	26,455
	SW	63	0	6	0	0	49	118
2008	GW	1,353	7,953	42	0	15,395	151	24,894
	SW	99	588	33	0	588	50	1,358
2007	GW	990	7,702	26	0	10,531	118	19,367
	SW	79	822	26	0	84	39	1,050
2006	GW	994	7,973	26	0	12,493	173	21,659
	SW	95	167	26	0	84	58	430
2005	GW	728	7,401	26	0	12,681	146	20,982
	SW	92	1,088	0	0	84	49	1,313

2004	GW	905	7,952	26	0	11,700	22	20,605
	SW	136	790	26	0	84	198	1,234
2003	GW	1,101	7,688	0	0	11,106	16	19,911
	SW	361	540	0	0	84	146	1,131
2002	GW	996	7,585	10	0	14,716	16	23,323
	SW	251	789	0	0	0	144	1,184
2001	GW	1,168	8,123	7	0	12,218	14	21,530
	SW	322	757	0	0	0	122	1,201
2000	GW	961	9,189	10	0	17,941	17	28,118
	SW	291	829	0	0	0	151	1,271

100% (multiplier) All values are in acre-feet

Total	Livestock	Irrigation	Steam Electric	Mining	Manufacturing	Municipal	Source	Year
36,742	588	35,113	0	107	292	642	GW	2015
92	65	0	0	27	0	0	SW	
45,430	576	43,894	0	269	258	433	GW	2014
131	64	0	0	67	0	0	SW	
43,352	575	41,723	0	189	244	621	GW	2013
111	64	0	0	47	0	0	SW	
57,560	717	55,287	0	302	244	1,010	GW	2012
117	80	0	0	37	0	0	SW	
53,644	826	51,358	0	292	242	926	GW	2011
211	92	0	0	119	0	0	SW	
33,125	716	31,415	0	130	193	671	GW	2010
133	80	0	0	53	0	0	SW	
31,532	774	29,915	0	144	171	528	GW	2009
145	86	0	0	59	0	0	SW	
32,728	782	30,974	0	159	187	626	GW	2008
152	87	0	0	65	0	0	SW	
33,844	719	32,319	0	0	143	663	GW	2007
100	80	20	0	0	0	0	SW	
29,447	647	28,020	0	0	102	678	GW	2006
72	72	0	0	0	0	0	SW	
28,770	780	27,263	0	0	102	625	GW	2005
87	87	0	0	0	0	0	SW	

LIPSCOMB COUNTY

2004	GW	651	159	0	0	23,440	90	24,340
	SW	0	0	0	0	0	809	809
2003	GW	654	159	0	0	20,688	93	21,594
	SW	0	0	0	0	0	839	839
2002	GW	523	159	0	0	21,422	83	22,187
	SW	0	0	0	0	0	751	751
2001	GW	430	140	0	0	27,971	68	28,609
	SW	0	0	0	0	0	619	619
2000	GW	911	76	0	0	36,005	73	37,065
	SW	0	0	0	0	0	657	657

76.51% (multiplier) All values are in acre-feet

Year	Source	Municipal	Manufacturing	Mining	Steam Electric	Irrigation	Livestock	Total
2015	GW	2,778	6,692	6	1,303	114,822	2,212	127,813
	SW	0	0	2	0	0	390	392
2014	GW	3,065	6,731	6	1,896	158,960	2,182	172,840
	SW	0	0	2	0	0	385	387
2013	GW	3,404	6,623	0	2,606	170,581	2,098	185,312
	SW	0	0	0	0	0	370	370
2012	GW	3,477	6,842	2	3,016	179,790	2,376	195,503
	SW	0	0	0	0	0	419	419
2011	GW	3,898	6,135	50	2,389	204,633	1,815	218,920
	SW	0	0	8	0	0	320	328
2010	GW	2,785	5,544	10	1,834	124,401	1,550	136,124
	SW	0	0	2	0	0	274	276
2009	GW	3,314	5,704	12	2,096	150,351	2,178	163,655
	SW	0	0	2	0	0	384	386
2008	GW	3,122	5,623	39	2,086	143,173	2,401	156,444
	SW	0	0	2	0	620	424	1,046
2007	GW	3,185	5,532	18	2,632	191,572	1,969	204,908
	SW	0		0	0	0	347	347
2006	GW	3,706	6,489			139,103	3.611	153.011
	SW	0,100		0	0	0	637	637
2005	GW	3,368	6,563	9	109	222,704	2,005	234,758
2003	SW	0		0	0	0	353	353

North Plains Groundwater Conservation District 77

MOORE COUNTY

2004	GW	3,266	5,240	7	83	224,076	1,924	234,596
	SW	0	0	0	0	0	480	480
2003	GW	3,810	5,376	13	416	223,549	2,829	235,993
	SW	0	0	0	0	0	707	707
2002	GW	3,786	5,538	21	177	245,225	2,914	257,661
	SW	0	0	0	0	0	728	728
2001	GW	3,353	5,744	22	75	197,107	2,956	209,257
	SW	0	0	0	0	0	738	738
2000	GW	3,887	5,318	20	303	223,118	3,001	235,647
	SW	0	0	0	0	0	751	751

100% (multiplier) All values are in acre-feet

Year	Source	Municipal	Manufacturing	Mining	Steam Electric	Irrigation	Livestock	Total
2015	GW	2,176	30	155	0	75,302	2,399	80,062
	SW	0	0	39	0	0	267	306
2014	GW	2,542	30	326	0	92,205	2,306	97,409
	SW	0	0	81	0	0	256	337
2013	GW	2,635	7	304	0	92,597	2,183	97,726
	SW	0	0	76	0	0	243	319
2012	GW	2,972	35	241	0	109,415	2,472	115,135
	SW	0	0	29	0	0	275	304
2011	GW	2,991	36	221	0	109,671	1,481	114,400
	SW	0	0	87	0	0	165	252
2010	GW	2,262	28	96	0	60,484	1,300	64,170
	SW	0	0	38	0	0	144	182
2009	GW	2,090	5	130	0	66,859	2,102	71,186
	SW	0	0	36	0	0	234	270
2008	GW	1,826	3	97	0	75,402	2,450	79,778
	SW	0	0	34	0	0	272	306
2007	GW	2,018	0	48	0	51,134	2,365	55,565
	SW	0	0	0	0	0	263	263
2006	GW	2,204	0	49	0	66,539	3,158	71,950
	SW	0	0	0	0	0	351	351
2005	GW	2,185	0	52	0	88,256	2,450	92,943
	SW	0		0	0	0	272	272

OCHILTREE COUNTY

2004	GW	2,089	0	54	0	74,436	305	76,884
	SW	0	0	0	0	0	2,736	2,736
2003	GW	2,203	0	48	0	68,707	268	71,226
	SW	0	0	0	0	0	2,406	2,406
2002	GW	2,309	0	47	0	81,896	276	84,528
	SW	0	0	0	0	0	2,473	2,473
2001	GW	1,933	0	46	0	65,523	264	67,766
	SW	0	0	0	0	0	2,366	2,366
2000	GW	2,241	0	42	0	97,939	278	100,500
	SW	0	0	0	0	0	2,506	2,506

100% (multiplier) All values are in acre-feet

Year	Source	Municipal	Manufacturing	Mining	Steam Electric	Irrigation	Livestock	Total
2015	GW	537	1	2	0	246,920	4,874	252,334
	SW	0	0	1	0	0	542	543
2014	GW	622	2	0	0	336,265	4,712	341,601
	SW	0	0	0	0	0	524	524
2013	GW	524	2	2	0	344,067	4,410	349,005
	SW	0	0	0	0	0	490	490
2012	GW	658	2	1	0	347,939	4,840	353,440
	SW	0	0	0	0	0	538	538
2011	GW	687	2	16	0	396,637	2,274	399,616
	SW	0	0	2	0	0	253	255
2010	GW	630	2	32	0	236,631	1,947	239,242
	SW	0	0	4	0	0	216	220
2009	GW	638	3	34	0	282,660	4,853	288,188
	SW	0	0	4	0	0	539	543
2008	GW	581	2	37	0	274,019	6,488	281,127
	SW	0	0	4	0	0	721	725
2007	GW	699	2	0	0	222,185	7,217	230,103
	SW	0	0	0	0	0	802	802
2006	GW	651	2	0	0	259,255	7,896	267,804
	SW	0		0	0	0	877	877
2005	GW	641	2	0		358,343	6,507	365,493
2000	SW	041		0	0	0	723	723

SHERMAN COUNTY

2004	GW	742	2	0	0	386,966	5,980	393,690
	SW	0	0	0	0	0	1,496	1,496
2003	GW	780	2	0	0	357,560	2,812	361,154
	SW	0	0	0	0	0	703	703
2002	GW	774	2	0	0	404,395	2,793	407,964
	SW	0	0	0	0	0	699	699
2001	GW	784	5	0	0	336,219	2,752	339,760
	SW	0	0	0	0	0	688	688
2000	GW	795	2	0	0	393,710	2,797	397,304
	SW	0	0	0	0	0	699	699

Projected Surface Water Supplies TWDB 2017 State Water Plan Data

DALLAM COUNTY			100% (multiplier)			All values are in acre-feet			
RWPG	WUG	WUG Basin	Source Name	2020	2030	2040	2050	2060	2070
A	LIVESTOCK, DALLAM	CANADIAN	CANADIAN LIVESTOCK LOCAL SUPPLY	2,488	2,488	2,488	2,488	2,488	2,488
s	Sum of Projected Surface Water Supplies (acre-feet)			2,488	2,488	2,488	2,488	2,488	2,488

HAN	SFORD COUN	ТҮ	100% (multiplier)			All values are in acre-feet			
RWPG	WUG	WUG Basin	Source Name	2020	2030	2040	2050	2060	2070
A	IRRIGATION, HANSFORD	CANADIAN	CANADIAN RUN- OF-RIVER	22	22	22	22	22	22
A	LIVESTOCK, HANSFORD	CANADIAN	CANADIAN LIVESTOCK LOCAL SUPPLY	2,617	2,617	2,617	2,617	2,617	2,617
s	oum of Projected Sur	face Water Su	pplies (acre-feet)	2,639	2,639	2,639	2,639	2,639	2,639

HAR	TLEY COUNTY		83.56% (multiplier)			All values are in acre-feet			
RWPG	WUG	WUG Basin	Source Name	2020	2030	2040	2050	2060	2070
A	LIVESTOCK, HARTLEY	CANADIAN	CANADIAN LIVESTOCK LOCAL SUPPLY	2,668	2,668	2,668	2,668	2,668	2,668
s	Sum of Projected Surf	ace Water Su	pplies (acre-feet)	2,668	2,668	2,668	2,668	2,668	2,668

HUT	CHINSON CO	UNTY	30.53% (I	multiplie	er)	All va	All values are in acre-fe		
RWPG	WUG	WUG Basin	Source Name	2020	2030	2040	2050	2060	2070
A	IRRIGATION, HUTCHINSON	CANADIAN	CANADIAN RUN- OF-RIVER	29	29	29	29	29	29

A	LIVESTOCK, HUTCHINSON	CANADIAN	CANADIAN LIVESTOCK LOCAL SUPPLY	86	86	86	86	86	86
A	MANUFACTURING, HUTCHINSON	CANADIAN	CANADIAN RUN- OF-RIVER	1	1	1	1	1	1
	Sum of Projected Su	rface Water Su	upplies (acre-feet)	116	116	116	116	116	116

LIPS	COMB COU	100% (multiplier)			All values are in acre-feet				
RWPG	WUG	WUG Basin	Source Name	2020	2030	2040	2050	2060	2070
A	IRRIGATION, LIPSCOMB	CANADIAN	CANADIAN RUN- OF-RIVER	66	66	66	66	66	66
A	LIVESTOCK, LIPSCOMB	CANADIAN	CANADIAN LIVESTOCK LOCAL SUPPLY	110	110	110	110	110	110
s	um of Projected S	Surface Water Su	pplies (acre-feet)	176	176	176	176	176	176

MOO	RE COUNTY		76.51% (multiplier)			All values are in acre-feet			
RWPG	WUG	WUG Basin	Source Name	2020	2030	2040	2050	2060	2070
A	IRRIGATION, MOORE	CANADIAN	CANADIAN RUN- OF-RIVER	5	5	5	5	5	5
A	LIVESTOCK, MOORE	CANADIAN	CANADIAN LIVESTOCK LOCAL SUPPLY	765	765	765	765	765	765
s	um of Projected Surf	ace Water Su	pplies (acre-feet)	770	770	770	770	770	770

ОСН	ILTREE COU	100% (multiplier)			All values are in acre-feet				
RWPG	WUG	WUG Basin	Source Name	2020	2030	2040	2050	2060	2070
A	LIVESTOCK, OCHILTREE	CANADIAN	CANADIAN LIVESTOCK LOCAL SUPPLY	421	421	421	421	421	421
S	Sum of Projected S	urface Water Su	pplies (acre-feet)	421	421	421	421	421	421

SHERMAN COUNTY

100% (multiplier) All values are in acre-feet

RWPG	WUG	WUG Basin	Source Name	2020	2030	2040	2050	2060	2070
A	IRRIGATION, SHERMAN	CANADIAN	CANADIAN RUN- OF-RIVER	32	32	32	32	32	32
A	LIVESTOCK, SHERMAN	CANADIAN	CANADIAN LIVESTOCK LOCAL SUPPLY	1,052	1,052	1,052	1,052	1,052	1,052
s	um of Projected S	Surface Water Su	pplies (acre-feet)	1,084	1,084	1,084	1,084	1,084	1,084

Projected Water Demands TWDB 2017 State Water Plan Data

Please note that the demand numbers presented here include the plumbing code savings found in the Regional and State Water Plans.

DALL	AM COUNTY	100% (m	ultiplier)		All	All values are in acre-fee			
RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070	
А	COUNTY-OTHER, DALLAM	CANADIAN	141	151	166	183	199	214	
A	DALHART	CANADIAN	1,815	2,014	2,228	2,447	2,666	2,878	
А	IRRIGATION, DALLAM	CANADIAN	369,864	347,524	318,795	283,373	247,952	212,530	
А	LIVESTOCK, DALLAM	CANADIAN	4,437	4,669	4,920	5,191	5,485	5,803	
A	MANUFACTURING, DALLAM	CANADIAN	9	9	10	10	11	11	
А	TEXLINE	CANADIAN	227	253	280	308	335	362	
	Sum of Draigated Water	· Domanda (aara faat)	276 402	254 420	226 200	201 512	254 440	221 700	

Sum of Projected Water Demands (acre-feet) 376,493 354,620 326,399 291,512 256,648 221,798

100% (multiplier) HANSFORD COUNTY All values are in acre-feet RWPG WUG WUG Basin 2020 2030 2040 2050 2060 2070 А COUNTY-OTHER. CANADIAN 138 145 157 167 176 186 HANSFORD GRUVER CANADIAN А 310 336 360 380 404 425 А IRRIGATION, HANSFORD CANADIAN 134,902 126,481 115,759 102,897 90,035 77,173 3,574 А LIVESTOCK, HANSFORD CANADIAN 3,432 3,724 3,881 4,046 4,219 MANUFACTURING, 74 А CANADIAN 58 65 70 61 63 HANSFORD А MINING, HANSFORD CANADIAN 577 904 602 309 16 1 691 704 А SPEARMAN CANADIAN 672 683 724 746

86

Sum of Projected Water Demands (acre-feet) 140,089 132,184 121,356 108,403 95,471 82,824

HAR	TLEY COUNTY	83.56% (multiplier)			All	All values are in acre-fee			
RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070	
A	COUNTY-OTHER, HARTLEY	CANADIAN	547	574	585	594	606	616	
A	DALHART	CANADIAN	854	874	882	889	899	907	
A	IRRIGATION, HARTLEY	CANADIAN	288,587	272,307	250,922	223,042	195,162	167,281	
A	LIVESTOCK, HARTLEY	CANADIAN	5,430	5,830	6,265	6,740	7,256	7,820	
A	MANUFACTURING, HARTLEY	CANADIAN	4	4	4	4	4	4	
А	MINING, HARTLEY	CANADIAN	6	6	5	4	3	3	

Sum of Projected Water Demands (acre-feet) 295,428 279,595 258,663 231,273 203,930 176,631

HUTCHINSON COUNTY

30.53% (multiplier) All values are in acre-feet

RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
A	BORGER	CANADIAN	3,215	3,254	3,234	3,229	3,225	3,224
A	COUNTY-OTHER, HUTCHINSON	CANADIAN	95	97	98	98	98	97
A	FRITCH	CANADIAN	437	441	436	434	433	433
A	IRRIGATION, HUTCHINSON	CANADIAN	12,214	11,501	10,574	9,399	8,224	7,049
A	LIVESTOCK, HUTCHINSON	CANADIAN	259	267	276	285	296	308
A	MANUFACTURING, HUTCHINSON	CANADIAN	7,738	8,190	8,624	9,001	9,629	10,301
A	MINING, HUTCHINSON	CANADIAN	56	71	52	34	17	10
A	STINNETT	CANADIAN	446	452	448	447	446	446
А	TCW SUPPLY INC	CANADIAN	738	755	754	750	749	749
	Sum of Projected Wate	er Demands (acre-feet)	25,198	25,028	24,496	23,677	23,117	22,617

LIPSCOMB COUNTY 100% (multiplier)

All values are in acre-feet

RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
A	BOOKER	CANADIAN	496	547	576	618	648	674
A	COUNTY-OTHER, LIPSCOMB	CANADIAN	445	448	447	453	459	464
A	IRRIGATION, LIPSCOMB	CANADIAN	20,009	19,014	17,650	15,689	13,728	11,767
A	LIVESTOCK, LIPSCOMB	CANADIAN	947	969	993	1,020	1,050	1,083
A	MANUFACTURING, LIPSCOMB	CANADIAN	147	155	161	167	180	193
A	MINING, LIPSCOMB	CANADIAN	1,098	758	446	142	21	3
	Sum of Projected Wate	r Demands (acre-feet)	23,142	21,891	20,273	18,089	16,086	14,184

76.51% (multiplier) All values are in acre-feet MOORE COUNTY

RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
A	CACTUS	CANADIAN	985	1,108	1,242	1,382	1,532	1,686
A	COUNTY-OTHER, MOORE	CANADIAN	250	275	304	336	372	409
A	DUMAS	CANADIAN	3,538	3,941	4,388	4,866	5,391	5,933
A	FRITCH	CANADIAN	2	3	3	3	3	4
A	IRRIGATION, MOORE	CANADIAN	109,431	102,826	94,329	83,848	73,367	62,886
A	LIVESTOCK, MOORE	CANADIAN	2,813	2,988	3,179	3,385	3,608	3,850
A	MANUFACTURING, MOORE	CANADIAN	6,926	7,306	7,680	8,010	8,553	9,133
A	MINING, MOORE	CANADIAN	12	12	12	11	11	11
A	STEAM ELECTRIC POWER, MOORE	CANADIAN	153	0	0	0	0	0
А	SUNRAY	CANADIAN	504	562	626	695	770	847
	Sum of Projected Water	Demands (acre-feet)	124,614	119,021	111,763	102,536	93,607	84,759

OCHILTREE COUNTY	100% (muli	100% (multiplier)		All values are in acre-feet				
RWPG WUG	WUG Basin	2020	2030	2040	2050	2060	2070	

Δ		CANADIAN	220	240	240	270	200	220
A	COUNTY-OTHER, OCHILTREE	CANADIAN	239	248	260	278	298	320
Α	IRRIGATION, OCHILTREE	CANADIAN	57,243	53,825	49,414	43,923	38,433	32,942
Α	LIVESTOCK, OCHILTREE	CANADIAN	4,216	3,632	3,729	3,832	3,942	4,058
Α	MINING, OCHILTREE	CANADIAN	824	853	503	161	23	3
А	PERRYTON	CANADIAN	2,829	2,994	3,183	3,401	3,650	3,922
	Sum of Projected Water	Demands (acre-feet)	65,358	61,562	57,102	51,612	46,367	41,271

SHERMAN COUNTY 100% (multiplier) All values are in acre-feet

RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
A	COUNTY-OTHER, SHERMAN	CANADIAN	184	194	197	204	208	212
A	IRRIGATION, SHERMAN	CANADIAN	220,966	207,757	190,687	169,499	148,312	127,125
A	LIVESTOCK, SHERMAN	CANADIAN	3,449	3,631	3,825	4,034	4,257	4,497
A	MINING, SHERMAN	CANADIAN	35	207	151	98	44	20
А	STRATFORD	CANADIAN	470	498	510	524	536	546

Sum of Projected Water Demands (acre-feet) 225,104 212,287 195,370 174,359 153,357 132,400

Projected Water Supply Needs TWDB 2017 State Water Plan Data

Negative values (in red) reflect a projected water supply need, positive values a surplus.

DALLAM COUNTY

All values are in acre-feet

RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
A	COUNTY-OTHER, DALLAM	CANADIAN	0	0	0	0	0	0
A	DALHART	CANADIAN	-509	-794	-1,116	-1,454	-1,794	-2,134
A	IRRIGATION, DALLAM	CANADIAN	-79,399	-91,675	-94,226	-87,452	-77,836	-68,218
A	LIVESTOCK, DALLAM	CANADIAN	0	0	0	0	0	0
A	MANUFACTURING, DALLAM	CANADIAN	0	0	0	0	0	0
A	TEXLINE	CANADIAN	0	0	0	-46	-99	-161

Sum of Projected Water Supply Needs (acre-feet) -79,908 -92,469 -95,342 -88,952 -79,729 -70,513

HANSFORD COUNTY

All values are in acre-feet

RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
A	COUNTY-OTHER, HANSFORD	CANADIAN	62	55	43	33	24	14
A	GRUVER	CANADIAN	61		-111			-344
A	IRRIGATION, HANSFORD	CANADIAN	22	22	22	22	22	22
A	LIVESTOCK, HANSFORD	CANADIAN	0	0	0	0	0	0
A	MANUFACTURING, HANSFORD	CANADIAN	32	30	30	36	41	46
A	MINING, HANSFORD	CANADIAN	0	0	0	0	0	0
A	SPEARMAN	CANADIAN	0	0	0	-283	-466	-634

90

Sum of Projected Water Supply Needs (acre-feet)	0	0	-111	-479	-738	-978
Sum of Fregetted Water Supply Needs (doi o reet)	•	0			700	,,,,

HARTLEY COUNTY

All values are in acre-feet

RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
A	COUNTY-OTHER, HARTLEY	CANADIAN	0	0	0	0	0	0
A	DALHART	CANADIAN	-240	-344	-442	-528	-605	-673
A	IRRIGATION, HARTLEY	CANADIAN	-77,305	-93,368	-98,650	-92,699	-83,415	-74,130
A	LIVESTOCK, HARTLEY	CANADIAN	0	0	0	0	0	0
A	MANUFACTURING, HARTLEY	CANADIAN	0	0	0	0	0	0
A	MINING, HARTLEY	CANADIAN	0	0	0	0	0	0

Sum of Projected Water Supply Needs (acre-feet) -77,545 -93,712 -99,092 -93,227 -84,020 -74,803

HUTCHINSON COUNTY

All values are in acre-feet

RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
A	BORGER	CANADIAN	-92	-531	-952	-1,343	-1,647	-1,927
A	COUNTY-OTHER, HUTCHINSON	CANADIAN	143	129	120	113	106	102
A	FRITCH	CANADIAN	0	0	0	0	0	0
A	IRRIGATION, HUTCHINSON	CANADIAN	96	96	96	96	96	96
A	LIVESTOCK, HUTCHINSON	CANADIAN	0	0	0	0	0	0
A	MANUFACTURING, HUTCHINSON	CANADIAN	10	-860	-1,739	-2,614	-3,487	-4,416
A	MINING, HUTCHINSON	CANADIAN	0	0	0	0	0	0
A	STINNETT	CANADIAN	55	15	0	-115	-165	-216
А	TCW SUPPLY INC	CANADIAN	-75	-251	-375	-466	-535	-569
s	um of Projected Water Su	pply Needs (acre-feet)	-167	-1,642	-3,066	-4,538	-5,834	-7,128

LIPSCOMB COUNTY

RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
A	BOOKER	CANADIAN	0	0	-77	-257	-348	-434
A	COUNTY-OTHER, LIPSCOMB	CANADIAN	28	25	26	20	14	9
A	IRRIGATION, LIPSCOMB	CANADIAN	66	66	66	66	66	66
A	LIVESTOCK, LIPSCOMB	CANADIAN	0	0	0	0	0	0
A	MANUFACTURING, LIPSCOMB	CANADIAN	0	0	-21	-69	-97	-124
А	MINING, LIPSCOMB	CANADIAN	0	0	0	0	0	0
S	um of Projected Water S	upply Needs (acre-feet)	0	0	-98	-326	-445	-558

MOORE COUNTY

All values are in acre-feet

RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
A	CACTUS	CANADIAN	-583	-777	-974	-1,170	-1,347	-1,530
A	COUNTY-OTHER, MOORE	CANADIAN	35	16	2	-13	-21	-30
A	DUMAS	CANADIAN	-290	-1,021	-1,785	-2,679	-3,550	-4,437
A	FRITCH	CANADIAN	3	2	2	2	2	1
A	IRRIGATION, MOORE	CANADIAN	7	7	7	7	-3,882	-6,171
A	LIVESTOCK, MOORE	CANADIAN	0	0	0	0	0	0
A	MANUFACTURING, MOORE	CANADIAN	-1,877	-2,346	-2,754	-4,445	-6,147	-7,746
A	MINING, MOORE	CANADIAN	0	0	0	0	0	0
A	STEAM ELECTRIC POWER, MOORE	CANADIAN	0	0	0	0	0	0
А	SUNRAY	CANADIAN	105	-232	-501	-633	-752	-847
S	um of Projected Water Su	pply Needs (acre-feet)	-2,750	-4,376	-6,014	-8,940	-15,699	-20,761

OCHILTREE COUNTY

RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
А	BOOKER	CANADIAN	0	0	-2	-7	-11	-17
A	COUNTY-OTHER, OCHILTREE	CANADIAN	24	25	26	28	30	32

А	IRRIGATION, OCHILTREE	CANADIAN	0	0	0	0	0	0
A	LIVESTOCK, OCHILTREE	CANADIAN	0	0	0	0	0	0
A	MINING, OCHILTREE	CANADIAN	0	0	0	0	0	0
A	PERRYTON	CANADIAN	-478	-963	-1,438	-1,877	-2,341	-2,786
	Sum of Projected Water Su	upply Needs (acre-feet)	-478	-963	-1,440	-1,884	-2,352	-2,803

SHERMAN COUNTY

RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
A	COUNTY-OTHER, SHERMAN	CANADIAN	0	0	0	0	0	0
A	IRRIGATION, SHERMAN	CANADIAN	32	32	32	32	32	32
A	LIVESTOCK, SHERMAN	CANADIAN	0	0	0	0	0	0
A	MINING, SHERMAN	CANADIAN	0	0	0	0	0	0
A	STRATFORD	CANADIAN	781	753	741	583	384	187
S	um of Projected Water S	upply Needs (acre-feet)	0	0	0	0	0	0

Projected Water Management Strategies TWDB 2017 State Water Plan Data

DALLAM COUNTY

WUG, Basin (RV	/PG)				All	values	are in a	cre-feet
Water Strategy	Management	Source Name [Origin]	2020	2030	2040	2050	2060	2070
DALHART, CANA	IDIAN (A)							
DEVELOP OO SUPPLIES - E	GALLALA AQUIFER DALHART	OGALLALA-RITA BLANCA AQUIFER [HARTLEY]	1,836	1,883	1,934	1,980	2,019	2,053
MUNICIPAL DALHART	CONSERVATION -	DEMAND REDUCTION [DALLAM]	54	60	67	73	80	86
			1,890	1,943	2,001	2,053	2,099	2,139
IRRIGATION, D	ALLAM, CANADIA	AN (A)						
IRRIGATION DALLAM COL		DEMAND REDUCTION [DALLAM]	34,218	61,174	106,343	121,011	132,167	140,612
			34,218	61,174	106,343	121,011	132,167	140,612
TEXLINE, CANAI	DIAN (A)							
DEVELOP OC SUPPLIES - 1	Gallala aquifer Exline	OGALLALA-RITA BLANCA AQUIFER [DALLAM]	0	0	0	150	150	150
MUNICIPAL TEXLINE	CONSERVATION -	DEMAND REDUCTION [DALLAM]	7	7	8	9	9	10
WATER AU REPAIR - TEX		DEMAND REDUCTION [DALLAM]	11	13	14	15	17	18
			18	20	22	174	176	178
Sum of Pro	ojected Water Ma	anagement Strategies (acre-feet)	36,126	63,137	108,366	123,238	134,442	142,929

HANSFORD COUNTY

WUG, Basin (RWPG)

All values are in acre-feet

Water Strategy	Management	Source Name [Origin]	2020	2030	2040	2050	2060	2070
RUVER, CANA	DIAN (A)							
DEVELOP O SUPPLIES -	gallala aquifer gruver	OGALLALA AQUIFER [HANSFORD]	0	0	350	350	350	350
MUNICIPAL GRUVER	CONSERVATION -	DEMAND REDUCTION [HANSFORD]	10	11	11	13	14	14
WATER AL REPAIR - GF		DEMAND REDUCTION [HANSFORD]	13	14	15	15	16	17
			23	25	376	378	380	381
IRRIGATION HANSFORD		DEMAND REDUCTION [HANSFORD]	9,447	17,175	31,242	34,401	36,373	37,260
EARMAN, CA	NADIAN (A)		9,447	17,175	31,242	34,401	36,373	37,260
DEVELOP O SUPPLIES -	gallala aquifer Spearman	OGALLALA AQUIFER [HANSFORD]	0	0	0	650	650	650
MUNICIPAL SPEARMAN	CONSERVATION -	DEMAND REDUCTION [HANSFORD]	24	24	25	25	26	27
			24	24	25	675	676	677
Sum of Pr	ojected Water Ma	nagement Strategies (acre-feet)	9,494	17,224	31,643	35,454	37,429	38,318

HARTLEY COUNTY

UG, Basin (RW	/PG)					All ۷	/alues a	re in acr	e-feet
Water Strategy	Management	Source [Origin]	Name	2020	2030	2040	2050	2060	2070
ALHART, CANA	DIAN (A)								
DEVELOP OG SUPPLIES - D	GALLALA AQUIFER	OGALLALA-R BLANCA	TA AQUIFER	864	817	766	720	681	647

MUNICIPAL CONSERVATION - DEMAND REDUCTION DALHART [HARTLEY]	25	26	26	27	27	27
	889	843	792	747	708	674
IRRIGATION, HARTLEY, CANADIAN (A)						
IRRIGATION CONSERVATION - DEMAND REDUCTION HARTLEY COUNTY [HARTLEY]	29,197	52,161	90,476	103,095	113,047	120,509
	29,197	52,161	90,476	103,095	113,047	120,509
Sum of Projected Water Management Strategies (acre-feet)	30,086	53,004	91,268	103,842	113,755	121,183

HUTCHINSON COUNTY

G, Basin (RW	/PG)				All	values a	re in ac	re-fee
Water Strategy	Management	Source Name [Origin]	2020	2030	2040	2050	2060	2070
RGER, CANAI	DIAN (A)							
CONJUNCTIV	/e use - Crmwa	MEREDITH LAKE/RESERVOIR [RESERVOIR]	702	652	620	582	581	58 ⁻
DEVELOP N (OGALLALA BORGER	EW WELL FIELD AQUIFER) -	OGALLALA AQUIFER [HUTCHINSON]	6,000	5,140	4,261	3,386	2,513	1,584
EXPAND CAP	ACITY CRMWA II	OGALLALA AQUIFER [ROBERTS]	0	3,128	2,974	2,793	2,790	2,787
MUNICIPAL BORGER	CONSERVATION -	DEMAND REDUCTION [HUTCHINSON]	104	107	106	106	106	106
REPLACE WE CRMWA I	ELL CAPACITY FOR	OGALLALA AQUIFER [ROBERTS]	0	586	805	1,106	1,337	1,620
			6,806	9,613	8,766	7,973	7,327	6,684
TCH, CANAD	IAN (A)							
MUNICIPAL FRITCH	CONSERVATION -	DEMAND REDUCTION [HUTCHINSON]	14	15	14	14	14	14
WATER AUI REPAIR - FRI		DEMAND REDUCTION [HUTCHINSON]	21	21	21	21	21	21
			35	36	35	35	35	35

IRRIGATION, HUTCHINSON, CANADIAN (A)

IRRIGATION CONSERVATION HUTCHINSON COUNTY	- DEMAND REDUCTION [HUTCHINSON]	2,692	4,694	8,578	9,459	10,010	10,281
WEATHER MODIFICATIO (PRECIPITATION ENHANCEMENT)	N WEATHER MODIFICATION [ATMOSPHERE]	2,960	2,960	2,960	2,960	2,960	2,960
		5,652	7,654	11,538	12,419	12,970	13,241
ANUFACTURING, HUTCHINSC	DN, CANADIAN (A)						
DEVELOP NEW WELL FIEL (OGALLALA AQUIFER) BORGER	D OGALLALA AQUIFER - [HUTCHINSON]	0	860	1,739	2,614	3,487	4,416
		0	860	1,739	2,614	3,487	4,416
INNETT, CANADIAN (A)							
DEVELOP OGALLALA AQUIFE SUPPLIES - STINNETT	R OGALLALA AQUIFER [HUTCHINSON]	0	0	0	225	225	225
MUNICIPAL CONSERVATION STINNETT	- DEMAND REDUCTION [HUTCHINSON]	15	15	15	15	15	15
WATER AUDITS AND LEA REPAIR - STINNETT	K DEMAND REDUCTION [HUTCHINSON]	22	23	22	22	22	22
		37	38	37	262	262	262
W SUPPLY INC, CANADIAN (A)						
DEVELOP OGALLALA AQUIFE SUPPLIES - TCW SUPPLY	R OGALLALA AQUIFER [HUTCHINSON]	575	575	575	575	575	575
MUNICIPAL CONSERVATION TCW SUPPLY	- DEMAND REDUCTION [HUTCHINSON]	21	21	21	21	22	22
WATER AUDITS AND LEA REPAIR - TCW SUPPLY	K DEMAND REDUCTION [HUTCHINSON]	37	38	38	38	37	37
		633	634	634	634	634	634
Sum of Projected Water N	lanagement Strategies (acre-feet)	13,163	18,835	22,749	23,937	24,715	25,272

.....

LIPSCOMB COUNTY

WUG, Basin (RWPG)

Water Strategy	Management	Source Name [Origin]	2020	2030	2040	2050	2060	2070
BOOKER, CANA	DIAN (A)							
DEVELOP O SUPPLIES -	galalla aquifer Booker	OGALLALA AQUIFER [LIPSCOMB]	0	0	517	468	439	555
MUNICIPAL BOOKER	CONSERVATION -	DEMAND REDUCTION [LIPSCOMB]	15	17	18	18	19	20
			15	17	535	486	458	575
		DEMAND REDUCTION [LIPSCOMB]	936	1,702	2,945	3,268	3,555	3,706
			936	1,702	2,945	3,268	3,555	3,706
MANUFACTURI	NG, LIPSCOMB, C	ANADIAN (A)						
DEVELOP O SUPPLIES -	galalla aquifer Booker	OGALLALA AQUIFER [LIPSCOMB]	0	0	21	69	97	124
			0	0	21	69	97	124
Sum of Pr	ojected Water Ma	nagement Strategies (acre-feet)	951	1,719	3,501	3,823	4,110	4,405

MOORE COUNTY

WUG, Basin (RW	/PG)					All	values a	ire in ac	re-feet
Water Strategy	Management	Source [Origin]	Name	2020	2030	2040	2050	2060	2070
CACTUS, CANAD	IAN (A)								
DEVELOP N (OGALLALA CACTUS	EW WELL FIELD AQUIFER) -	OGALLALA [MOORE]	AQUIFER	3,565	3,078	2,653	2,286	1,933	1,565
MUNICIPAL CACTUS	CONSERVATION -	Demand [Moore]	REDUCTION	32	36	41	45	50	55
				3,597	3,114	2,694	2,331	1,983	1,620

COUNTY-OTHER, MOORE, CANADIAN (A)

DEVELOP NEW WELL FIELD (OGALLALA AQUIFER) - CACTUS) ogallala · [Moore]	AQUIFER	58	76	93	112	128	145
MUNICIPAL CONSERVATION - MOORE COUNTY OTHER	- DEMAND I [MOORE]	REDUCTION	14	15	17	19	21	23
			72	91	110	131	149	168
MAS, CANADIAN (A)								
DEVELOP OGALLALA AQUIFER SUPPLIES - DUMAS	2 OGALLALA- BLANCA [HARTLEY]	RITA AQUIFER	2,000	2,000	2,000	4,500	4,500	4,500
MUNICIPAL CONSERVATION - DUMAS	- Demand I [moore]	REDUCTION	133	152	171	190	210	231
			2,133	2,152	2,171	4,690	4,710	4,731
TCH, CANADIAN (A)								
MUNICIPAL CONSERVATION - FRITCH	DEMAND I [MOORE]	REDUCTION	1	1	1	1	1	1
WATER AUDITS AND LEAK REPAIR - FRITCH		REDUCTION	1	1	1	1	1	1
REFAIR - FRITON	[MOORE]							
	[MOORE]		2	2	2	2	2	2
IGATION, MOORE, CANADIA			2	2	2	2	2	2
	IN (A)	REDUCTION	2 13,308	2 24,120	2 41,895	2 47,571	2 52,037	2 55,406
IGATION, MOORE, CANADIA	N (A) • DEMAND	REDUCTION						
IGATION, MOORE, CANADIA	DEMAND I [MOORE]		13,308	24,120	41,895	47,571	52,037	55,406
IGATION, MOORE, CANADIA	DEMAND I [MOORE]		13,308 13,308	24,120	41,895 41,895	47,571 47,571	52,037	55,406
IRRIGATION, MOORE, CANADIA IRRIGATION CONSERVATION - MOORE COUNTY NUFACTURING, MOORE, CAN DEVELOP NEW WELL FIELD (OGALLALA AQUIFER) -	AN (A) DEMAND ([MOORE] ADIAN (A) OGALLALA (MOORE] OGALLALA (MOORE]		13,308 13,308	24,120 24,120	41,895 41,895	47,571 47,571	52,037 52,037	55,406 55,406
IRRIGATION, MOORE, CANADIA IRRIGATION CONSERVATION - MOORE COUNTY NUFACTURING, MOORE, CAN DEVELOP NEW WELL FIELD (OGALLALA AQUIFER) - CACTUS DEVELOP NEW WELL FIELD (OGALLALA AQUIFER) - MANUFACTURING MOORE	AN (A) DEMAND ([MOORE] ADIAN (A) OGALLALA (MOORE] OGALLALA (MOORE]	AQUIFER	13,308 13,308 1,877	24,120 24,120 2,346 0	41,895 41,895 2,754	47,571 47,571 3,102 4,000	52,037 52,037 3,439	55,406 55,406 3,790
IRRIGATION, MOORE, CANADIA IRRIGATION CONSERVATION - MOORE COUNTY NUFACTURING, MOORE, CAN DEVELOP NEW WELL FIELD (OGALLALA AQUIFER) - CACTUS DEVELOP NEW WELL FIELD (OGALLALA AQUIFER) - MANUFACTURING MOORE	AN (A) DEMAND ([MOORE] ADIAN (A) OGALLALA (MOORE] OGALLALA (MOORE]	AQUIFER	13,308 13,308 1,877 0	24,120 24,120 2,346 0	41,895 41,895 2,754 0	47,571 47,571 3,102 4,000	52,037 52,037 3,439 4,000	55,406 55,406 3,790 4,000

MUNICIPAL CONSERVATION - DEMAND REDUCTION SUNRAY [MOORE]	16	19	20	24	26	28
WATER AUDITS AND LEAK DEMAND REDUCTION REPAIR - SUNRAY [MOORE]	21	23	26	28	31	35
	37	892	896	902	907	913

OCHILTREE COUNTY

UG, Basin (RWPG)			All values are in acre-feet				
Water Manageme Strategy	ent Source Name [Origin]	2020	2030	2040	2050	2060	2070
DOKER, CANADIAN (A)							
DEVELOP OGALALLA AQUIF SUPPLIES - BOOKER	ER OGALLALA AQUIFER [LIPSCOMB]	0	0	12	13	14	21
MUNICIPAL CONSERVATION BOOKER	N - DEMAND REDUCTION [OCHILTREE]	0	0	0	1	1	1
		0	0	12	14	15	22
RIGATION, OCHILTREE, CA	NADIAN (A)						
IRRIGATION CONSERVATIO OCHILTREE COUNTY	N - DEMAND REDUCTION [OCHILTREE]	4,030	7,195	13,177	14,476	15,292	15,670
IRRIGATION CONSERVATIO OLDHAM COUNTY	N - DEMAND REDUCTION [OCHILTREE]	127	360	567	617	694	723
		4,157	7,555	13,744	15,093	15,986	16,393
RRYTON, CANADIAN (A)							
DEVELOP OGALLALA AQUIF SUPPLIES - PERRYTON	ER OGALLALA AQUIFER [OCHILTREE]	1,400	1,400	1,400	2,800	2,800	2,800
MUNICIPAL CONSERVATION	N - DEMAND REDUCTION [OCHILTREE]	85	90	96	103	111	119
		1,485	1,490	1,496	2,903	2,911	2,919
Sum of Projected Water Management Strategies (acre-feet)		5,642	9,045	15,252	18,010	18,912	19,334

SHERMAN COUNTY

WUG, Basin (RWPG) All values are in acre-feet Water Management Source 2020 2030 2040 2050 2060 2070 Name Strategy [Origin] **IRRIGATION, SHERMAN, CANADIAN (A)** IRRIGATION CONSERVATION - DEMAND REDUCTION 36,498 72,285 78,846 20,156 63,651 83,721 SHERMAN COUNTY [SHERMAN] 20,156 36,498 63,651 72,285 78,846 83,721 STRATFORD, CANADIAN (A) MUNICIPAL CONSERVATION - DEMAND REDUCTION 19 15 17 17 18 18 STRATFORD [SHERMAN] WATER AUDITS AND LEAK DEMAND REDUCTION 24 25 26 26 27 27 **REPAIR - STRATFORD** [SHERMAN] 39 42 43 44 45 46 Sum of Projected Water Management Strategies 20,195 36,540 63,694 72,329 78,891 83,767 (acre-feet)

P.O. Box 795 603 East 1st Street Dumas, Texas 79029 <u>www.northplainsgcd.org</u>