
GAM RUN 21-006: MIDDLE TRINITY GROUNDWATER CONSERVATION DISTRICT MANAGEMENT PLAN

Grayson Dowlearn Texas Water Development Board Groundwater Division Groundwater Modeling Department (512) 475-1552 October 21, 2021

Cynthia K. Ridgeway is the manager of the Groundwater Availability Modeling Department and is responsible for the oversight of work performed by Robert Grayson Dowlearn under her direct supervision. The seal appearing on this document was authorized by Cynthia K. Ridgeway, P.G. 471 on October 21, 2021.

This page is intentionally blank

GAM RUN 21-006: MIDDLE TRINITY GROUNDWATER CONSERVATION DISTRICT MANAGEMENT PLAN

Grayson Dowlearn Texas Water Development Board Groundwater Division Groundwater Modeling Department (512) 475-1552 October 21, 2021

EXECUTIVE SUMMARY:

Texas State Water Code, Section 36.1071, Subsection (h) (Texas Water Code, 2011), states that, in developing its groundwater management plan, a groundwater conservation district shall use groundwater availability modeling information provided by the Executive Administrator of the Texas Water Development Board (TWDB) in conjunction with any available site-specific information provided by the district for review and comment to the Executive Administrator.

The TWDB provides data and information to the Middle Trinity Groundwater Conservation District in two parts. Part 1 is the Estimated Historical Water Use/State Water Plan dataset report, which will be provided to you separately by the TWDB Groundwater Technical Assistance Department. Please direct questions about the water data report to Mr. Stephen Allen at 512-463-7317 or <u>stephen.allen@twdb.texas.gov</u>. Part 2 is the required groundwater availability modeling information and this information includes:

- 1. the annual amount of recharge from precipitation, if any, to the groundwater resources within the district;
- 2. for each aquifer within the district, the annual volume of water that discharges from the aquifer to springs and any surface-water bodies, including lakes, streams, and rivers; and
- 3. the annual volume of flow into and out of the district within each aquifer and between aquifers in the district.

GAM Run 21-006: Middle Trinity Groundwater Conservation District Management Plan October 21, 2021 Page 4 of 14

The groundwater management plan for the Middle Trinity Groundwater Conservation District should be adopted by the district on or before January 20, 2022 and submitted to the executive administrator of the TWDB on or before February 19, 2022. The current management plan for the Middle Trinity Groundwater Conservation District expires on April 20, 2022.

We used two groundwater availability models to estimate the management plan information for the aquifers within the Middle Trinity Groundwater Conservation District. Information for the Trinity Aquifer is from version 2.01 of the groundwater availability model for the northern portion of the Trinity Aquifer and the Woodbine Aquifer (Kelley and others, 2014). Information for the Brazos River Alluvium Aquifer is from version 1.01 of the groundwater availability model for the Brazos River Alluvium Aquifer (Ewing and Jigmond, 2016).

This report replaces the results of GAM Run 17-026 (Shi and Wade, 2017), as the approach used for analyzing model results has been since refined to more accurately delineate flows between hydraulically connected units and because of updates to the spatial grid file used to define county, groundwater conservation district, and aquifer boundaries. Tables 1 and 2 summarize the groundwater availability model data required by statute. Figures 1, and 3 show the area of the models from which the values in the tables were extracted. Figures 2 and 4 provide generalized diagrams of the groundwater flow components provided in Tables 1 and 2. If, after review of the figures, the Middle Trinity Groundwater Conservation District determines that the district boundaries used in the assessment do not reflect current conditions, please notify the TWDB at your earliest convenience.

METHODS:

In accordance with the provisions of the Texas State Water Code, Section 36.1071, Subsection (h), the groundwater availability models mentioned above were used to estimate information for the Middle Trinity Groundwater Conservation District management plan. Water budgets were extracted for the historical model period for the Trinity Aquifer (1980-2012) using ZONEBUDGET Version 3.01 (Harbaugh, 2009). Water budgets were extracted for the historical model period for the Brazos River Alluvium Aquifer (1980-2012) using ZONEBUDGET USG Version 1.00 (Panday and others, 2013). The average annual water budget values for recharge, surface-water outflow, inflow to the district, outflow from the district, and the flow between aquifers within the district are summarized in this report.

PARAMETERS AND ASSUMPTIONS:

Trinity Aquifer

- We used version 2.01 of the groundwater availability model for the northern portion of the Trinity Aquifer and the Woodbine Aquifer. See Kelley and others (2014) for assumptions and limitations of the model.
- The groundwater availability model for the northern portion of the Trinity Aquifer and Woodbine Aquifer contains eight layers that generally represent the following: Layer 1 (the surficial outcrop area of the units in layers 2 through 8 and units younger than Woodbine Aquifer), Layer 2 (Woodbine Aquifer), Layer 3 (Washita and Fredericksburg Groups, and the Edwards (Balcones Fault Zone) Aquifer), and Layers 4 through 8 (Trinity Aquifer). Layers 2 through 7 also include pass-through cells. The Woodbine Aquifer does not occur within the Middle Trinity Groundwater Conservation District and therefore no groundwater budget values are included for it in this report.
- Perennial rivers and reservoirs were simulated using the MODFLOW River package. Ephemeral streams, flowing wells, springs, and evapotranspiration in riparian zones along perennial rivers were simulated using the MODFLOW Drain package.
- The model was run using MODFLOW-NWT (Niswonger and others, 2011).

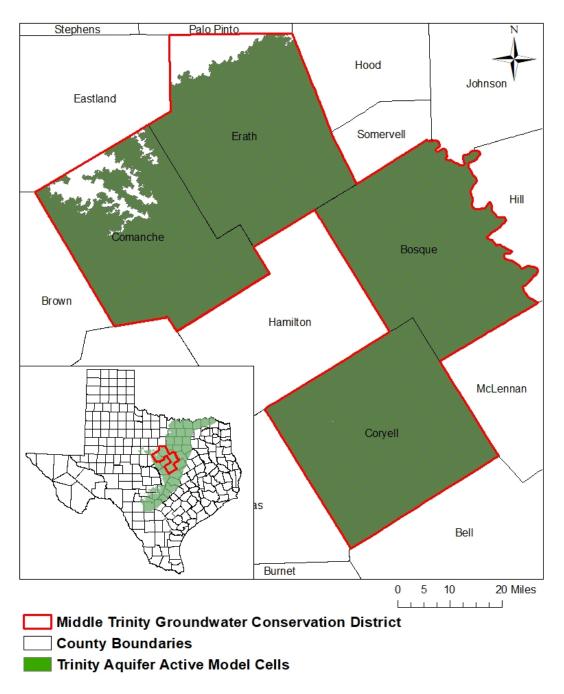
Brazos River Alluvium Aquifer

- We used version 1.01 of the groundwater availability model for the Brazos River Alluvium Aquifer released on December 16, 2016. See Ewing and Jigmond (2016) for assumptions and limitations of the model.
- The groundwater availability model for the Brazos River Alluvium Aquifer contains three layers. Layers 1 and 2 represent the Brazos River Alluvium Aquifer and Layer 3 represents the surficial portions of the Carrizo-Wilcox, Queen City, Sparta, Yegua-Jackson, and Gulf Coast aquifers as well as various geologic units of the Cretaceous System, including the Edwards and Trinity.
- Perennial rivers and streams were simulated using the MODFLOW Streamflow-Routing package and ephemeral streams, were simulated using the MODFLOW River package. Springs were simulated using the MODFLOW Drain package.

GAM Run 21-006: Middle Trinity Groundwater Conservation District Management Plan October 21, 2021 Page 6 of 14

• The model was run with MODFLOW-USG (unstructured grid; Panday and others, 2013).

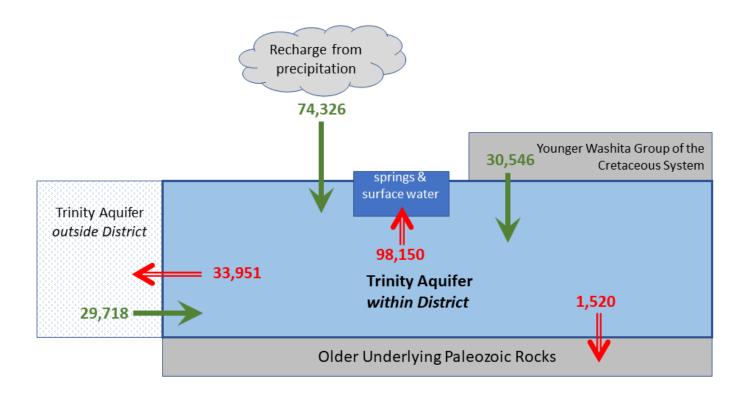
RESULTS:


A groundwater budget summarizes the amount of water entering and leaving the aquifer according to the groundwater availability model. Selected groundwater budget components listed below were extracted from the groundwater availability model results for the Trinity and the Brazos River Alluvium aquifers located within the Middle Trinity Groundwater Conservation District and averaged over the historical calibration periods, as shown in Tables 1 and 2.

- 1. Precipitation recharge—the areally distributed recharge sourced from precipitation falling on the outcrop areas of the aquifers (where the aquifer is exposed at land surface) within the district.
- 2. Surface-water outflow—the total water discharging from the aquifer (outflow) to surface-water features such as streams, reservoirs, and springs.
- 3. Flow into and out of district—the lateral flow within the aquifer between the district and adjacent counties.
- 4. Flow between aquifers—the net vertical flow between the aquifer and adjacent aquifers or confining units. This flow is controlled by the relative water levels in each aquifer and aquifer properties of each aquifer or confining unit that define the amount of leakage that occurs.

The information needed for the district's management plan is summarized in Tables 1 and 2. It is important to note that sub-regional water budgets are not exact. This is due to the size of the model cells and the approach used to extract data from the model. To avoid double accounting, a model cell that straddles a political boundary, such as a district or county boundary, is assigned to one side of the boundary based on the location of the centroid of the model cell. For example, if a cell contains two counties, the cell is assigned to the county where the centroid of the cell is located.

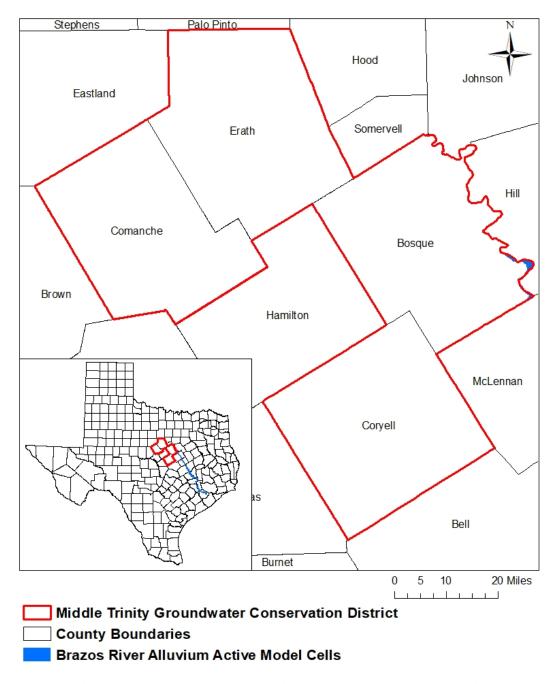
TABLE 1: SUMMARIZED INFORMATION FOR THE TRINITY AQUIFER THAT IS NEEDED FOR THE MIDDLE TRINITY GROUNDWATER CONSERVATION DISTRICT'S GROUNDWATER MANAGEMENT PLAN. ALL VALUES ARE REPORTED IN ACRE-FEET PER YEAR AND ROUNDED TO THE NEAREST 1 ACRE-FOOT.


Management Plan requirement	Aquifer or confining unit	Results
Estimated annual amount of recharge from precipitation to the district	Trinity Aquifer	74,326
Estimated annual volume of water that discharges from the aquifer to springs and any surface water body including lakes, streams, and rivers	Trinity Aquifer	98,150
Estimated annual volume of flow into the district within each aquifer in the district	Trinity Aquifer	29,718
Estimated annual volume of flow out of the district within each aquifer in the district	Trinity Aquifer	33,951
Estimated net annual volume of flow between each aquifer in the district	To the Trinity Aquifer from the Washita Group of the Cretaceous System	30,546
	From Trinity to older underlying Paleozoic Rocks	1,520

trnt_n grid date = 01.06.2020, gcd boundaries date = 06.26.2020, county boundaries date = 07.03.2019

FIGURE 1: AREA OF THE GROUNDWATER AVAILABILITY MODEL FOR THE NORTHERN PORTION OF THE TRINITY AQUIFER AND THE WOODBINE AQUIFER FROM WHICH THE INFORMATION IN TABLE 1 WAS EXTRACTED (THE TRINITY AQUIFER EXTENT WITHIN THE DISTRICT BOUNDARY).

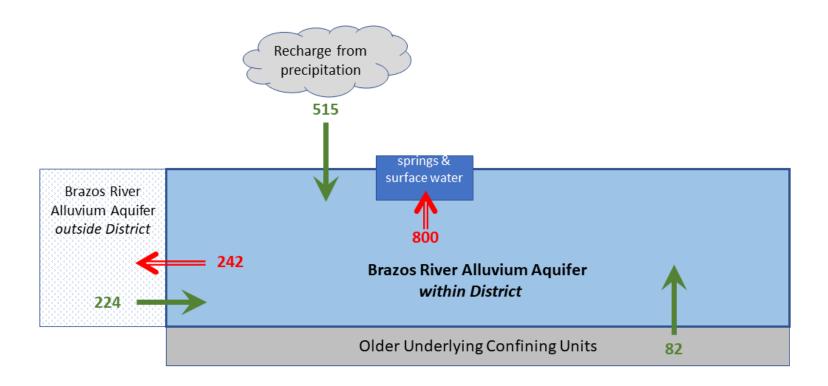
GAM Run 21-006: Middle Trinity Groundwater Conservation District Management Plan October 21, 2021 Page 9 of 14



Caveat: This diagram only includes the water budget items provided in Table 1. A complete water budget would include additional inflows and outflows. If the District requires values for additional water budget items, please contact TWDB.

FIGURE 2: GENERALIZED DIAGRAM OF THE SUMMARIZED BUDGET INFORMATION FROM TABLE 1, REPRESENTING DIRECTIONS OF FLOW FOR THE TRINITY AQUIFER WITHIN MIDDLE TRINITY GROUNDWATER CONSERVATION DISTRICT. FLOW VALUES EXPRESSED IN ACRE-FEET PER YEAR (AFY).

TABLE 2: SUMMARIZED INFORMATION FOR THE BRAZOS RIVER ALLUVIUM AQUIFER THAT IS NEEDED FOR THE MIDDLE TRINITY GROUNDWATER CONSERVATION DISTRICT'S GROUNDWATER MANAGEMENT PLAN. ALL VALUES ARE REPORTED IN ACRE-FEET PER YEAR AND ROUNDED TO THE NEAREST 1 ACRE-FOOT.


Management Plan requirement	Aquifer or confining unit	Results
Estimated annual amount of recharge from precipitation to the district	Brazos River Alluvium Aquifer	515
Estimated annual volume of water that discharges from the aquifer to springs and any surface water body including lakes, streams, and rivers	Brazos River Alluvium Aquifer	800
Estimated annual volume of flow into the district within each aquifer in the district	Brazos River Alluvium Aquifer	224
Estimated annual volume of flow out of the district within each aquifer in the district	Brazos River Alluvium Aquifer	242
Estimated net annual volume of flow between each aquifer in the district	To the Brazos River Alluvium Aquifer from older underlying confining units	82

bra grid date = 01.06.2020, gcd boundaries date = 06.26.2020, county boundaries date = 07.03.2019

FIGURE 3: AREA OF THE GROUNDWATER AVAILABILITY MODEL FOR THE BRAZOS RIVER ALLUVIUM AQUIFER FROM WHICH THE INFORMATION IN TABLE 2 WAS EXTRACTED (THE BRAZOS RIVER ALLUVIUM AQUIFER EXTENT WITHIN THE DISTRICT BOUNDARY).

GAM Run 21-006: Middle Trinity Groundwater Conservation District Management Plan October 21, 2021 Page 12 of 14

Caveat: This diagram only includes the water budget items provided in Table 2. A complete water budget would include additional inflows and outflows. If the District requires values for additional water budget items, please contact TWDB.

FIGURE 4: GENERALIZED DIAGRAM OF THE SUMMARIZED BUDGET INFORMATION FROM TABLE 2, REPRESENTING DIRECTIONS OF FLOW FOR THE BRAZOS RIVER ALLUVIUM AQUIFER WITHIN MIDDLE TRINITY GROUNDWATER CONSERVATION DISTRICT. FLOW VALUES EXPRESSED IN ACRE-FEET PER YEAR (AFY).

GAM Run 21-006: Middle Trinity Groundwater Conservation District Management Plan October 21, 2021 Page 13 of 14

LIMITATIONS:

The groundwater models used in completing this analysis are the best available scientific tools that can be used to meet the stated objectives. To the extent that this analysis will be used for planning purposes and/or regulatory purposes related to pumping in the past and into the future, it is important to recognize the assumptions and limitations associated with the use of the results. In reviewing the use of models in environmental regulatory decision making, the National Research Council (2007) noted:

"Models will always be constrained by computational limitations, assumptions, and knowledge gaps. They can best be viewed as tools to help inform decisions rather than as machines to generate truth or make decisions. Scientific advances will never make it possible to build a perfect model that accounts for every aspect of reality or to prove that a given model is correct in all respects for a particular regulatory application. These characteristics make evaluation of a regulatory model more complex than solely a comparison of measurement data with model results."

A key aspect of using the groundwater model to evaluate historic groundwater flow conditions includes the assumptions about the location in the aquifer where historic pumping was placed. Understanding the amount and location of historical pumping is as important as evaluating the volume of groundwater flow into and out of the district, between aquifers within the district (as applicable), interactions with surface water (as applicable), recharge to the aquifer system (as applicable), and other metrics that describe the impacts of that pumping. In addition, assumptions regarding precipitation, recharge, and interaction with streams are specific to particular historic time periods.

Because the application of the groundwater models was designed to address regional scale questions, the results are most effective on a regional scale. The TWDB makes no warranties or representations related to the actual conditions of any aquifer at a particular location or at a particular time.

It is important for groundwater conservation districts to monitor groundwater pumping and overall conditions of the aquifer. Because of the limitations of the groundwater model and the assumptions in this analysis, it is important that the groundwater conservation districts work with the TWDB to refine this analysis in the future given the reality of how the aquifer responds to the actual amount and location of pumping now and in the future. Historic precipitation patterns also need to be placed in context as future climatic conditions, such as dry and wet year precipitation patterns, may differ and affect groundwater flow conditions.

REFERENCES:

- Ewing, J.E., and Jigmond, M., 2016, Final Numerical Model Report for the Brazos River Alluvium Aquifer Groundwater Availability Model: Contract report to the Texas Water Development Board, 357 p., <u>http://www.twdb.texas.gov/groundwater/models/gam/bzrv/BRAA_NM_REPORT_FINAL.pdf?d=1502891797831</u>.
- Harbaugh, A. W., 2009, Zonebudget Version 3.01, A computer program for computing subregional water budgets for MODFLOW ground-water flow models, U.S. Geological Survey Groundwater Software.

Kelley, V.A., Ewing, J., Jones, T.L., Young, S.C., Deeds, N., and Hamlin, S., 2014, Updated Groundwater Availability Model of the Northern Trinity and Woodbine Aquifers – Final Model Report, 984 p., <u>http://www.twdb.texas.gov/groundwater/models/gam/trnt n/Final NTGAM Vol%</u> 201%20Aug%202014 Report.pdf

- Panday, S., Langevin, C.D., Niswonger, R.G., Ibaraki, M., and Hughes, J.D., 2013, MODFLOW USG version 1: An unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finitedifference formulation: U.S. Geological Survey Techniques and Methods, book 6, chap. A45, 66p., <u>https://pubs.usgs.gov/tm/06/a45/</u>.
- National Research Council, 2007, Models in Environmental Regulatory Decision Making Committee on Models in the Regulatory Decision Process, National Academies Press, Washington D.C., 287 p., <u>http://www.nap.edu/catalog.php?record_id=11972</u>.

Niswonger, R.G., Panday, S., and Ibaraki, M., 2011, MODFLOW-NWT, a Newton formulation for MODFLOW-2005: USGS, Techniques and Methods 6-A37, 44 p.

Shi, J. and Wade, S., 2017, GAM Run 17-026: Texas Water Development Board, GAM Run 17-026 Report, 12 p., https://www.twdb.texas.gov/groundwater/docs/GAMruns/GR17-026.pdf.

Texas Water Code, 2011, http://www.statutes.legis.state.tx.us/docs/WA/pdf/WA.36.pdf