# GAM Run 13-025: COASTAL BEND GROUNDWATER CONSERVATION DISTRICT MANAGEMENT PLAN

by Rohit Raj Goswami, Ph.D.
Texas Water Development Board
Groundwater Resources Division
Groundwater Availability Modeling Section
(512) 463-0495
December 13, 2013



Cynthia K. Ridgeway is the Manager of the Groundwater Availability Modeling Section and is responsible for oversight of work performed by Rohit Raj Goswami under her direct supervision. The seal appearing on this document was authorized by Cynthia K. Ridgeway, P.G. 471 on December 13, 2013.

This page is intentionally blank

## GAM Run 13-025: COASTAL BEND GROUNDWATER CONSERVATION DISTRICT MANAGEMENT PLAN

by Rohit Raj Goswami, Ph.D.
Texas Water Development Board
Groundwater Resources Division
Groundwater Availability Modeling Section
(512) 463-0495
December 13, 2013

### **EXECUTIVE SUMMARY:**

Texas State Water Code, Section 36.1071, Subsection (h) (Texas Water Code, 2011), states that, in developing its groundwater management plan, a groundwater conservation district shall use groundwater availability modeling information provided by the executive administrator of the Texas Water Development Board (TWDB) in conjunction with any available site-specific information provided by the district for review and comment to the executive administrator. Information derived from groundwater availability models that shall be included in the groundwater management plan includes:

- the annual amount of recharge from precipitation to the groundwater resources within the district, if any;
- for each aquifer within the district, the annual volume of water that discharges from the aquifer to springs and any surface water bodies, including lakes, streams, and rivers; and
- the annual volume of flow into and out of the district within each aquifer and between aquifers in the district.

This report—Part 2 of a two-part package of information from the TWDB to Coastal Bend Groundwater Conservation District—fulfills the requirements noted above. Part 1 of the two-part package is the Historical Water Use/State Water Plan data report. The District will receive this data report from the TWDB Groundwater Technical Assistance Section. Questions about the data report can be directed to Mr. Stephen Allen, <a href="mailto:stephen.allen@twdb.texas.gov">stephen.allen@twdb.texas.gov</a>, (512) 463-7317.

GAM Run 13-025: Coastal Bend Groundwater Conservation District Management Plan December 13, 2013 Page 4 of 10

The groundwater management plan for Coastal Bend Groundwater Conservation District should be adopted by the district on or before August 6, 2014 and submitted to the executive administrator of the TWDB on or before September 5, 2014. The current management plan for Coastal Bend Groundwater Conservation District expires on November 4, 2014.

This report discusses the methods, assumptions, and results from a model run using the groundwater availability model for the central portion of the Gulf Coast Aquifer System. This model run replaces the results of GAM Run 08-81 (Oliver, 2008). GAM Run 13-025 meets current standards set after the release of GAM Run 08-81. Table 1 summarizes the groundwater availability model data required by statute, and Figure 1 shows the area of the model from which the values in the table were extracted. If after review of the figure, Coastal Bend Groundwater Conservation District determines that the district boundaries used in the assessment do not reflect current conditions, please notify the Texas Water Development Board immediately.

Per statute, TWDB is required to provide the districts with data from the official groundwater availability models; however, the TWDB has also approved, for planning purposes, the fully penetrating alternative model for the central portion of the Gulf Coast Aquifer System. Coastal Bend Groundwater Conservation District is also included in the model area for the groundwater availability model for the northern portion of the Gulf Coast Aquifer System. Please contact the author of this report if a comparison report using one or both of these models is desired.

### **METHODS:**

In accordance with the provisions of the Texas State Water Code, Section 36.1071, Subsection (h), the groundwater availability model for the central portion of the Gulf Coast Aquifer System was run for this analysis. Coastal Bend Groundwater Conservation District water budgets were extracted for the historical model period (1980 through 1999) using ZONEBUDGET Version 3.01 (Harbaugh, 2009). The average annual water budget values for recharge, surface water outflow, inflow to the district, outflow from the district, net inter-aquifer flow (upper), and net interaquifer flow (lower) for the portion of the aquifer located within the district is summarized in this report.

### PARAMETERS AND ASSUMPTIONS:

## **Gulf Coast Aquifer System**

- Version 1.01 of the groundwater availability model for the central portion of the Gulf Coast Aquifer System was used for this analysis. See Chowdhury and others (2004) and Waterstone and Parsons (2003) for assumptions and limitations of the groundwater availability model.
- The model for the central portion of the Gulf Coast Aquifer System assumes partially penetrating wells in the Evangeline Aquifer due to a lack of data for aquifer properties in the deeper section of the aquifer.
- This groundwater availability model includes four layers, which generally represent the Chicot Aquifer (Layer 1), the Evangeline Aquifer (Layer 2), the Burkeville Confining Unit (Layer 3), and the Jasper Aquifer including parts of the Catahoula Formation near the outcrop (Layer 4).
- The model was run with MODFLOW-96 (Harbaugh and McDonald, 1996).

### **RESULTS:**

A groundwater budget summarizes the amount of water entering and leaving the aquifer according to the groundwater availability model. Selected groundwater budget components listed below were extracted from the model results for the aquifers located within the district and averaged over the duration of the calibration and verification portion of the model run in the district, as shown in Table 1.

- Precipitation recharge—The areally distributed recharge sourced from precipitation falling on the outcrop areas of the aquifers (where the aquifer is exposed at land surface) within the district.
- Surface water outflow—The total water discharging from the aquifer (outflow) to surface water features such as streams, reservoirs, and springs.
- Flow into and out of district—The lateral flow within the aquifer between the district and adjacent counties.
- Flow between aquifers—The net vertical flow between the aquifer and adjacent aquifers or confining units. This flow is controlled by the relative water levels in each aquifer or confining unit and aquifer properties of each aquifer or confining unit that define the amount of leakage that occurs.

GAM Run 13-025: Coastal Bend Groundwater Conservation District Management Plan December 13, 2013 Page 6 of 10

"Inflow" to an aquifer from an overlying or underlying aquifer will always equal the "Outflow" from the other aquifer.

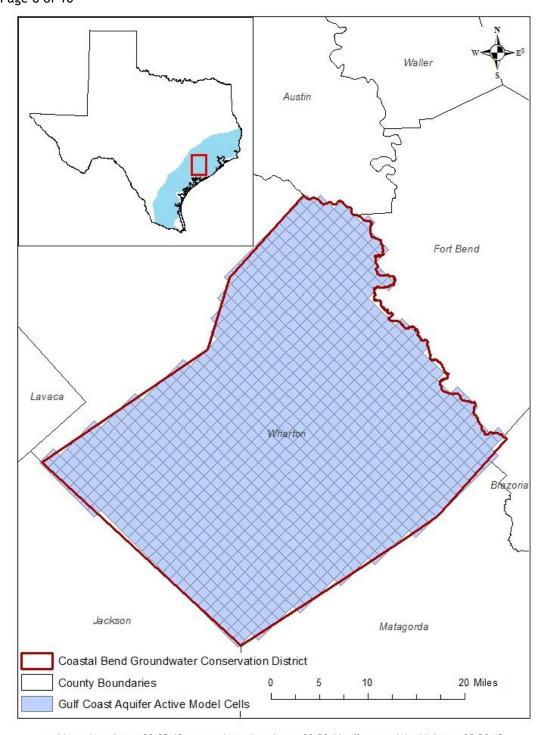

It is important to note that sub-regional water budgets are not exact. This is due to the size of the model cells and the approach used to extract data from the model. To avoid double accounting, a model cell that straddles a political boundary, such as a district or county boundary, is assigned to one side of the boundary based on the location of the centroid of the model cell. For example, if a cell contains two counties, the cell is assigned to the county where the centroid of the cell is located.

TABLE 1: SUMMARIZED INFORMATION FOR THE GULF COAST AQUIFER SYSTEM THAT IS NEEDED FOR COASTAL BEND GROUNDWATER CONSERVATION DISTRICT'S GROUNDWATER MANAGEMENT PLAN. ALL VALUES ARE REPORTED IN ACRE-FEET PER YEAR AND ROUNDED TO THE NEAREST 1 ACRE-FOOT.

| Management Plan requirement                                                                                                                  | Aquifer or confining<br>unit | Results             |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------|
| Estimated annual amount of recharge from precipitation to the district                                                                       | Gulf Coast Aquifer System    | 20,109              |
| Estimated annual volume of water that discharges from the aquifer to springs and any surface water body including lakes, streams, and rivers | Gulf Coast Aquifer System    | 14,614 <sup>1</sup> |
| Estimated annual volume of flow into the district within each aquifer in the district                                                        | Gulf Coast Aquifer System    | 55,548              |
| Estimated annual volume of flow out of the district within each aquifer in the district                                                      | Gulf Coast Aquifer System    | 25,453              |
| Estimated net annual volume of flow between each aquifer in the district                                                                     | NA <sup>2</sup>              | NA <sup>2</sup>     |

<sup>&</sup>lt;sup>1</sup> This total includes 146 acre-feet per year spring discharge and 14,468 acre-feet per year leakage to streams. <sup>2</sup> NA stands for Not available because the base of the model assumes no-flow conditions.

GAM Run 13-025: Coastal Bend Groundwater Conservation District Management Plan December 13, 2013 Page 8 of 10



gcd boundary date = 09.25.13, county boundary date = 02.20.11, glfc\_c model grid date = 08.20.13

FIGURE 1: AREA OF THE GROUNDWATER AVAILABILITY MODEL FOR THE GULF COAST AQUIFER SYSTEM FROM WHICH THE INFORMATION IN TABLE 1 WAS EXTRACTED (THE GULF COAST AQUIFER SYSTEM EXTENT WITHIN THE DISTRICT BOUNDARY).

GAM Run 13-025: Coastal Bend Groundwater Conservation District Management Plan December 13, 2013 Page 9 of 10

### LIMITATIONS:

The groundwater model(s) used in completing this analysis is the best available scientific tool that can be used to meet the stated objective(s). To the extent that this analysis will be used for planning purposes and/or regulatory purposes related to pumping in the past and into the future, it is important to recognize the assumptions and limitations associated with the use of the results. In reviewing the use of models in environmental regulatory decision making, the National Research Council (2007) noted:

"Models will always be constrained by computational limitations, assumptions, and knowledge gaps. They can best be viewed as tools to help inform decisions rather than as machines to generate truth or make decisions. Scientific advances will never make it possible to build a perfect model that accounts for every aspect of reality or to prove that a given model is correct in all respects for a particular regulatory application. These characteristics make evaluation of a regulatory model more complex than solely a comparison of measurement data with model results."

A key aspect of using the groundwater model to evaluate historic groundwater flow conditions includes the assumptions about the location in the aquifer where historic pumping was placed. Understanding the amount and location of historic pumping is as important as evaluating the volume of groundwater flow into and out of the district, between aquifers within the district (as applicable), interactions with surface water (as applicable), recharge to the aquifer system (as applicable), and other metrics that describe the impacts of that pumping. In addition, assumptions regarding precipitation, recharge, and interaction with streams are specific to particular historic time periods.

Because the application of the groundwater models was designed to address regional scale questions, the results are most effective on a regional scale. The TWDB makes no warranties or representations related to the actual conditions of any aquifer at a particular location or at a particular time.

It is important for groundwater conservation districts to monitor groundwater pumping and overall conditions of the aquifer. Because of the limitations of the groundwater model and the assumptions in this analysis, it is important that the groundwater conservation districts work with the TWDB to refine this analysis in the future given the reality of how the aquifer responds to the actual amount and location of pumping now and in the future. Historic precipitation patterns also need to be placed in context as future climatic conditions, such as dry and wet year precipitation patterns, may differ and affect groundwater flow conditions.

### **REFERENCES:**

- Chowdhury, Ali. H., Wade, S., Mace, R. E., and Ridgeway, C., 2004, Groundwater Availability Model of the Central Gulf Coast Aquifer System: Numerical Simulations through 1999- Model Report, 114 p., <a href="http://www.twdb.texas.gov/groundwater/models/gam/glfc\_c/TWDB\_Recalibration\_Report.pdf">http://www.twdb.texas.gov/groundwater/models/gam/glfc\_c/TWDB\_Recalibration\_Report.pdf</a>.
- Harbaugh, A. W., 2009, Zonebudget Version 3.01, A computer program for computing subregional water budgets for MODFLOW ground-water flow models, U.S. Geological Survey Groundwater Software.
- Harbaugh, A. W., and McDonald, M. G., 1996, User's documentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference ground-water flow model: U.S. Geological Survey Open-File Report 96-485, 56 p.
- National Research Council, 2007, Models in Environmental Regulatory Decision Making Committee on Models in the Regulatory Decision Process, National Academies Press, Washington D.C., 287 p., <a href="http://www.nap.edu/catalog.php?record\_id=11972">http://www.nap.edu/catalog.php?record\_id=11972</a>.
- Oliver, W., 2008, GAM Run 08-81: Texas Water Development Board, GAM Run 08-81 Report, 5 p., <a href="http://www.twdb.texas.gov/groundwater/docs/GAMruns/GR08-81.pdf">http://www.twdb.texas.gov/groundwater/docs/GAMruns/GR08-81.pdf</a>.
- Texas Water Code, 2011, <a href="http://www.statutes.legis.state.tx.us/docs/WA/pdf/WA.36.pdf">http://www.statutes.legis.state.tx.us/docs/WA/pdf/WA.36.pdf</a>
- Waterstone Environmental Hydrology and Engineering Inc. and Parsons, 2003, Groundwater availability of the Central Gulf Coast Aquifer: Numerical Simulations to 2050, Central Gulf Coast, Texas Contract report to the Texas Water Development Board, 157 p.