GAM Run 08-15

by Ali H. Chowdhury Ph.D., P.G. Texas Water Development Board Groundwater Resources Division (512) 936-0834

July 08, 2008

EXECUTIVE SUMMARY:

We ran the groundwater availability model for the Hill Country portion of the Trinity Aquifer using average recharge rates with a specified annual baseline pumpage for a 60year predictive simulation. We then adjusted pumpage to achieve an average 35 foot water level decline across Groundwater Management Area 9 over the 60-year predictive simulation. The specified pumpage produced average water level declines of 35 feet in the Middle Trinity Aquifer (the most widely used aquifer in the area) across the groundwater management area. The results of this model run indicate that achieving an average 35-foot water level decline results in decreased baseflow to the local rivers, springs, lakes/reservoirs, and across the general head boundary into the Edwards (Balcones Fault Zone) Aquifer. Larger water level declines in the Upper and Middle Trinity aquifers occur in the southern parts of Kendall, northern parts of Bexar, western parts of Kerr, and Travis counties. Comparison of baseline pumpage and adjusted pumpage for an average of 35 feet of water level decline shows that an additional 42,000 acre-feet of groundwater could potentially be pumped regionally across most of Groundwater Management Area 9.

REQUESTOR:

Mr. Ron Fieseler, General Manager of the Blanco-Pedernales Groundwater Conservation District, on behalf of the groundwater conservation districts in Groundwater Management Area 9.

DESCRIPTION OF REQUEST:

Mr. Ron Fieseler requested that we:

- (1) update the baseline pumpage in the groundwater availability model of the Hill Country portion of the Trinity Aquifer (Mace and others, 2000) based on input from the districts in Groundwater Management Area 9 that included revised pumpage data for Hays County from the Hays Trinity Groundwater Conservation District and redistributed pumpage for the Middle Trinity Aquifer in Travis County;
- (2) adjust this baseline pumpage to produce average water level declines of no more than 35 feet in the Middle Trinity Aquifer across Groundwater Management Area 9 with no decline in the water levels in the Edwards Group from 2008 to 2060;

- (3) extract water levels and water budgets for the beginning of the simulation (2008) using the baseline pumpage and the end of the predictive period (2060) using the adjusted pumpage that would produce the required water level decline;
- (4) develop water level change maps using the 2008 baseline model results compared against the results at the end of the predictive period (2060) using the adjusted pumpage; and
- (5) provide managed available groundwater estimates by decade for each Groundwater Conservation District and for Groundwater Management Area 9.

METHODS:

We updated the predictive pumpage in the groundwater availability model for the Hill Country portion of the Trinity Aquifer (Mace and others, 2000) to closely match current county total pumpage use according to the districts. This effort included (1) replacing pumpage data for the Middle Trinity Aquifer in Hays County with the cell by cell pumpage data provided by Hays-Trinity Groundwater Conservation District, (2) redistributing pumpage for the Middle Trinity Aquifer in Travis County as per instruction of the Hays-Trinity and Barton Springs/Edwards Aquifer Conservation Districts to ensure that no additional pumpage is assigned close to Lake Travis and Lake Austin and (3) adjusting county total pumpage to match current county groundwater use as supplied by the districts in the groundwater management area. In addition, pumpage from the Edwards Group was adjusted per instructions from Groundwater Management Area 9. These adjustments formed the baseline pumpage. The model was run in Processing MODFLOW for Windows (PMWIN, version 5.3: Chiang and Kinzelbach, 1998) using the baseline pumpage and the simulated water levels were compared to current water level conditions in the aquifer. Examination of measured water level elevations for the Middle Trinity Aguifer in 2007 show similar values to initial water level elevations observed at the beginning of the predictive simulation. The 2008 simulated water levels from this model run formed the reference for comparing adjusted pumpage to current water level conditions in the aquifers. The baseline pumpage was then adjusted by trial and error to produce average water level declines of about 35 feet in the Middle Trinity Aquifer by the end of 2060. No further adjustments were made to the baseline pumpage for the Edwards Group or Upper Trinity Aquifer.

We extracted and contoured the simulated water levels for 2008 and 2060 in ArcMap for the baseline and adjusted pumpage, respectively. We obtained county drawdown values by subtracting the simulated water levels under the specified pumpage condition from the simulated water levels under the baseline pumpage condition. We spatially joined the model grid with the simulated water levels and drawdown values to determine their distribution by county and model cell numbers. We exported the ArcMap datasets generated from this join and calculated the average, minimum, and maximum drawdown values in a spreadsheet. We also extracted water budget information from the zoned water budget output data in Processing MODFLOW for Windows for the beginning (2008) of the predictive period using the baseline pumpage and the end (2060) of the predictive period using the adjusted pumpage. This was done because the predictive pumpage was kept constant through the 60 years simulation run and decade by decade water budget flow terms would essentially be the same.

PARAMETERS AND ASSUMPTIONS:

- See Mace and others (2000) for details on model construction, recharge, discharge, assumptions and limitation of the model. A slightly updated version of this model (version 1.03) was used for this run (Chowdhury, 2007).
- The model has three layers: layer 1 represents the Edwards Group, layer 2 represents the Upper Trinity Aquifer, and layer 3 represents the Middle Trinity Aquifer.
- The model has a total of 79 stress periods with 2 stress periods representing predevelopment conditions, 24 monthly stress periods for representing transient conditions (1996 to 1997), and 53 predictive annual stress periods (2008 to 2060).
- The calibrated model has a root-mean squared error of 56 feet .The root-mean squared error means that, on average, the simulated water level differs by about 56 feet. This root-mean squared error is about 5 percent of the total hydraulic head drop across the modeled area.
- The rivers, streams, and springs were simulated in the model using MODFLOW's Drain package.
- MODFLOW Drain package was also used to simulate spring flow along bedding contacts of the Edwards Group and the Upper Trinity Aquifer in the northwestern parts of the model area. This resulted in the assignment of numerous drain cells along this outcrop contact.
- Reservoirs/lakes in the model area were simulated using constant heads.
- Pumpage used for the predictive period was developed as per instruction of the districts in Groundwater Management Area 9. Details on adjustments made to the pumpage are provided below.
- We assigned the baseline pumpage to model years 2008. This was done with the assumption that the aquifers in the area recharges rapidly and groundwater movement is fast enough to bring about a dynamic equilibrium relatively quickly. Comparison of water level changes in selected hydrographs in the predictive period suggests that the aquifer attains a dynamic equilibrium within a year.
- Average recharge was used throughout the predictive period for this model run. Average recharge in the model was estimated for normal climatic conditions by using the average precipitation for the period 1960 to 1990 and the recharge

RESULTS:

The pumpage specified by the Groundwater Conservation Districts in Groundwater Management Area 9 was developed using the spatial distribution of the initial predictive pumpage dataset included in the groundwater availability model (Mace and others, 2000). This pumpage amount was adjusted using instructions by the Groundwater Conservation Districts in Groundwater Management Area 9 such that the pumpage closely matches current county total pumpage use and produces current water levels. This baseline pumpage was then adjusted by trial and error to develop pumpage that produced an average of 35 feet of water level decline in the Middle Trinity Aquifer across the groundwater management area. In order to achieve this, it was necessary to maintain current pumpage in Kerr and Bexar counties and allow increased pumpage over most of the remaining counties. Details of these pumpage estimates are presented in Table 1. Comparison of baseline pumpage and adjusted pumpage for 35-foot water level decline shows that an additional 42,000 acre-feet of groundwater could potentially be pumped regionally.

Counties	Baseline pumpage developed to reflect current water levels	Baseline pumpage adjusted for about 35 foot water level decline
Bandera	4,215	10,075
Bexar	18,112	18,112
Blanco	1,564	4,166
Comal	6,255	16,384
Gillespie	2,482	5,498
Hays	4,842	12,553
Kendall	6,336	16,319
Kerr	7,513	7,513
Medina	403	1,034
Travis	5,596	8,118
Total	57,378	99,772

Table 1. Estimated total county pumpage reported in acre feet per year. Total county pumpage is the sum of pumpage from the Edwards Group, Upper Trinity, and Middle Trinity aquifers.

Groundwater Management Area 9 consists of Kerr, Bandera, Medina, Kendall, Bexar, Comal, Blanco, Hays, and Travis counties (Figure 1). Groundwater Management Area 9 contains numerous rivers and creeks, all of which gain groundwater from the aquifer, indicated by water level elevation contours that bend upstream along the length of the streams. Baseflow discharge that feeds most of the water courses in the area is a large component of streamflow (Mace and others, 2000).

Simulated water level elevation maps for the Edwards Group, Upper Trinity, and Middle Trinity aquifers suggest that groundwater flows from the north to the south and from the west to the east (Figures 2, 3, 4, 5, 6, and 7). We observed minor changes to the simulated water levels in the Edwards Group between 2008 and 2060 across Groundwater

Management Area 9 (Figures 2 and 3). Simulated water levels in the Upper Trinity Aquifer remained relatively uniform between 2008 and 2060 with the exception of water level declines in northern parts of Kerr, Kendall, and Travis counties (Figures 4 and 5).

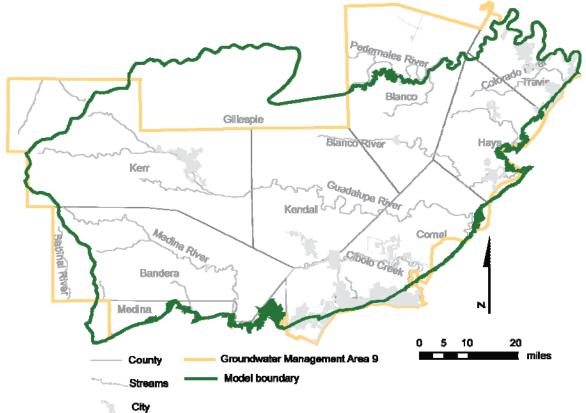


Figure 1. Map showing counties and streams in Groundwater Management Area 9. Outlines of Groundwater Management Area 9 and the model boundary are also shown. Note the groundwater model boundary also includes areas outside Groundwater Management Area 9.

Simulated water levels in the Middle Trinity Aquifer show significant changes between 2008 and 2060 (Figures 6 and 7). Simulated water levels show the most declines in Kerr, Kendall, Travis, Comal, and Bexar counties. Simulated water level maps also show development of numerous dry cells in southern Kendall and northern Bexar counties suggesting that the aquifer may not be able to readily sustain the specified pumpage in this area. However, note that the model does not accurately represent recharge to the Trinity Aquifer in northern Bexar County through stream flow losses in Cibolo Creek; therefore, these results for northern Bexar County may not be accurate.

Water level change maps were developed for the Edwards Group, Upper Trinity, and Middle Trinity aquifers (Figures 8, 9, and 10). These water level change maps were generated by subtracting simulated water levels in 2008 under baseline pumpage from simulated water levels in 2060 under adjusted pumpage. We note that the water levels increase (recover) by up to about 10 feet over most of the Edwards Group except in the eastern portions where water level decrease (drawdown) by up to 3 feet where the aquifer is thin. Water levels decrease by up to 35 feet in the Upper Trinity Aquifer in the southwestern parts of Kendall County. Water levels increase (recover) in the Upper Trinity Aquifer by up to 5 feet in parts of Gillespie, Kerr, and Bexar counties (Figure 9). One model cell in the Upper Trinity Aquifer in Bexar County shows significant water level increase (recovery) of up to 80 feet (Figure 9). Water level change map for the Middle Trinity Aquifer shows a significant decrease (drawdown) of up to 180 feet in the Middle Trinity Aquifer in the northern parts of Bexar County (Figure 10). However, these water level decreases average about 35 feet for the Middle Trinity Aquifer over most of the Groundwater Management Area 9. Water level changes for each of the counties within Groundwater Management Area 9 are presented in Table 2.

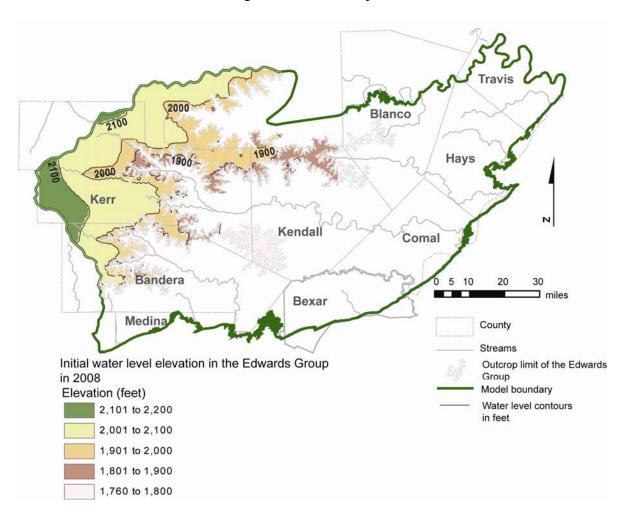


Figure 2. Initial water levels in the Edwards Group in 2008 for the beginning of the predictive period under baseline pumping from the groundwater availability model for the Hill Country portion of the Trinity Aquifer. Water level elevations are reported in feet above mean sea level. Contour interval is 100 feet. Note the water levels decrease from the west to the east following the land surface elevation.

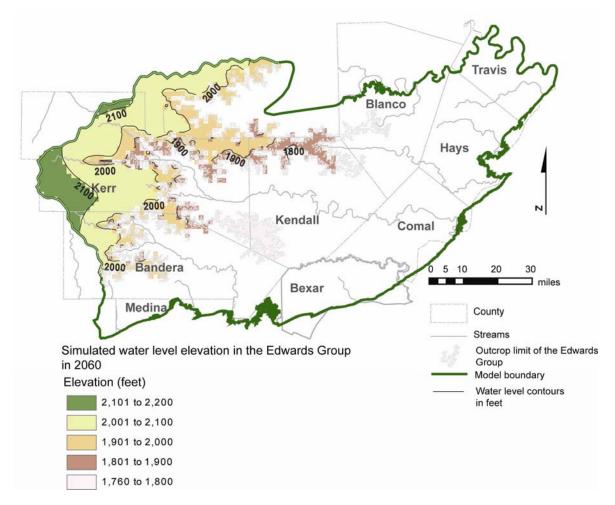


Figure 3. Water level elevations in the Edwards Group in 2060 maintaining the same pumpage as baseline condition. Water level elevations are reported in feet above mean sea level. Contour interval is 100 feet. Note only slight changes in water level elevations at the end of the predictive period in 2060.

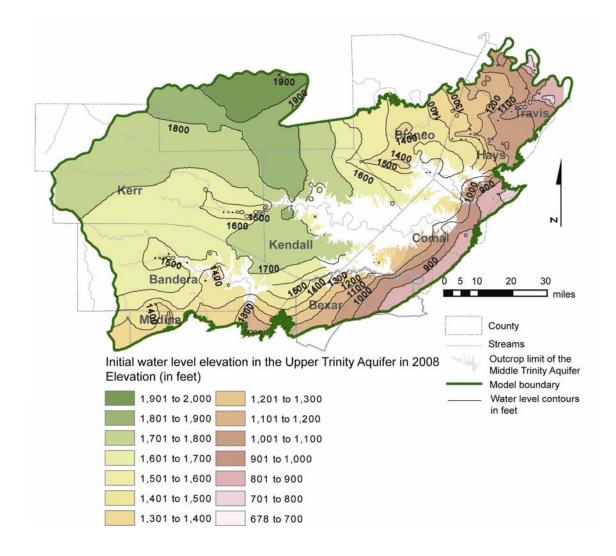


Figure 4. Initial water levels in the Upper Trinity Aquifer in 2008 for the beginning of the predictive period under baseline pumping from the groundwater availability model for the Hill Country portion of the Trinity Aquifer. Water level elevations are reported in feet above mean sea level. Contour interval is 100 feet.

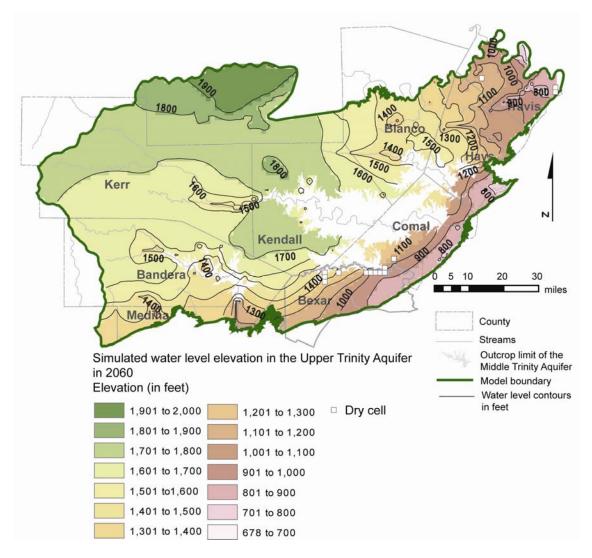


Figure 5. Water level elevations in the Upper Trinity Aquifer in 2060 maintaining the same pumpage as baseline condition. Water level elevations are in feet above mean sea level. Contour interval is 100 feet. Note changes to water level elevations in Gillespie, Kendall, Bexar, and Travis counties. Note dry cells in Comal and Bexar counties.

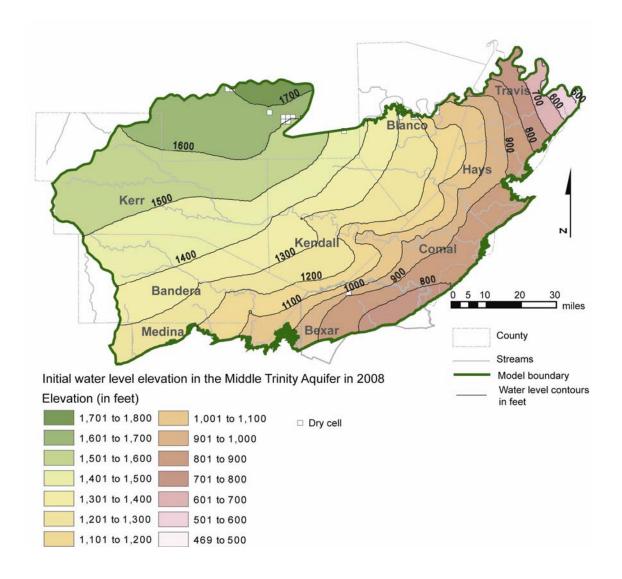


Figure 6. Initial water levels in the Middle Trinity Aquifer in 2008 for the beginning of the predictive period under baseline pumping condition from the groundwater availability model for the Hill Country portion of the Trinity Aquifer. Note groundwater flow is directed from the north to the south and the west to the east with most of the water level contours bending upstream when the contours cross the rivers which suggests gaining nature of the rivers.

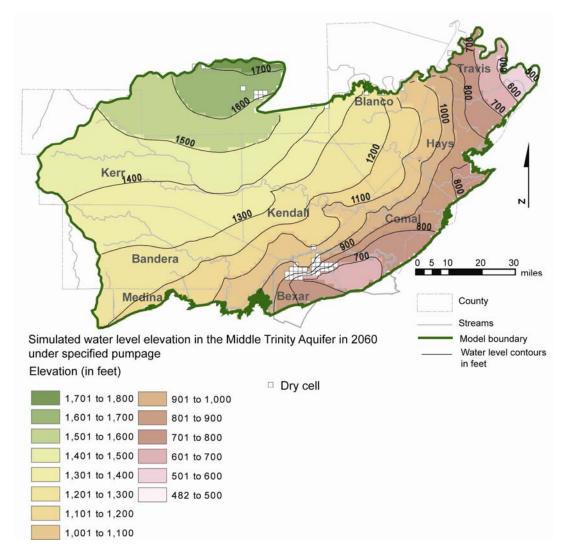


Figure 7. Water level elevations in the Middle Trinity Aquifer in 2060 using the adjusted specified pumpage. Water level elevations are reported in feet above mean sea level. Contour interval is 100 feet. Note several dry cells in Bexar, Kendall, and Gillespie counties. Note slight flattening of the water level contours when they cross the rivers suggesting decreased baseflow under the specified pumpage condition.



Figure 8. Changes in water levels in 2060 using the specified pumpage in the Edwards Group. Drawdown and water level recovery are reported in feet. Contour interval for drawdown is 1 foot and contour interval is 2 feet for water level recovery. Decreases in water levels are shown in red and increases in blue.

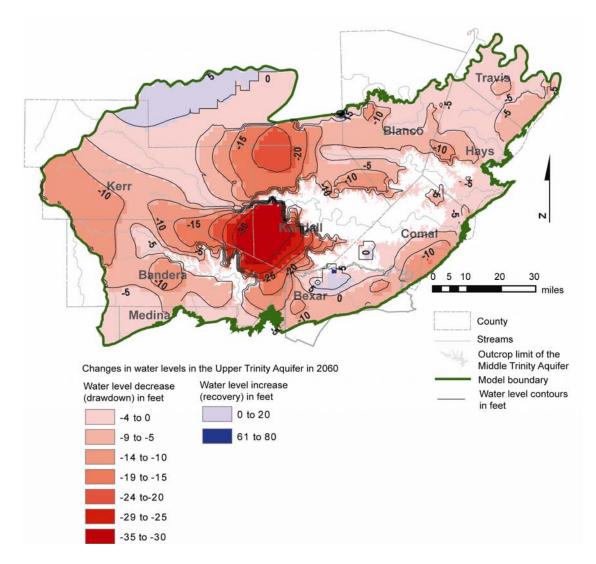


Figure 9. Changes in water levels in 2060 maintaining using the specified pumpage in the Upper Trinity Aquifer. Drawdowns and water level recovery are reported in feet. Contour interval for drawdown is 5 feet. Decreases in water levels are shown in red and increases in blue.

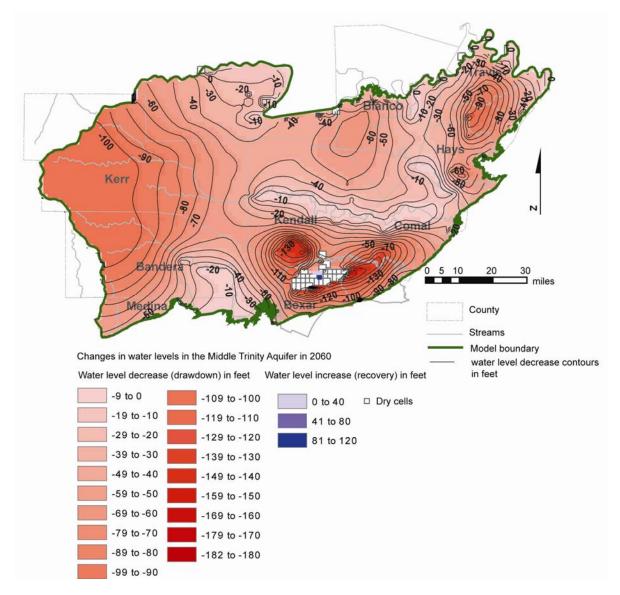


Figure 2. Changes in water levels in 2060 using the specified pumpage in the Middle Trinity Aquifer. Drawdowns are in feet. Contour interval is 10 feet. Decreases in water levels are shown in red. Increases in water levels for two cells in the northwestern parts of Bexar County are shown in blue. Numerous dry cells occur in Bexar and Kendall counties. A few dry cells also occur along the model boundaries due to thin model layer thickness along these areas. Table 2. Water level changes in the Edwards, Upper Trinity, and Middle Trinity aquifers of the Hill Country area reported by county and aquifer. Negative values indicate a lowering of the water levels between 2008 under baseline pumping conditions and 2060 under increased pumping condition such that it produces water level declines by an average of about 35 foot for the Middle Trinity Aquifer across the Groundwater Management Area 9. Positive values indicate a recovery in the water levels in 2060 under the specified pumpage condition.

County	Water level decline (feet) in 2060 using specified					
	Average	pumpage Maximum	Minimum			
Edwards Group						
Bandera	0	-3	+5			
Kendall	0	-3	0			
Kerr	+2	-2	+9			
Average	0	-3	+5			
Upper Trinity Aquifer						
Bandera	-8	-32	0			
Bexar	-3	-14	0			
Blanco	-2	-11	+2			
Comal	-2	-15	0			
Hays	-2	-11	0			
Kendall	-12	-35	0			
Kerr	-8	-34	+2			
Medina	-2	-15	0			
Travis	-2	-10	0			
Average	-5	-20	0			
Middle Trinity Aquifer						
Bandera	-52	-108	0			
Bexar	-42	-182	+89			
Blanco	-20	-66	0			
Comal	-27	-137	0			
Hays	-27	-122	0			
Kendall	-47	-159	0			
Kerr	-70	-109	0			
Medina	-14	-74	0			
Travis	-20	-98	0			
Average	-35	-117	+10			

Estimates of the water budget are included in Appendix 1. Various components of the water budget results presented in the appendix are described below.

• Recharge—Describes amount of water that infiltrates into the aquifer from rainfall in the outcrop and leakage from rivers and lakes. Recharge is always positive as water is added into the aquifer.

- River—Describes amount of water that flows between the rivers and an aquifer. When the water levels in an aquifer lie at a higher elevation than the river stage, water discharges (negative) from the aquifer into the river as baseflow. Conversely, if the water levels in an aquifer lie at a lower elevation than the river stage, water leaks into the aquifer (positive) from the river. Rivers are simulated in the model using the MODFLOW Drain Package. The Drain Package was used because the rivers in the Hill Country area are gaining and assigning the drains will only allow the rivers to receive water from the aquifer.
- Balcones Fault Zone (General Head Boundary Package)—General head boundary was assigned in the east of the model area in model layers 2 and 3 to estimate movement of water from the Upper and Middle Trinity aquifers into the Edwards (Balcones Fault Zone) Aquifer.
- Springs—Describes flow through the discrete springs simulated in the model using the MODFLOW Drain Package. Note that spring flow is also included in the River budget item.
- Lakes/reservoirs—Describes flow through the lakes/reservoirs simulated in the model using the MODFLOW Constant head package.
- Pumping—Describes amount of water produced from wells in each aquifer. This component of flow is reported negative as water is withdrawn from the aquifer. Pumping is represented in the model using the MODFLOW Well package.
- Vertical flow (Upper and Lower)—Describes amount of cross-formational flow along the contacts of the model layers between two aquifers. This flow is controlled by the water level elevations in each aquifer and aquifer properties of each aquifer.
- Lateral flow —Describes amount of groundwater flowing laterally along the horizontal direction in the aquifer.
- Storage—Describes net water stored in the aquifer. This component of the budget is often seen as water both going into and out of the aquifers. Positive sign indicate that water levels will rise (water added to storage) and negative sign indicates water level will decline (water removed from storage).

We present the water budget results as "In" and "Out" for 2008 and 2060 (Appendix 1). This comparison of water budget results for 2008 and 2060 indicates how groundwater movement between the aquifers, rivers, springs, and lakes/reservoirs will likely change through time if it is decided that pumping from the aquifers will increase from a baseline to an adjusted specified pumpage condition. The column of results under "In" indicates the amount of water that is coming into the aquifer and the column of results under "Out" indicates the amount of water that is leaving the aquifer. Recharge is always found under the "In" column as recharge infiltrates into the aquifer. Some parameters, such as

rivers and vertical and lateral flow could occur in both "In" and "Out" columns given the variation in local hydrogeologic conditions of the aquifer.

Water budget results indicate that various components of flow for the Edwards Group and the Upper Trinity aquifers increase between 2008 and 2060 due to the application of constant pumpage through the 60 year simulation period (Appendix 1). For example, baseflow discharges for the rivers that flow over the Edwards Group and the Upper Trinity aquifers actually show a gain (Appendix 1). This is because water levels in the area increase resulting in a higher hydraulic gradient causing more water to discharge to the river. Springs in these two aquifers also show gain (Appendix 1). However, water budget results for the Middle-Trinity Aquifer show a decrease for various components of flow to compensate for an increase in pumpage (Appendix 1). Baseflow discharges into the rivers that flow over the Middle Trinity Aquifer decrease by about 20 to 40 percent in several areas including Blanco, Kendall, and Hays counties (Appendix 1). Spring discharges in the Middle Trinity Aquifer also decrease by about 30 percent in Blanco and Hays counties and by about 80 percent in Kendall County. However, it must be noted that water budget results reported for spring discharges are based on a total of only 14 springs across the entire model area. The rivers in the area are largely fed by baseflow and discharges through springs along the river beds. However, only the larger springs could be included in the model as the model was constructed with 1 mile by 1 mile grid sizes to simulate regional flow conditions. Therefore, reported baseflow discharges along the long stretches of the rivers are probably a more reliable indicator of pumpage effects on natural flow to the rivers and springs. The reported decreases in baseflow discharges to the rivers and springs may not have a significant impact on changing groundwater flow direction in the aquifers regionally or changing the rivers from gaining to losing which is supported from simulated water level contours that still bend upstream along the course of the rivers after 60 years of specified pumping (Figures 6 and 7). However, reported decreases in baseflow under the specified pumping condition may result in a reduction of streamflow. A reduction in flow across the Balcones Fault Zone to the Edwards (Balcones Fault Zone) Aquifer is also noted (Appendix 1). In addition to a reduction in baseflow and flow into the Edwards (Balcones Fault Zone) Aquifer, we must note that several dry cells occur in the northern Bexar and southern parts of Kendall counties suggesting that the specified amount of pumpage may not be sustainable for the long term.

For Bexar, Comal, and Kendall counties, occurrences of a few dry cells may inherently affect the water budget values between 2008 and 2060. If dry cells appear, the cell is shut off and is not included in the water budget calculation. Dry cells may only appear towards the end of the predictive period and not at the beginning giving minor mismatch for "In" and "Out" values between 2008 and 2060 for some flow parameters.

REFERENCES:

Chiang, W.H. and Kinzelbach, W., 1998, Processing Modflow: A simulation system for modeling groundwater flow and pollution: Hamburgh, Zurich, variously paginated.

- Chowdhury, A.H., 2007, GAM Run 7-18, Texas Water Development Board unpublished report, 30 p.
- Mace, R.E., Chowdhury, A.H., Anaya, R., and Way, S.-C., 2000, Groundwater availability of the Trinity Aquifer, Hill Country Area, Texas—Numerical simulations through 2050: Texas Water Development Board Report 353, 119 p.

The seal appearing on this document was authorized by Ali H. Chowdhury, P.G. on July 08, 2008. Appendix 1. Annual water budgets for each county at the beginning (2008) of the predictive period under baseline pumping and at the end (2060) of the predictive model run using adjusted specified pumpage in the groundwater availability model for the Hill Country portion of the Trinity Aquifer such that water level declines by about 35 foot in the Middle Trinity Aquifer across the Groundwater Management Area 9. Water budget values are reported in acre-feet per year. Water budgets for Kerr, Gillespie, Blanco, Medina, Kimble, Uvalde, and Bexar counties represent only the portions of those counties located in the active portion of the model. Note that the "spring" item only refers to springs discretely represented in the model. The "Rivers" term includes other spring flow.

Aquifer	County	Flow parameters	Water budg	Water budget for 2008		get for 2060
			In	Out	In	Out
Edwards Group Aquifer	Bandera	Storage	213	6	0	1
		Lakes/reservoirs (Constant Head)	0	0	0	0
		Lateral flow	2,158	20	2,366	20
		Vertical flow (upward)	0	0	0	0
		Vertical flow (downward)	0	458	0	459
		Pumping	0	596	0	596
		Rivers (Drain)	0	12,880	0	12,879
		Recharge	11,588	0	11,588	0
		Balcones Fault Zone (General Head Boundary)	0	0	0	0
		Total	13,958	13,960	13,953	13,955
Upper Trinity Aquifer	Bandera	Storage	1,763	1	0	0
		Lakes/reservoirs (Constant Head)	2	2,586	2	2,465
		Lateral flow	5,692	10,147	5,058	9,399
		Vertical flow (upward)	458	0	459	0
		Vertical flow (downward)	18	14,147	0	13,620
		Pumping	0	270	0	270
		Rivers (Drain)	0	13,403	0	12,456
		Recharge	33,368	0	33,368	0
		Balcones Fault Zone (General Head Boundary)	14	402	19	357
		Springs (Drain)	0	359	0	339
		Total	41,314	41,315	38,906	38,905
Middle Trinity Aquifer	Bandera	Storage	1,804	0	28	0
		Lakes/reservoirs (Constant Head)	0	0	0	0
		Lateral flow	8,672	11,713	6,790	9,259
		Vertical flow (upward)	14,147	18	13,620	0
		Vertical flow (downward)	0	0	0	0
		Pumping	0	3,347	0	9,204
		Rivers (Drain)	0	12,694	0	5,974
		Recharge	4,432	0	4,432	0
		Balcones Fault Zone (General Head Boundary)	222	1,520	353	823
		Total	29,277	29,292	25,223	25,259

Appendix 1 continued.

Aquifer	County	Flow parameters	Water budg	get for 2008	Water bud	get for 2060
_			In	Out	In	Out
Upper Trinity Aquifer	Blanco	Storage	911	0	0	0
		Lakes/reservoirs (Constant Head)	0	0	0	0
		Lateral flow	3,561	1,906	3,420	1,761
		Vertical flow (upward)	0	0	0	0
		Vertical flow (downward)	0	7,931	0	7,883
		Pumping	0	77	0	77
		Rivers (Drain)	0	13,745	0	12,875
		Recharge	19,175	0	19,175	0
		Balcones Fault Zone (General Head Boundary)	0	0	0	0
		Total	23,647	23,659	22,595	22,597
Middle Trinity Aquifer	Blanco	Storage	902	0	0	0
		Lakes/reservoirs (Constant Head)	0	0	0	0
		Lateral flow	4,904	8,993	3,720	7,948
		Vertical flow (upward)	7,931	0	7,883	0
		Vertical flow (downward)	0	0	0	0
		Pumping	0	1,469	0	4,039
		Rivers (Drain)	0	12,443	0	8,790
		Recharge	9,206	0	9,206	0
		Balcones Fault Zone (General Head Boundary)	197	197	0	0
		Springs (Drain)		30		20
		Total	23,140	23,132	20,810	20,796
Upper Trinity Aquifer	Comal	Storage	546	2	0	0
		Lakes/reservoirs (Constant Head)	174	254	211	219
		Lateral flow	1,825	2,611	1,774	2,544
		Vertical flow (upward)	0	0	0	0
		Vertical flow (downward)	61	3,674	38	3,745
		Pumping	0	473	0	473
		Rivers (Drain Package)	0	1,005	0	915
		Recharge	14,479	0	14,479	0
		Balcones Fault Zone (General Head Boundary)	0	9,066	0	8,605
		Total	17,084	17,084	16,502	16,502

Appendix 1 continued.

Aquifer	County	Flow parameters	Water budg	get for 2008	Water bud	get for 2060
_			In	Out	In	Out
Middle Trinity Aquifer	Comal	Storage	1,213	91	0	0
		Lakes/reservoirs (Constant Head)	2,121	4,018	4,152	2,596
		Lateral flow	9,411	9,924	7,251	5,678
		Vertical flow (upward)	3,674	61	3,745	38
		Vertical flow (downward)	0	0	0	0
		Pumping	0	5,741	0	15,430
		Rivers (Drain Package)	0	6,818	0	4,184
		Recharge	13,278	0	13,278	0
		Balcones Fault Zone (General Head Boundary)	0	3,044	555	1,056
		Total	29,696	29,696	28,981	28,982
Upper Trinity Aquifer	Travis	Storage	419	0	0	0
		Lakes/reservoirs (Constant Head)	0	1,007	0	988
		Lateral flow	1,348	918	1,315	862
		Vertical flow (upward)	0	0	0	0
		Vertical flow (downward)	0	5,620	0	5,489
		Pumping	0	551	0	551
		Rivers (Drain)	0	5,081	0	4,917
		Recharge	12,629	0	12,629	0
		Balcones Fault Zone (General Head Boundary)	0	1,218	0	1,136
		Springs (Drain)		0		0
		Total	14,396	14,396	13,943	13,944
Middle Trinity Aquifer	Travis	Storage	389	71	0	0
		Lakes/reservoirs (Constant Head)	718	5,401	1,183	3,114
		Lateral flow	3,181	144	2,158	84
		Vertical flow (upward)	5,620	0	5,489	0
		Vertical flow (downward)	0	0	0	0
		Pumping	0	5,104	0	7,617
		Rivers (Drain)	0	619	0	82
		Recharge	2,515	0	2,456	0
		Balcones Fault Zone (General Head Boundary)	0	1,092	32	425
		Total	12,422	12,431	11,318	11,323

Appendix 1 continued

Aquifer	County	Flow parameters	Water bud	get for 2008	Water budget for 2060		
_			In	Out	In	Out	
Edwards Group Aquifer	Kendall	Storage	65	7	0	0	
		Lakes/reservoirs (Constant Head)	0	0	0	0	
		Lateral flow	111	215	113	208	
		Vertical flow (upward)	0	0	0	0	
		Vertical flow (downward)	6	43	1	49	
		Pumping	0	318	0	318	
		Rivers (Drain)	0	5,509	0	5,449	
		Recharge	5,908	0	5,908	0	
		Balcones Fault Zone (General Head Boundary)	0	0	0	0	
		Total	6,091	6,093	6,022	6,024	
Upper Trinity Aquifer	Kendall	Storage	1,951	0	0	0	
		Lakes/reservoirs (Constant Head)	0	0	0	0	
		Lateral flow	2,046	9,455	1,727	8,436	
		Vertical flow (upward)	43	6	49	1	
		Vertical flow (downward)	8	15,728	0	15,158	
		Pumping	0	307	0	307	
		Rivers (Drain)	0	5,183	0	4,505	
		Recharge	26,627	0	26,627	0	
		Balcones Fault Zone (General Head Boundary)	0	0	0	0	
		Total	30,676	30,679	28,404	28,408	
Middle Trinity Aquifer	Kendall	Storage	1,859	0	3	0	
		Lakes/reservoirs (Constant Head)	0	0	0	0	
		Lateral flow	9,205	12,810	7,021	8,104	
		Vertical flow (upward)	15,728	8	15,158	0	
		Vertical flow (downward)	0	0	0	0	
		Pumping	0	5,546	0	14,661	
		Rivers (Drain)	0	24,500	0	15,998	
		Recharge	16,761	0	16,698	0	
		Balcones Fault Zone (General Head Boundary)	0	0	0	0	
		Springs (Drain)		690		119	
		Total	43,553	43,554	38,880	38,882	

Appendix 1 continued

Aquifer	County	Flow parameters	Water budg	get for 2008	Water budget for 2060		
			In	Out	In	Out	
Upper Trinity Aquifer	Hays	Storage	620	0	0	0	
		Lakes/reservoirs (Constant Head)	0	0	0	0	
		Lateral flow	3,388	2,597	3,246	2,534	
		Vertical flow (upward)	0	0	0	0	
		Vertical flow (downward)	53	7,923	4	7,863	
		Pumping	0	408	0	408	
		Rivers (Drain Package)	0	15,309	0	14,764	
		Recharge	24,929	0	24,929	0	
		Balcones Fault Zone (General Head Boundary)	14	2,688	18	2,560	
		Springs (Drain)		81		68	
		Total	29,005	29,006	28,196	28,197	
Middle Trinity Aquifer	Hays	Storage	440	49	0	0	
• •	,~	Lakes/reservoirs (Constant Head)	0	0	0	0	
		Lateral flow	9,059	7,159	8,154	5,386	
		Vertical flow (upward)	7,923	53	7,863	4	
		Vertical flow (downward)	0	0	0	0	
		Pumping	0	4,273	0	11,750	
		Rivers (Drain Package)	0	8,738	0	4,721	
		Recharge	5,802	0	5,802	0	
		Balcones Fault Zone (General Head Boundary)	0	2,509	739	390	
		Springs (Drain)		450		310	
		Total	23,224	23,231	22,558	22,561	
Edwards Group Aquifer	Kerr	Storage	23	1,330	0	7	
		Lakes/reservoirs (Constant Head)	0	0	0	0	
		Lateral flow	2,761	4,266	2,878	4,592	
		Vertical flow (upward)	0	0	0	0	
		Vertical flow (downward)	0	3,401	0	3,488	
		Pumping	0	1,036	0	1,036	
		Rivers (Drain)	0	21,248	0	22,194	
		Recharge	29,478	0	29,478	0	
		Balcones Fault Zone (General Head Boundary)	0	0	0	0	
		Drains (Springs)	~	986	0	1,043	
		Total	32,262	32,266	32,356	32,360	

Appendix 1 continued.

Aquifer	County	Flow parameters	Water budg	get for 2008	Water bud	get for 2060
_			In	Out	In	Out
Upper Trinity Aquifer	Kerr	Storage	1,160	27	0	0
		Lakes/reservoirs (Constant Head)	0	0	0	0
		Lateral flow	2,984	1,876	2,734	1,638
		Vertical flow (upward)	3,401	0	3,488	0
		Vertical flow (downward)	10	8,507	0	8,731
		Pumping	0	213	0	213
		Rivers (Drain)	0	13,704	0	12,410
		Recharge	16,771	0	16,771	0
		Balcones Fault Zone (General Head Boundary)	0	0	0	0
		Total	24,325	24,327	22,992	22,992
Middle Trinity Aquifer	Kerr	Storage	1,786	0	63	0
		Lakes/reservoirs (Constant Head Package)	0	0	0	0
		Lateral flow	4,384	8,455	4,018	6,617
		Vertical flow (upward)	8,507	10	8,731	0
		Vertical flow (downward)	0	0	0	0
		Pumping	0	6,259	0	6,259
		Rivers (Drain)	0	0	0	0
		Recharge	0	0	0	0
		Balcones Fault Zone (General Head Boundary)	0	0	0	0
		Total	14,676	14,725	12,812	12,877
Upper Trinity Aquifer	Medina	Storage	216	0	0	0
		Lakes/reservoirs (Constant Head)	1	3,580	1	3,449
		Lateral flow	7,039	3,619	6,673	3,418
		Vertical flow (upward)	0	0	0	0
		Vertical flow (downward)	20	1,084	0	1,207
		Pumping	0	43	0	43
		Rivers (Drain)	0	2,032	0	1,959
		Recharge	7,805	0	7,805	0
		Balcones Fault Zone (General Head Boundary)	128	4,850	141	4,546
		Total	15,209	15,209	14,621	14,621

Appendix 1 continued.

Aquifer	County	Flow parameters	Water bud	get for 2008	Water budg	get for 2060
_	-		In	Out	In	Out
Middle Trinity Aquifer	Medina	Storage	198	0	1	0
		Lakes/reservoirs (Constant Head)	0	0	0	0
		Lateral flow	9,760	3,963	7,661	4,837
		Vertical flow (upward)	1,084	20	1,207	0
		Vertical flow (downward)	0	0	0	0
		Pumping	0	360	0	991
		Rivers (Drain)	0	0	0	0
		Recharge	0	0	0	0
		Balcones Fault Zone (General Head Boundary)	214	6,913	894	3,937
		Total	11,256	11,256	9,762	9,765
Upper Trinity Aquifer	Bexar	Storage	623	0	0	0
		Lakes/reservoirs (Constant Head)	0	0	0	0
		Lateral flow	6,160	1,642	5,576	1,593
		Vertical flow (upward)	0	0	0	0
		Vertical flow (downward)	0	1,731	0	1,646
		Pumping	0	924	0	924
		Rivers (Drain Package)	0	2,354	0	1,891
		Recharge	10,242	0	10,242	0
		Balcones Fault Zone (General Head Boundary)	0	10,374	0	9,763
		Total	17,025	17,025	15,818	15,818
Middle Trinity Aquifer	Bexar	Storage	3,441	0	1	0
		Lakes/reservoirs (Constant Head)	0	0	0	0
		Lateral flow	11,981	1,194	7,451	204
		Vertical flow (upward)	1,731	0	1,646	0
		Vertical flow (downward)	0	0	0	0
		Pumping	0	16,893	0	14,958
		Rivers (Drain)	0	0	0	0
		Recharge	1,638	0	1,638	0
		Balcones Fault Zone (General Head Boundary)	129	834	4,476	50
		Total	18,920	18,920	15,212	15,212