

Brackish Groundwater Characterization Carrizo-Wilcox and overlying aquifers Central Texas

by John Meyer, P.G.

May 06, 2013

Why study brackish water?

- 2.7 billion acre-feet brackish groundwater
- Need detailed information
- Growing interest in desalination

Texas Water Development Board How does TWDB characterize brackish water?

BRACS: Brackish Resources Aquifer Characterization System

- map aquifer extent to 10,000 mg/L TDS
- map key desalination parameters
- compile aquifer properties
- calculate volumes of water
- collect well logs (water, oil/gas) for interpretation
- build datasets (database, GIS) of project information
- provide **all** information to interested stakeholders (well logs; database; GIS files; reports)

TWDB Database Tables

TWDB Groundwater Database

Well Data Remarks Water Levels Water Chemistry (2 tables) Casing

> New Tables

TWDB BRACS Database

Well Data (location, depth, owner, ...)

Water Levels Water Chemistry (2 tables) Casing

Foreign Keys (well ids) Well Geology (lithology\stratigraphy) Net Sand and Sand Percent Interpreted TDS from Geophysical W.L. Aquifer Determination Analysis Digital Water Well Reports Digital Geophysical Well Logs Geophysical Well Log Suites Aquifer Test Information

> Texas Water Development Board

BRACS Database

- MS Access relational design
- Contains all the new information we are collecting
- Designed to process information (Visual Basic Code)
- Link to additional databases through key fields
- Available on our website (with data dictionary)
- Will be merged with the TWDB Groundwater Database in MS SQL Server

BRACS Database

Foreign Key Table

- Well name(s)
- Number(s)
- State Well Number
- API Number
- Q-number
- PWS ID
- Report numbers
- Cross-Section IDs

Development Board

Formation Lithology

Geophysical well logs, water well reports

Net sand and sand percent

Clay thickness

Used for:

water volume calculations

evaluating sand thickness and occurrence

Lithologic and Stratigraphic Data in the BRACS Database

Stratigraphic Description

Lithologic Description

Record C Number	Geologic Pidk	Top Depth Bottom Depth Thickness	Lithologic Description Source of Data Init	ials Last Change	Reco Num	rd Geologic Pick ber	Top Depth Bottom Depth Thickness	Stratigraphic Description Source of Data Initials	Last Change
▶ 10 Li	thologic	• 0				1 Stratigraphic	• 0	Yegua Formation	
		10 San	d		=	Unit > Well Depth ?	745	Geophysical We	ll Log 🗸 🚽
		10 GEC	PHYSICAL WELL LOG	-			745		10/1/2012
				1/17/2013		2 Stratigraphic	• 745	Cook Mountain Formation	
11 17	thologic	- 10			-	Unit > Well Depth ?	1163	Geophysical We	ll Log
		120 Clay	1				418		3/11/2013
						3 Stratigraphic	• 1163	Sparta Formation	
			PHYSICAL WELL LOG	1/17/2013		Unit > Well Depth ?	• 1375	Geophysical We	ll Log 🗸 🗸
				1/1/2013	-		212	-	3/11/2013
12 Li	thologic					4 Stratigraphic	• 1375	Weches Formation	
		145 San	d			Unit > Well Depth ?	• 1430	Geophysical We	ll Log
		25 GEC	PHYSICAL WELL LOG				55		3/11/2013
				1/17/2013		5 Stratigraphic	• 1430	Queen City Formation	
13 Li	thologic	• 145				Unit > Well Depth ?	2050	Geophysical We	:II Log ▼
		166 Clay	1	T		-	020		5/11/2013
		21 GEC	PHYSICAL WELLLOG			6 Stratigraphic	2050	Reklaw Formation	
				1/17/2013		Unit > Well Depth ?	2260	Geophysical we	11 LOG ▼
10	ale et e e e e				-	7 Chatimashia	210	Comine Francisco	1 2/0/2013
	triologic		0			7 Straugraphic	2200	Cembyeical We	
		409 Clay	t.	•		Unit > Well Depth ?	705	Geophysical We	2/8/2013
		142 GEC	PHYSICAL WELL LOG			8 Stratigraphic	2965	Wilcox Group	,
				1/17/2013	-		5860	Geophysical We	
15 Li	thologic	308				Unit > Well Depth ?	2895		10/1/2012
		320 Clay	¢			9 Stratigraphic	5860	Midway Formation	,
		12 GEC	PHYSICAL WELL LOG					Geophysical We	
				1/17/2013		Unit > Well Depth ?			10/1/2012
16 Li	thologic	→ 320			*		Ţ		

Texas Water Development Board

--

> --

> > -

> --

> . -

- -

=

Aquifer Determination

- Assign aquifer(s) to each well in the project area
- Use screen top/bottom *or* well depth *or* total depth of hole
- Use the GIS-derived 3-D formation surfaces as vertical control

Why?

- Compare wells completed in same aquifer
- Consistent evaluation of aquifer water quality and properties
- Many new wells do not have TWDB aquifer code
- Some TWDB wells have incorrect aquifer code

Calculating TDS from Geophysical Well Logs

TWDB Water Science and Conservation Inr	novative Water Technologies Brackish Resources Aquifer Characterization System	
Well Id 1376 BR A GL Number 844 Depth Formation (Df): 530	ACS Geophysical Log Analysis for TDS Calculations Blue Field: Auto Loaded Gray Field: Calculated by CPU SP Method Mean Ro	Load The New Data Close Form Initials: JEM
Thickness Lithologic Unit: 30 TDS Interpreted 3428 Consensus TDS Method SP Method	Alger - Harrison Rwa Method Ts 63 Dt 1015 Tf 69.2660 Rmf 1.7 Tbh 75 Rmf Tf 1.546213	
TDS Method: SP Method Geophysical Log Used: SPONTANEOUS POTENTIAL	Rwe 2.010062 Rw 2.211068 Rw75 2.042024 Cw 4897.101 TD5 3428 Initia Correction Factors Correction Factors Correction Factors Correction Factors Correction Factors	ds: JEM 💌
SP 8 Rxo 0 Ro 0 Rxo / Ro 0 m 0 V	70.21238 K (Temperature): SP Method 1.1 Rwe Rw: Sp, Alger Harrison, and Rwa Minimum Methods 1 Rmf: SP and Alger Harrison Methods 0.7 ct: Many Methods 99 Invasion Zone: Alger Harrison Method	
Source m N/A Porosity: .0 Source Porosity: N/A	1 m correction Factor: Estepp Method high anion waters 1 Ro: Mean Ro Method	
Record: I </th <th></th> <th></th>		

Mean Ro TDS Method

Texas Water Development Board

Estimated Groundwater Volumes

Three TDS Ranges:

- Fresh (0-999 mg/L)
- Brackish (1,000 -2,999 mg/L) (3,000 – 9,999 mg/L)
- Very Saline (> 10,000mg/L)

Organized by:

- Aquifer
- County
- Estimated Confined Availability
- Estimated Total Estimated Recoverable Storage

Use similar approach by:

"Brackish Groundwater Manual for Texas Regional Water Planning Groups"

TWDB Groundwater Resources Division

Request for Information

Non-confidential data:

- Consultant reports
- Water quality data
- Well testing and aquifer parameters
- Geophysical well logs

BRACS well locations in WIID^(*)

(*) WIID: Water Information Integration & Dissemination

BRACS Projects

- Pecos Valley Aquifer, West Texas (completed August 2011)
- Gulf Coast Aquifer, Corpus Christi ASR Conservation
 District (completed March 2012)
- Queen City Sparta Aquifer, Atascosa and McMullen counties (final review in progress)
- Carrizo Wilcox Aquifer, Central Texas (*in progress*)
- Gulf Coast Aquifer, Lower Rio Grande Valley (*in progress*)

BRACS Contracted Studies

Well Log Collection

Locate and Acquire Digital Geophysical Well Logs and Conduct Data Entry of Attributes TRD-201003075

Geologic Bibliography

Aquifers of Texas Bibliography to Support the Brackish Resources Aquifer Characterization System (BRACS) Program

Final Report

Variable Density Modeling

Final Report		
Prepared by		
Neil E. Deeds, Ph.D., P.E.		
	E una ser de la	
Prepared for:		
Texas Water Develo P.O. Box 13231, Can	pment Board itol Station Develo	exas Water pment Board

Desalination Studies and Demonstration Projects

Summary

- Project completion scheduled for August 31, 2013
- All project information will be available on TWDB website
- All geophysical well log files available upon request
- Districts, public water systems, and other interested parties will be contacted by email when project is completed
- If you have non-confidential information to share we will gladly accept it

Texas Water Development Board

www.twdb.texas.gov

John E. Meyer, P.G. (512) 463-8010 John.meyer@twdb.texas.gov

