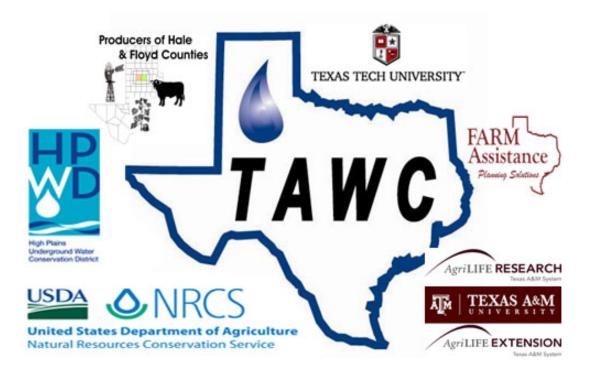
'AN INTEGRATED APPROACH TO WATER CONSERVATION FOR AGRICULTURE IN THE TEXAS SOUTHERN HIGH PLAINS'


10th Annual Comprehensive Report 2005-2014

to the Texas Water Development Board

DECEMBER 21, 2015

Texas Alliance for Water Conservation participants:

C. West, P. Brown, R. Kellison, P. Johnson, J. Pate, S. Maas, S. Borgstedt

Appreciation is expressed to *Texas Water Development Board*

With their vision for the future of Texas and their passion for the protection of our Water Resources this project is made possible.

The future of our region and our state depends on the protection and appropriate use of our water resources.

Table of Contents

Table of Contents	
List of Tables	iv
List of Appendix Tables	
List of Figures	
List of Appendix Figures	
Water Conservation Demonstration Producer Board	
Texas Alliance for Water Conservation 2014 Participants	2
An Integrated Approach to Water Conservation for Agriculture in the Texas Southern High Plains	
Objective	
Background	3
Overall Summary of Years 2005-2014	5
Water Use and Profitability	
2014 Project Year	10
Project years 1 through 10 (2005-2014)	
Discussion	
2014 Weather data (See Appendix for 2005-2013 data)	
2014 Supplementary Grants to Project (See Appendix for 2005-2013 data)	
2014 Donations to project (See Appendix for 2005-2013 data)	
2014 Visitors to the Demonstration Project sites	19
2014 Presentations (See Appendix for 2005-2013 data)	
2014 Related Non-refereed Publications (See Appendix for 2005-2013 data)	
2014 Related Refereed Journal Articles (See Appendix for 2005-2013 data)	
2014 Popular Press (See Appendix for 2005-2013 data)	
2014 Theses and Dissertations (See Appendix for 2005-2013 data)	
Site Descriptions (See Appendix for 2005-2013 data and terminated sites)	
Background	
Site 4	
Site 5	
Site 6	
Site 7	
Site 8	
Site 9	
Site 10	
Site 11	
Site 14	
Site 15	
Site 19	
Site 20 Site 21	
Site 22	
Site 22	
Site 26	
Site 27	
Site 27	
Site 29	
Site 20	
Site 31	
Site 32	
Site 32	
Site 34	
Site 35	
Site C50	

Site C51	
Site C52	
Site C53	
Site C54	
Site C56	120
Site C57	
Site C58	
Site C59	
Site C60	
Phase II Economic Summaries of Results from Monitoring Producer Sites in 2014.	
Phase II - Economic assumptions of data collection and interpretation	
Economic Term Definitions	
Phase II - Assumptions of energy costs, prices, fixed and variable costs (Tables 4-6)	
Reports by Specific Task	
TASK 2: Administration and Support	
2.1: Project Director: Rick Kellison, Project Director (TTU)	
2.2: Administrative Coordinator: Christy Barbee, Unit Coordinator (TTU)	
TASK 3: FARM Assistance Program	
TASK 4: Economic Analysis	
Fieldprint Calculator: Results from the Texas High Plains	
TASK 5: Plant Water Use and Water Use Efficiency	
Eddy Covariance Measurements	
Irrigation Scheduling Tool	
Remote Sensing of Soil Moisture	
Publications and Presentations related to TAWC	
TASK 6: Communications and Outreach	
March – May 2014	
June - August 2014	
September - November 2014	
December 2014- February 2015	
TASK 7: Producer Assessment of Operation	
TASK 8: Integrated Crop/Forage/Livestock Systems and Animal Production Evaluation	
TASK 9: Equipment, Site Instrumentation and Data Collection for Water Monitoring	
Total Irrigation and Water Use Efficiency (WUE)	
Crop Water Use Efficiency - 2014	
Crop Water Use Efficiency – 2005 to 2014	
TAWC Solutions: Management Tools to aid Producers in conserving Water	
Phase 2 - Budget	
Appendix - Archives	
Phase I Economic Summaries of Results from Monitoring Producer Sites in 2005-2013.	
Phase I - Economic assumptions of data collection and interpretation	
Phase I - Assumptions of energy costs, prices, fixed and variable costs (Tables A10-A13)	
Terminated Site Data (2005-2013)	
Site 1 – Terminated 2007	
Site 2 – Terminated 2013	
Site 3 – Terminated 2013	
Site 12 – Terminated 2013	
Site 13 – Terminated 2007	
Site 16 – Terminated 2007	
Site 18 – Terminated 2013	
Site 23 – Terminated 2011	
Site 25 – Terminated 2006	
Weather Data (2005-2013)	
2005	
2006	

2007	223
2008	225
2009	227
2010	229
2011	231
2012	233
2013	235
Supplementary Grants To Project (2005-2013)	237
2006	237
2007	237
2008	237
2009	238
2010	238
2011	238
2012	239
2013	239
Donations to Project (2005-2013)	240
2005	240
2008	240
2010	240
2011	240
2012	
2013	
Visitors to the Demonstration Project Sites (2005-2013)	
2005	
2006	
2007	
2008	
2009	
2010	
2011	
2012	
2013	
Presentations (2005-2013)	
2005	
2006	
2007	
2008	
2009	
2010	
2011	
2012	
2013	
Related Non-Refereed Publications (2005-2013)	
Related Refereed Journal Articles (2005-2013)	
Popular Press (2005-2013)	
Theses and Dissertations (2005-2013)	
Phase I - Budget	
Phase I - Cost Sharing	273

List of Tables

Table 1. Description of cropping system and current irrigation type used for sites plotted in Figure 5 wh	ich
meet criteria of 15 or fewer inches of irrigation and \$300 or more gross margin/acre	10
Table 2. Precipitation at each site in the demonstration area during 2014	18
Table 3. Irrigation type and total acres, by site, of crops, forages, and acres grazed during 2014	26
Table 4. Electricity irrigation cost parameters for 2014	136
Table 5. Commodity prices for 2014.	136
Table 6. Other variable and fixed costs for 2014.	137
Table 7. Summary of results from monitoring 36 producer sites during 2014	
Table 8. Summary of crop production, irrigation and economic returns for 2014.	139
Table 9. Results of Regression Equation with Gross Margin as the Dependent Variable.	
Table 10. Derived Estimates of Gross Margin	151
Table 11. Total water use efficiency summary by various cropping and livestock systems in 2014	166
Table 12. Average season rainfall, total irrigation, crop water demand, crop water demand provided by	
irrigation/total crop water and total water conserved summary 2005-2014	169
Table 13. Crop water use efficiency summary by various cropping and livestock systems in 2014	173
Table 14. Task and expense budget for Phase II - year 1 of the demonstration project	176

List of Appendix Tables

Table A 1. Irrigation type and total acres, by site, of crops, forages, and acres grazed during 2005	177
Table A 2. Irrigation type and total acres, by site, of crops, forages, and acres grazed during 2006	178
Table A 3. Irrigation type and total acres, by site, of crops, forages, and acres grazed during 2007	179
Table A 4. Irrigation type and total acres, by site, of crops, forages, and acres grazed during 2008	180
Table A 5. Irrigation type and total acres, by site, of crops, forages, and acres grazed during 2009	
Table A 6. Irrigation type and total acres, by site, of crops, forages, and acres grazed during 2010	182
Table A 7. Irrigation type and total acres, by site, of crops, forages, and acres grazed during 2011	183
Table A 8. Irrigation type and total acres, by site, of crops, forages, and acres grazed during 2012	184
Table A 9. Irrigation type and total acres, by site, of crops, forages, and acres grazed during 2013	185
Table A 10. Electricity irrigation cost parameters for 2005 through 2013.	
Table A 11. Commodity prices for 2005 through 2013	187
Table A 12. Other variable and fixed costs for 2005 through 2013	188
Table A 13. Summary of results from monitoring 26 producer sites in 2005 (Year 1).	
Table A 14. Summary of results from monitoring 26 producer sites in 2006 (Year 2).	
Table A 15. Summary of results from monitoring 26 producer sites in 2007 (Year 3).	
Table A 16. Summary of results from monitoring 25 producer sites in 2008 (Year 4).	192
Table A 17. Summary of results from monitoring 26 producer sites in 2009 (Year 5).	
Table A 18. Summary of results from monitoring 26 producer sites in 2010 (Year 6).	
Table A 19. Summary of results from monitoring 29 producer sites in 2011 (Year 7).	
Table A 20. Summary of results from monitoring 29 producer sites in 2012 (Year 8).	
Table A 21. Summary of results from monitoring 30 producer sites in 2013 (Year 9).	
Table A 22. Phase I summary of crop production, irrigation, and economic returns	
Table A 23. Precipitation by each site in the Demonstration Project during 2005	
Table A 24. Precipitation by each site in the Demonstration Project during 2006	222
Table A 25. Precipitation by each site in the Demonstration Project during 2007	
Table A 26. Precipitation by each site in the Demonstration Project during 2008	
Table A 27. Precipitation by each site in the Demonstration Project during 2009	
Table A 28. Precipitation by each site in the Demonstration Project during 2010.	
Table A 29. Precipitation by each site in the Demonstration Project during 2011.	232

Table A 30. Precipitation by each site in the Demonstration Project during 2012.	234
Table A 31. Precipitation by each site in the Demonstration Project during 2013.	
Table A 32. Phase I final task and expense budget for years 1-9.	272
Table A 33. Phase I final cost sharing figures for for years 1-9	

List of Figures

Figure 1. Average precipitation, irrigation applied, returns above all costs, and gross margin for irrigated sites only
Figure 2. Average precipitation, irrigation applied, returns above all costs, and gross margin for all sites,
irrigated and dryland
Figure 3. Number of acres of various crops and cattle enterprises
Figure 4. Number of sites located in the demonstration project
Figure 5. Gross margin per acre in relation to inches of applied irrigation averaged over 2005 to 2014
Figure 6. Net returns per acre for seven cropping systems in 2014.
Figure 7. Net returns per acre-inch irrigation water, and inches of irrigation applied, 2014
Figure 8. Pounds per acre of nitrogen applied in fertilizer by cropping system, 2014
Figure 9. Net returns per system acre, average of 2005-2014
Figure 10. Net returns per acre-inch of irrigation water, and inches of irrigation applied
Figure 11. Pounds of nitrogen per acre applied in fertilizer, average of 2005-2014
Figure 12. Temperature and precipitation by month for 2014 near the demonstration area
Figure 13. Original project area and new county expansion for Phase II of the demonstration project
Figure 14. Ground cover (GC) plotted versus surface temperature (Ts)
Figure 15. TIRDCnorm-GC space used for determining the vertex d of the trapezoid. Line "B" passes through
point <i>a</i> with a slope of -1 and serves as a baseline for measuring perpendicular distance across the
TIRDC _{norm} –GC space. In this example, point <i>f</i> is the point in the distribution of observed pixel values that
has the maximum perpendicular distance from line "B"
Figure 16. Simple linear regression between field measurements of volumetric soil water content and
corresponding values of <i>TGMI</i> ×VWCs calculated from multispectral satellite image data156

List of Appendix Figures

Figure A 1. Temperature and precipitation for 2005 in the demonstration area	219
Figure A 2. Temperature and precipitation for 2006 in the demonstration area	221
Figure A 3. Temperature and precipitation for 2007 in the demonstration area	223
Figure A 4. Temperature and precipitation for 2008 in the demonstration area	225
Figure A 5. Temperature and precipitation for 2009 in the demonstration area	227
Figure A 6. Temperature and precipitation for 2010 in the demonstration area	229
Figure A 7. Temperature and precipitation for 2011 in the demonstration area	231
Figure A 8. Temperature and precipitation for 2012 in the demonstration area	233
Figure A 9. Temperature and precipitation for 2013 in the demonstration area	235

Water Conservation Demonstration Producer Board

Glenn Schur, Chair Boyd Jackson, Co-Chair Eddie Teeter, Secretary Keith Phillips Mark Beedy Jeff Don Terrell Jody Foster Lanney Bennett Louis (Bubba) Ehrlich Rick Kellison (ex-officio), Project Director

The Producer Board of Directors is composed of producer representatives within the focus area of Hale and Floyd Counties and is specifically charged to:

1) Ensure the relevance of this demonstration project to meet its objectives;

2) Help translate the results into community action and awareness;

3) Ensure the credibility and appropriateness of work carried out under this project;

4) Assure compatibility with and sensitivity to producer needs and concerns; and

5) Participate in decisions regarding actions that directly impact producers.

The Board elects their chair, co-chair, and secretary. Individuals serving on this board include representation of, but are not limited to producers cooperating in specific demonstration sites. The Chair serves as a full voting member of the Management Team. The Project Director serves in an *ex officio* capacity on the Producer Board. Meetings of the Producer Board of Directors are on an as-needed basis to carry out the responsibilities of the project and occur at least once annually in conjunction with the overall Management Team.

The value of this Board to the project continues to be a key factor in its success.

TEXAS ALLIANCE FOR WATER CONSERVATION 2014 PARTICIPANTS

Texas Tech University Dr. Chuck West, Project Administrator* Mr. Rick Kellison, Project Director* Mr. Philip Brown* Dr. Phillip Johnson* Dr. Stephan Maas* Dr. Steve Fraze* Dr. Rudy Ritz* Dr. Sara Trojan* Ms. Samantha Borgstedt, Communications Director* Ms. Christy Barbee, Secretary/Bookkeeper

<u>Texas A&M AgriLife Extension</u> Dr. Steven Klose Mr. Jeff Pate*

Mr. Jay Yates* Dr. Nithya Rajan

<u>High Plains Underground Water</u> <u>Conservation District No. 1</u> Mr. Jason Coleman* Mr. Keith Whitworth Mr. Gerald Crenwelge (retired) <u>USDA - Natural Resources</u> <u>Conservation Service</u> Mr. Monte Dollar (retired)*

<u>Producer Board Chairman</u> Mr. Glenn Schur*

Graduate Research Assistants

Swetha Dorbala Morgan Newsom Jarrott Wilkinson Rachel Oates Jennifer Zavaleta Nichole Sullivan Miranda Gillum Mallory Newsom Nellie Hill Melissa Murharam Sanaz Shafian Victoria Xiong Lisa Baxter Krishna Bhandari Madhay Dhakal

* Indicates Management Team member

Producers of Hale and Floyd counties

	5		
Ronnie Aston	Bernie Ford	Brett Marble	Dan Smith
Mark Beedy	Gerald Ford	Charles Nelson	Don Sutterfield
Lanney Bennett	Jody Foster	Danny Nutt	Brian Teeple
Randy Bennett	Scott Horne	Keith Phillips	Eddie Teeter
Troy Bigham	Boyd Jackson	John Paul Schacht	Jeff Don Terrell
Bill Dollar	Jimmy Kemp	Glenn Schur	Aaron Wilson
Louis (Bubba) Ehrlich	· · · ·		
· · · · · · · · · · · · · · · · · · ·			

The dedication of all these participants is gratefully acknowledged.

Objective

To conserve water in the Texas Southern High Plains while continuing agricultural activities providing the needed productivity and profitability for producers, communities, and the region.

Background

The Texas High Plains generates a combined annual economic value of crops and livestock that exceeds \$9.9 billion (\$2.4 crops; \$7.5 livestock; Texas Agricultural Statistics, Texas Department of Agriculture, 2012). Such productivity is highly dependent on water from the Ogallala Aquifer. Groundwater supplies have been declining significantly in the South Plains region (average depth to water during 2009-2014 declined 6.85 feet in High Plains Underground Water Conservation District No. 1¹, while costs related to pumping the water (energy, system infrastructure, maintenance) have escalated. Improved irrigation technologies including low energy precision application (LEPA) and subsurface drip irrigation (SDI) have increased irrigation efficiencies to over 95% but have not necessarily led to decreased water use. Phase I of the TAWC program spanned a period (2005-2013) of increasing corn production in response to a growing dairy industry and U.S. policy encouraging renewable biofuels, especially ethanol. This period also encompassed wide swings in annual rainfall (5.3 to 28.5 inches) and commodity prices (\$0.54 to \$0.90 per lb. of cotton lint and \$2.89 to \$6.00 per bu. of corn). The decline in aquifer output and intense swings in prices and rainfall have driven producers to seek ways to minimize risk. TAWC provides information on efficient irrigation systems and guidelines for matching water supply to crop needs as a means of reducing risk. There is increasing importance of diversifying the crop choice to include low-water demanding crops, concentrating irrigation rates onto the most profitable crops, and reducing tillage to protect soil quality,

Diversified systems that include both crops and livestock have long been known for complementary effects that increase productivity. Research conducted at Texas Tech over the past 15 years has shown that an integrated cotton/forage/beef cattle system, compared with a continuous cotton monoculture, lowered irrigated water use by about 25%, increased profitability per unit of water invested, diversified income sources, reduced soil erosion, reduced nitrogen fertilizer use by about 40%, and decreased needs for other chemicals, while maintaining similar cotton yields per acre between the two systems (Allen et al., 2005; 2012). Profitability was found to be similar for the integrated system as compared to the cotton monoculture system (Johnson et al., 2013). Furthermore, soil health was improved, more carbon was sequestered, and soil microbial activities were higher in the integrated system compared with the cotton monoculture (Acosta-Martinez et al., 2004; 2008; 2010). This and other research on crop production, agricultural climatology, economics, and communication dynamics provided basic information for

¹ High Plains Water District 2014 Water Level Measurements document source: <u>http://www.hpwd.org/S/2014-Water-Level-Magazine.pdf</u>

designing the demonstration project. Results from the demonstration sites serve to validate the research and inform approaches to current and future research.

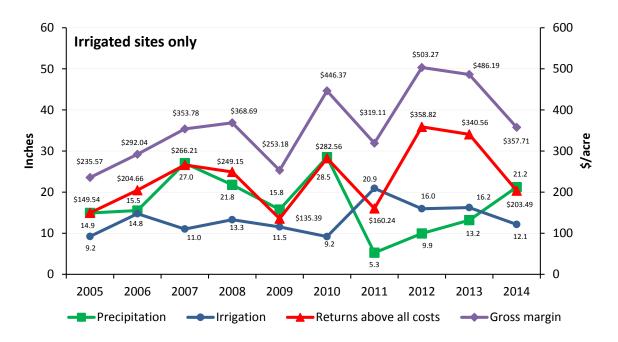
No single technology will successfully address water conservation. Rather, the approach must be an integration of agricultural systems, best irrigation technologies, improved plant genetics, and management strategies that reduce water demand, optimize water use and value, and maintain an appropriate level of productivity and profitability. Water conservation must become both an individual goal and a community ethic. Educational programs are needed at all levels to raise awareness of the necessity for water conservation to prolong the regional economic benefits of agriculture. As state and global populations increase with an increasing demand for agricultural products, the future of the Texas High Plains, and indeed the State of Texas and the world, depends on our ability to protect and appropriately use our water resources. Nowhere is there greater opportunity to demonstrate the implications of successfully meeting these challenges than in the High Plains of west Texas.

A multidisciplinary and multi-university/agency/producer team, coordinated though Texas Tech University, assembled during 2004 to address these issues. In September of 2004 the project 'An Integrated Approach to Water Conservation for Agriculture in the Texas Southern High Plains' was approved by the Texas Water Development Board and funding was received in February, 2005 to begin the demonstration project conducted in Hale and Floyd Counties. A producer Board of Directors was elected to oversee all aspects of this project. In Phase I, 26 producer sites were identified to represent 26 different 'points on a curve' that characterize cropping and livestock grazing system monocultures with integrated cropping systems and integrated crop/livestock approaches to agriculture in this region. The purpose was to understand where and how water conservation could be achieved while maintaining acceptable levels of profitability. Results of this study assist area producers in meeting the challenges of declining water supplies and reduced pumping capacities by demonstrating various production systems and water-saving technologies.

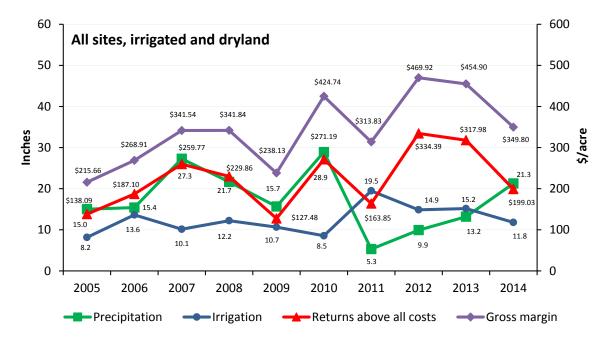
The first nine years of the Texas Alliance for Water Conservation (TAWC) project are considered Phase I of our continuing effort to demonstrate and compare irrigation systems and crop types for agronomic and economic water use efficiencies. A new source of funding via the Texas Water Development Board for TAWC was approved by the Texas Legislature in 2013 to conduct Phase II during 2014-2018 cropping seasons. Phase II dropped four original sites and added 10 sites in six new counties, namely Bailey, Crosby, Deaf Smith, Lamb, Lubbock, and Parmer. This increased the number of participating producers to 22, number of monitored sites to 36, and number of acres to 5,223. Many of the additional farms were formerly participants in a USDA-NRCS funded Conservation Incentive Grant program aimed at transferring technologies for conserving irrigation.

A key strategy of this project is that all sites are producer-owned and producer-managed. The producers make all decisions about their agricultural practices, management strategies, and marketing decisions. Thus, practices and systems at any specific site were subject to change from year to year as producers addressed changes in market opportunities, weather, commodity prices, and other factors. This project allowed us to measure, monitor, and document the effects of these decisions. The same producers did not all participate every year. A small number withdrew participation, and they were replaced in subsequent years at the discretion of Producer Board. Nonetheless, the project provided a valuable survey of changes in agricultural practices in this region and the information to interpret what is driving these changes.

Sites were originally selected by the Producer Board of Directors in response to the request for sites that would represent a range of practices from high-input, intensive management systems to low-input, less intensive practices. The sites represented a range from monoculture cropping practices (one type or species of annual crop at the site per year), multi-cropping systems (more than one crop species per year on a field), integrated crop and livestock systems (part of the site produced annual crops and part forage-based livestock production), and all-forage/livestock systems. Irrigation practices included subsurface drip, center pivot, furrow, and dryland systems.


It is important to note that these data and their interpretations are based on certain assumptions which are critical to objectively compare information across different sites. We adopted constants for productivity and efficiency calculations, such as pumping depth of wells, in order to make unbiased economic and agronomic comparisons (see p. 135 for detailed assumptions). Therefore the economic data for an individual site are valid for comparisons of systems but do not represent the actual economic results of that farm. Actual economic returns for each site were calculated and confidentially shared with the individual producer but are not a part of this report. Likewise, the identity of the participating producers is not matched to the demonstration sites.

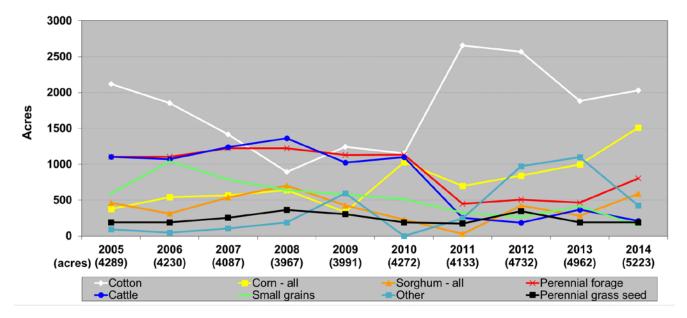
This is the first annual report of Phase II of TAWC, and also is a compendium of data over the life of the project. Data collection technologies gradually changed over time as better equipment and monitors became available and were installed. As each annual report updates each previous year, the current year's annual report is the most correct and comprehensive accounting of results to date and will contain revisions and additions for the previous years. This report contains numerous corrections of data from the previous nine years of Phase I.


OVERALL SUMMARY OF YEARS 2005-2014

With 10 years completed of this study, we see substantial annual variations in economic returns and water received irrigation and precipitation (Figure 1). Each year's results are highly influenced by weather, availability of irrigation water, input costs, actual and anticipated prices for crops and livestock, and previous years' experiences. Amount and distribution of precipitation and irrigation water to buffer inadequate precipitation are key drivers of production and profit. During the 10 years, annual precipitation ranged from 5.3 inches (2011) to 28.5 inches (2010) (Figure 1), averaging 17.3 inches, which is 1.2 inches lower than the long-term mean (18.5 inches) for the region. Six of 10 years exhibited below-average rainfall, with 2011-2013 substantially below average. Consequently, average irrigation applied was greatest in 2011 through 2013 (Figure 1). Precipitation for 2014 averaged 21.2 inches across all sites, with 18.9 inches occurring from May through September.

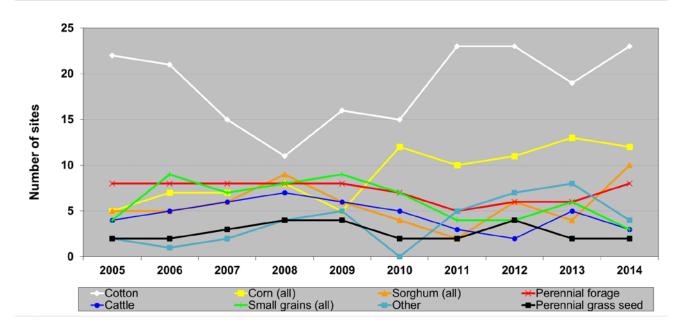
Figures 1 and 2 show annual changes in economic returns above all costs and gross margins (red and purple lines) in relation to precipitation and irrigation (green and red lines). Gross margin equals total revenue less total variable costs. Returns above all costs equals gross margin less fixed costs and is the same as net returns.

Figure 1. Average precipitation (inches), irrigation applied (inches), returns above all costs (\$/acre), and gross margin (\$/acre) for irrigated sites only.


Figure 2. Average precipitation (inches), irrigation applied (inches), returns above all costs (\$/acre), and gross margin (\$/acre) for all sites, irrigated and dryland.

Amount of irrigation applied averaged over 10 years on the irrigated sites only (Figure 1) was 13.4 inches, with a range of 9.2 to 20.9 inches. Average irrigation plus average rainfall (17.3 inches) equaled around 30 inches of water received per year. This suggests that 30 inches of total annual water input is a general norm for typical crop production in this region. In the four "wet" years (rainfall exceeding 20 inches), total water received was around 33 inches or greater. In such years, excessive rains were concentrated in particular weeks or months. This meant that irrigation was still required in the drier months of those years to buffer the loss of rainwater from runoff and deep drainage. The extreme dry year of 2011 was a test of how much irrigation could buffer the precipitation. Irrigation supplied 20.9 inches for a total water input of 26.2 inches. In 2011, irrigation rates generally were inadequate to meet crop demand. As well-output declines over time, the expectation is that even in less severe droughts that that of 2011, irrigation will fall short of meeting crop water demand. When all sites including the non-irrigated fields (Figure 2) are included in the means, average irrigation applied declines from 13.4 to 12.5 inches.

Two basic strategies can be used alone or in combination to stretch water supplies as well output declines: a) apply less water per acre to a level that still maintains profitable yields (70-80% of crop ET demand); and b) apply available water to fewer acres. Both approaches have merit depending on the crop species and variety, how water is allocated over the cropland, and the timing of precipitation within a year. Both strategies require careful planning and monitoring of crop water use, skills which are supported by information and decision tools offered by TAWC.


Yearly trends in gross margin and returns above all costs fluctuated tremendously owing to variable commodity prices and crop yields (Figures 1 and 2). The trends were essentially parallel with the difference between them reflecting fixed costs. That difference widened over the years from \$77/acre in 2005 to \$150/acre in 2014. Profitability in 2005 and 2009 was negatively impacted by high production costs in relation to values of crops and livestock. Low profitability during the 2011 drought reflected reduction in livestock numbers and yield losses in crops, but was buffered somewhat by insurance payments. Profitability in 2014 showed a steep drop from 2013, which was the one of the highest of all years. The low returns in 2014 are attributed largely to low commodity prices, but also to decrease crop yields resulting from heavy spring rains setting back crop planting and early-fall rains hampering harvest.

Producers in the TAWC project make their own decisions each season on enterprise selection and production practices. Land use reflects current crop and livestock prices, contracts, expected profitability, water supply, and decisions to terminate leases, sell property, or retire. Therefore, the number of acres and number of sites of the enterprise choices have varied. Figures 3 and 4 show the acreages and number of sites, respectively, that were devoted to cotton, corn, sorghum, perennial forages, cattle, small grains, and other crops. The total of enterprise acres exceeds total acres in the project in any given year because of double cropping and multi-use for livestock, e.g. harvesting a seed crop followed by harvesting hay from the regrowth in the same field. Cotton, corn, sorghum and perennial forage (alfalfa) acreage in 2014 increased due to the ten newly added sites in

Phase II (Figure 3), while acreages of small grains and other (sunflower, millet and fallow) decreased from 2013. Cattle herds had still not recovered from the severe 2011 drought.

Figure 3. Number of acres of various crops and cattle enterprises. Sites were located in two counties through 2013 (Phase I) and in eight counties in 2014 (Phase II).

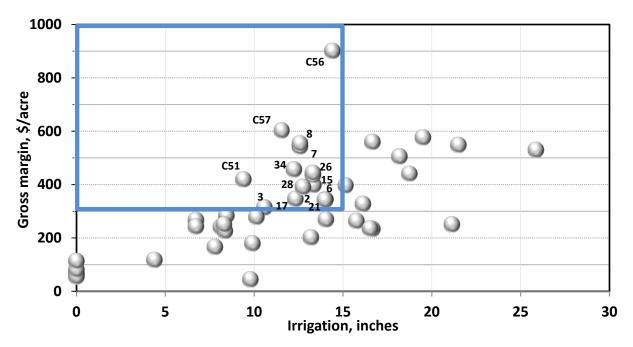


Figure 4. Number of sites located in the demonstration project. Sites were located in two counties through 2013 (Phase I) and in eight counties in 2014 (Phase II).

The trends in number of sites where different production systems were practiced (Figure 4) generally followed the trends in acreage distribution (Figure 3). A notable exception in 2014 was that corn acreage increased from 2013 while the number of production corn sites declined. Sorghum acreage (includes grain, seed, silage and forage) increased a modest amount while the number of sorghum sites strongly increased. The increase in all-sorghum acreage was due primarily to an increase in grain sorghum acres, which reflected plantings to replace cotton stand failures on four sites (Tables 3 and A9).

Water Use and Profitability

Patterns are emerging with respect to profitability in relation to irrigation applied. This is important because of the constant need to increase water use efficiency by the crops and prolong the groundwater supply, while maintaining or even increasing profitability of agricultural production in the High Plains. To examine systems for meeting criteria of relatively low water use and high profitability, we arbitrarily selected a maximum of 15 inches of irrigation and a minimum of \$300 gross margin per acre as a desired target for performance (Figure 5). Please note that these levels were selected only to identify whether certain sites and cropping systems consistently performed to those criteria and *not* to relate system performance to pumping restrictions nor to state a minimum amount of revenue required for economic viability.

Figure 5. Gross margin per acre in relation to inches of applied irrigation averaged over 2005 to 2014. Each point represents one site, of which 31 were irrigated, 4 are dryland and 9 new Phase II sites averaged across all years in which they appear. The new alfalfa site in 2014 is not charted because of an off-scale value (\$1956/acre at 15.1 in. water). The blue box brackets those sites which met the arbitrary criteria of 15 inches maximum irrigation and \$300 minimum gross margin per acre. Sites within the box are described in Table 1.

Table 1. Description of cropping system and current irrigation type used for sites plotted in Figure 5 which meet criteria of 15 or fewer inches of irrigation and \$300 or more gross margin/acre. Descriptions of cropping systems (as categorized across years within which they appear) by site from 2005-2014 are shown. Site numbers with "C" indicate new Phase II sites.

Site	Cronning system	Irrigation type
-	Cropping system	
2	Multi-crop, cotton/corn/sunflower	Subsurface drip
3	Multi-crop, cotton/grain sorghum/wheat	Mid elevation spray application
6	Multi-crop, cotton/corn/wheat	Low elevation spray application
7	Continuous sideoats grama grass seed	Low elevation spray application
8	Continuous sideoats grama grass seed	Subsurface drip
15	Multi-crop, cotton/grain sorghum	Subsurface drip
17	Multi-crop, cotton/corn, sunflower, cow-calf	Mid elevation spray application
21	Multi-crop, corn/small grain/forage	Low energy precision application
	sorghum/grass seed/stocker cattle	
26	Multi-crop, cotton/corn, small	Low elevation spray application
	grains/sunflower/millet	
28	Multi-crop, cotton/corn	Subsurface drip
34	Multi-crop, cotton/corn/sunflower	Low elevation spray application
C51	Cotton monoculture (1 year)	Subsurface drip
C56	Corn silage monoculture (1 year)	Low elevation spray application
C57	Corn silage monoculture (1 year)	Low elevation spray application

Fourteen sites met the arbitrary criteria of 15 or fewer inches of irrigation and \$300 or more gross margin/acre, when averaged over 2005-2014 (Figure 5). Eight sites that met the \$300 gross margin per acre criterion but with average irrigation over 15 inches (points located to the right of the blue box in Figure 5) were mostly multi-crop corn/cotton rotations, with one site being multi-crop cotton/sorghum/small grain/alfalfa and another multi-crop with cotton/grain sorghum and millet. Inclusion of corn in multi-cropping systems can produce high gross margins, but requires more irrigation than cotton. Sites 2, 6, 17, 21, 26, 28, and 34 all included corn in the multi-crop rotations, indicating that inclusion of corn in the cropping system can result in high return at low water use, averaged over years. Site C56 and C57, the only corn monocultures in the list, were for silage, but only represent 1 year of data. Site C51 (also 1 year data) was the only cotton monoculture that met the double criteria. The two sites with grass seed production (7 and 8) were the highest ranked sites during the Phase I years.

<u>2014 Project Year</u>

Producer sites can be categorized according to type of farming system insofar as a site represents a conceptual farm. The system categories in use in 2014 were corn monoculture (entire site in corn only), cotton monoculture (entire site in cotton only), alfalfa monoculture (entire site in alfalfa only), sorghum monoculture (entire site in grain sorghum), grass seed monoculture (entire site in grass seed production consisting of sideoats grama), integrated crop/livestock (site included cattle on pasture plus an annual crop and/or hay), multi-cropping (more than one annual crop species harvested in the

reporting year). Systems occurring in previous years but not in 2013 or 2014 included cow-calf pasture, sunflower monoculture, and dryland multi-cropping. A site categorized in one system is re-categorized each year that the crop choice changes.

In 2014, corn monoculture and grass seed each accounted for 7% and 5%, respectively, of the sites, while integrated crop/livestock occupied 8%, cotton monoculture occupied 36% and multi-cropping occupied 31%. Averaged over the 10 years of the project, percentage allocations of the systems were similar to 2014 except that integrated crop/livestock was 14%, cotton was 24%, cattle grazing was 2%, and sunflower monoculture was 1% of the sites. New systems in 2014 were alfalfa and sorghum monocultures.

This section compares the cropping systems for net returns per acre and per acre-inch of irrigation, and usage of irrigation and nitrogen fertilizer for 2014. Lower commodity prices in 2014 drove all systems to a much lower net return as compared to previous years. Grass seed production, which had the highest net returns per acre in all previous years, resulted in a loss for 2014 owing to inclement weather at harvest causing heavy losses of seed in conjunction with lower prices. The newly added alfalfa monoculture had by far the highest net return followed by the multi-crop system, corn monoculture, cotton monoculture, integrated crop/livestock system and finally sorghum monoculture (Figure 6).

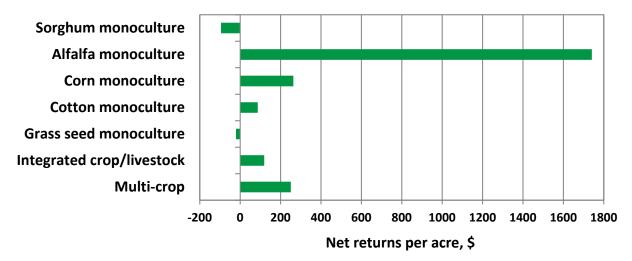
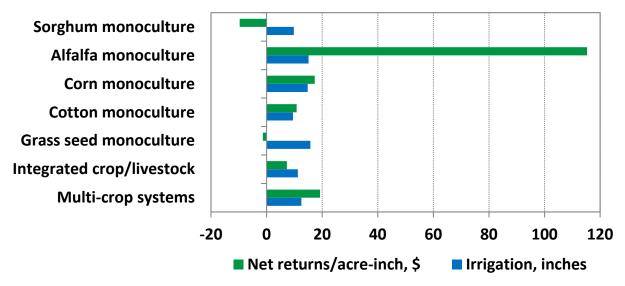



Figure 6. Net returns per acre for seven irrigated-only cropping systems in 2014.

When these systems were examined in terms of net returns per acre-inch of irrigation applied (Figure 7, green bars), sorghum and grass seed monocultures were lowest and alfalfa monoculture was highest, while other systems were intermediate. The blue bars in Figure 7 indicate average inches of irrigation applied per system. Cotton monoculture had the lowest application (9.5 inches) and alfalfa monoculture had the highest (15.1 inches).

Figure 7. Net returns per acre-inch irrigation water (green bars), and inches of irrigation applied (blue bars), 2014.

Corn monoculture, grass seed monoculture, and multi-cropping had the highest application rates of nitrogen (N) fertilizer at 155, 139 and 119 lbs/system acre, respectively (Figure 8). The lowest N applied was to the sorghum monoculture at 39 lbs/system acre. The significance of N fertilizer application is that it constitutes a major input cost and therefore greatly influences the calculation of net return.

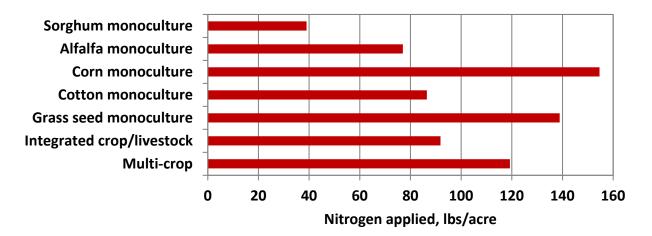
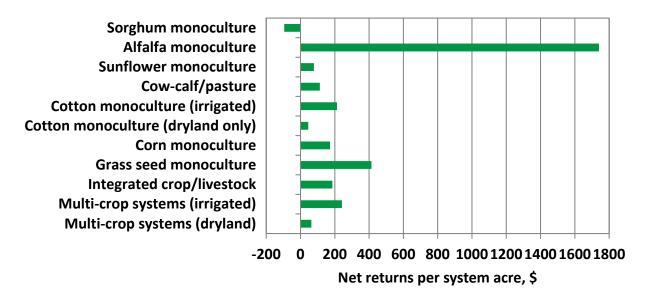



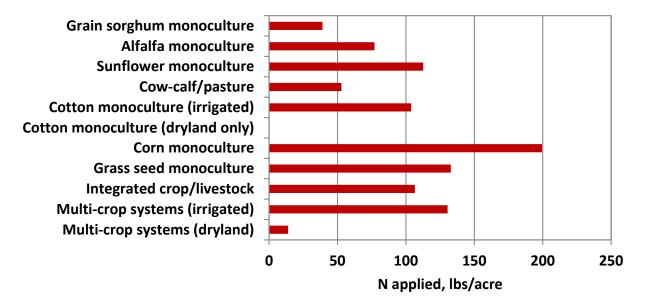
Figure 8. Pounds per acre of nitrogen applied in fertilizer by cropping system, 2014.

<u>Project years 1 through 10 (2005-2014)</u>

Figure 9 summarizes net returns per acre by system over the life of the project so for. Note the extremely high value for alfalfa monoculture, which benefited from timely late-spring rains and whose crop was sold as a cash crop. We cannot generalize from this situation because 2014 was only its first year in the project. Apart from the alfalfa system, grass

seed monoculture was the most profitable system at \$414/acre, double that of cotton monoculture and multi-cropping systems (Figure 9). This average return includes the disastrous yield losses in 2014. The grass seed system also had the highest net return per acre-inch of irrigation applied, and used the same amount of irrigation as cotton monoculture (Figure 10). Grass seed is a high-value specialty crop, which yielded the greatest net returns per acre in 8 out of 10 years. Since it is produced with limited contracts and is not supported by government crop insurance programs, grass seed would not present a cropping option for a large number of producers. Nevertheless, contract seed crops provide opportunities for some producers to diversify their income. While multi-cropping and cotton monoculture yielded similar average net returns per acre (\$241 and \$214 respectively/acre), integrated crop-livestock was at \$186 and corn monoculture was around \$172/acre (Figure 9).

Figure 9. Net returns per system acre, average of 2005-2014, or for those years which those systems occurred. Data for cow-calf includes 2005-2010 data only.


Irrigation applied (Figure 10, blue bars) was greatest for corn monoculture (17.7 in.), followed by alfalfa (15.1 in.). Irrigated cotton monoculture used about the same amount of irrigation as grass seed and the integrated crop-livestock system. Net returns per acre-inch (Figure 10, green bars) of irrigation applied were highest for alfalfa, then grass seed, followed by cow-calf/pasture; the latter owing to the low irrigation. With fairly high net returns per acre-inch of irrigation and low water usage, cattle production on perennial forages may offer a sustainable option as groundwater becomes more depleted. Net returns for irrigated cotton monoculture were ranked fourth. Corn monocultures were not present in some of the earlier years of this project and thus their means reflect fewer years. The droughts of 2011 and 2012 hit corn yields particularly hard, therefore with fewer years in the mean, the effects of drought have a proportionally greater effect on this crop's performance. Sunflowers represent a specialty crop in this region and required less irrigation water than any system type with the exception of the cow-calf/pasture; however,

returns per unit of water applied were also relatively low. Dryland systems have always had the lowest average net returns in this project.

Dryland cotton and multi-cropping systems received the least nitrogen fertilizer per system acre, whereas corn monoculture received by far the most (Figure 11). Cow-calf perennial grass pastures were the second lowest users of N fertilizer. For warm-season pasture grasses, 50 to 60 lbs of N/acre annually is generally considered adequate. In contrast, corn monocultures represented the other extreme with 200 lbs N/acre received annually. All other systems received from about 77 to 133 lbs/acre of N.

Figure 10. Net returns per acre-inch of irrigation water (green bars), and inches of irrigation applied (blue bars), average of 2005-2014. Data for cow-calf/pasture includes 2005-2010 only.

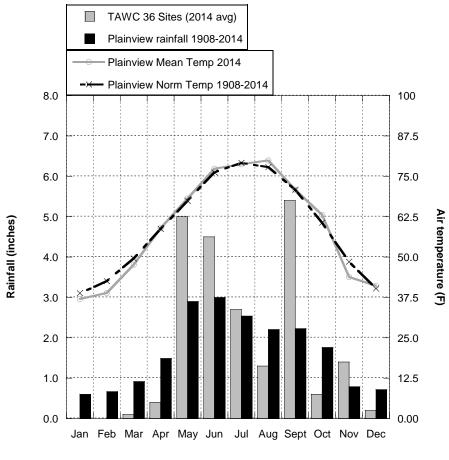
Figure 11. Pounds of nitrogen per acre applied in fertilizer, average of 2005-2014. Data for cow-calf/pasture includes 2005-2010 only.

Discussion

Over the 10 years of the project we have observed a number of system configurations under varied environmental conditions, irrigation technologies, and market conditions. Management is the key to how these systems behave under the extreme year to year variations experienced. Producers make strategic and tactical production decisions to maintain economic viability and utilize available resources efficiently. Strategic decisions relate to crop and livestock enterprise selection, whether it is year to year crop selection or longer term planning. Planting perennial grasses for seed and pasture production, integrating livestock into an operation, and the selection of irrigation technologies are examples of strategic decisions. Tactical decisions relate to enterprise management within the growing season, such as variety selection, fertilizer management, irrigation scheduling and harvest timing.

There are a number of irrigation management technologies such as SmartFieldTM, AquaSpy[®] and NetIrrigate[®], which aid specifically in the tactical decision process. We have provided some of these technologies to producers within the TAWC project. Information received from these technologies in conjunction with measurement of evapotranspiration (ET) on a field by field basis has helped producers gain insight into better irrigation management techniques. Feedback from producers who have used these technologies has helped us formulate tools to address the short-term and long-term irrigation management challenges facing the region. Continual adoption of water-saving technologies and monitoring will contribute to advances in the efficiency of water applied and amounts of water saved.

Two management tools were developed and made available to producers in the region through the TAWC Solutions web site (<u>http://www.tawcsolutions.org</u>) in early 2011. Use of these tools by producers within and outside TAWC has grown. The Water Allocation


Tool, the Irrigation Scheduling Tool, and the Resource Allocation Analyzer are the three practical tools available on this web site. These tools are free of charge to any producer.

The dissemination of results and information from the project through various outreach efforts is an important part of the project. An activity continued from previous years was the winter field day held in January 2014 at Muncy, TX. Field walks were also continued at a participating farm in June-September to demonstrate how to schedule irrigation in relation to meeting crop needs. These field days allowed attendees to visit several project sites and observe the technologies that are currently being demonstrated within the project to better manage and monitor irrigation use and timing. In addition to the field days, the project was represented at several farm shows within the region, which allowed further dissemination of findings and information regarding the project and demonstrations and producer interaction on the management tools that are being provided on the TAWC Solutions website. Detailed listings of outreach presentations, articles and activities are listed on pages 20, 21 and 243.

The long term ability of this project to observe and monitor a variety of crop and integrated crop/livestock systems under various environmental conditions is now allowing us to provide valuable information on irrigation management and water conservation techniques to producers in the area. The management of the Ogallala water resource is critical to the continued economic success of agriculture in the region. Producers face many technical and climatic challenges. The information we are providing from this project will assist producers in meeting these challenges and allow the region to continue to lead in agricultural production through innovation.

2014 WEATHER DATA (SEE APPENDIX FOR 2005-2013 DATA)

The 36 project sites received above-average rainfall in 2014 with an overall mean of 21.7 inches, using Plainview, TX for the long-term average (Figure 12). Below-average rainfall was received in January through April. Precipitation in May, June and September was substantially above average, and occurred in relatively few heavy rain events. Such events typically lead to low efficiency of water use for crop production owing to runoff, soil-surface evaporation, and drainage below the root zone. Furthermore, the heavy May and June rains delayed planting of some crops, and crop water use for transpiration was low because crop canopies were underdeveloped. The heavy rains did help refill soil profiles that were quite depleted after the dry winter and early spring, which saved on irrigation needs during June. The September rain came while crop water needs were declining with crop maturity, so that rain had limited benefit for crop yields. Mean temperatures ran about normal through the growing season with the exception of August, which was hotter than normal. Rainfall by site (Table 2) indicated wide variation, such that some sites did not benefit from above-average precipitation.

Month

Figure 12. Temperature (lines) and precipitation (bars) by month for 2014 near the demonstration area (Plainview, TX) compared with long term averages.

Site	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
4	0.0	0.0	0.2	0.8	3.0	4.1	1.8	0.1	3.9	0.6	1.0	0.2	15.7
5	0.0	0.0	0.1	0.0	6.3	4.8	2.7	0.2	3.5	0.6	1.3	0.1	19.6
6	0.0	0.0	0.1	0.3	5.4	6.7	2.8	2.2	5.3	0.6	2.0	0.1	25.5
7	0.0	0.0	0.1	0.4	4.5	3.5	2.6	1.2	3.2	0.7	1.6	0.5	18.3
8	0.0	0.0	0.1	0.4	4.5	3.5	2.6	1.2	3.2	0.7	1.6	0.5	18.3
9	0.0	0.0	0.1	0.5	8.2	4.5	3.1	1.0	6.8	0.8	2.2	0.5	27.7
10	0.0	0.0	0.2	0.5	5.3	5.5	3.0	2.5	7.6	0.7	2.2	0.1	27.6
11	0.0	0.0	0.1	0.6	5.7	5.2	3.6	2.5	7.0	0.6	2.2	0.3	27.8
14	0.0	0.0	0.2	0.6	5.1	2.4	3.0	0.6	6.4	0.7	1.2	0.1	20.3
15	0.0	0.0	0.1	0.4	5.1	4.2	3.0	0.8	3.4	0.3	0.6	0.1	18.0
17	0.0	0.0	0.2	0.5	3.7	2.6	2.2	0.8	4.8	0.4	1.4	0.2	16.8
19	0.0	0.0	0.1	0.2	6.3	5.4	3.5	0.2	4.2	0.7	1.3	0.0	21.9
20	0.0	0.0	0.1	0.5	7.9	4.7	2.4	0.5	4.9	0.5	1.7	0.2	23.4
21	0.0	0.0	0.1	0.4	5.9	3.8	3.7	3.1	6.4	0.7	2.5	0.3	26.9
22	0.0	0.0	0.2	0.5	5.3	4.8	2.2	0.2	3.8	0.8	1.5	0.2	19.5
24	0.0	0.0	0.2	0.7	5.3	5.3	2.2	0.4	4.5	0.7	2.0	0.2	21.5
26	0.0	0.0	0.1	0.0	6.3	4.8	2.7	0.2	3.5	0.6	1.3	0.1	19.6
27	0.0	0.0	0.5	0.3	7.2	4.7	2.4	0.1	4.0	0.5	1.5	0.1	21.3
28	0.0	0.0	0.2	0.5	5.3	5.5	3.0	2.5	7.6	0.7	2.2	0.1	27.6
29	0.0	0.0	0.2	0.4	6.0	4.2	2.8	1.1	5.4	0.8	2.0	0.1	23.0
30	0.0	0.0	0.1	0.0	6.3	4.8	2.7	0.2	3.5	0.6	1.3	0.1	19.6
31	0.0	0.0	0.2	0.8	3.0	4.1	1.8	0.1	3.9	0.6	1.0	0.2	15.7
32	0.0	0.0	0.1	0.4	5.1	4.2	3.0	0.8	3.4	0.3	0.6	0.1	18.0
33	0.0	0.0	0.1	0.4	5.1	4.2	3.0	0.8	3.4	0.3	0.6	0.1	18.0
34	0.0	0.0	0.1	0.3	5.4	6.7	2.8	2.2	5.3	0.6	2.0	0.1	25.5
35	0.0	0.0	0.1	0.5	5.3	6.2	3.5	1.7	5.1	0.8	2.4	0.2	25.8
C50	0.0	0.0	0.01	0.4	4.4	3.0	>	7.6	6.1	0.6	1.3	0.5	23.9
C51	0.0	0.0	0.1	0.4	4.4	3.0	>	7.6	6.1	0.6	1.3	0.5	24.0
C52	0.0	0.0	0.0	0.1	2.5	3.6	>	1.2	8.7	0.4	0.8	0.1	17.4
C53	0.0	0.0	0.0	0.1	2.5	3.6	>	1.2	8.7	0.4	0.8	0.1	17.4
C54	0.0	0.0	0.0	0.1	2.5	3.6	>	1.2	8.7	0.4	0.8		17.4
C56	0.0	0.0	0.1	0.1	3.5	5.1	>	1.8	8.4	0.0	0.0	0.0	19.0
C57	0.0	0.0	0.1	0.0	2.7	4.7	>	5.8	4.5	0.5	0.0	0.2	18.5
C58	0.0	0.0	0.02	0.2	6.2	5.0	>	1.3	5.2	0.0	1.6	0.3	19.8
C59	0.0	0.0	0.01	na	5.2	5.0	>	1.3	9.7	0.4	1.5	0.4	23.5
<u>C60</u>	0.0	0.0	0.2	0.8	3.5	5.0	>	5.6	4.5	0.7	1.6	0.2	22.1
Avg	0.0	0.0	0.1	0.4	5.0	4.5	2.8	1.0	5.4	0.6	1.4	0.2	21.3

Table 2. Precipitation (inches) at each site in the demonstration area during 2014.

> totaled with August

2014 SUPPLEMENTARY GRANTS TO PROJECT (SEE APPENDIX FOR 2005-2013 DATA)

Supplementary grants and grant requests were obtained or attempted through leveraging of the base platform of TAWC and the Texas Coalition for Sustainable Integrated Systems (TeCSIS), and therefore represent added value to the overall TAWC effort.

- West, C.P. 2014. Long-term agroecosystems research and adoption in the Texas Southern High Plains. Southern SARE grant. \$100,000. (Funded)
- West, C.P. 2014. Improving water productivity and new water management strategies to sustain rural economies. Ogallala Aquifer Program (USDA-ARS). \$20,000. (Funded)

AquaSpy	\$ 250.00
Bayer CropScience	\$ 800.00
Bamert Seed	\$ 250.00
Texas Corn Producers	\$ 500.00
DSI Drip Irrigation	\$ 500.00
Helena Chemical	\$ 500.00
Hurst Farm Supply	\$ 500.00
Plains Cotton Growers	\$ 250.00
National Sorghum Check-Off Program	\$ 250.00
Texas Grain Sorghum Producers	\$ 250.00
Total	\$4,050.00

2014 DONATIONS TO PROJECT (SEE APPENDIX FOR 2005-2013 DATA)

2014 VISITORS TO THE DEMONSTRATION PROJECT SITES

Total Number of Visitors

200+

2014 PRESENTATIONS (SEE APPENDIX FOR 2005-2013 DATA)

<u>Date</u>	Presentation	Spokesperson(s)			
1/6/2014	Beltwide Cotton conference, New Orleans, LA	A. Attia/N. Rajan			
1/7/2014	Sorghum U, Levelland, TX	Rick Kellison			
1/16/2014	TWDB Director Bech Bruun and staff, Lubbock, TX	Rick Kellison			
1/28/2014	Texas Panhandle-High Plains Water Symposium, Amarillo, TX	Rick Kellison			
2/2-4/2014	Annual Meeting Southern Branch American Society of Agronomy	S. Sharma/			
	Dallas, TX	N. Rajan/S. Maas			
2/2-4/2014	Annual Meeting Southern Branch American Society of Agronomy,	S. Sharma/			
	Dallas, TX	N. Rajan/S. Maas			
2/13/2014	Nebraska Independent Crop Consultants Assoc., Nebraska City, NE	Chuck West			
2/24/2014	Texas Water Development Board, Lubbock, TX	Rick Kellison			
3/11/2014	Plainview Producer Meeting, Plainview, TX	Rick Kellison			
4/1/2014	Cotton Irrigation Meeting, Plainview, TX	Jeff Pate			
4/2/2014	Doug Shaw, TWDB, Lubbock, TX	Rick Kellison			
4/23/2014	Region O Water Planning Committee, Lubbock, TX	R. Kellison/C. West			
5/6/2014	Lions Club Meeting, Idalou, TX	Jeff Pate			
5.6.2014	Texas Tech Climate Science Center Seminar series, Lubbock, TX	Chuck West			
5/15/2014	TAWC Field Walk, Lockney, TX	Rick Kellison			
5/19/2014	Texas Water Summit, TAMEST, Austin, TX	Chuck West			
6/17/2014	North Central Coordinating Committee-31, Grand Rapids, MI	Chuck West			
6/24/2014	Brownfield Chamber of Commerce, Brownfield, TX	Rick Kellison			
8/5/2014	Stronger Economies Together, Littlefield, TX	Jeff Pate			
8/12/2014	Radio Interview 950 AM, Lubbock, TX	Rick Kellison			
9/29/2014	Texas Speaker of the House Joe Straus &	Rick Kellison			
	Texas Rep. John Frulo, Lubbock, TX	RICK KEIIISOII			
11/2-5/2014	ASA-CSSA-SSSA Annual Meeting, Long Beach, CA	S. Sharma/			
		N. Rajan/S. Maas			
11/2-5/2014	ASA-CSSA-SSSA Annual Meeting, Long Beach, CA	S. Sharma/			
		N. Rajan/S. Maas			
12/11/2014	Olton Co-op grain Winter Meeting, Olton, TX	Jeff Pate			
12/15-19/2014	AGU Fall Meeting, San Francisco, CA	S. Shafian, S. Maas			
12/16/2014	Swishier County Producer Meeting, Tulia, TX	Rick Kellison			
12/23/2014	Texas Representative Dustin Burrows, Lubbock, TX	Rick Kellison			

2014 Related Non-refereed Publications (See Appendix for 2005-2013 data)

- Gillum, M. and P. Johnson. 2015. Fieldprint Calculator: Results from the Texas High Plains. 2015 Beltwide Cotton Conferences Proceedings, in press. Selected for presentation at the 2015 Beltwide Cotton Conference. Co-sponsored by the National Cotton Council and the Cotton Foundation, January 5-7, 2015, San Antonio, TX.
- Xiong, Y., C.P. West, and C.P. Brown. 2014. Digital image analysis of Old World bluestem canopy cover and leaf area. In Annual meetings abstracts [CD-ROM]. ASA, CSSA, and SSSA, Madison, WI.
- West, C.P., S.J. Maas, R. Kellison, C.P. Brown, S. Borgstedt, P.N. Johnson, D.L. Doerfert, J. Pate, and J. Yates. 2014. Promoting conservation of irrigation water in the Texas High Plains. In Annual meetings abstracts [CD-ROM]. ASA, CSSA, and SSSA, Madison, WI.
- West, C. 2014. Regional Opportunities and Challenges: High Plains. D. Reible (ed.). p. 36-39.
 2014 Texas Water Summit Report: Securing our Economic Future. The Academy of Medicine, Engineering, and Science of Texas (TAMEST), Austin, TX. Available at: http://www.tamest.org/publications/event-publications.html.
- West, C., R. Kellison, C.P. Brown, S.J. Maas, S. Borgstedt, P.N. Johnson, J. Pate. 2014. TAWC 2013 Annual report to Texas Water Development Board.
- West, C., R. Kellison, C.P. Brown, S.J. Maas, S. Borgstedt, P.N. Johnson, J. Pate. 2014. TAWC 2004-2013 Phase I Final report to Texas Water Development Board.

2014 RELATED REFEREED JOURNAL ARTICLES (SEE APPENDIX FOR 2005-2013 DATA)

- Zilverberg, C. J. and V. Allen. 2014. Technical Note: Repeated grazing affects quality and sampling strategies of 'WW B. Dahl' old world bluestem. The Texas Journal of Agriculture and Natural Resources27:84-87.
- Rajan, N., S. Maas, and S. Cui. 2014. Extreme drought effects on evapotranspiration and energy balance of a pasture in the Southern Great High Plains. Ecohydrology, DOI: 10.1002/eco.1574.
- Rajan, N and S. Maas. 2014. Spectral crop coefficient for estimating crop water use. Advances in Remote Sensing, 3(3):197-207.
- Shafian, S., and S. Maas. Improvement of the trapezoid method using raw Landsat image digital count data for soil moisture estimation in the Texas (USA) High Plains. <u>Sensors</u>. (Accepted)
- Rajan, N., S. Maas, R. Kellison, M. Dollar, S. Cui, S. Sharma, and A. Attia. Emitter uniformity and application efficiency for center-pivot irrigation systems. Irrigation and Drainage. (Accepted)

2014 POPULAR PRESS (SEE APPENDIX FOR 2005-2013 DATA)

- Ag Day Lubbock. By Rebecca Rivers, Fox 34 News, 29 October 2013. Floyd County cotton harvest underway. <u>http://www.myfoxlubbock.com/content/agdaylubbock/story/cotton-harvest-</u><u>water-management/U-3ISR-Dh0vVFD0wdQYDuA.cspx</u>
- Ehmke, Tanner. 2 October 2013. Conserving water on the Texas High Plains: Integrating Crops, Livestock, and New Technology. *Crop & Soils*, Volume 46, Number 5, p. 6-13. <u>https://www.agronomy.org/publications/cns/articles/46/5/6</u>
- Martin, Norman. 17 August 2013. Texas Alliance for Water Conservation holds Pioneers in Agriculture Field Day. CASNR NewsCenter. <u>http://www.depts.ttu.edu/agriculturalsciences/news/?p=2855</u>
- Borgstedt, Samantha. 25 July 2013. StepUp: Texas Alliance for Water Conservation holds field walk series. CASNR NewsCenter. <u>http://www.depts.ttu.edu/agriculturalsciences/news/?p=2706</u>
- Musico, Josie. 20 June 2013. Something to Moo about: Conference describes new trends in cattle industry. Texas and Southwest Cattle Raisers Association representatives describe new technologies and conservation measures in Friday conference. Lubbock Avalanche-Journal. <u>http://lubbockonline.com/local-news/2013-07-</u> 20/something-moo-about-conference-describes-new-trends-cattleindustry#.U YGQOog91M
- Ag Day Lubbock. By Rebecca Rivers, Fox 34 News, 25 June 2014. Water management playing a vital role in production. <u>http://www.myfoxlubbock.com/content/agdaylubbock/story/water-managementconservation-tawc/kTSCJH9Tpk6vPT-EWBTbHw.cspx</u>
- Martin, Norman. 5 December 2013. TAWC recognized with major American Water Resources Association award. CASNR NewsCenter. <u>http://www.depts.ttu.edu/agriculturalsciences/news/?p=2429</u>

2014 THESES AND DISSERTATIONS (SEE APPENDIX FOR 2005-2013 DATA)

- Harkey, Kelly L. 2014. Examination of the desktop computer and mobile device use of the Texas Alliance for Water Conservation website using Google Analytics[™]. M.S. Thesis, Texas Tech University, Lubbock, TX.
- Xiong, Yedan (Victoria). 2014. Digital Image Analysis of Old World Bluestem Canopy Cover and Leaf Area. M.S. Thesis, Texas Tech University, Lubbock, TX.

<u>Background</u>

This project officially began with the announcement of the grant from the Texas Water Development Board in September, 2004. It was February, 2005, when all contracts and budgets were finalized and field site selections began. Also by February, 2005, the Producer Board was named and functioning, and the Management Team was identified to expedite the decision-making process. The positions of project director and secretary/accountant were filled by June, 2005. By autumn 2005, the FARM Assistance position was also filled.

Working through the Producer Board, 26 sites were identified that included 4,289 acres in Hale and Floyd counties (Figure 13). Soil moisture monitoring points installed, maintained and measured by the High Plains Underground Water Conservation District No. 1 were purposely located close to these sites, and global positioning system (GPS) coordinates were taken for each monitoring point. This was completed during 2005 and was operational for much of the 2005 growing season. All data recorded from these points continue to be maintained by the High Plains Underground Water District No. 1.

Total number of acres devoted to each crop and livestock enterprise and management type in 2005-2013 are given in Appendix Tables A1-A9. These sites include subsurface drip, center pivot, and furrow irrigation as well as dryland examples. It is important to note when interpreting data from Year 1 (2005), that this was an incomplete year. We were fortunate that this project made use of already existing and operating systems; thus there was no time delay in establishment of systems. Efforts were made to locate missing information on water use while the original 26 sites were brought on-line. Such information is based on estimates as well as actual measurements during this first year and should be interpreted with caution. The resulting 2005 water use data, however, provided useful information as we began this long-term project. It is important to note that improvements were made in 2006 in calibration of water measurements and other protocols.

In year 2 (2006), site 25 was lost to the project due to a change in land ownership, but was replaced by site 27, thus the project continued to monitor 26 sites. Total acreage in 2006 was 4,230, a decline of about 60 acres. Crop and livestock enterprises on these sites and the acres committed to each use by site are given in Table A2.

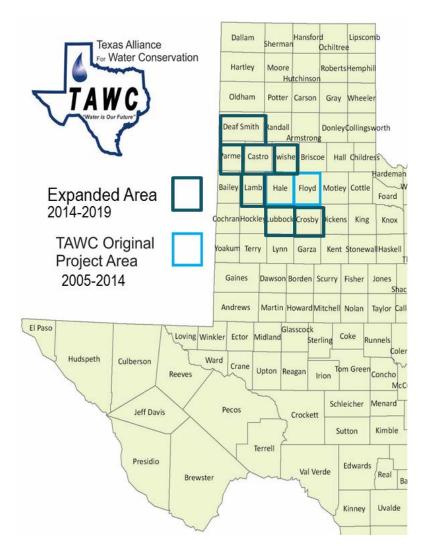
In year 3 (2007), all sites present in 2006 remained in the project through 2007. Total acreage was 4,245, a slight increase over year 2 due to expansion of Site 1 (Table A3).

In year 4 (2008), 25 sites comprised 3,967 acres (Table A4). Sites 1, 13, 16, and 25 of the original sites had left the project, and sites 28 and 29 were added.

In year 5 (2009), all sites present in 2008 remained in the project. Site 30 with 21.8 acres was added. Thus, 26 total sites were present in 2009 for a total of 3,991 acres (Table A5).

In year 5 (2009), all sites present in 2008 remained in the project. Site 30 with 21.8 acres was added. Thus, 26 total sites were present in 2009 for a total of 3,991 acres (Table A5).

In year 6 (2010), three new sites were added as part of the implementation phase of the project (Table A6). These sites were designed to limit total irrigation for 2010 to no more than 15 inches. Crops grown included cotton, seed millet, and corn. The purpose of these added sites was to demonstrate successful production systems while restricting the water applied. With the addition of sites 31, 32, and 33, the project now totaled 29 sites and increased the project acreage from 3,991 acres to 4,272 acres, although data from these new sites were treated separately in this year. The new sites also increased the number of producers involved in the project by one.


In year 7 (2011), the previously mentioned implementation sites were incorporated into the whole project and no longer differentiated from other sites in management or data analysis because of changes in water policy. In addition, site 5 was converted from a livestock-only system to an annual cropping system. The site acreage declined from 626.4 to 487.6 by dropping the grassland corners, but maintaining the cropping system under the center pivot. Site maps were adjusted for 2012 to reflect this change. Total acres for the project decreased from 4272 acres in 2010 to 4133 acres in 2011 as a result (Table A7).

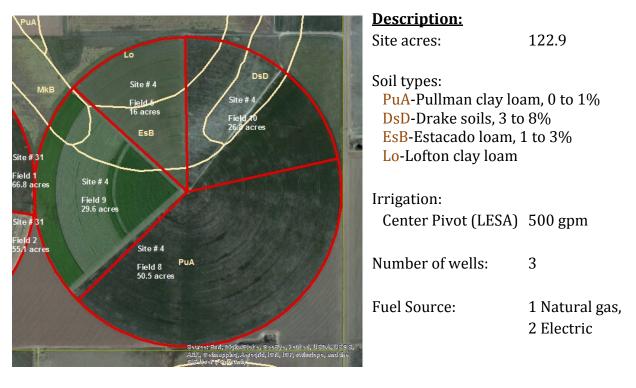
In year 8 (2012), site 34 was added to the project (Table A8). The new 726.6 acres were partially offset by the exit of site 23 (121.1 acres). The 2012 report includes new satellite imagery of each site, and site information has been updated accordingly. As always, minor corrections to site acreages continued to occur as discrepancies are discovered. Total acres for the project increased from 4133 acres in 2011 to 4732 acres in 2012 as a result of these site changes.

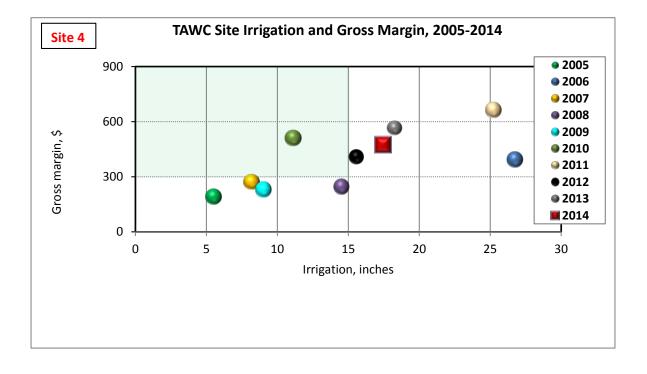
In year 9 (2013), site 35 was added to the project (Table A9). The new 229.2 acres were a drip irrigated site. Total acres for the project increased from 4732 acres in 2012 to 4962 acres in 2013 as a result. Year 9 constituted the last data collection year of Phase I. A final report of Phase I was completed in 2014, and is available at http://www.depts.ttu.edu/tawc/resources.html.

In year 10 (2014), Phase II of the project was renewed with additional funding through TWDB. Sites 2, 3, 12 and 18 were dropped from the project, and 10 new sites in six counties were added (Crosby, Deaf Smith, Lamb, Lubbock, Parmer, Swisher). The 10 new sites are numbered C50-C54 and C56-C60. Total net acres for the project increased from 4962 in 2013 to 5223 in 2014 as a result of these changes (Table 3).

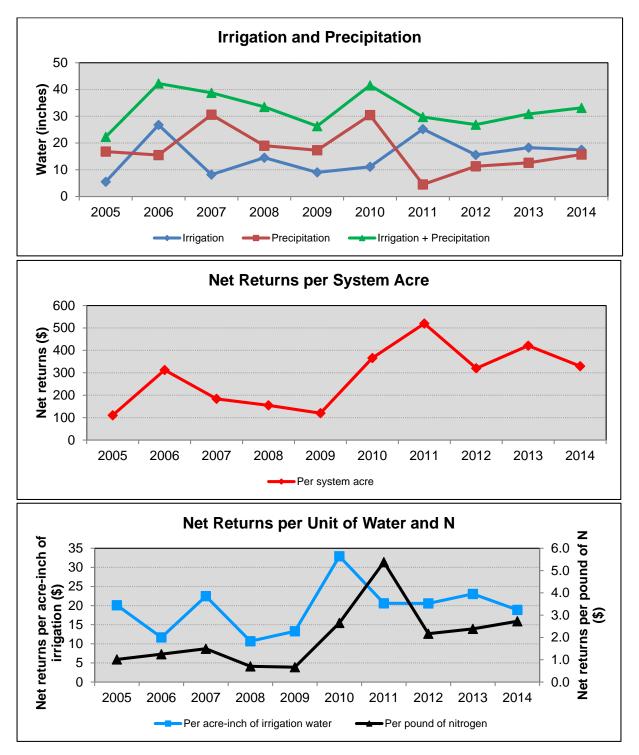
All numbers in this report continue to be checked and verified. <u>THIS REPORT SHOULD BE</u> <u>CONSIDERED A DRAFT AND SUBJECT TO FURTHER REVISION</u>. However, each year's annual report reflects completion and revisions made to previous years' reports as well as the inclusion of additional data from previous years. Thus, the most current annual report will contain the most complete and correct report from all previous years and is an overall summarization of the data to date.

Figure 13. Original project area and new county expansion for Phase II of the demonstration project. Castro County will be added in 2015.


		11		-				-					-			_				
Site	irrigation type	System acres	Cotton	Corn grain	Corn silage	Fallow	Grain sorghum	Seed sorghum	Forage sorghum	Alfalfa	Grass seed	Hay	Perennial forage	Cattle grazed	Wheat for grain	Wheat silage	Grazed wheat	Sunflower	Triticale hay	Seed millet
4	PIV	122.9	29.6				29.6	50.5	26.8	16		16	16	53.6			26.8			
5	PIV	484.1	241.8															119.4		122.9
6	PIV	122.7	62.1	60.6																
7	PIV	130									130.0	130	130							
8	SDI	61.8									61.8	61.8	61.8							
9	PIV	237.7	59.9				77.0						100.8	100.8						
10	PIV	173.6	59.2	59.2									57.7	57.7						
11	FUR	92.3	77.3				15.0													
14	PIV	124.1	124.1																	
15	SDI	101.1	101.1																	
17	PIV	220.7		54.4		111.8							111.8					54.5		
19	PIV	120.3	120.3																	
20	PIV	233.3			233.3															
21	PIV	122.0	60.6						61.4			61.4			61.4					
22	PIV	148.7		148.7																
24	PIV	129.7		64.6														65.1		
26	PIV	125.1		62.9														62.2		
27	SDI	108.4			108.4															
28	SDI	51.4	51.4																	
29	DRY	221.7	221.7																	
30	SDI	21.8	21.8																	
31	PIV	121.9	66.8				66.8													
32	PIV	70	70.0				70.0													
33	PIV	70	70.0																	
34	PIV	726.0	242.0	484.0																
35	PIV	230.2	80.5	75.0			74.7	55.1												
C50	PIV	120.6	120.6													1				
C51	SDI	45.7	45.7																	
C52	PIV	135	135													1				
C53	SDI	50	50																	
C54	SDI	85	85													1				
C56	PIV	45	00		45											<u> </u>				
C57	PIV	115			115										1	<u>† </u>				├── ┤
C58	PIV	110			115					60						<u> </u>			60	
C59	SDI	76								76					<u> </u>	<u> </u>			00	├── ┤
C60	PIV	59.5					59.5			70					<u> </u>	<u> </u>				├── ┤
	al acres 2014	5223.3	2196.5	1009.4	501.7	111.8	392.6	105.6	88.2	152	191.8	269.2	478.1	212.1	61.4	0	26.8	301.2	60	122.9
	# of Sites	36	23	8	4	1	7	2	2	3	2	4	6	3	1	0	1	4	1	1


Table 3. Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle in 36 producer sites in the project

 during 2014. (See Appendix for 2005-2013)


PIV = pivot irrigation SDI = subsurface drip irrigation FUR = furrow irrigation DRY = dryland, no irrigation **<mark>Red</mark> denotes field crop failure, <mark>Yellow</mark> denotes original purpose altered, <mark>Brown</mark> denotes fallowed

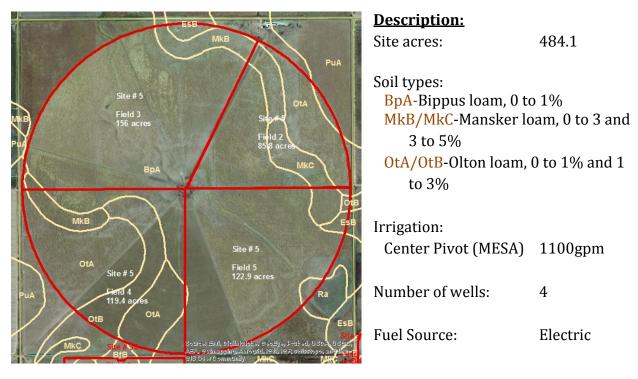
<u>Site 4</u>

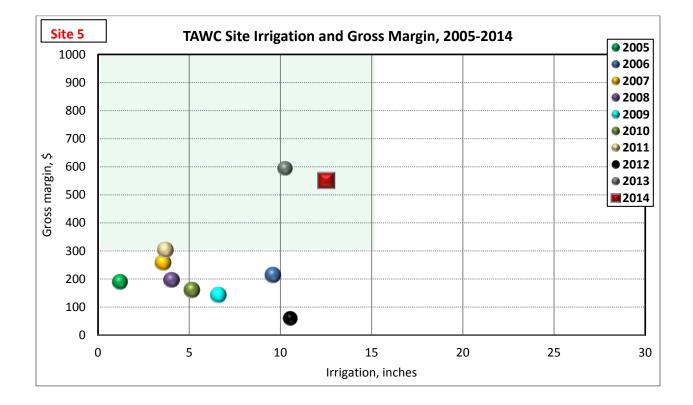
April alfalfa

Harvested hay

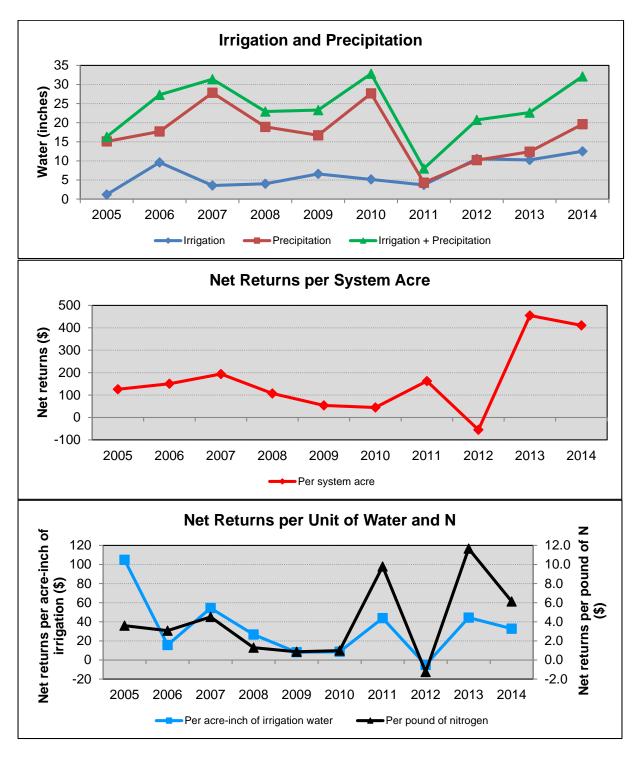
Cattle grazing

July grain sorghum


Forage Sorghum



LEPA Irrigated wheat


Comments: In 2014 this pivot LEPA/LESA irrigated site was planted to forage sorghum, grain sorghum, wheat, and continued with alfalfa. The grain sorghum was strip till planted on 30-inch centers.

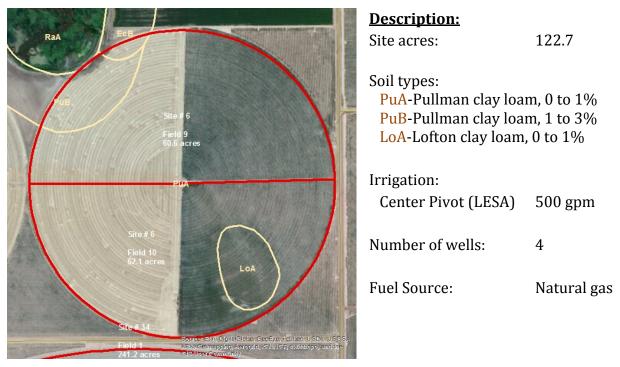
<u>Site 5</u>

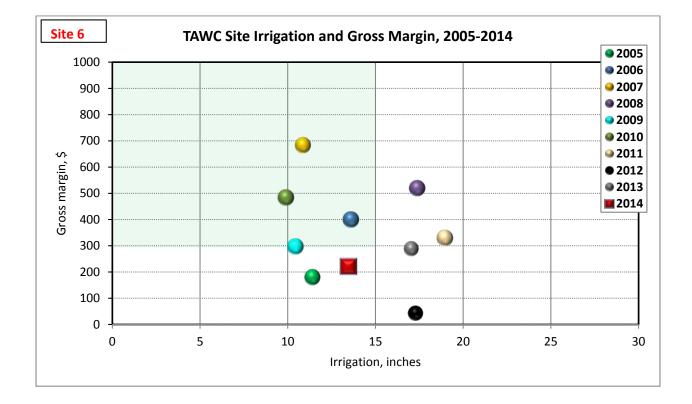
June sunflower

August sunflower

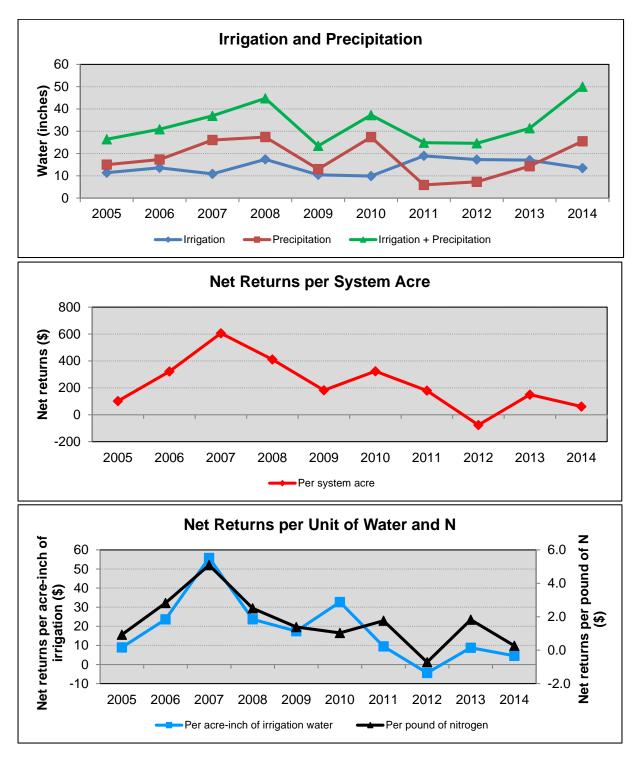
Seed millet

Cotton irrigation


August cotton



Sunflower planted


Comments: In 2014 this pivot irrigated site was planted to millet, cotton and sunflower on 30 inch spacing. The cotton was minimum tilled and the sunflower was no till.

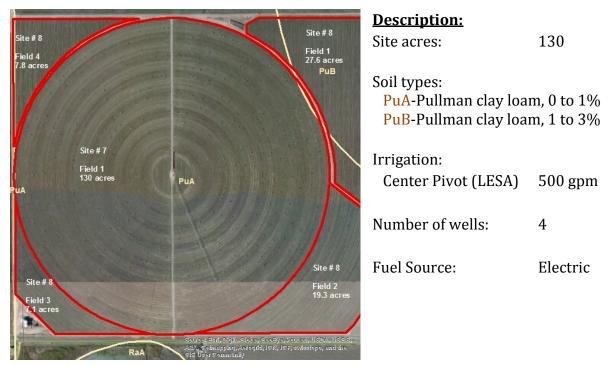
<u>Site 6</u>

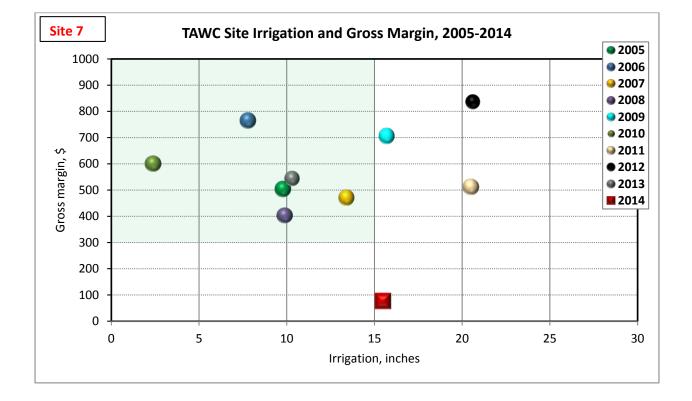
Prepping for planting

July cotton

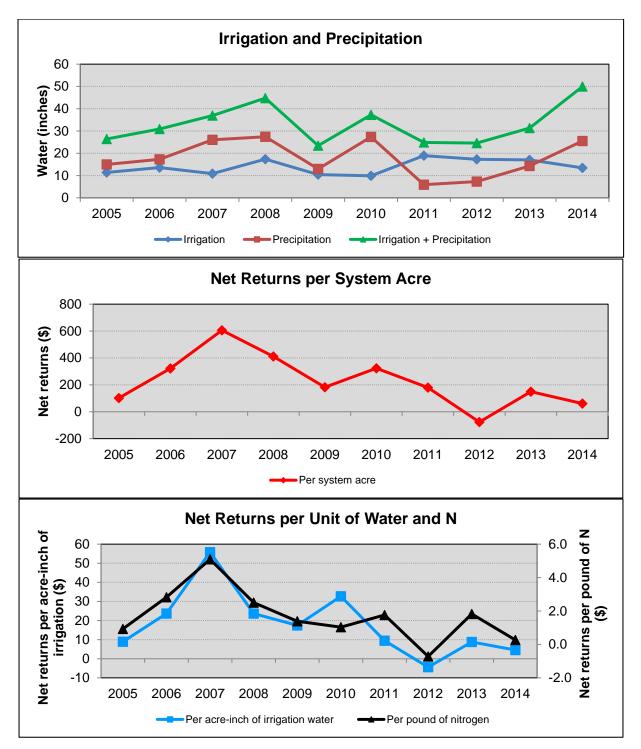
September cotton

June corn


September corn



Harvested corn


Comments: In 2014 this pivot irrigated site was planted to corn and cotton. The corn was planted strip-till on 30 inch centers and the cotton was planted no till on 30-inch centers.

<u>Site 7</u>

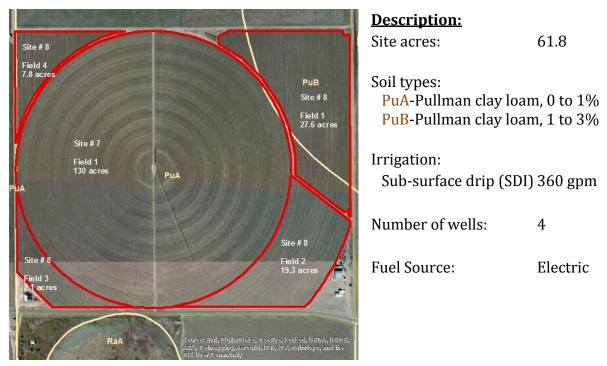
Site 7

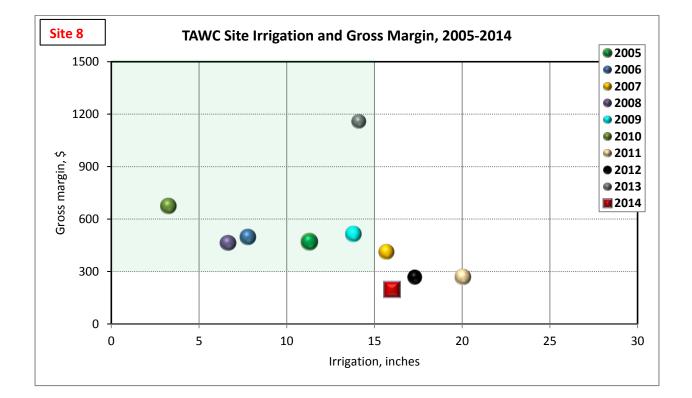
Burned residue

Field of Sideoats grama

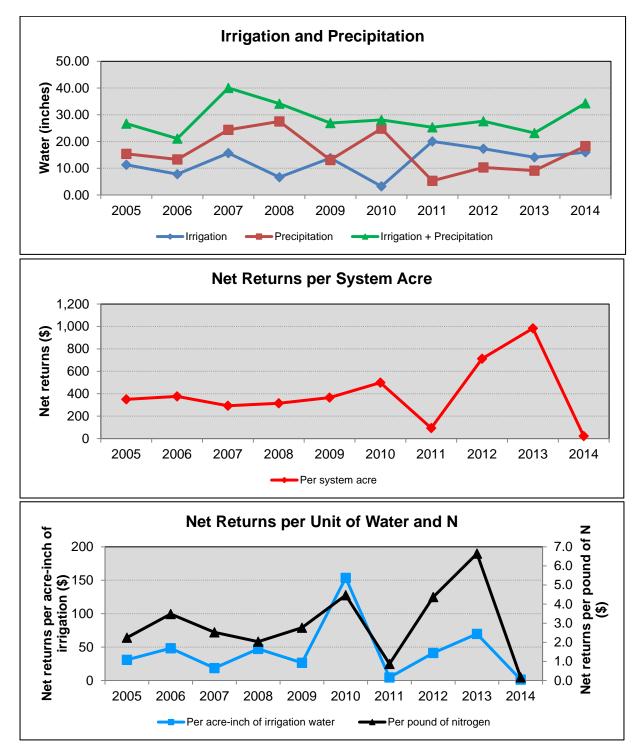
Sideoats grama

Sideoats ready for harvest


Sideoats hay



Baled following seed harvest


Comments: In 2014 this pivot irrigated site continued as a grass seed monoculture of sideoats grama. Harvesting seed and making hay. 2014 harvest conditions were less than favorable resulting in lower yields and delayed harvest.

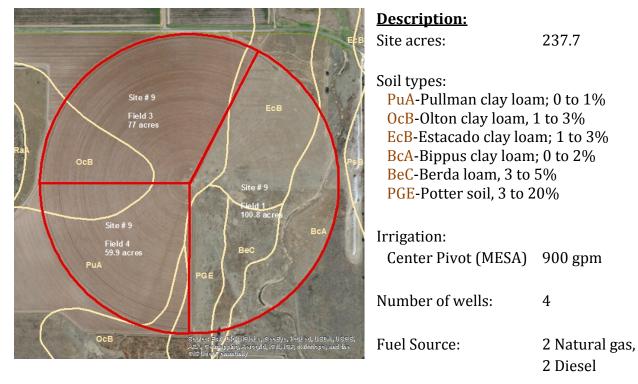
<u>Site 8</u>

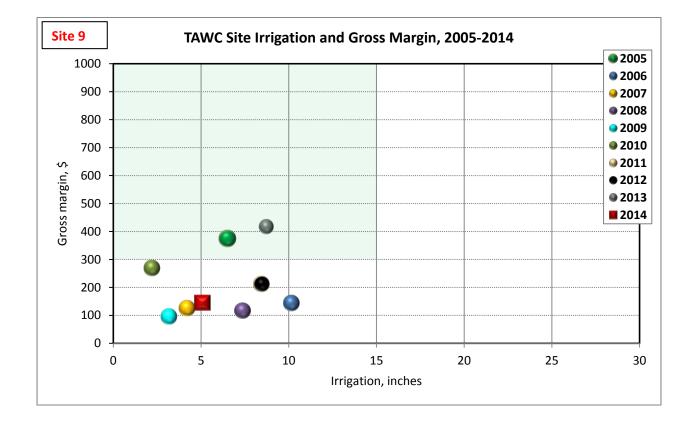
Burned to start season

Field of sideoats grama

Sideoats over SDI

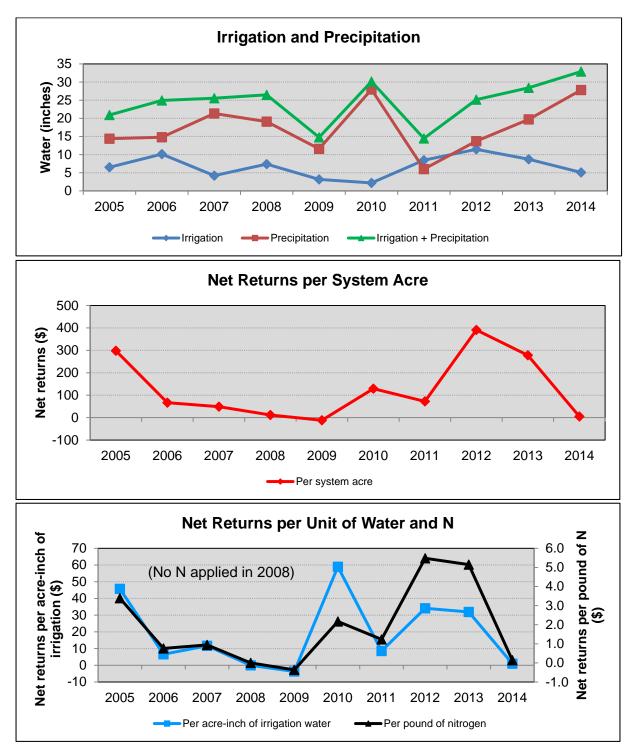
Seed ready for harvest


Laid down for thrashing



Residue round baled

Comments: In 2014 this SDI irrigated site continues to be managed as a grass seed monoculture. Harvesting sideoats grama seed and making hay. 2014 harvest conditions were less than favorable resulting in lower yields and delayed harvest.


<u>Site 9</u>

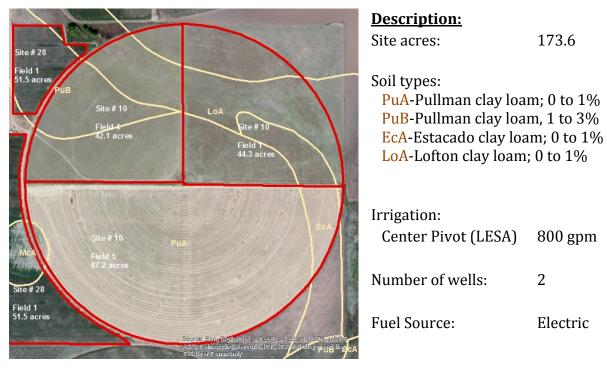
42

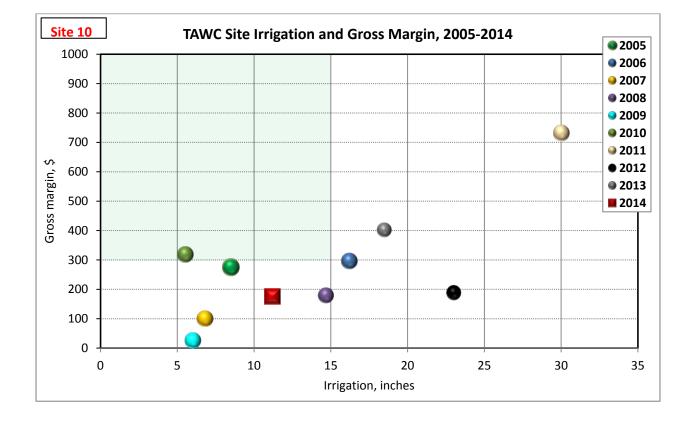
Perennial grass

September grain sorghum

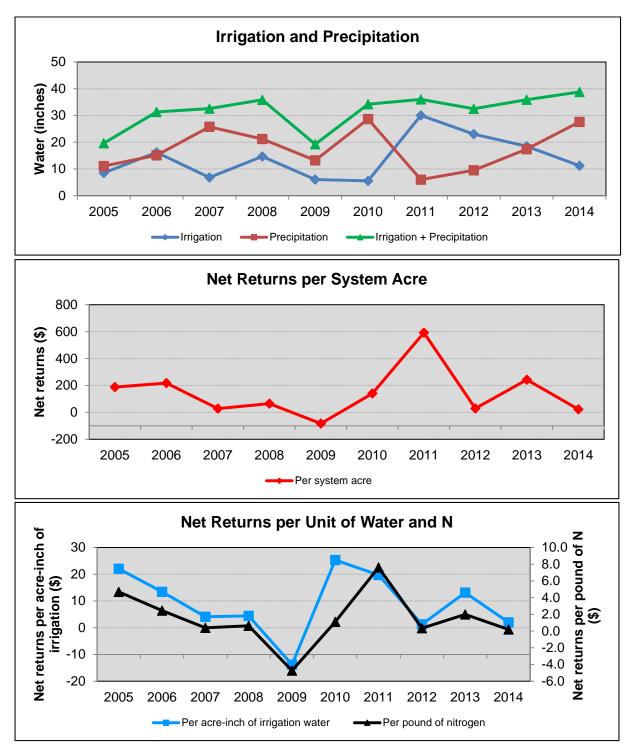
July grain sorghum

September cotton


Cattle grazing grass



Harvested grain sorghum


Comments: In 2014 this pivot irrigated site was planted to cotton, grain sorghum. The perennial grass mix was grazed 100 yearlings for 127 days.

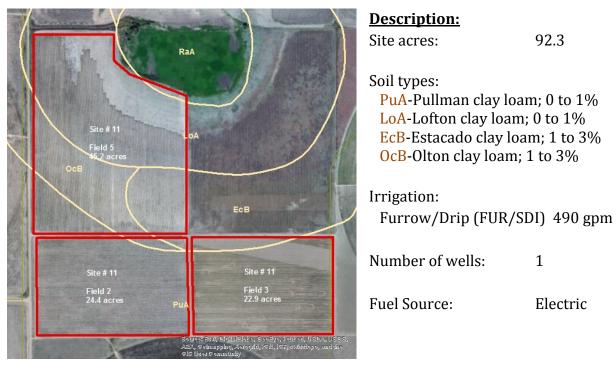
<u>Site 10</u>

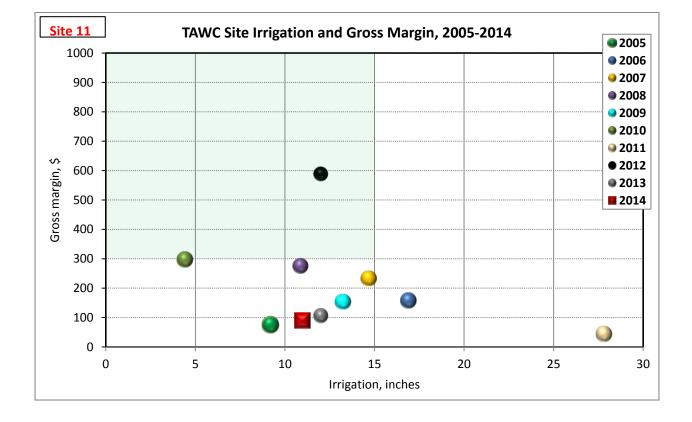
Early May

Cow/calf pairs

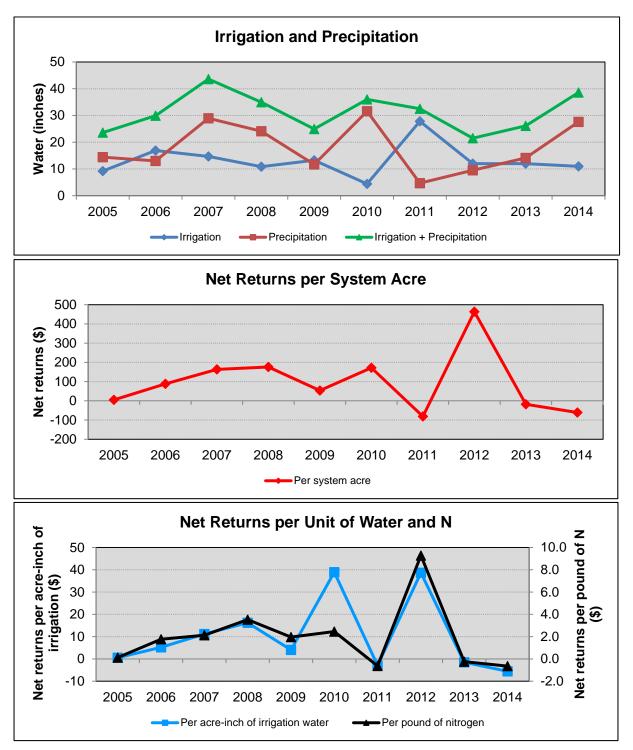
Cattle grazing mixed grass

Corn nearing harvest


September cotton



Cattle with corn in back


Comments: In 2014 this pivot LESA irrigated site was planted to conventional tillage corn and cotton and continued in perennial grass. The perennial grass was grazed by 42 cow/calf pairs for 210 days.

<u>Site 11</u>

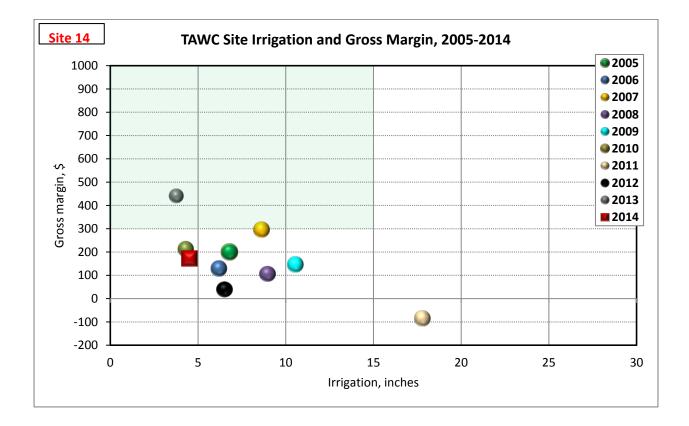
Late March ground prep

Water meter on system

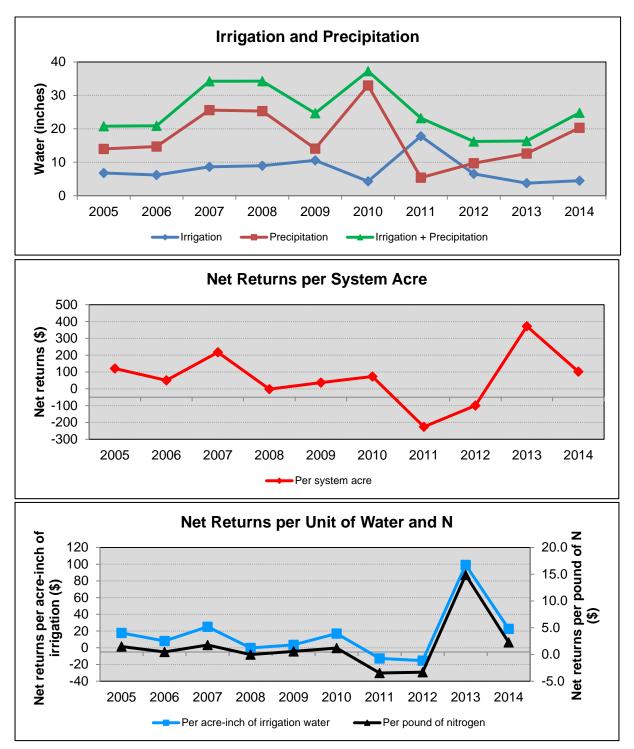
SDI filtration system

July grain sorghum

July cotton


Moisture probe installation

Comments: In 2014 this SDI/FUR irrigated site was planted to grain sorghum and cotton. The cotton and grain sorghum were planted on 40-inch centers under conventional tillage.



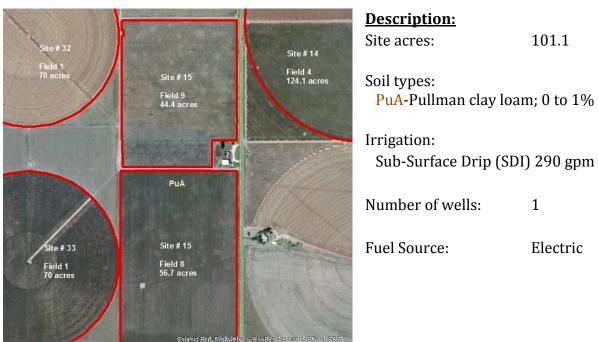
Description: Site acres:	124.1
Soil types: PuA-Pullman clay loar	n; 0 to 1%
Irrigation: Center Pivot (LESAA)	300 gpm
Number of wells:	3
Fuel Source:	Electric

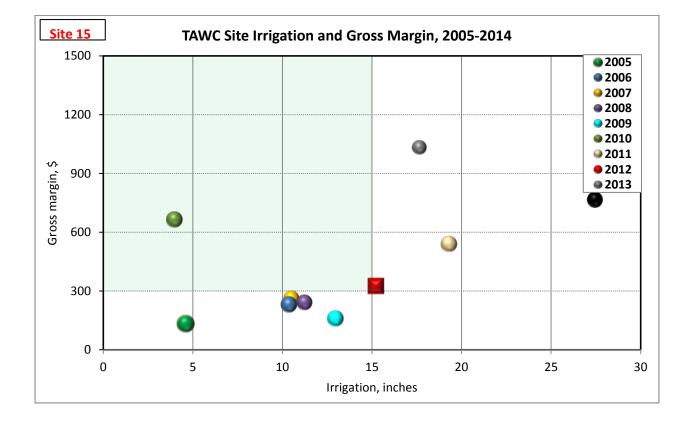
April

Early July cotton

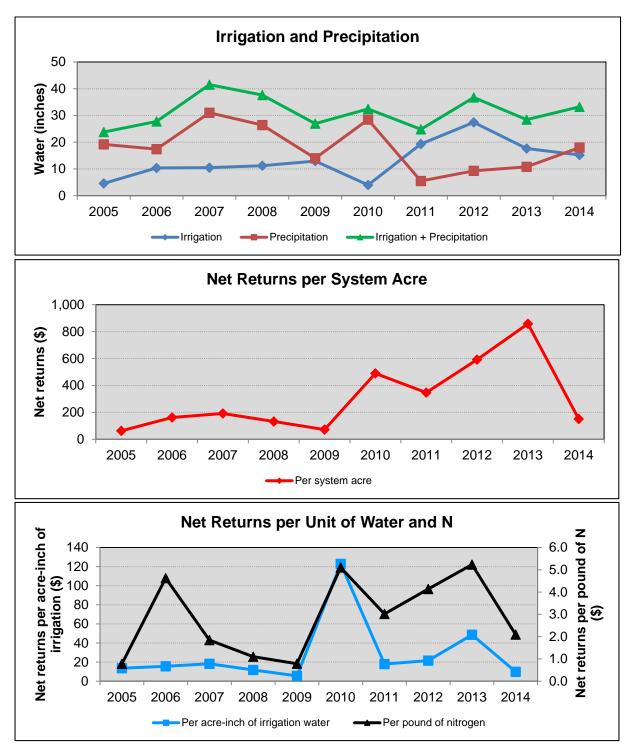
Early July cotton

Cotton planted 2 in- 2 out


Cotton planting pattern



MESA/LEPA irrigation

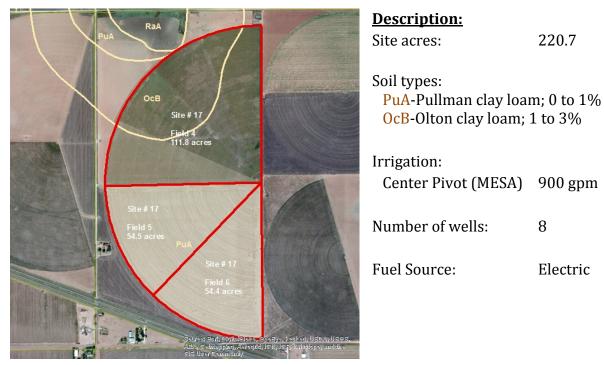

Comments: In 2014 this pivot MESA/LEPA irrigated site was planted to cotton monoculture in a 2 in 2 out tillage system.

Wheat cover

July cotton

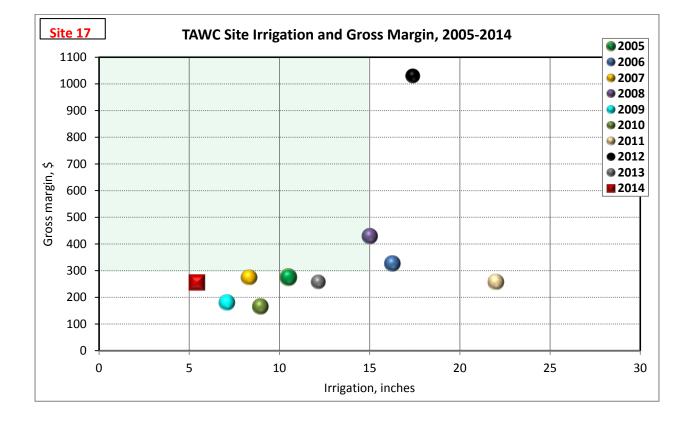
Wheat cover

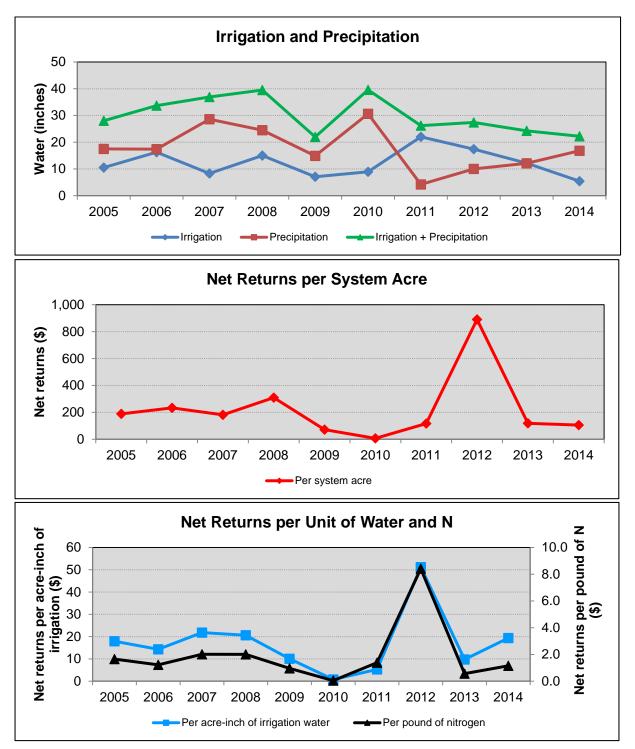
July cotton


August cotton

August cotton

Comments: In 2014 this SDI irrigated site was planted to cotton monoculture. The cotton was planted on 40-inch centers with conventional tillage.


<u>Site 17</u>


220.7

8

Electric

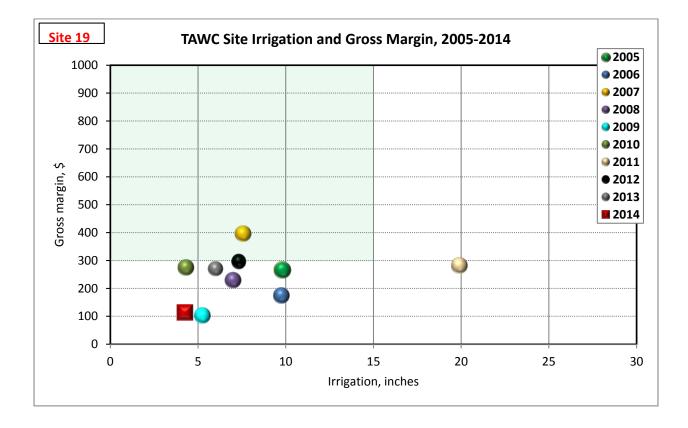
Dormant Dahl

W.W. B-Dahl pasture

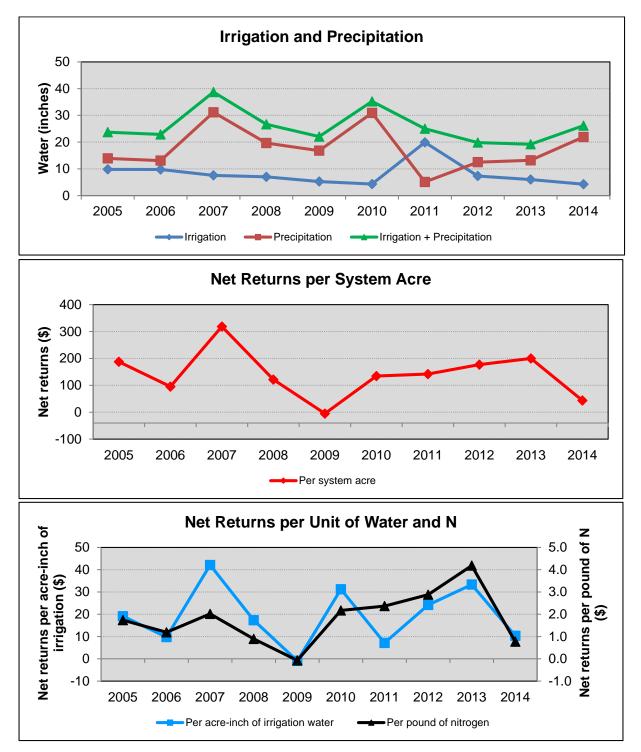
W.W. B-Dahl seed heads

Sunflower

July Corn


Corn ready for harvest

Comments: In 2014 this pivot irrigated site was planted to food grade corn and sunflower. The W.W. B-Dahl perennial grass was fallowed in this year.

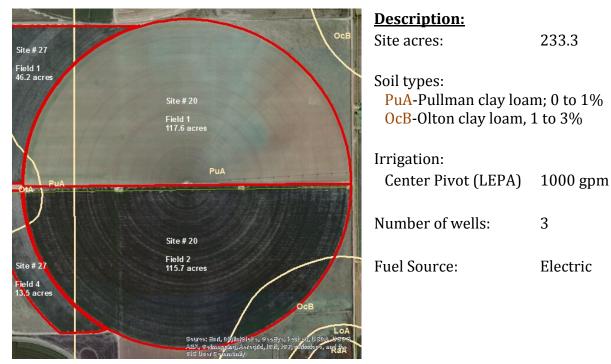

<u>Site 19</u>

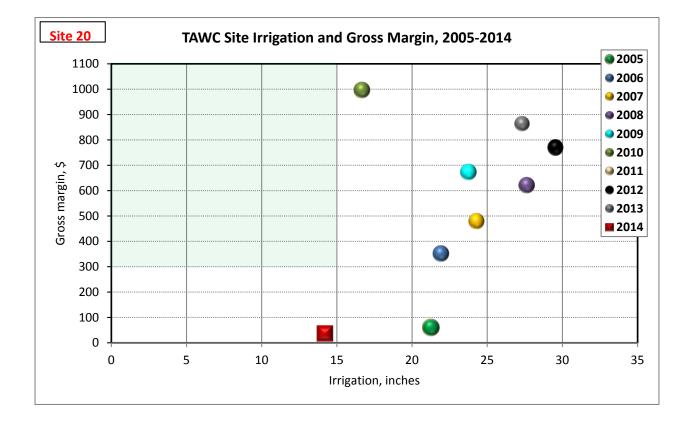
Description: Site acres:	120.3
Soil types: PuA-Pullman clay loam; 0 to 1%	
Irrigation: Center Pivot (LEPA)	400 gpm
Number of wells:	3
Fuel Source:	Electric

Site 19

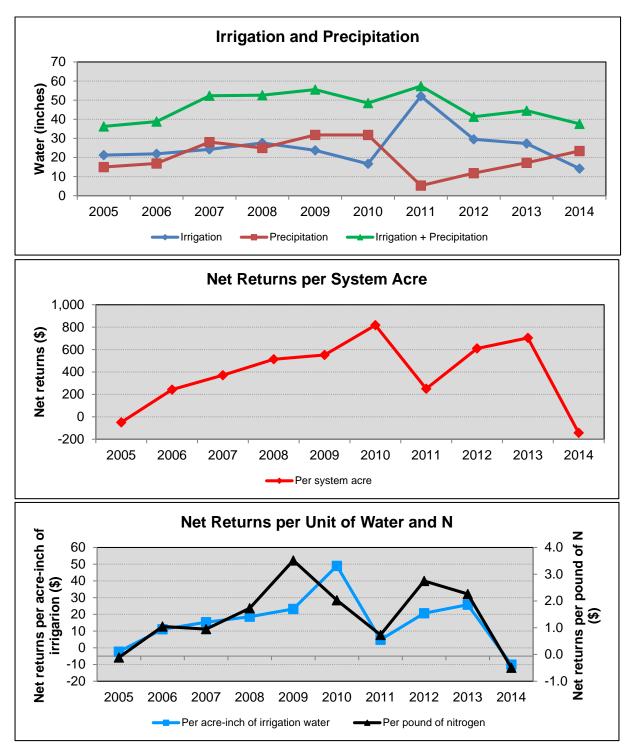
Residue from previous year

LEPA Pre-water


2 in 2 out planting

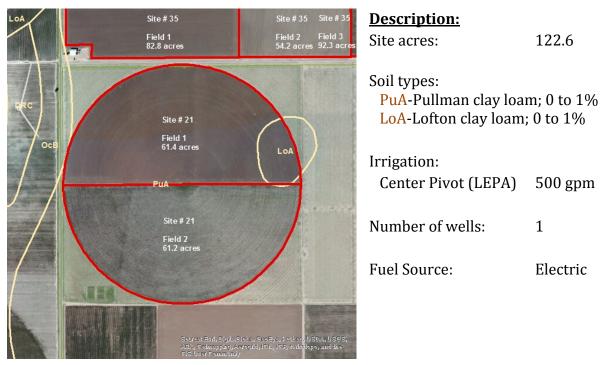

2 in 2 out planting

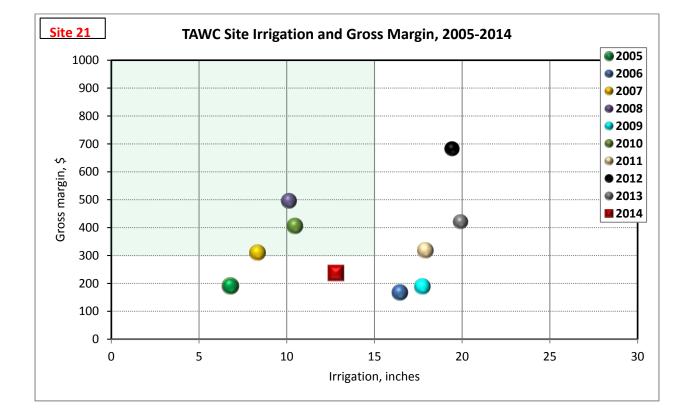
July cotton


Comments: In 2014 this pivot LEPA irrigated site was planted to cotton monoculture in a 2 in, 2 out system.

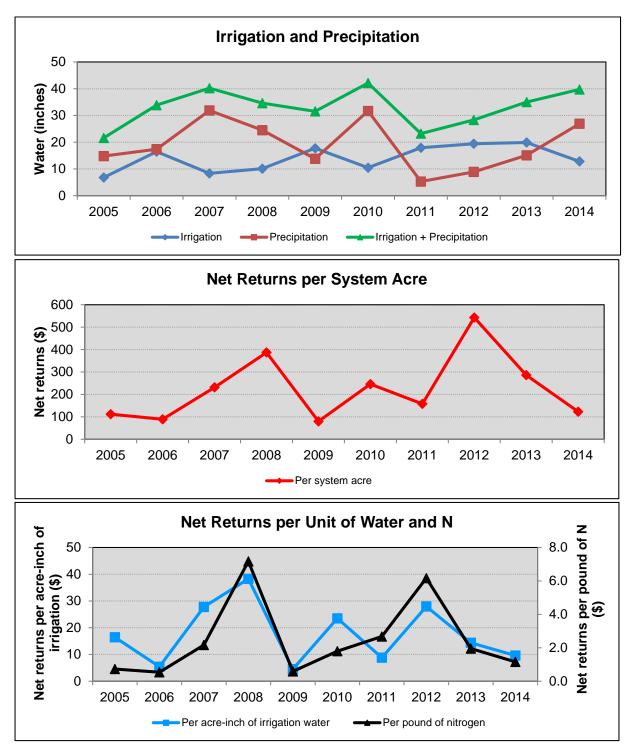
<u>Site 20</u>

April corn on 20 inch center


Late August corn



Late August corn


Comments: In 2014 this pivot LEPA irrigated site was planted to a corn monoculture. The corn was planted on 20-inch centers and harvested for silage.

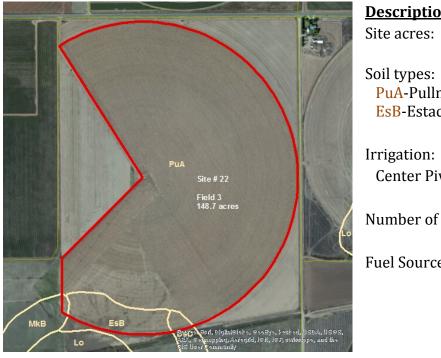
<u>Site 21</u>

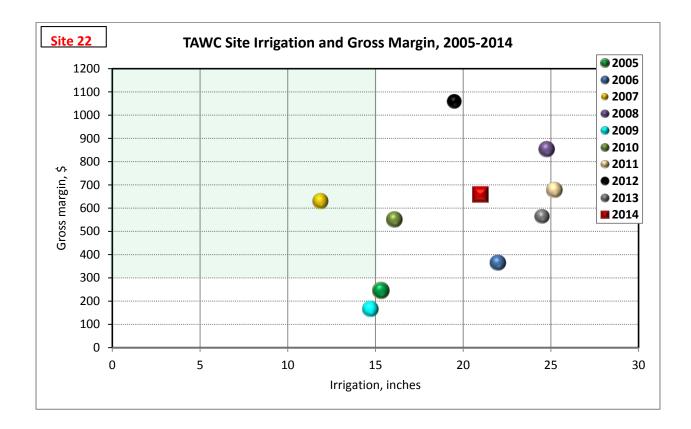
LEPA pre-water

Wheat maturing

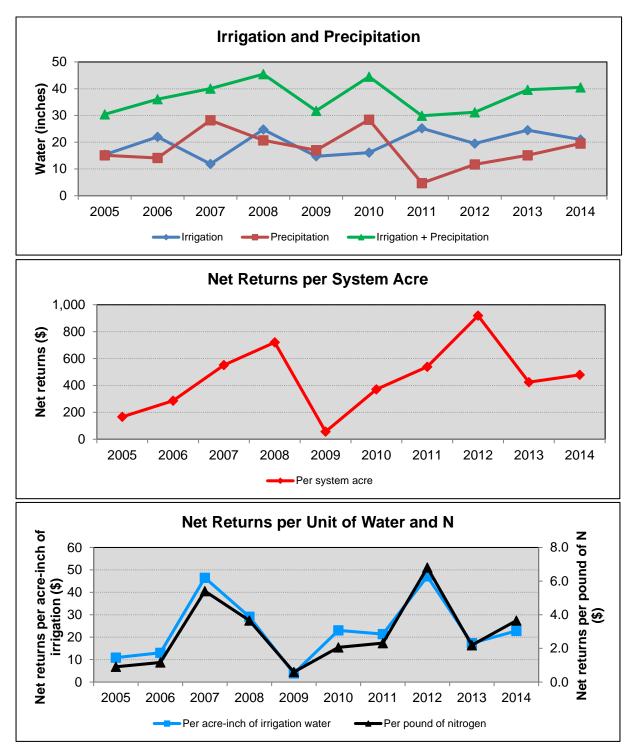
Wheat harvest

Forage sorghum swathing


LEPA irrigated cotton


October cotton

Comments: In 2014 this pivot LEPA irrigated site was planted to wheat, corn and forage sorghum. The forage sorghum was harvested for hay.



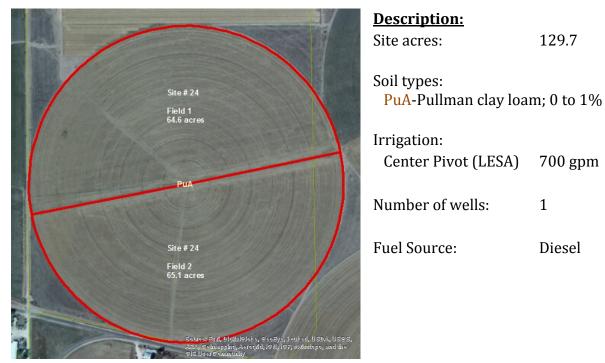
Description: Site acres:	148.7	
Soil types: PuA-Pullman clay loam; 0 to 1% EsB-Estacado loam; 1 to 3%		
Irrigation: Center Pivot (LEPA)	800 gpm	
Number of wells:	4	
Fuel Source:	Electric	

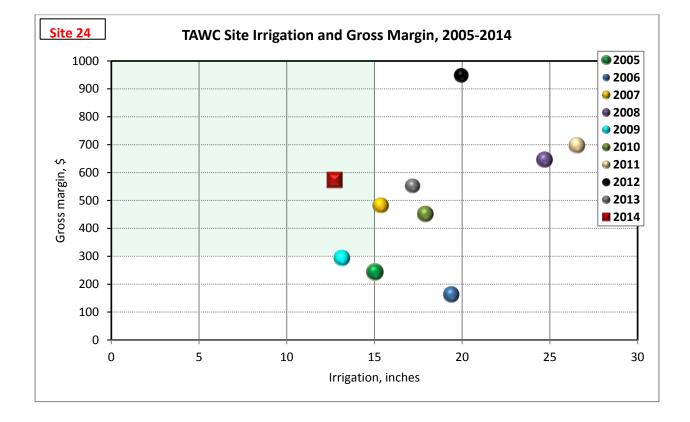
March

30-inch strip till planting

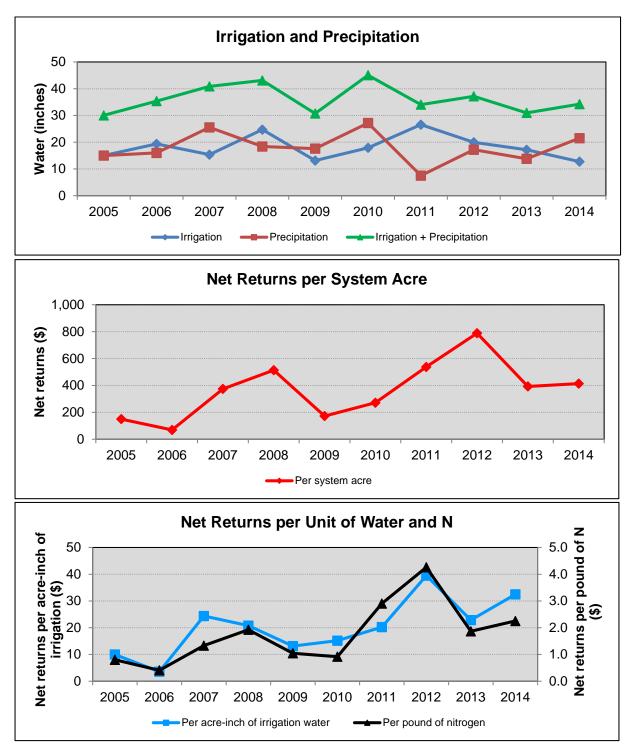
Strip till corn row

Ground preparation


LEPA nozzles



Late July corn


Comments: In 2014 this pivot LEPA irrigated site was planted to corn. The corn was strip till planted on 30-inch centers.

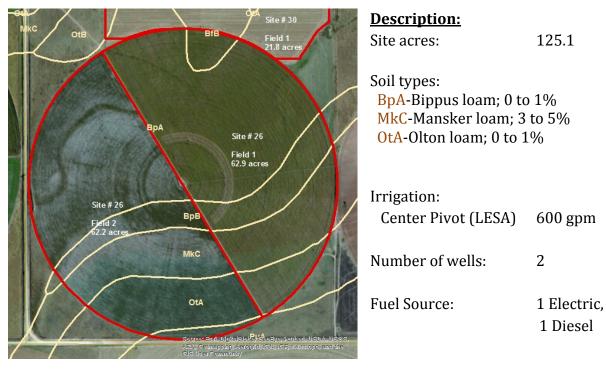
<u>Site 24</u>

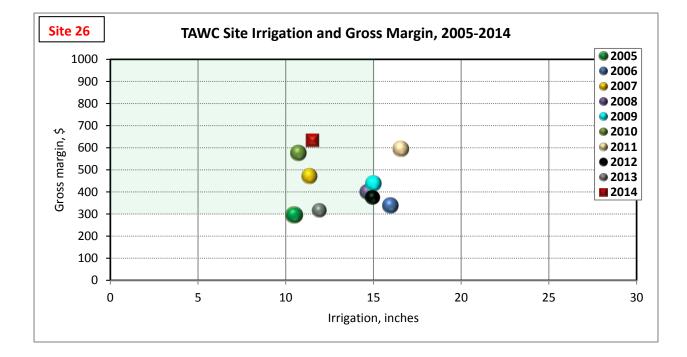
March

Sunflower

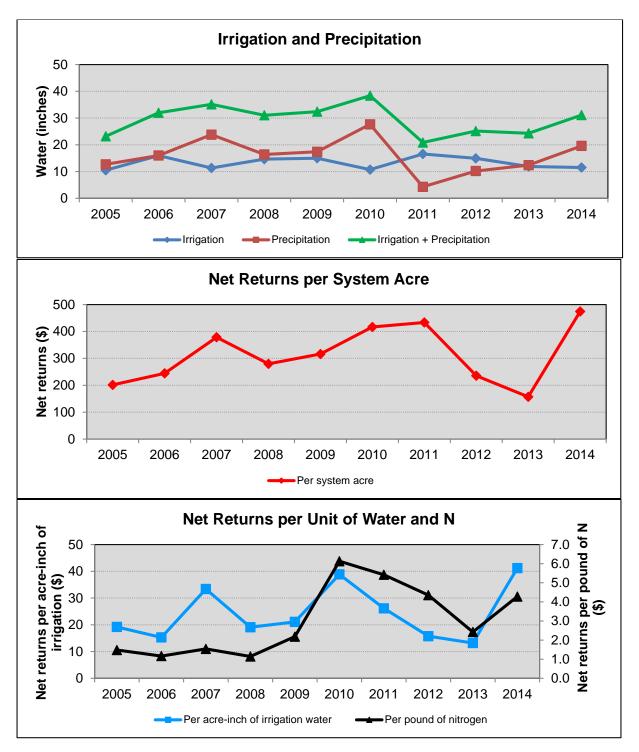
Sunflower head

July corn


Corn harvest



Corn Harvester

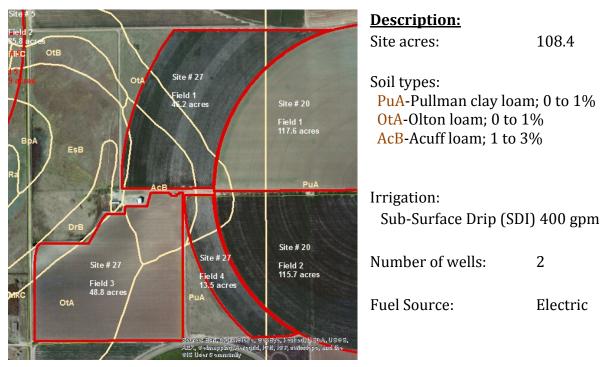

Comments: In 2014 this pivot LESA irrigated site was planted to food corn and sunflower.

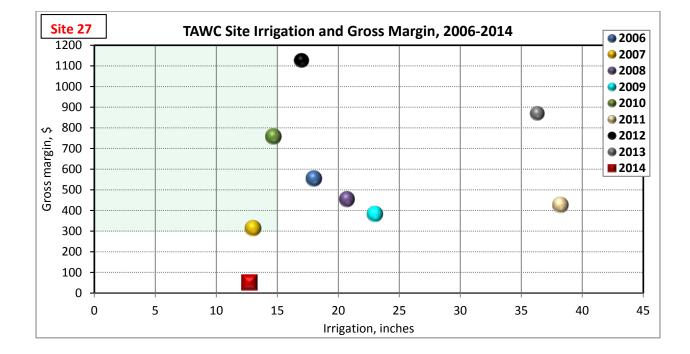
<u>Site 26</u>

April

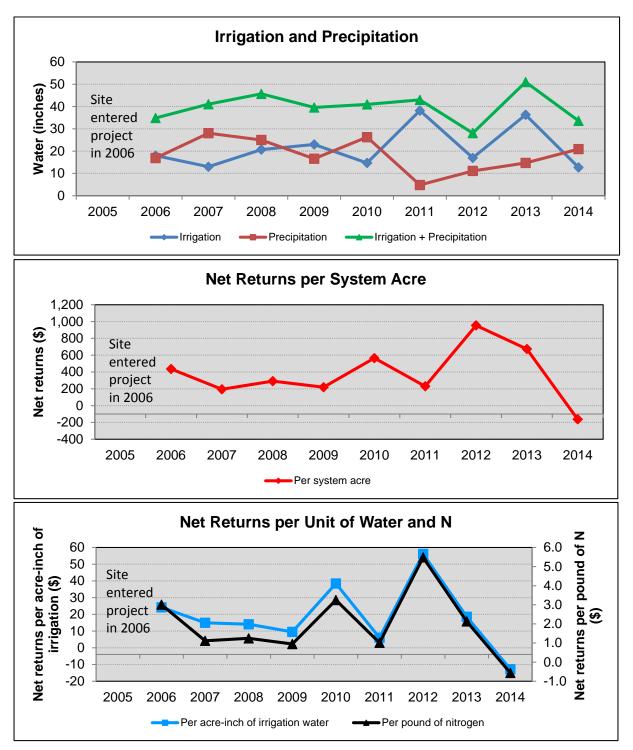
Strip tillage

LESA irrigated corn


Corn ear



Sunflower

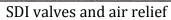

Comments: In 2014 this pivot LESA irrigated site was planted to food corn and sunflower.

<u>Site 27</u>

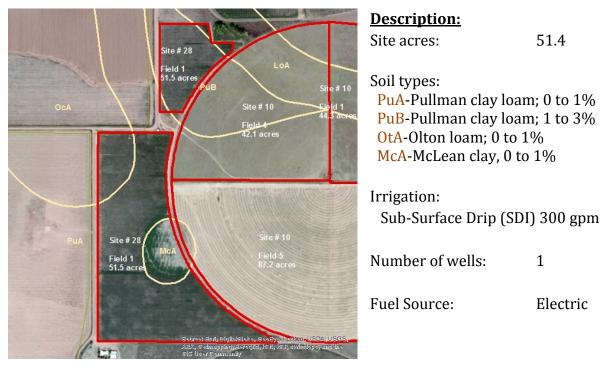
Site 27

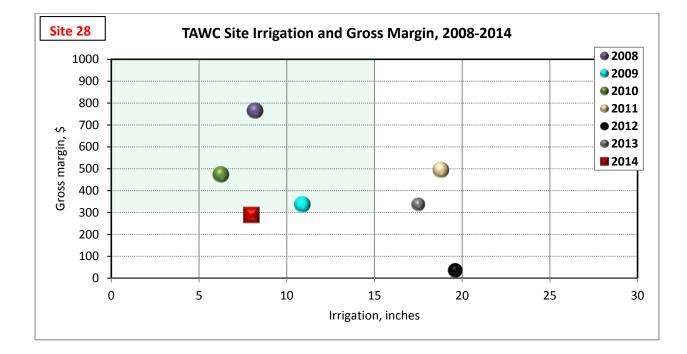
April

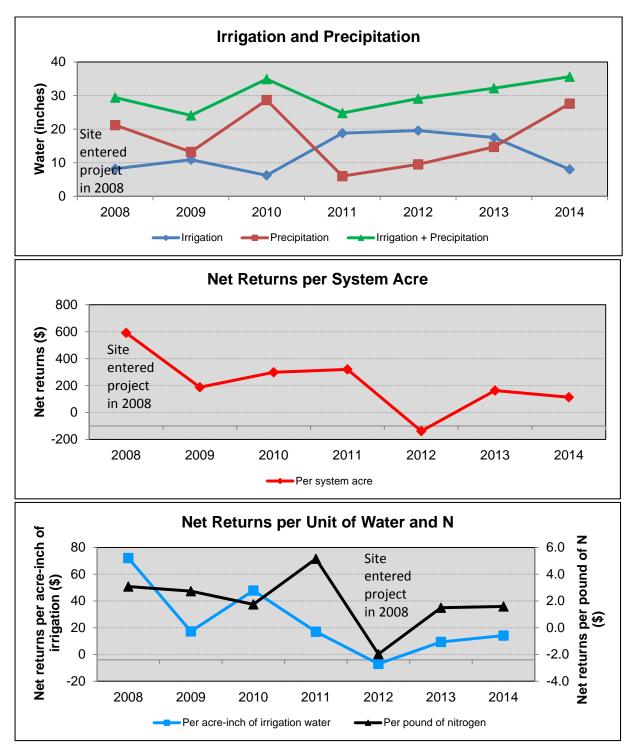
Rolling the planter


June corn

August corn


Comments: In 2014 this SDI irrigated site was planted to corn. The corn was planted on 20-inch centers and harvested for silage.





<u>Site 28</u>

May

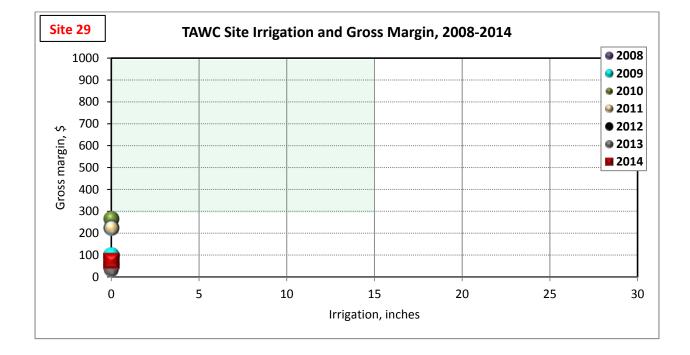

Site 28

September cotton

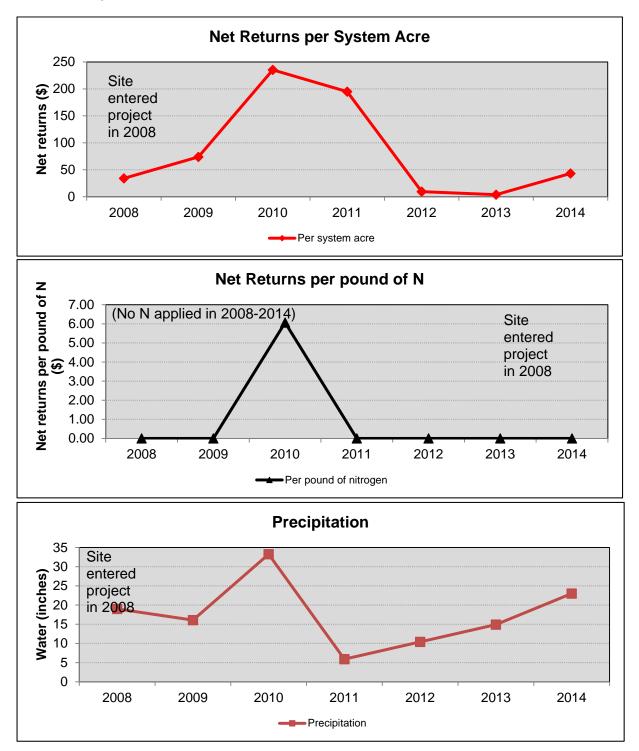
Flagging soil moisture probe

Comments: In 2014 this SDI irrigated site was planted to cotton. The cotton was planted on 40-inch centers with conventional tillage.

SITE 29



221.7


na gpm

na

na

Site 29 - Dryland Site

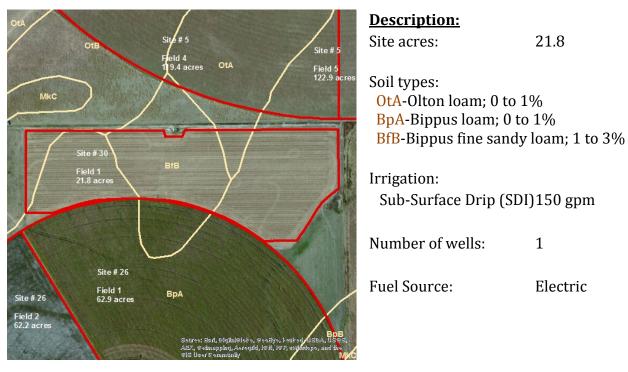
Site 29 - Dryland

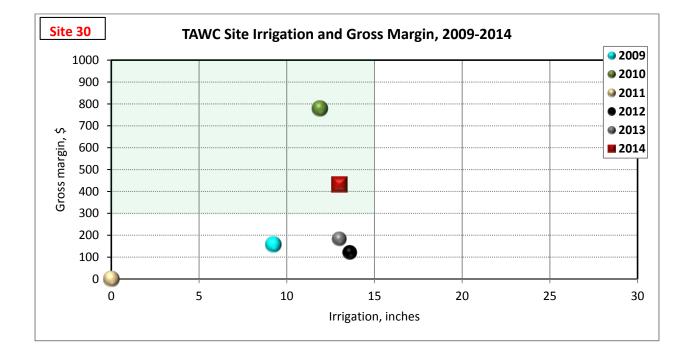
Early May

Planted cotton rows

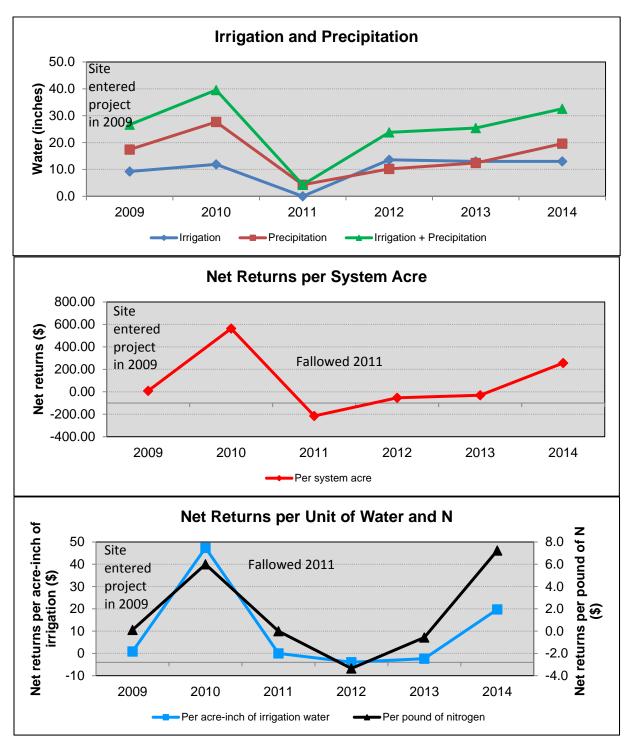
Previous wheat cover

40-inch spaced cotton


July Cotton



September cotton

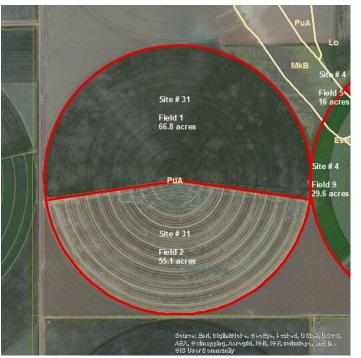

Comments: In 2014 this DL (dryland) site was planted to monoculture cotton.

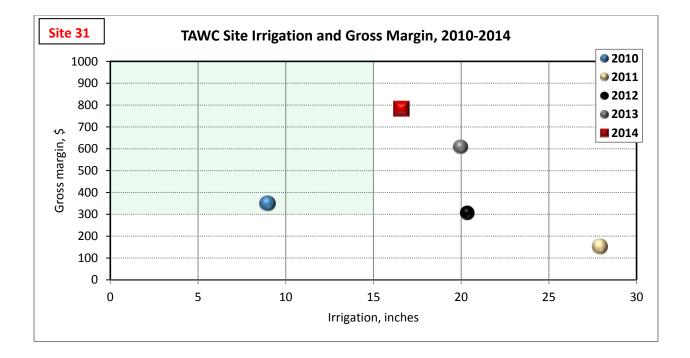
<u>SITE 30</u>

May

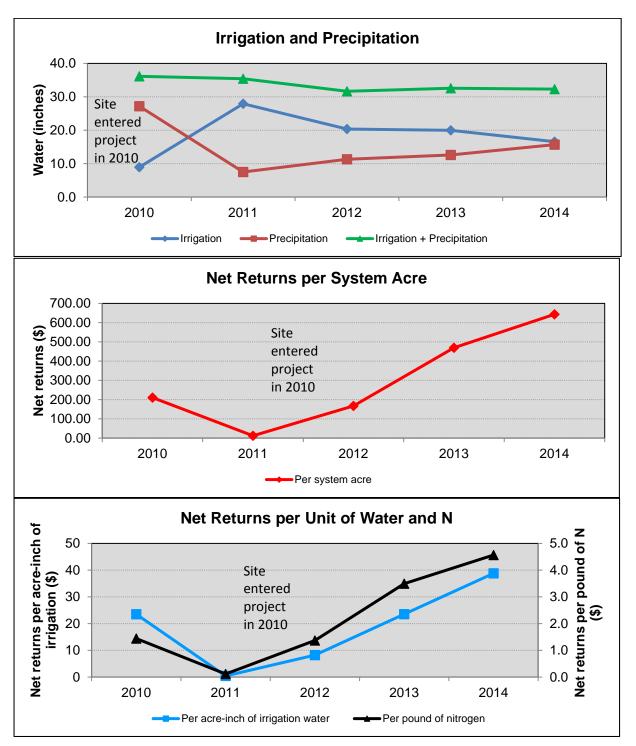
Volunteer corn

Volunteer corn


Late August cotton


Late August cotton

Comments: In 2014 this SDI irrigated site was planted to all cotton. The cotton was planted on 30-inch centers and minimum tilled.


<u>Site 31</u>

Description: Site acres:	121.9
Soil types: PuA-Pullman clay loar	n, 0 to 1%
Irrigation: Center Pivot (LEPA)	450 gpm
Number of wells:	2
Fuel Source:	1 Natural Gas, 1 Electric

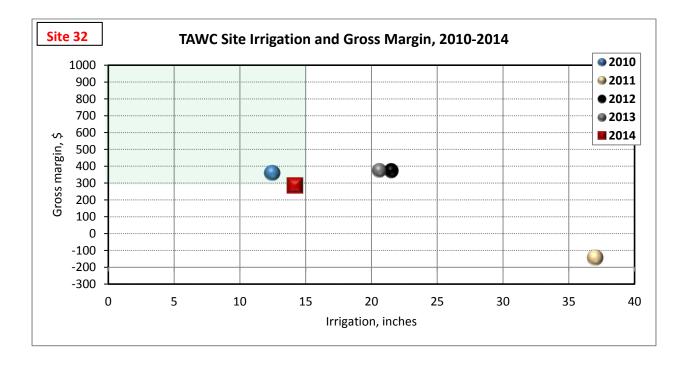

```
Site 31
```


March

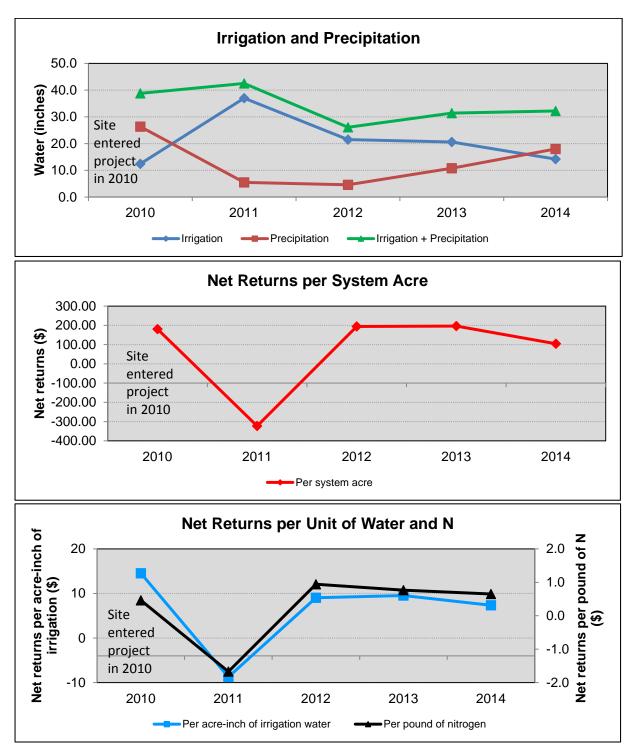
Strip tillage

Strip tillage

Forage sorghum


Grain sorghum heads

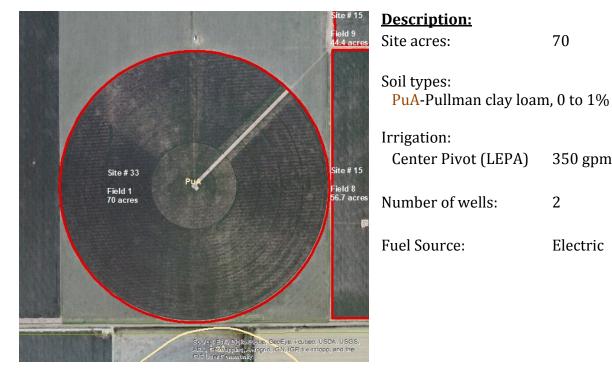
Comments: In 2014 this pivot LEPA irrigated site was initially planted to cotton. However, cotton crop failed and was replanted to grain sorghum. In addition forage sorghum was also grown for seed.

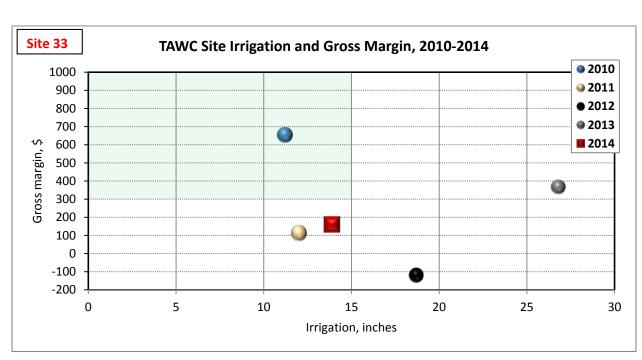

<u>Site 32</u>

Description: Site acres:	70
Soil types: PuA-Pullman clay loam	n, 0 to 1%
Irrigation: Center Pivot (LEPA)	350 gpm
Number of wells:	2
Fuel Source:	Electric


```
Site 32
```


Late April


Site 32

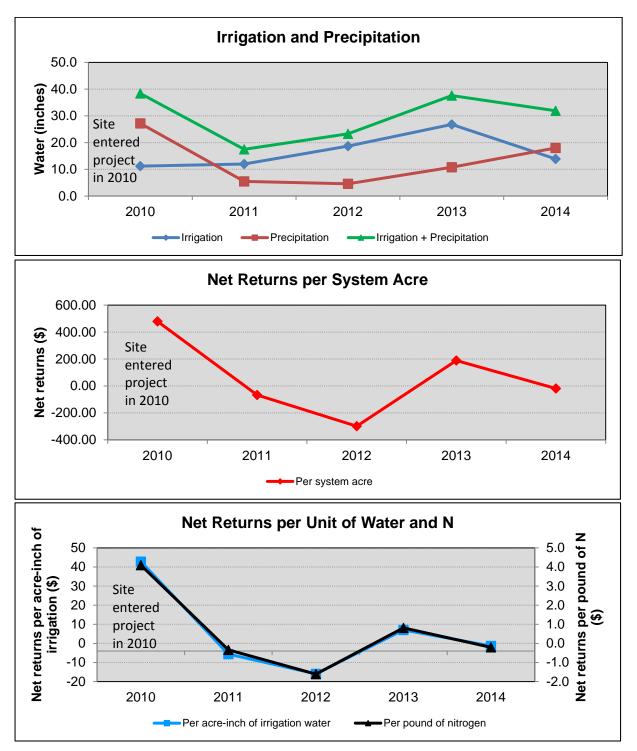

Mother nature helps

August grain sorghum

Comments: In 2014 this pivot LEPA irrigated site was initially planted to cotton. However, cotton crop failed and was replanted to grain sorghum.

<u>Site 33</u>

70

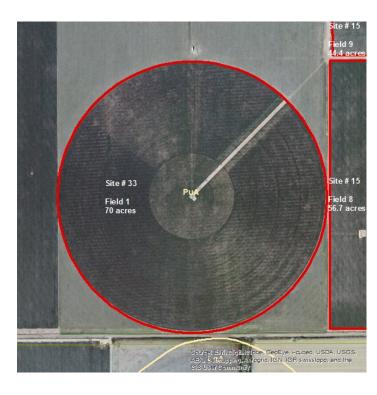

350 gpm

Electric

2

96

```
Site 33
```

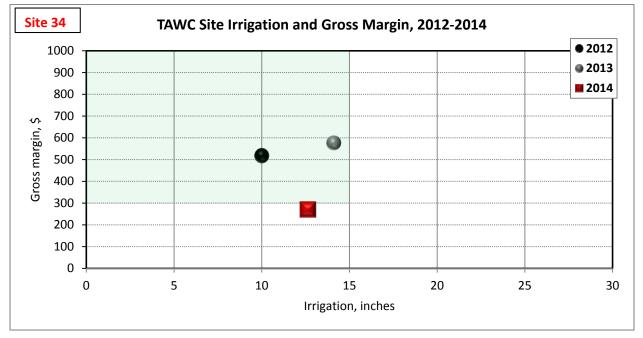



August cotton

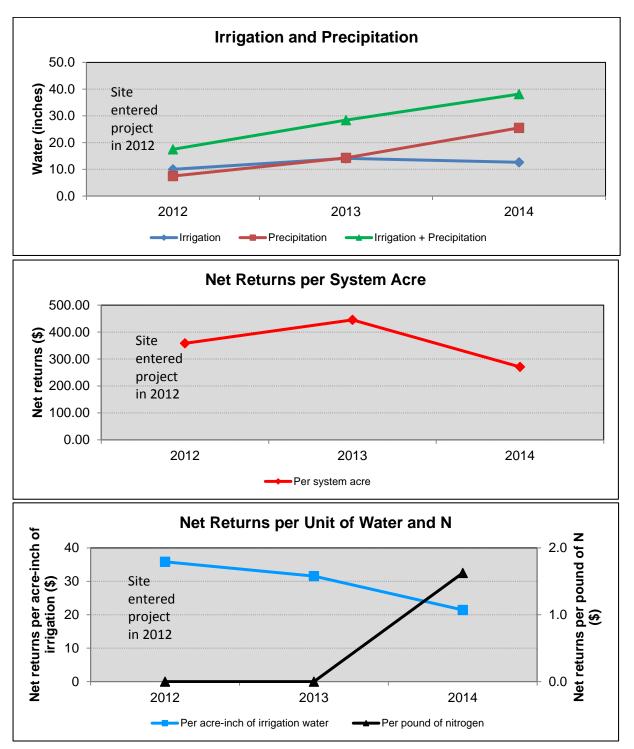
Comments: In 2014 this pivot LEPA irrigated site was planted to conventional cotton.

<u>Site 34</u>

Description:


Site acres:

726


Soil types: PuA-Pullman clay loam, 0 to 1% LoA-Lofton clay loam, 0 to 1% McA-McLean clay, 0 to 1%

Irrigation:

Center Pivot (LESA)	? gpm
Number of wells:	2
Fuel Source:	Electric

Site 34

101

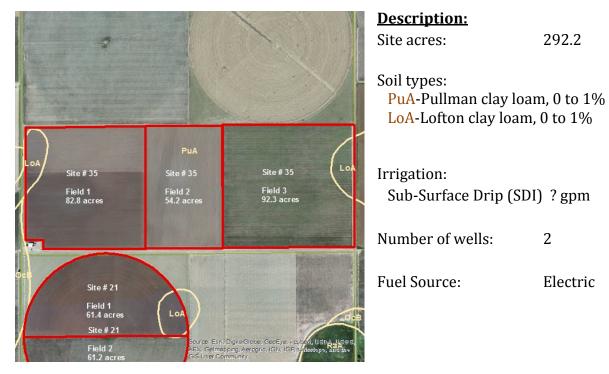
Site 34

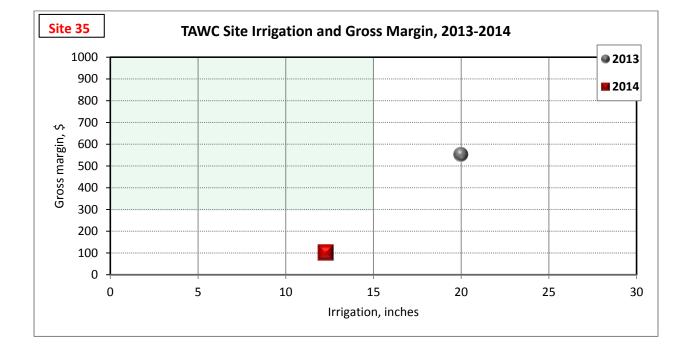
June corn

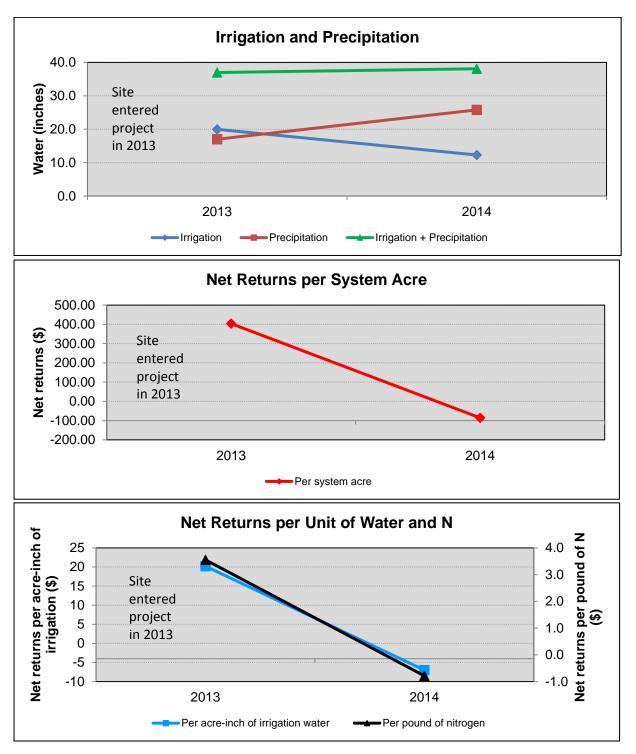
Fertilize injection

July cotton

Comments: In 2014 this pivot LESA irrigated site was planted to corn and cotton. The cotton and corn were both planted on 30-inch centers no till.




Preparing to water



<u>Site 35</u>


```
Site 35
```

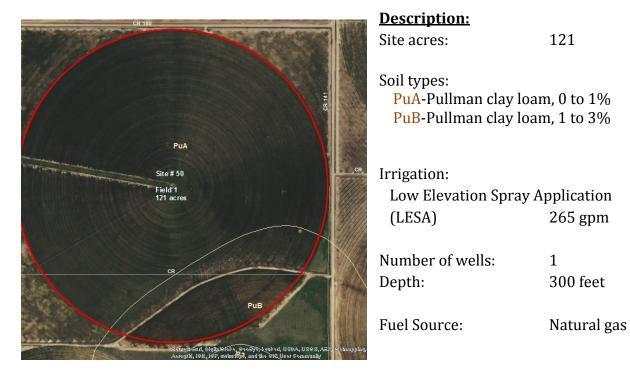

104

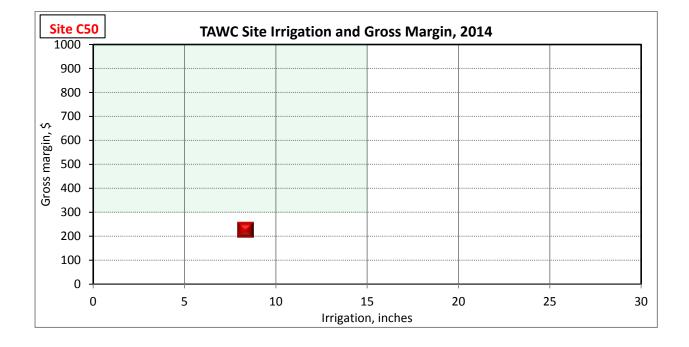
Early cotton emergence

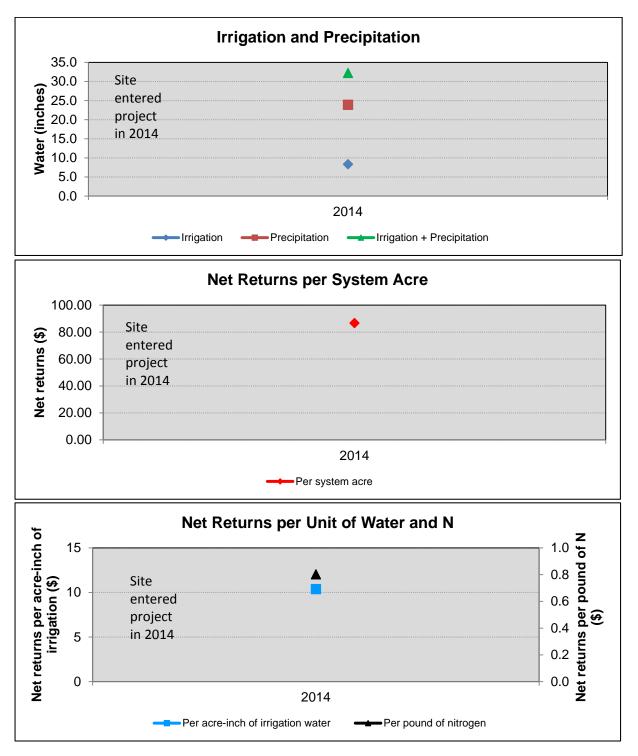
Early July grain sorghum

Corn being loaded

SmartField tech in cotton


Comments: In 2014 this SDI irrigated site was planted to corn, cotton and grain sorghum. All crops were planted on 40-inch centers with conventional tillage.


Site 35


April

<u>Site C50</u>

Site C50

May

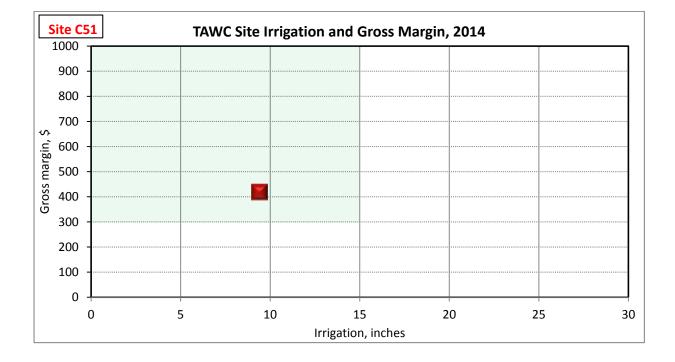
August cotton

October cotton

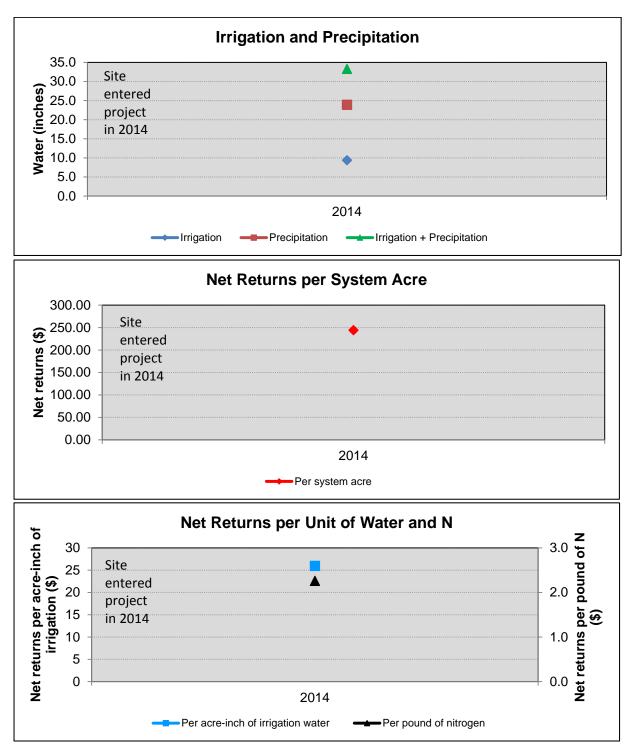
Surface turbine irrigation well

Comments: In 2014 this LESA irrigated site was planted to monoculture cotton. All crops were planted on 40-inch centers with limit tillage.

<u>Site C51</u>


Description:

Site acres:


Soil types: OtA-Olton loam; 0 to 1% OtB-Olton loam; 1 to 3%

46

Irrigation: Sub-surface Drip (SDI)	175 gpm
Number of wells: Depth:	1 350 feet
Fuel Source:	Natural gas

Site C51

Late May planting

Furrow irrigation to establish

Early August cotton

Checking crop maturity

October cotton

Comments: In 2014 this SDI irrigated site was planted to monoculture cotton. All crops were planted on 40-inch centers with limit tillage.

<u>Site C52</u>

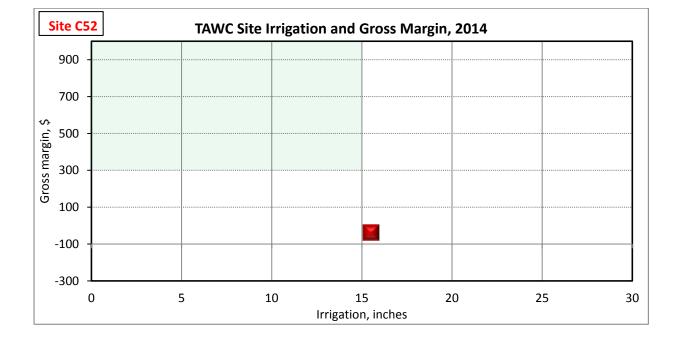
Description:

Site acres:

Soil types:

AfA-Amarillo fine sandy loam, 0 to 1% AfB-Amarillo fine sandy loam; 1 to 3% AlA- Acuff loam, 0 to 1% OtA-Olton loam, 0 to 1% PfB- Portales fine sandy loam, 1 to 3%

135


Irrigation:

Low Elevation Spray Application (SDI) 410 gpm

Number of wells:3Depth:300 feet

Fuel Source:

Electric

Site C52

Late May Planting

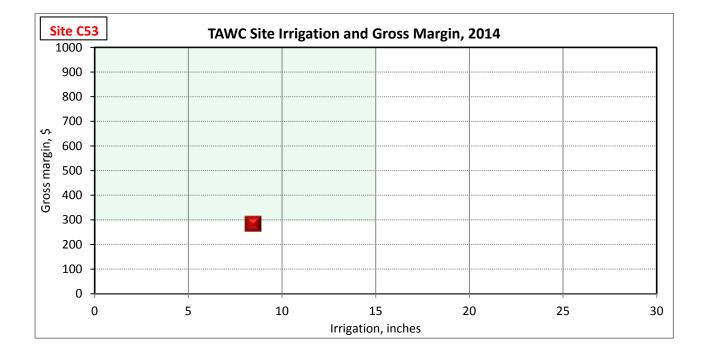
October cotton

Electronic flow meter

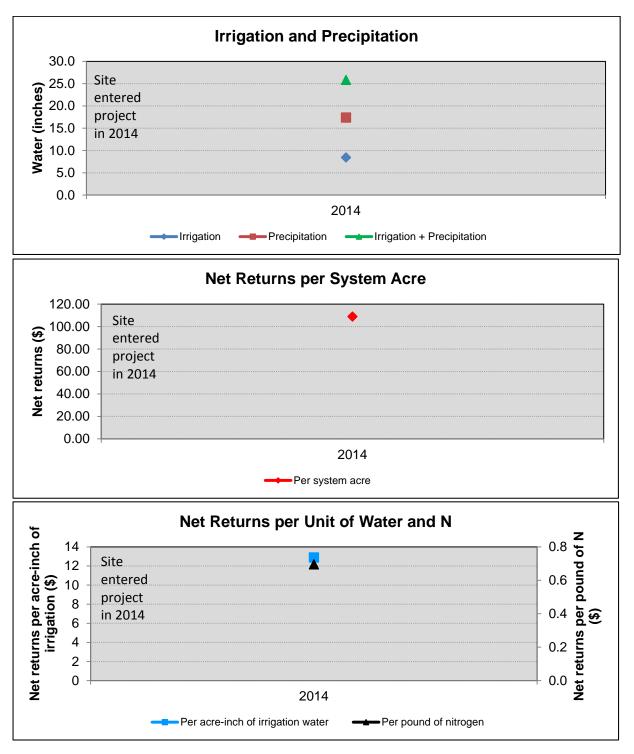
Comments: In 2014 this LESA irrigated site was planted to monoculture cotton. All crops were planted on 40-inch centers with limit tillage.

<u>Site C53</u>

Description:

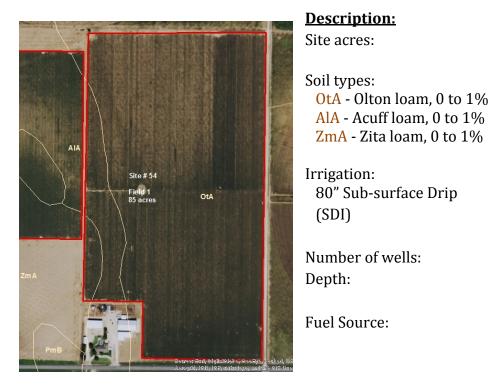

Site acres:	50

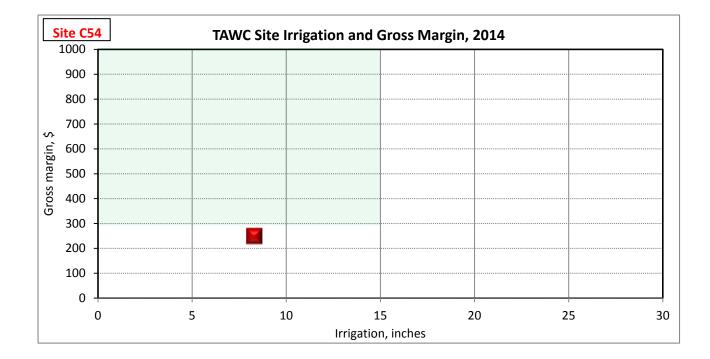
Soil types: AlA - Acuff loam; 0 to 1% AlB - Acuff loam, 1 to 3% MkB - Mansker loam 0 to 3% ZmA - Zita loam, 0 to 1%


Irrigation: 40" Sub-surface Drip (SDI) 160 gpm Number of wells: 3 Depth: 300 feet

Fuel Source:

Electric


Residue from previous year

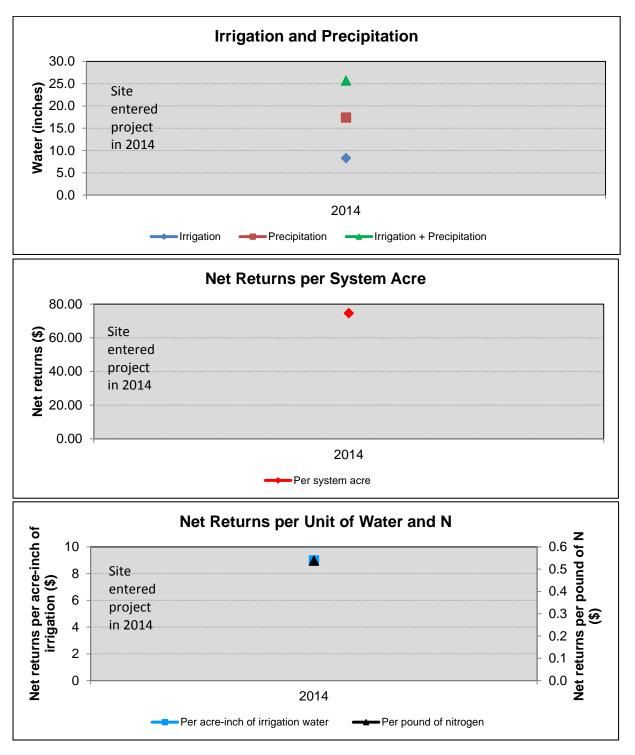


Valve bank with air relief

Comments: In 2014 this SDI irrigated site was planted to monoculture cotton. All crops were planted on 40-inch centers with limit tillage.

<u>Site C54</u>

85


180 gpm

300 feet

Electric

2

Late May

Meter on SDI drip system

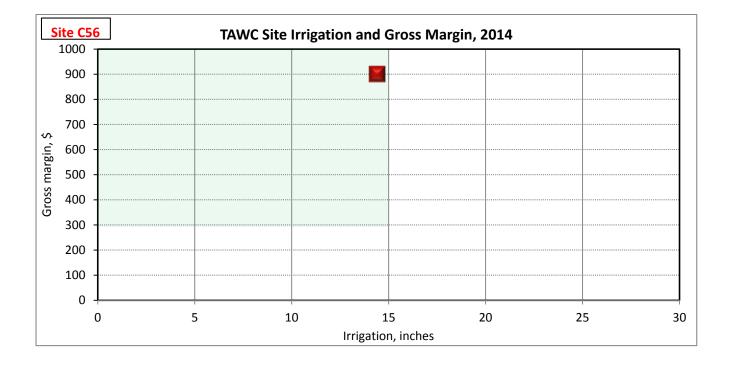
Comments: In 2014 this SDI irrigated site was planted to monoculture cotton. All crops were planted on 40-inch centers with limit tillage.

<u>Site C56</u>

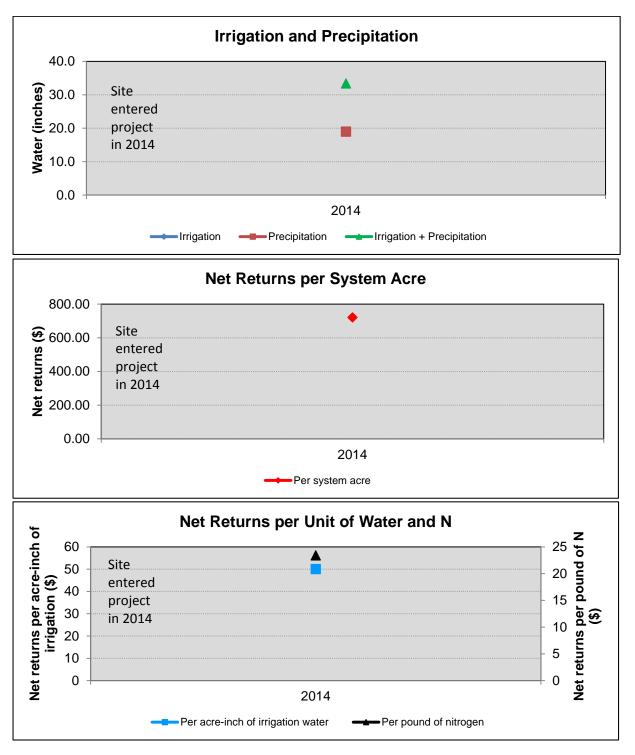
Description:

Site acres:

Soil types: OcA - Olton clay loam, 0 to 1% AcA - Acuff loam; 0 to 1% AcB - Acuff loam; 1 to 3% AfA - Amarillo fine sandy loam, 0 to 1%


125

Irrigation: Low Eleveation Spray Application (LESA) 450 gpm

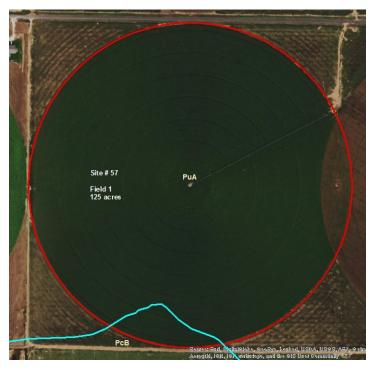

Number of wells:3Depth:300 feet

Fuel Source:

Electric

Residue management

Checking the corn


July corn for silage

Pivot and monitoring equipment

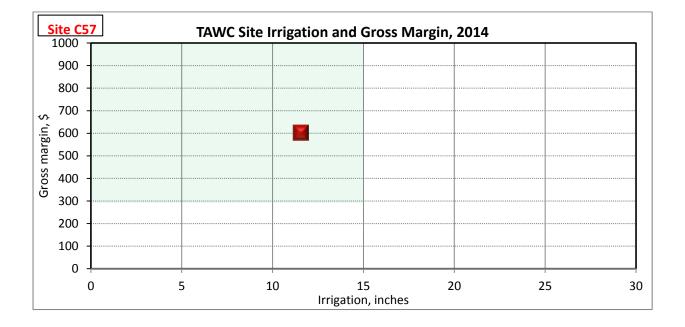
Comments: In 2014 this LESA irrigated site was planted to corn silage. All crops were planted on 40-inch centers with limit tillage.

<u>Site C57</u>

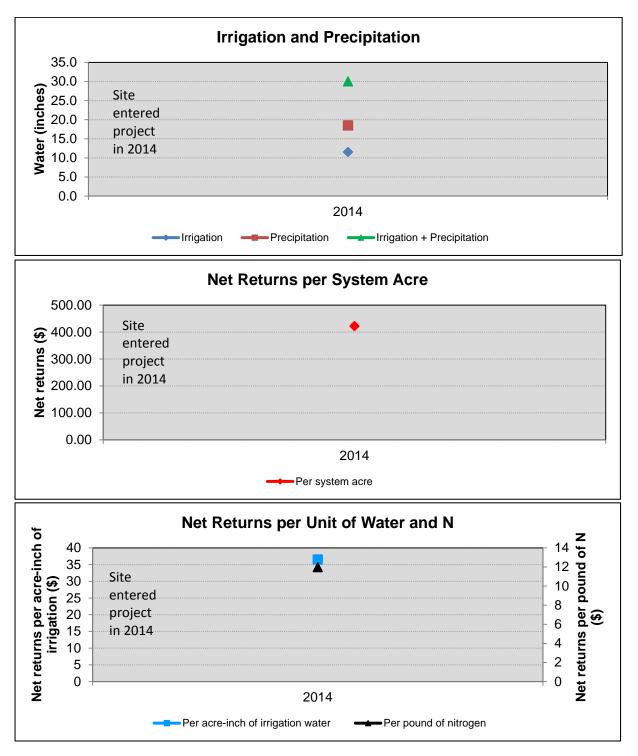
Description:

Site acres:

Soil types: PuA - Pullman clay loam; 0 to 1% PcB - Pep clay loam; 1 to 3%


Irrigation: Low Eleveation Spray Application (LESA) 750 gpm

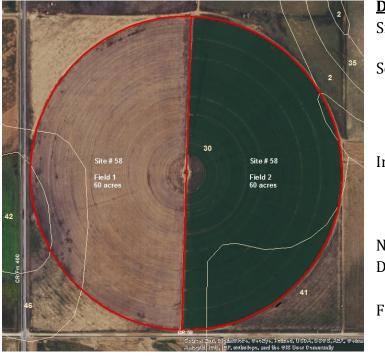
Number of wells:4Depth:300 feet


Fuel Source:

Electric

125

Site C57



LESA irrigated corn

Comments: In 2014 this LESA irrigated site was planted to corn for grain, however due to extensive hail damage it was eventually harvested for silage. Corn planted on 40-inch centers using strip-tillage.

<u>Site C58</u>

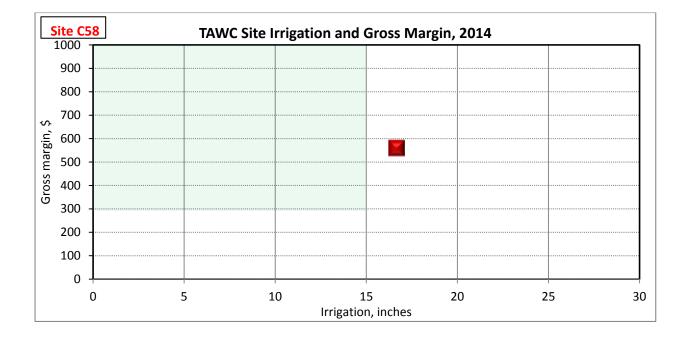
Description:

Site acres:

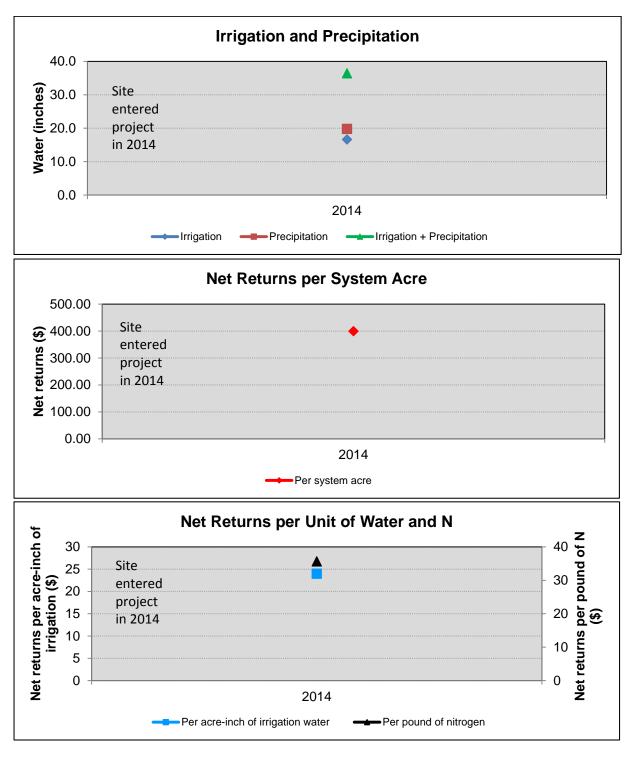
Soil types:

- 30 Olton clay loam, 0 to 1%
- 41 Pullman clay loam, 0to 1%
- 46 Zita loam, 0 to 1%

Irrigation:


Low Elevation Spray	Application
(LESA)	450 gpm

Number of wells: 2	
Depth: 3	00 feet


Fuel Source:

Electric

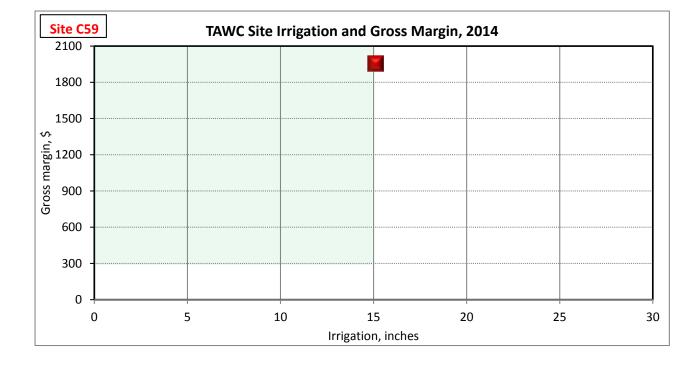
120.0

Alfalfa

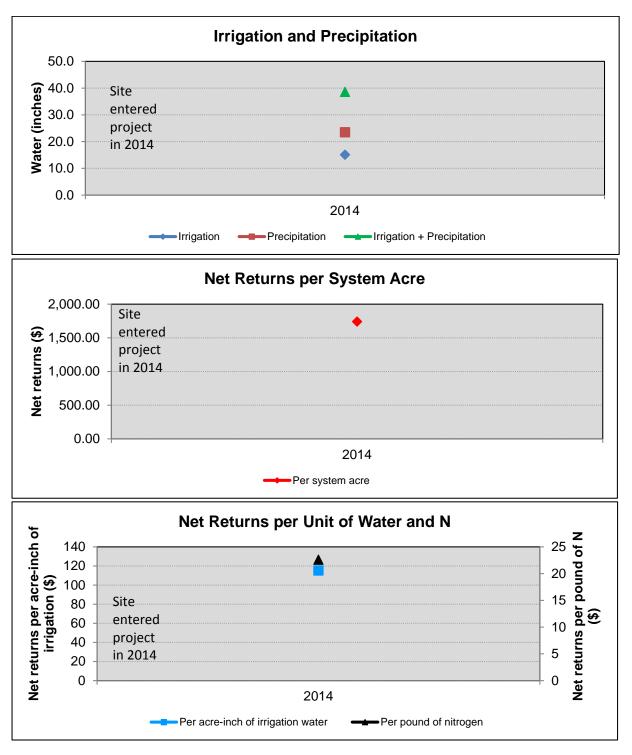
Large square bales

Baling Alfalfa and Triticale

Truck for transport



Hay stacked


Comments: In 2014 this LESA irrigated site was used for triticale and alfalfa hay production.

<u>Site C59</u>

	<u>Description:</u> Site acres:	73
Site # 59 ⁴¹ Field 1 62 acres 30 g	Soil types: 30 - Olton clay loam, 0 to 1% 31 - Olton clay loam, 1 to 3% 41 - Pullman clay loam, 0 to 19 Irrigation: Sub-surface Drip (SDI)	-
31	Number of wells: Depth: Fuel Source:	2 300 feet Electric
42 Soures: Esn, Digital Sloce, Gao Eya, Louis al USA Aaroghtiyon, 197, au 33050, and the 918 Dear		

May alfalfa over drip

August alfalfa ready for harvest

Alfalfa field following hay

Comments: In 2014 this SDI irrigated site was used for alfalfa hay production.

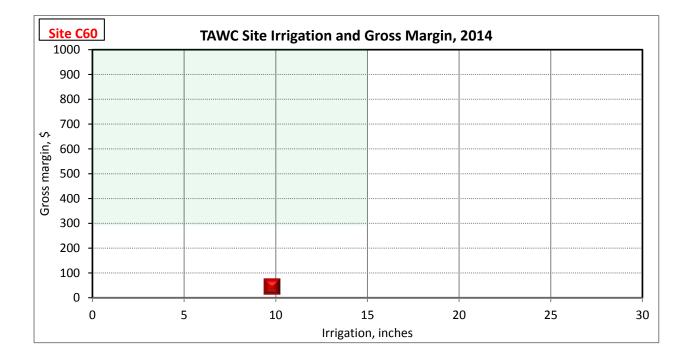
<u>Site C60</u>

Description:

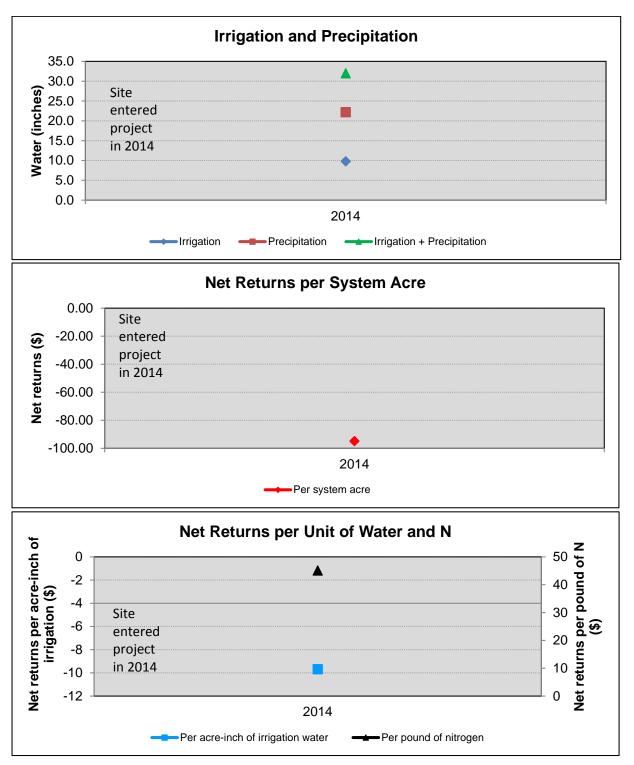
Site acres:

59.5

Soil types: PuA - Pullman clay loam, 0 to 1% LoA - Lofton clay loam, 0 to 1%


Irrigation: Low Elevation Spray Application (LESA) 290 gpm

Number of wells: 3 Depth:


Fuel Source:

Electric

280 feet

LESA irrigation system

Grain sorghum

July grain sorghum

Comments: In 2014 this LESA irrigated site was planted to grain sorghum. Sorghum was planted on 40-inch centers with limit tillage.

Phase II Economic Summaries of Results from Monitoring Producer Sites in 2014.

Phase II - Economic assumptions of data collection and interpretation

- 1. Although actual depth to water in wells located among the producer sites varies, a pumping depth of 303 feet is assumed for all irrigation points. The actual depth to water influences costs and energy used to extract water but has nothing to do with the actual functions of the system to which this water is delivered. Thus, a uniform pumping depth is assumed.
- 2. All input costs and prices received for commodities sold are uniform and representative of the year and the region. Using an individual's actual costs for inputs would reflect the unique opportunities that an individual could have for purchasing in bulk or being unable to take advantage of such economies and would thus represent differences between individuals rather than the system. Likewise, prices received for commodities sold should represent the regional average to eliminate variation due to an individual's marketing skill.
- 3. Irrigation system costs are unique to the type of irrigation system. Therefore, annual fixed costs were calculated for each type of irrigation system taking into account the average cost of equipment and expected economic life.
- 4. Variable cost of irrigation across all systems was based on a center pivot system using electricity as the energy source. Variable costs are nearly constant across irrigation systems, according to Amosson et al. (2011)², so this assumption has negligible effect on the analysis. The estimated cost per acre-inch includes the cost of energy, repair and maintenance cost, and labor cost. The primary source of variation in variable cost from year to year is due to changes in the unit cost of energy and repair and maintenance costs.
- 5. Mechanical tillage operations for each individual site were accounted for with the cost of each field operation being based on typical custom rates for the region. Using custom rates avoids the variations among sites in the types of equipment owned and operated by individuals.

Economic Term Definitions

Gross Income – The total revenue received per acre from the sale of production

Variable Costs – Cash expenses for production inputs including interest on operating loans.

Gross Margin – Total revenue less total variable costs

Fixed Costs – Costs that do not change with a change in production. These costs are incurred regardless of whether or not there was a crop produced. These include land rent charges and investment costs for irrigation equipment.

<u>Net Returns</u> – Gross margin less fixed costs.

² Amosson, L. et al. 2011. Economics of irrigation systems. Texas A&M AgriLife Extension Service. B-6113.

Phase II - Assumptions of energy costs, prices, fixed and variable costs (Tables 4-6)

1. Irrigation costs were based on a center pivot system using electricity as the energy source.

Item	2014
Gallons per minute (gpm)	450
Pumping lift (feet)	303
Discharge pressure (psi)	15
Pump efficiency (%)	60
Motor efficiency (%)	88
Electricity cost per kWh	\$ 0.14
Cost of electricity per acre-inch	\$ 8.26
Cost of maint. & repairs per acre-in.	\$ 3.87
Cost of labor per acre-inch	\$ 1.10
Total cost per acre-inch	\$13.23

Table 4. Electricity irrigation cost parameters
for 2014.

2. Commodity prices are reflective of the production year; however, prices were constant across sites.

Commodity	2014
Cotton lint (\$/lb)	\$0.65
Cotton seed (\$/ton)	\$175
Grain sorghum – Grain (\$/cwt)	\$7.10
Grain sorghum – Seed (\$/lb)	-
Corn-grain (\$/bu)	\$5.00
Corn-food (\$/bu)	\$5.99
Barley (\$/cwt)	-
Wheat – grain (\$/bu)	\$6.85
Sorghum silage (\$/ton)	\$24.00
Corn silage (\$/ton)	\$30.60
Wheat silage (\$/ton)	\$26.59
Oat silage (\$/ton) -	\$14.58
Millet seed (\$/lb)	\$0.38
Sunflower (\$/lb)	\$0.38
Alfalfa (\$/ton)	\$264
Hay (\$/ton)	\$60
WW-BDahl hay (\$/ton)	\$40
Haygrazer (\$/ton)	\$80
Sideoats seed (\$/lb)	\$8.12
Sideoats hay (\$/ton)	\$35
Triticale silage (\$/ton)	\$45
Triticale forage (\$/ton)	\$140

Table 5. Commodity prices for 2014.

- 3. Fertilizer and chemical costs (herbicides, insecticides, growth regulators, and harvest aids) are reflective of the production year; however, prices were constant across sites for the product and formulation.
- 4. Other variable and fixed costs are given for 2014 in Table 6.

VARIABLE COSTS	2014
Boll weevil assessment: (\$/ac)	
Irrigated cotton	\$1.00
Dryland cotton	\$1.00
Crop insurance: (\$/ac)	
Irrigated cotton	\$30.00
Dryland cotton	\$20.00
Irrigated corn	\$15.00
Irrigated corn silage	\$11.00
Irrigated wheat	\$5.00
Irrigated sorghum grain	\$2.00
Dryland sorghum grain	\$2.00
Irrigated sorghum silage	\$2.00
Irrigated sunflowers	\$5.00
Cotton harvest – strip and	\$0.08
module (\$/lint lb)	
Cotton ginning (\$/cwt)	\$2.10
Bags, ties, & classing (\$/bale)	\$18.50
FIXED COSTS	2014
	2014
Irrigation system:	
Center pivot system	\$40.00
Drip system	\$75.00
Flood system	\$25.00
Cash rent:	
Irrigated cotton, grain	\$100.00
sorghum, sun-	
flower, grass, pearl	
millet, and sorghum	
silage.	
Irrigated corn silage, corn	\$140.00
grain, and alfalfa.	
Dryland cropland	\$30.00

Table 6. Other variable and	fixed
costs for 2014.	

5. The custom tillage and harvest rates used for 2014 were based on rates reported in Texas A&M AgriLife Extension, <u>2013 Texas Agricultural Custom Rates, May 2013.</u>

Table 7. Summary of results from monitoring 36 producer sites during 2014 (Year 10).

System	Site No.	Acres	Irrigation Type ¹	System inches	\$/system acre	\$/inch water	Gross margin per inch irrigation
<u>Monoculture systems</u>							
Perennial grass: seed/hay	7	130	CP/LESA	15.5	-63.58	-4.10	4.93
Perennial grass: seed/hay	8	61.8	SDI	16.0	22.23	1.39	12.33
Cotton (2 in 2 out)	14	124.1	CP/LESA	4.5	102.08	22.68	38.25
Cotton	15	101.1	SDI	15.2	150.58	9.89	21.39
Cotton (2 in 2 out)	19	120.3	CP/LEPA	4.3	43.82	10.31	26.77
Corn silage	20	233.3	CP/LEPA	14.2	-143.00	-10.07	2.61
Corn	22	148.7	CP/LEPA	21.0	478.71	22.80	31.37
Corn silage	27	108.4	SDI	12.7	-162.75	-12.81	4.11
Cotton	28	51.4	SDI	8.0	113.13	14.14	36.02
Cotton	29	221.7	DL	0	43.04	Dryland	Dryland
Cotton	30	21.8	SDI	13	256.73	19.75	33.21
Cotton (failed replanted grain sorghum)	32	70	CP/LEPA	14.2	104.46	7.36	20.03
Cotton	33	70	CP/LEPA	13.9	-18.75	-1.35	11.60
Cotton (1 year)	C50	120.6	CP/LESA	8.4	86.69	10.38	27.15
Cotton (1 year)	C51	45.7	SDI	9.4	244.15	25.97	44.59
Cotton (1 year)	C52	135	CP/LESA	15.5	-176.98	-11.42	-2.39
Cotton (1 year)	C53	50	SDI	8.5	108.94	12.89	33.60
Cotton (1 year)	C54	85	SDI	8.3	74.61	8.99	30.07
Corn silage (1 year)	C56	45	CP/LESA	14.4	721.08	50.08	62.58
Corn silage (1 year)	C57	115	CP/LESA	11.6	422.08	36.54	52.13
Alfalfa (1 year)	C59	76	SDI	15.1	1740.88	115.29	129.53
Grain sorghum (1 year)	C60	59.5	CP/LESA	9.8	-94.87	-9.68	4.61
Multi-crop systems			,				
Millet/Cotton/Sunflower	5	484.1	CP/LESA	12.5	410.76	32.82	44.01
Corn/Cotton	6	122.7	CP/LESA	13.5	61.24	4.55	16.41
Grain Sorghum/Cotton	11	92.3	, FUR/SDI	11.0	-60.97	-5.55	8.16
Perennial grass/Corn/Sunflower	17	220.7	CP/MESA	5.4	105.17	19.38	47.00
Wheat/Haygrazer/Cotton	21	122.0	CP/LEPA	12.8	122.96	9.59	18.55
Corn grain/Sunflower	24	129.7	CP/LESA	12.7	413.56	32.47	45.04
Corn/Sunflower	26	125.1	CP/LESA	11.5	474.52	41.19	55.07
Grain sorghum/Forage Sorghum	31	121.9	CP/LEPA	16.6	643.26	38.78	47.22
Corn/Cotton	34	726.0	CP/LESA	12.6	270.78	21.43	21.50
Grain sorghum/Corn/Cotton	35	230.2	SDI	12.3	-85.97	-7.00	8.31
Triticale/Alfalfa (1 year)	C58	120	CP/LESA	16.7	399.57	24.00	33.61
Crop-Livestock systems	000		01722011	1017	0,7,10,1		00101
Alfalfa/Grain Sorg./Wheat/							
Haygrazer/Seed sorghum	4	122.9	CP/LEPA	17.4	329.52	18.89	27.21
Perennial grass: Contract			•				
grazing/Cotton/Grain Sorghum	9	237.7	CP/MESA	5.1	5.02	0.99	28.47
Perennial grass: Contract grazing/Corn/Cotton	10	173.6	CP/LESA	11.2	22.53	2.01	15.71

¹SDI – Subsurface drip irrigation; CP – center pivot; FUR – furrow irrigation; DL – dryland

Table 8. Summary of crop production, irrigation and economic returns within all production sites for Phase I (See Appendix for detailed list by year) and 1st year of Phase II for 2014.

			Average		
			Phase I	Phase II	2005-2014
			2005-	2014	Crop Year
Item			2003-	2014	Average
Crop			2015		Average
crop	Cotton				
	Gotton	Lint lles	1 200	1 1 20 (20)	1 2024
		Lint, lbs Seed, tons	1,300 0.9	1,138 (20) 0.8 (20)	1,2834 0.9
	Corn	Seeu, tons	0.9	0.0 (20)	0.9
	COIN	Grain, lbs	10,680	11,538 (8)	10,766
		Silage, tons	26.8	16.4 (4)	25.7
	Sorghum		20.0	- ()	23.7
	borgitum	Grain, lbs	5,231	6,675 (7)	5,385
		Silage, tons	18.5	6,676 (F)	18.5
		Seed, lbs	3,438	3,742 (1)	
	Wheat	5000,105	3,438	5,7 12 (1)	3,539
	Wileat	Grain, lbs	2 459	1,333 (1)	2 2 2 2
		Silage, tons	2,458 8.6	-	2,333 8.6
		Hay, tons		-	1.5
	Oat	1149,00113	1.5	-	1.5
	Uat	Silage, tons	8.7	-	8.7
		Hay, tons	1.8	-	1.8
	Barley	1149,00113	1.0		1.0
		Grain, lbs	3,133	-	3,133
		Hay, tons	5.5	-	5.5
	Triticale				
		Hay, tons	3.0	-	3.0
		Silage, tons	13.3	-	13.3
	Sunflower				
		Seed, lbs	2,182	2,867 (4)	2,319
	Pearl millet				
-	for seed		2.040	2,000 (1)	2.0(0
		Seed, lbs	2,840	3,800 (1)	2,960
Perennia	lforage				
I CI CIIIIIa	WW-BDahl				
	WW DDam	Seed, PLS lbs	58.6	_	58.6
		Hay, tons	2.5	-	2.5
	Sideoats				
		Seed, PLS lbs	257.2	184 (2)	250
		Hay, tons	1.7	1.3 (2)	1.7
	Other				
		Hay, tons	2.3		2.3
	Alfalfa			_	
		Hay, tons	9.1	8.2 (3)	9.0
Annual f					
	Forage sorg.	TT	0.5	FF (4)	1.0
		Hay, tons	3.5	5.5 (1)	4.0
Procinito	tion, inches				
	icion, inches ig all sites)		16.9	21.3	17.4
By Syster			inches	inches	inches
-, <u>-, -, -, -, -, -, -, -, -, -, -, -, -, -</u>			applied	applied	applied
Total irr	<u>igation water (s</u>	ystem average)	13.6	12.1(39)	13.4
By <u>Crop</u>		Primary	inches	inches	inches
		crop	applied	applied	applied
	Cotton	lint	13.6	9.8 (20)	13.2
	Corn	grain	19.1	15.2 (8)	18.8
	Corn	silage	22.8	13.2 (4)	21.7
	Sorghum	grain	12.0	11.6 (7)	12.0

Item			Average Phase I 2005- 2013 inches	Phase II 2014	2005-2014 Crop year average
By <u>Crop</u>			applied	inches applied	inches applied
	Sorghum	silage	12.6		12.6
	Wheat	grain	6.4	10.5 (1)	6.9
	Wheat	silage	11.3	-	11.3
	Oat	silage	10.0	-	10.0
	Oat	hay	4.9	-	4.9
	Triticale Barley	silage grain	10.8 12.8	-	10.8 12.8
	Small grain	(grazing)	0.0	16.8 (1)	4.2
	Small grain	(grains)	6.4	10.5 (1)	6.9
	Small grain	(silage)	10.9	-	10.9
	Small grain	(hay)	11.3		11.3
	Small grain	(all uses)	7.0	13.7 (2)	7.7
	Sunflower	seed	10.4	8.9 (4)	10.1
	Millet	seed	14.9	14 (1)	14.8
Dahl					
	hay		3.7	-	3.7
	seed		7.6 8.5	-	7.6
Sideoats	grazing		8.5	0 (1)	7.6
Sillevals	seed		11.2	15.8 (2)	11.7
Bermuda	Jeeu		11.2	15.0 (2)	11.7
Dormau	grazing		7.4	-	7.4
Other Per	ennial/Annuals				
	hay		9.6	5.0 (1)	9.1
	grazing		5.9	8.0 (3)	6.2
Perennial	grasses (groupe	ed)			
	seed		10.4	15.8 (2)	10.9
	grazing		6.2	2.3 (3)	5.9
	hay		1.2	0(2)	1.0
Alfalfa	all uses		6.4	5.5 (5)	6.3
Allalla	allusas			20.1.(2)	22.9
	all uses		23.2	20.1 (3)	22.9
			23.2		
	In	come & Exn	ense, \$/syste	em acre	
Projected			\$895.46	\$941.13	\$905.75
110j0000	Costs		<i><i><i><i></i></i></i></i>	<i><i><i></i></i></i>	¢700070
	Total varia	ble costs			
	(all si		\$554.28	\$646.83	\$562.81
	Total fixe		1	.	1
	(all si		\$115.56	\$149.49	\$119.47
	Total al		¢660.01	¢700.07	¢601.06
	(all si Gross margin		\$669.81	\$790.97	\$681.86
	Per syste				
	(all si		\$341.05	\$284.10	\$341.93
	Per acre-inch ir				
	(irrigatio		\$34.07	\$25.01	\$33.63
Net	t returns over al				
	Per syste	tes)	\$225.52	\$139.96	\$222.87
	Per acre-inch ir (irrigatio	n only)	\$21.53	\$11.58	\$20.96
	Per pound o (all si		\$1.86	\$1.56	\$2.06

Reports by Specific Task

TASK 2: Administration and Support

Annual Report ending February 28, 2015

<u> 2.1: Project Director: Rick Kellison, Project Director (TTU)</u>

The 2014 growing season has started out even drier than 2011. Because of these extremely dry growing conditions, TAWC held five producer meetings in Plainview to aid producers in developing irrigation management strategies for the 2014 growing season. Twenty-five producers who had requested or shown an interest in this type of training were invited. These meetings were held weekly at the Plainview County Club. Some of the topics included TAWC on-line management tools, pre plant irrigation, differences in irrigation delivery systems, soil water holding capacities, in-season irrigation management strategies, soil moisture probes, and how to use the NRCS Web Soil Survey (<u>http://websoilsurvey.nrcs.usda.gov</u>). At the last meeting, a four-member producer panel discussed their irrigation management strategies and cropping systems for the 2014 growing season. We also asked for input from attendees on what type of information they would like to have presented in the future. Speakers include myself, Jeff Pate, Dr. Dan Krieg, Bob Glodt, and Dr. Jim Bordovsky.

As usual if you don't like the current weather conditions in the Texas Panhandle just wait and it will change. We received very widespread and beneficial rains on Memorial Day weekend. This rain allowed the irrigating producers to reduce irrigation and the dryland growers to start a late crop. We continued to receive good timely rains through June and July. Even though our 2014 crops were behind schedule, things looked much better than last three years. After coming through a dry August, we received 6 in. of rain from September through early November. This fall moisture delayed harvest of cotton and feed grains, but was very beneficial to the fall-planted wheat. It appears that average irrigated cotton yields will be reduced by about 25% as compared to 2013. The reduction in cotton and grain prices will present challenges for producers in 2014 and 2015.

On April 2nd, Chuck West and I met with and made presentations to Doug Shaw and a group from the Region O Water Planning Committee to explain results and goals of the TAWC project. This meeting led to an invitation to give the same presentation to the entire committee. I helped man the TAWC booth at the Lubbock Gin Show on April 3rd and 4th. While attending the gin show, I had the opportunity to explain to Dr. Kater Hake our plans to have a "Water College" sometime in 2015. Dr. Hake indicated that Cotton Incorporated would be willing to support this type of event. On April 1st I met with Commissioner of Agriculture Todd Staples while he was in Lubbock. I had the opportunity to share information about the TAWC project and how what we were doing was similar to his Texas Water Smart Program, but with our emphasis on production agriculture. Because of that meeting, Earl Lundquist with Texas Department of Agriculture has visited the TAWC sites twice to develop a series of YouTube videos to be distributed state wide. In April and May I spent considerable time collecting beginning soil moisture data from each field in the project. In June and July much of my time was spent developing the agenda and contacting potential speakers for our August Field Day. The TAWC Field Day was held at Muncy, Texas on August 14, 2014 with approximately ninety-five in attendance. TWDB director Bech Bruun made an excellent presentation as keynote speaker. Other speakers addressed current issues facing producers. We toured Eddie Teeter's farm where different irrigation scheduling technologies were demonstrated.

Also, on August 14th, Dr. Larry Butler attended our field day and filmed the various speakers and field demonstrations. He interviewed Eddie Teeter, John Schacht and myself for a RFD TV segment. This segment of "Out on The Land" be aired sometime in September. We want to acknowledge and thank the Texas Corn Growers for sponsoring this segment.

In September we started planning the 1st Annual TAWC "Water College" to be held in Lubbock on January 21, 2015 at the Bayer Museum of Agriculture. I met with representatives from all commodity organizations, NRCS, High Plains Water District, Texas A&M AgriLife Extension, and industry leaders to get their suggestions on topics and potential speakers. We have received excellent support from all involved.

On September 29, 2014, I made a TAWC presentation to Joe Straus, Speaker of the House and John Frullo, Texas State Representative. The Texas Tech Annual Pig Roast was held on November 13th in Lubbock. I had the honor to introduce Glenn Schur, chairman of the TAWC Producer Board, at this event. Glenn was selected as the outstanding Texas Tech CASNR Agriculturist for 2014.

On December 2nd and 3rd I attended the Amarillo Farm Show where I helped man the TAWC booth. The weather was good this year so there was excellent attendance and a lot of traffic at our booth. We made each visitor aware of our up-coming "Water College." December 16th I made a presentation at the Swisher County producer meeting where we had approximately fifty producers in attendance. On December 23rd I met with State Representative Dustin Burrows from Lubbock and made a presentation to introduce him to the TAWC Project.

TAWC hosted our first "Water College" on January 21, 2015 in Lubbock at the Bayer Agricultural Museum. We had approximately 150 people in attendance. In December and early January I met with all of the commodity organizations leaders and many of the industry leaders to explain the goal of the "Water College." I requested suggestions for each on who they thought could do the best job of bring the information to producers about crop water management. After compiling this list I brought it before our planning committee to make a final selection of topics and speakers. We believe this first effort was a successful and we plan to make this an annual event. Our committee has set January 20, 2016 for our second annual "Water College". I'm currently in the process of putting a draft agenda together with possible topics and speakers to take to our stake holders.

On February 25th, Chuck West and I traveled to Austin and made a presentation to The Texas Water Development Board of directors. The board voted to fund TAWC with an additional \$1.8 million dollars to continue the TAWC Project. This was a very successful trip.

We have held twelve management team meeting this year in Lubbock, Texas.

Presentations this year

<u> </u>		
03-11-2014	Plainview Producer Meeting	Plainview, Texas
04-02-2014	Doug Shaw	Lubbock, Texas
04-23-2014	Region O Water Planning Committee	Lubbock, Texas
05-15-2014	TAWC Field Walk	Lockney, Texas
06-24-2014	Brownfield Chamber of Commerce	Brownfield, Texas
08-12-2014	Radio Interview 950 AM	Lubbock, Texas
08-14-2014	"Out on the Land"	Lockney, Texas
09-29-2014	Joe Struse and John Frulo	Lubbock, Texas
12-16-2014	Swisher County	Tulia, Texas
12-23-2014	Dustin Burrows	Lubbock, Texas
12-25-2014	TWDB	Austin, Texas

Tours this year

05-12-2014	Earl Lundquist TDA
07-16-2014	John Bender & Quenna Terry NRCS
09-14-2014	High Plains Water District personal

We have held our monthly management team meetings this year and I have made regular sites visits.

2.2: Administrative Coordinator: Christy Barbee, Unit Coordinator (TTU)

Year 10 main objectives for the secretarial/administrative and bookkeeping support role for the TAWC Project include the following:

<u>Accurate Accounting of All Expenses for the Project</u> This included monthly reconciliations of accounts with the TTU accounting system, quarterly reconciliations of subcontractors' invoices, preparation of itemized quarterly reimbursement requests, and preparation of Task and Expense Budgets for Year 10. The budget was balanced for this annual report and is presented in table 14 on page 176.

<u>Administrative Support for Special Events</u> Continued to assist the communications director and project director with special events by processing purchase orders, procurement card orders and travel.

<u>Ongoing Administrative Support</u> Daily administrative tasks included correspondence through print, telephone and e-mail; completed various clerical documents such as mileage logs, purchase orders, cost transfers, travel applications, human resource forms, and pay payroll paperwork; and other duties as requested or assigned.

TAWC producer binders were assembled for the TAWC producer to record their production inputs and activities. These binders greatly assist the research team in acquiring useful data for this annual report and other communications.

TASK 3: FARM Assistance Program

Annual Report ending February 28, 2015

Principal Investigator(s): Dr. Steve Klose, Jeff Pate and Jay Yates (AgriLife-Extension)

Texas AgriLife Extension Service, FARM Assistance Subcontract with Texas Tech University

Year 10 project progress regarding Task 3 has occurred in several areas ranging from collaborating in project coordination and data organization to data collection and communication, as well as providing additional services to the area producers in conjunction with the TAWC project. A summary of specific activities and results follows:

Project Collaboration

A primary activity of initiating the FARM Assistance task included collaborating with the entire project management team and coordinating the FARM Assistance analysis process into the overall project concepts, goals, and objectives. The assessment and communication of individual producer's financial viability remains crucial to the evaluation and demonstration of water conserving practices. Through AgriLife Extension participation in management team meetings and other planning sessions, collaboration activities included early development of project plans, conceptualizing data organization and needs, and contributions to promotional activities and materials.

Farm Field Records

AgriLife Extension has taken the lead in the area of data retrieval in that FARM Assistance staff is meeting with producers multiple times each year to obtain field records and entering those records into the database. AgriLife Extension assisted many of the project participants individually with the completion of their individual site demonstration records (farm field records). Extension faculty have completed the collection, organization, and sharing of site records for all of the 2014 site demonstrations.

FARM Assistance Strategic Analysis Service

FARM Assistance service is continuing to be made available to the project producers. The complete farm analysis requires little extra time from the participant, and the confidentiality of personal data is protected. Extension faculty has completed whole farm strategic analysis for several producers in the past, and continues to seek other participants committed to the analysis. Ongoing phone contacts, e-mails, and personal visits with project participants promote this additional service to participants.

Economic Study Papers

Farm Assistance members completed a study poster utilizing the economic data on a site within the TAWC project. The paper examined the profitability of irrigated cotton grown during the extreme drought conditions of 2011and 2013 comparing LESA vs. LEPA. The results of this paper were presented at the Beltwide Cotton Conference held in New Orleans, Louisiana this past January.

Continuing Cooperation

Farm Assistance members also continue to cooperate with the Texas Tech Agricultural and Applied Economics Department by furnishing data and consulting in the creation of annual budgets. These budgets will later be used by Farm Assistance members to conduct site analysis for each farm in the T.A.W.C. project.

Other Presentations

Farm Assistance members made a presentation to the Stronger Economies Together group concerning the use of irrigation management tools that were developed by the TAWC. These tools were developed for producers in the Texas High Plains, but proved to be useful to producers outside of this area. A similar presentation was made to the T-2 Lions Club members.

Field Walks

One Field Walk was held during the growing season at one site. The purpose of this Field Walk was to make producers aware of irrigation timing practices using various soil moisture probes. These probes were located on-site and allowed attendees to see them in operation during various stages of growth of corn, cotton, and grain sorghum. The participation was so encouraging that similar events are planned for 2015.

Field Day

A Field Day was held in the TAWC project during the 2014 growing season. The Summer Field Day was held August 14 at the Unity Center in Muncy, Texas The purpose of this meeting was to allow producers outside of the project to see what takes place within the project, as well as allow producers to hear about the latest research and policies that could have an impact on their operation. Personnel from AgriLife Extension, AgriLife Research, Farm Assistance, the High Plains Water District, and Texas Tech University were involved in the field day.

Water College

A new program was begun at the beginning of 2015 wherein leaders in water conservation for the three main crops grown in West Texas were brought in to speak on the latest technologies for improving water use efficiency and profitability. Well over 100 participants were engaged in the meeting, along with more than a dozen sponsors. TAWC team members promoted the event on radio and television. Plans are being developed for continuing this program in the future.

TASK 4: ECONOMIC ANALYSIS

Annual Report ending February 28, 2015

Principal Investigator(s): Dr. Phillip Johnson and Donna Mitchell

The primary objectives of Task 4 are to compile and develop field level economic data, analyze the economic and agronomic potential of each site and system, and evaluate relationships within each system relative to economic viability and efficiency. In conjunction with Texas AgriLife Extension, field level records of inputs, practices and production are used to develop enterprise budgets for each site. The records and enterprise budgets provide the base data for evaluation of the economics of irrigation technologies, cropping strategies, and enterprise options. All expenses and revenues are accounted for within the budgeting process. In addition to an economic evaluation of each site, energy and carbon audits are compiled and evaluated.

Major achievements for 2014:

- 2014 represented the ninth year of economic data collection from the project sites. Data for the 2014 production year was collected and enterprise budgets were generated.
- TAWC cooperated with the National Cotton Council in a pilot project for the Fieldprint Calculator which is being developed by Field-to-Market The Keystone Alliance for Sustainable Agriculture. The Fieldprint Calculator estimates the sustainability footprint for crop production. TAWC site information for 2007 through 2013 was entered into the calculator. The results from the Fieldprint Calculator were reported in a paper presented at the 2014 Beltwide Cotton Conference.

Proceeding papers related to the TAWC in 2014 and January 2015:

- Stokes, K., P. Johnson, B. Robertson, and B. Underwood. 2014. FieldPrint Calculator: A Measurement of Agricultural Sustainability in the Texas High Plains. 2014 Beltwide Cotton Conferences Proceedings, pg. 406-412. Selected for presentation at the 2014 Beltwide Cotton Conference. January 4-7, 2014, New Orleans, LA.
- Gillum, M. and P. Johnson. 2015. Fieldprint Calculator: Results from the Texas High Plains. 2015 Beltwide Cotton Conferences Proceedings, in press. Selected for presentation at the 2015 Beltwide Cotton Conference. Co-sponsored by the National Cotton Council and the Cotton Foundation, January 5-7, 2015, San Antonio, TX.

Presentations related to the TAWC in 2014:

• Johnson, P., K. Stokes. FieldPrint Calculator: A Measurement of Agricultural Sustainability in the Texas High Plains. Presented at the Texas Agricultural Cooperative Council Manages Conference. July 9-11, 2014. Ruidoso, NM.

Fieldprint Calculator: Results from the Texas High Plains

Miranda Gillum, Phillip Johnson Texas Tech University Lubbock, TX³

ABSTRACT

The Fieldprint® Calculator is an analytical tool – developed by Field to Market®: The Keystone Alliance for Sustainable Agriculture – that evaluates crop production operations and computes metrics to measure their sustainability and operational efficiency. The objective of the study was to evaluate the relationship between the sustainability metrics generated by the Fieldprint Calculator and profitability. The data used for this study were from fields with irrigated cotton production across seven years from 2007 to 2013 in the Texas Alliance for Water Conservation (TAWC) project located in the Texas High Plains region. The sites were evaluated using the Fieldprint Calculator with sustainability index values calculated for each field. Least squares regression analysis was used to determine the relationship between gross margin as the dependent variable and the sustainability metrics as the independent variables. The results indicated that a "positive" relationship exists between sustainability and profitability. This study was funded by National Cotton Council and Texas Alliance for Water Conservation.

BACKGROUND

Sustainability in agricultural production is an important issue being addressed by many in the agricultural industry. Field to Market, developed the Fieldprint Calculator to enable agricultural producers to measure the sustainability of their operations, and researchers to analyze the effects on sustainability and the environment of different production practices (Field to Market). The Fieldprint Calculator evaluates a producer's sustainability based on seven metrics: land use (ac/lb of crop harvest), irrigation water use (acre-inches/lb of crop harvest), energy use (gallons of diesel/lb of crop harvest), greenhouse gas emissions (lbs $CO_{2 \text{ equiv.}}/lb$ of crop harvest), soil conservation (tons of soil loss/ac/vr), a soil carbon index and a water quality index. Land use refers to the production efficiency of a particular field and is directly related to yield. If one field produces more yield per acre than another, it is more efficient and has a lower land use metric, meaning it requires less land to produce the same amount of crop. The soil conservation metric accounts for estimated soil erosion in the field. Irrigation water use is the amount of water applied per acre. Energy use accounts for all direct and indirect energy from production inputs used for an operation. Direct energy use is from inputs such as fuel used for irrigation and tillage operations. Indirect energy is energy used in the manufacture and transportation of inputs such as fertilizer and chemicals, and capital assets such as equipment. Greenhouse gas emissions are measured as the amount of CO_{2 equiv.} and is generally related to direct and indirect energy

³ Gillum, M. and P. Johnson. 2015. Fieldprint Calculator: Results from the Texas High Plains. *2015 Beltwide Cotton Conferences Proceedings*, in press. Selected for presentation at the 2015 Beltwide Cotton Conference. Co-sponsored by the National Cotton Council and the Cotton Foundation, January 5-7, 2015, San Antonio, TX.

usage. Water quality refers to the quality of runoff water at the edge of the field. Soil carbon is a measure of the level of organic carbon in the soil.

The calculator generates these metrics and provides a graphic sustainability footprint in the form of a spider graph. By assessing these metrics, the calculator enables a producer to explore different management decisions in order to improve the sustainability of their farming operation. Additionally, the calculator allows each farmer to compare their current farming practices to the county, state, and national averages in order to understand how their sustainability compares to other operations.

The objective of this study was to analyze and evaluate the relationship of the sustainability metrics derived from the Fieldprint Calculator on profitability. Data used in the study were from the Texas Alliance for Water Conservation (TAWC) for sites with irrigated cotton production in the years 2007 through 2013.

METHODOLOGY

The TAWC is a collaborative project with agricultural producers in Hale and Floyd counties of Texas. The project focuses on conserving water while maintaining and improving agricultural production. Data used in this study were from 20 producers in the TAWC project with 32 field sites that were in irrigated cotton production from the years 2007 through 2013, representing a total of 139 observations. These fields ranged in size from 13 acres to 398 acres, and included no-till, strip-till and conventional tillage operations, as well as different irrigated cotton fields were evaluated. Producers provided field information on irrigation; tillage operations; chemical input applications of fertilizer, herbicide, insecticide, and harvest aides; and crop yield. Cost and return budgets were developed for each site to estimate the cost of production and profitability. Profitability was calculated as gross margin, which is cash receipts less cash costs.

Data from the TAWC sites were entered into the Fieldprint Calculator to estimate the sustainability metrics. Several of the sustainability metrics are expressed relative to the unit of harvested crop production. For example, the irrigation metric is expressed as inches of irrigation per lb of production, which is an irrigation-water footprint. This construct means that the metric values become smaller as resource use becomes more efficient, or the production of externalities such as greenhouse gasses are reduced. Since cotton is a joint product composed of lint and seed, the Fieldprint Calculator computes values based on a lint equivalent yield (LEY). The LEY is calculated by dividing the lint yield by the proportion of revenues attributed to lint, which was assumed to be 83%, with 17% of revenues coming from seed production. For example, a lint yield of 1200 lbs would be converted to a LEY of 1446 lbs to account for the seed yield.

The sustainability metrics were each converted to an index based on the mean value of each metric for the 139 observations. The conversion of the metrics to an index value standardized the units for each metric. A regression analysis was performed using the least squares method with gross margin as the dependent variable, the index value for each

metric, and dummy variables for each year as independent variables. Four of the seven metrics were evaluated as independent variables. The water quality and soil carbon metrics were not included in the analysis. The energy and greenhouse gas emission metrics were combined into one variable (EG) due to the high level of correlation (93%) between the two indexes by taking an average of the indexes for each metric.

The model was first estimated with the four sustainability variables (land use, irrigation, energy/greenhouse gas, and soil conservation) and the six dummy variables representing 2008 through 2013 (2007 was the base year). After estimating the model in SAS, the p-value for the soil conservation variable indicated that it did not have a significant effect on gross margin; therefore, the soil conservation variable was removed from the model. The model was then estimated using land use (LU), irrigation water use (Irr), the squared value of Irr, the energy/greenhouse gas variable (EG), the squared value of the EG variable, and the dummy variable for years 2007 through 2013. The results indicated that the irrigation squared variable was not significant; therefore, it was removed from the model. The final model was specified as follows.

$GM = \beta_1 + \beta_2 *LU + \beta_3 *Irr + \beta_4 *EG + \beta_5 *EG^2 + \beta_6 *D08 + \beta_7 *D09 + \beta_8 *D10 + \beta_9 *D11 + \beta_{10} *D12 + \beta_{11} *D13$

Where:

GM = Gross margin

LU = Land use

EG = Average of energy use and greenhouse gas emissions

EG² = Squared value of EG

D08 = Crop produced in 2008

D09 = Crop produced in 2009

D10 = Crop produced in 2010

D11 = Crop produced in 2011

D12 = Crop produced in 2012

D13 = Crop produced in 2013

RESULTS

The results of the regression analysis are given in Table 9. Four variables were used to evaluate the effects of sustainability on profitability: land use, irrigation water use, energy/greenhouse gas emissions, and energy/greenhouse gas emissions squared. Dummy variables were used for each year of production to account for the variations due to weather and prices across production years with 2007 being the base year. Gross margin was the dependent variable and is defined as cash income minus cash expenses.

The regression results show that all coefficients for the sustainability metrics had the appropriate signs and values, and were significant at the 95% confidence level. The p-value for the 2009 dummy variable was not significant, however the variable was retained in the model.

A general model was derived by evaluating the dummy variables for each year at their mean value which increased the intercept by approximately \$250. This allowed the model to be simplified to only reflect the relationship between the sustainability metric and gross margin. The resulting equation is:

GM = 1415.077 - 5.40225*LU - 1.59417*Irr - 4.15072*EG + 0.014844*EG²

A lower index value for a sustainability metric is considered to be better because it indicates a more sustainable operation (i.e. smaller footprint). The negative coefficients for the sustainability metrics indicate that, as producer's lowers their index values, their gross margins will increase. For example, if a producer has an index value of 100 for each metric, the derived gross margin is \$448.80 per acre. If the value of the irrigation metric index is reduced to 80 while the other metric remain at an index value of 100, the derived gross margin increases to \$480.69 as shown in Table10.

Variable	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1162.72106	66.49842	17.48	<.0001
LU	-5.40225	0.43376	-12.45	<.0001
Irr	-1.59417	0.41116	-3.88	0.0002
EG	-4.15072	0.96326	-4.31	<.0001
EG ²	0.01484	0.00220	6.76	<.0001
D08	-121.11846	53.55237	-2.26	0.0254
D09	-59.31872	50.73969	-1.17	0.2445
D10	196.03276	49.86895	3.93	0.0001
D11	520.02370	58.71094	8.86	<.0001
D12	543.68462	51.32438	10.59	<.0001
D13	325.23226	51.50706	6.31	<.0001

Table 9. Results of Regression Equation with Gross Margin as the Dependent Variable.

		Index		Index	
Intercept					
mercept			1415.077		1415.077
LU	-5.40225	100	-540.225	100	-540.225
Irr	-1.59417	100	-159.417	80	-127.534
EG	-4.15072	100	-415.072	100	-415.072
EG ²	0.014844	10000	148.4416	10000	148.442
		Gross Margin	\$448.80	Gross Margin	\$480.69

Table 10. Derived Estimates of Gross Margin.

CONCLUSIONS

Analysis of the Fieldprint Calculator's data output from TAWC sites in the Texas High Plains region showed that as sustainability metrics improved, there was a positive effect on gross margin. Given the results of this study, there is an incentive for producers to adopt production practices that lower the metrics evaluated by the Fieldprint Calculator, which increases their sustainability. By using the resources provided by the Fieldprint Calculator, producers can determine management practices that will aid in lowering their sustainability index and should be encouraged to do so given the results of this study.

REFERENCES

Field to Market®, <u>https://www.fieldtomarket.org/fieldprint-calculator/</u>

TASK 5: PLANT WATER USE AND WATER USE EFFICIENCY

Annual Report ending February 28, 2015

Principal Investigator(s): Drs. Steve Maas and Nithya Rajan

Task 5 report is combined with Task 7 in this 2014 report because of their combined efforts.

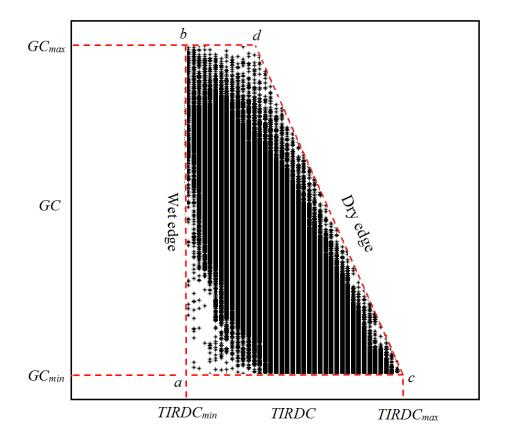
Eddy Covariance Measurements

Eddy covariance (EC) systems were maintained in several TAWC fields during 2014 to measure crop evapotranspiration (ET) and net photosynthesis (PS). The instrumentation was placed in some fields only for the crop growing season. In one field, however, the EC instrumentation has been operating continuously for several years. This field is Field 17, which represents an improved WW-B.Dahl Old World bluestem pasture. A detailed analysis of the ET and PS for this field during two years with contrasting weather conditions (2010, a wet year, and 2011, an extremely dry year) was made.

In this investigation, measurements of CO₂, latent heat (LE), and sensible heat (H) fluxes were made using an EC flux tower located near the center of the pasture. In 2010, the total precipitation received during the summer months (June-August) was 82% above the 9year average precipitation, and in 2011 it was only 8% of the 9-year average precipitation. The amount of net radiation (R_n) available at the surface was higher in the wet year (54.3% of the incident radiation) compared with the drought year (41.1% of the incident radiation). In 2010, LE consumed the majority of available energy, resulting in a high evaporative fraction (EF). In 2011, less energy was converted to LE as soil moisture remained low, which also resulted in reduced plant growth. Thus, the energy partitioning in 2011 was dominated by H. Significant differences in bulk canopy conductance (G_s) were also observed between the two years. In both years, G_s was linearly correlated with soil volumetric water content in the top 4 cm of the soil profile. The gross primary production (GPP) was linearly correlated to ET. The water use efficiency was 2.63 g C kg⁻¹ of water in 2010 and 0.69 g C kg⁻¹ of water in 2011. Results from this study showed that, in a semi-arid grassland, the ET and energy balance are strongly affected by water availability. These results were published in an article appearing in the journal Ecohydrology.

Irrigation Scheduling Tool

A major objective of Task 5 over the preceding few years has been the development and testing of the "Next-Generation TAWC Irrigation Scheduling Tool". This tool uses satellite remote sensing to establish crop coefficients that are specific to individual fields. It is intended to eventually replace the irrigation scheduling tool currently available from the TAWC Solutions webpage. Development and previous testing of the Next-Generation TAWC Irrigation Scheduling Tool has been described in previous TAWC Annual Reports.


A comparison of the new irrigation scheduling tool against more traditional irrigation scheduling methods (tensiometers, SmartCrop sensors, and the standard crop coefficient approach) was conducted by Dr. Rajan at the Texas A&M AgriLife Research and Extension Center at Vernon, TX. Results of this test were reported at the 2014 Beltwide Cotton Conference. Results indicated that use of tensiometers in the field proved to be the most effective method for conserving irrigation water. The spectral crop coefficient approach was the second-most effective method, and was easier to use because it required no in-field instrumentation. The two other methods, the standard crop coefficient approach and the use of SmartCrop sensors, were the least effective in conserving water. Results of this study confirm the potential effectiveness of the new approach for operational irrigation scheduling applications.

An article detailing the approach used in the Next-Generation TAWC Irrigation Scheduling Tool was published in the journal <u>Advances in Remote Sensing</u>.

Remote Sensing of Soil Moisture

The Next-Generation Tool is capable of making irrigation recommendations based on modeling the changes in soil moisture for a field over the growing season. For such a system, it would be of great value to have periodic measurements of the actual amount of soil moisture in the field to use as a check (and possibly to provide real-time calibration) of the accuracy of the soil moisture modeling. Primarily through the work of Dr. Sanaz Shafian, a postdoctoral research associate funded by TAWC under the direction of Dr. Maas, a method for estimating the soil moisture in individual fields using satellite remote sensing has been developed. This method makes use of remote sensing image data in the red, nearinfrared, and thermal infrared spectral bands. Suitable image data can be obtained at no cost from the Landsat-7 and Landsat-8 satellites that are currently operational.

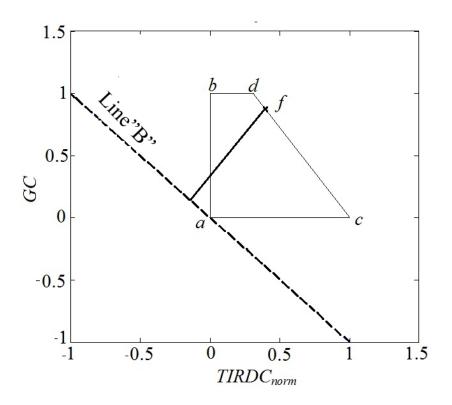
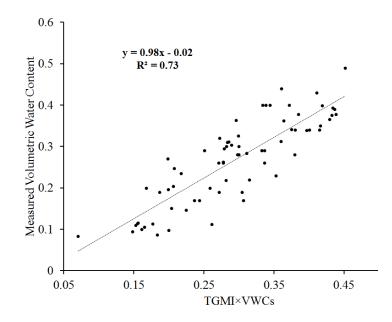

As shown by numerous investigators, plotting values of vegetation indices (VI) versus corresponding values of surface temperature (T_s) derived from multispectral satellite imagery produces a characteristic "triangle" or "trapezoid" distribution. Vegetation indices such as NDVI are indicators of the amount of vegetation in the scene. However, they are not direct measures of the amount of vegetation and are usually related to measures of vegetation density [such as ground cover (GC)or LAI] empirically. We propose replacing VI in the triangular or trapezoidal distributions with remotely sensed GC. The advantage of this method is that GC can be calculated directly from raw satellite-image GC data. In addition, GC provides a more direct interpretation of the interaction of plant canopy density and plant canopy temperature. This distribution is shown in Figure 14.

Figure 14. Ground cover (GC) plotted versus surface temperature (T_s). Points a - d indicate the vertices of the trapezoidal representation of the distribution of points.


An index, the Thermal Ground Cover Moisture Index (*TGMI*), can be defined based on the relative position of a point in the $TIRDC_{norm}$ –GC space depicted in Figure 15. The value of *TGMI* should be proportional to the volumetric soil water content (VWC) present at the site of a given pixel. Specifically, *TGMI* should represent the fraction of available soil water, where available soil water (*VWC*_s) is the water in the soil between saturation and the permanent wilting point, expressed on a volumetric basis. Thus, VWC for a pixel (*VWC*_i) can be estimated from *TGMI*_i for a pixel as follows,

 $VWC_i = TGMI_i \times VWC_s$

Figure 15. TIRDC_{norm}–GC space used for determining the vertex d of the trapezoid. Line "B" passes through point *a* with a slope of -1 and serves as a baseline for measuring perpendicular distance across the TIRDC_{norm}–GC space. In this example, point *f* is the point in the distribution of observed pixel values that has the maximum perpendicular distance from line "B".

Figure 16 shows values of volumetric soil water content from field measurements in 18 study fields in the TAWC project plotted versus corresponding values of *TGMI*×VWCs calculated from multispectral satellite image data. The diagonal solid line in the figure represents the 1:1 line. The dashed line represents the simple linear regression fit to the points in the figure. This regression line has a slope of 0.98 and a y-intercept of -0.0278, and explains approximately 73% of the total variance in the data. The *t*-test performed to determine if the regression slope was significantly different from 1 resulted in t = -0.23. This value was less than the corresponding critical value (t_{α} = 1.99, 69 df, α = 0.05), which suggests that there was no significant difference between the slope of the regression and 1. The *t*-test performed to determine if the regression intercept was significantly different from zero resulted in t = -0.98 with 69 df. This value was less than the corresponding critical value (t_{α} = 1.99, 69 df, α = 0.05), which suggests that there was no significant difference between the y-intercept of the regression and zero. Overall, these results suggest that there was no significant difference between the regression line and the 1:1 line in this study. Thus, we conclude that the *TGMI* method was able to reasonably estimate volumetric water content in this study. The average absolute error (AAE) between TGMI*VWCs and measured volumetric water content values was 0.049.

Figure 16. Simple linear regression between field measurements of volumetric soil water content and corresponding values of *TGMI*×VWCs calculated from multispectral satellite image data.

Results of this study suggest that *TGMI* is effective in estimating soil volumetric water content of agricultural fields under a variety of irrigation conditions ranging from fully irrigated to dryland. In this approach, *TGMI* can be evaluated on a pixel-by-pixel basis using raw image GC data without the need for conversion or calibration. Using measurements of volumetric soil water content obtained from 18 agricultural fields in the Texas High plains over 2 years, statistical analysis showed that *TGMI*×VWCs was closely related to soil moisture (R² = 0.73). *TGMI* was used to construct maps showing the spatial distribution of soil moisture conditions over an agricultural region in which patterns of high and low *TGMI* were consistent with what would be expected from known crop management practices. Changes in the spatial distribution of *TGMI* over time are consistent with changes in irrigation in the region. *TGMI* appears to be a potentially useful indicator of soil moisture that could find practical use in a range of applications, such as regional water resource monitoring and irrigation scheduling.

Publications and Presentations related to TAWC

- Rajan, N., S. Maas, and S. Cui. 2014. Extreme drought effects on evapotranspiration and energy balance of a pasture in the Southern Great High Plains. Ecohydrology, DOI: 10.1002/eco.1574.
- Rajan, N and S. Maas. 2014. Spectral crop coefficient for estimating crop water use. Advances in Remote Sensing, 3(3):197-207.
- Shafian, S., and S. Maas. Improvement of the trapezoid method using raw Landsat image digital count data for soil moisture estimation in the Texas (USA) High Plains. Sensors. (Accepted)
- Rajan, N., S. Maas, R. Kellison, M. Dollar, S. Cui, S. Sharma, and A. Attia. Emitter uniformity and application efficiency for center-pivot irrigation systems. Irrigation and Drainage. (Accepted)
- Sharma, S., N. Rajan, and S. Maas. 2014. Measurement of soil carbon dioxide emission from a cotton cropping system using LI-8100. Abstracts, ASA-CSSA-SSSA Annual Meeting, November 2-5, Long Beach, CA.
- N. Rajan., S. Sharma and S. Maas. 2014. Ecosystem-scale carbon fluxes and evapotranspiration of bioenergy crops compared to conventional cotton cropping systems. Abstracts, ASA-CSSA-SSSA Annual Meeting, November 2-5, Long Beach, CA.
- Sharma, S., N. Rajan, and S. Maas. 2014. Carbon dynamics of biofuel cropping systems compared to conventional cotton cropping systems. Annual Meeting of the Southern Branch of the American Society of Agronomy, February 2-4, Dallas, TX.
- Sharma, S., N. Rajan, and S. Maas. 2014. Land use change from cotton to biofuel crops: Implications on evapotranspiration and energy fluxes. Annual Meeting of the Southern Branch of the American Society of Agronomy, February 2-4, Dallas, TX.
- Shafian, S., and S. Maas. Perpendicular Soil Moisture Index to estimate soil moisture status with medium-resolution imagery. AGU Fall Meeting, 15-19 Dec. 2014, San Francisco, CA.
- Attia, A., N. Rajan, G. Ritchie, E. Barnes, S. Cui, A. Ibrahim, D. Hays, Q. Xue. 2014. Deficit irrigation and tillage effects on lint yield and profitability of four cotton cultivars in the Texas Rolling Plains. Beltwide cotton conferences, January 6-8, New Orleans, LA.

TASK 6: COMMUNICATIONS AND OUTREACH

Annual Report ending February 28, 2015

Principal Investigator(s): Samantha Borgstedt (TTU), Dr. Steve Fraze, Dr. Rudy Ritz

We are satisfied with our progress towards achieving our goals in outreach and communications. Activities this quarter toward achieving the objectives include:

<u> March – May 2014</u>

- Samantha Borgstedt and Dr. Rudy Ritz, along with graduate students Kelly Harkey and Mallory Newsom set up and staffed the TAWC booth as well as distributed project materials and shared the water management guide and TAWC online tools with attendees at the Texas Ginners Annual Meeting and Trade Show (April 3-4, 2014).
- Samantha Borgstedt designed and ordered new pull-up banners to be used at the TAWC booth at the Texas Wildlife Conservation Convention to be held July 11-13 in San Antonio, Texas.
- Texas Department of Agriculture came out to shoot documentary footage of TAWC sites and producers for promotional materials to be used for their Texas Water Smart campaign. They also visited the TAWC June 11 Field Walk where they got additional interviews, videos and still shots.
- Samantha Borgstedt created several animated YouTube videos highlighting TAWC and its research. These were added to the TAWC YouTube channel.
- Additional videos from TAWC Cotton Irrigation Short Course was added to the TAWC YouTube channel.
- Samantha Borgstedt continues to daily relay events, pictures, videos and information through TAWC social media outlets.
- Samantha Borgstedt emailed several TAWC photos which will be used by Cotton Farming Magazine for their July 'water' issue.
- Constant Contact is now being used for the TAWC newsletter and email blasts. Samantha Borgstedt created and continues to manage its contact lists. She designed the first newsletter which went out first of June as well as an invitation email to the TAWC June 11 Field Walk.
- Samantha Borgstedt made 7 radio appearances to talk about the June 11 TAWC Field Walk.
- We continue to record, edit and run a weekly TAWC Field Talk segment on KFLP and KDDD radio stations.

<u> June - August 2014</u>

- Samantha Borgstedt created and sent out the June 2014 Newsletter.
- A field walk was held on June 11 at Eddie Teeter's field on site 21. About 25 people attended this field walk. Borgstedt went on KFLP and KKYN speaking of the Field Walk. A Constant

Contact email campaign was also sent out advertising it. Pictures and video of this field walk were posted on TAWC's Flickr, Facebook and Twitter pages.

- Texas Department of Agriculture (TDA) met with the TAWC on June 18 to shoot video and still shots of the project and interview producers Glenn Shur and Eddie Teeter for video clips in their Texas Water Smart Campaign. These videos can be viewed on TDA's YouTube page. More videos will be shot and released throughout the growing season.
- On June 24 graduate assistant Mallory Newsom and Samantha Borgstedt set up the TAWC booth at Brownfield's irrigation usage for vineyards meeting. Rick Kellison presented at this meeting informing attendees of what the TAWC project is all about.
- Borgstedt created and sent out the July 2014 Newsletter.
- July 11-12 the TAWC had a booth at the Texas Wildlife Association Conference. Meetings with their conservation committee and Texas Parks and Wildlife were held to determine how they and TAWC can cooperate in the future to improve outreach for water management information. Jeff Pate, Rudy Ritz, Rick Kellison and Samantha Borgstedt all manned the booth and visited with conference attendees about the TAWC project and handed out project handouts.
- Samantha Borgstedt and Mallory Newsom attended the Ag Media Summit in Indianapolis on July 26-29 where they learned about writing, photography, design and campaign skills to assist in future communication efforts for the TAWC.
- Advertising was begun for the TAWC Summer Field Day. Radio ads were created to be run on KFLP, FoxTalk 950 and KKYN. Borgstedt also began contacting sponsors interested in setting up information booths at the field day.
- Borgstedt created and sent out the August 2014 Newsletter.
- Borgstedt went on for a total of 12 times to talk about the Summer Field Day with radio hosts on KFLP, FoxTalk 950 and KKYN. Constant Contact campaigns were created and sent out. Formal invite letters were also created and mailed.
- The Field Day was held on August 14 with about 95 in attendance. Videos of presentations were posted to YouTube and photos were posted on Facebook, Twitter and Flickr. TDA also attended to get video and still shots for future Texas Water Smart Campaigns. Out on the Land film crew shot an episode to air on RFD-TV on Sept. 16 at 6:00pm and Dec. 16 at 6:00pm.

<u> September - November 2014</u>

- Samantha Borgstedt created and sent out the September 2014 Newsletter.
- The RFD-TV episode of Out on the Land aired September 16. Borgstedt created an email campaign advertising the episode that was sent out a few days prior to the airing.
- Mallory Newsom recorded TAWC Field Talk each week. This airs on KFLP 800AM on Wednesdays at 12:20pm and 3:20pm.
- Borgstedt met with the Texas Tech Department of Agricultural Communications campaigns class to discuss them using TAWC as their 'client' for the 2014 fall semester. The class will

focus on promotion of the TAWC Water College. Borgstedt will meet with the class periodically through the semester.

- Borgstedt went on KKYN to talk about the TAWC project and upcoming events on September 18 and 30.
- Borgstedt created and sent out the October 2014 Newsletter.
- Texas Department of Agriculture (TDA) released two new videos for their Texas Water Smart campaign. These feature TAWC producer Glenn Schur and TAWC consultant Bob Glodt and have been posted on TDA and TAWC's social media and YouTube channels.
- Mallory Newsom recorded TAWC Field Talk each week.
- Borgstedt created www.tawcwatercollege.com and will be updating it with meeting details as they become available.
- Borgstedt created and sent out the November 2014 Newsletter.
- Borgstedt went on KKYN to talk about the Water College on November 13. Advertisements for the event were also created and started running on this station in November and continuing through December.
- Borgstedt created an email campaign that was sent to our contacts congratulating Glenn Schur on receiving the Producer of the Year award from the Texas Tech College of Agricultural Sciences and Natural Resources.
- Mallory Newsom taught new graduate assistant Libby Durst how to use the interviewing software and the both recorded TAWC Field Talk each week.
- Preparations for the water college have been made including meeting with the Bayer Ag Museum to discuss set-up, reserving the caterer, finalizing the agenda, and creating and printing Save the Dates. Sponsors have been contacted and will continue to be up until January 2015. Ads have also been reserved to run on KFLP, KKYN, and Fox Talk 950.
- Save the Date cards for the Water College were handed out at the South Plains Bankers' Conference on November 14 and will also be handed out at the Amarillo Farm and Ranch show. Folders containing TAWC materials were also organized for the Amarillo Farm and Ranch show.

December 2014- February 2015

- Libby Durst and Mallory Newsom attended the Amarillo Farm and Ranch Show where they had the TAWC booth. They distributed approximately 35 TAWC information folders and 75 TAWC Water College save the date cards.
- Preparations were made for TAWC Water College. These included finalizing catering and venue arrangements; distributing flyers to local gins, coffee shops, co-ops, and county extension offices; making arrangements with all industry sponsors for their booths; and assembling advertising.
- Borgstedt created and distributed the December TAWC Newsletter.

- Samantha Borgstedt and Jeff Pate attended the High Plains Irrigation Conference on January 14 in Amarillo. They displayed the TAWC booth and distributed information material and TAWC Water College Save the Date Cards.
- Personal Letters were mailed to 250 individuals inviting them to TAWC Water College. Radio advertisements were run on four local radio stations (KFLP, KFYO, Fox Talk, and KKYN). The Lubbock Avalanche Journal also picked up our press release and ran it before the meeting. TAWC management team members went live on each radio station live a total of 11 times talking about Water College. Jeff Pate went on Fox 34's Ag Show live inviting people to the meeting.
- TAWC Water College was held on January 21. We had about 150 attendees. Video was taken of presentations and uploaded to YouTube and linked on our site. We posted throughout the meeting to our social media sites. Evaluations came back very positive and we plan to continue to host Water Colleges.
- Borgstedt created and distributed the January TAWC Newsletter.
- Samantha Borgstedt and Chuck West met with Ramar Communications to begin development of an animation video for TAWC to be used at TAWC events and within West's power point presentations when presenting at meetings. A plan was made and a script is in the final stages.
- Borgstedt created and distributed the February TAWC Newsletter. She also went on live with KKYN to give report on Water College.

TASK 7: PRODUCER ASSESSMENT OF OPERATION

Annual Report ending February 28, 2015

Principal Investigator: Dr. Nithya Rajan (Texas A&M AgriLife Research)

Task 7 report is combined with Task 5 in this 2014 report because of their combined efforts.

TASK 8: INTEGRATED CROP/FORAGE/LIVESTOCK SYSTEMS AND ANIMAL PRODUCTION EVALUATION

Annual Report ending February 28, 2015

Principal Investigators: Dr. Chuck West, Mr. Philip Brown, and Dr. Sara Trojan

Several forage and livestock research trials were initiated at the Texas Tech New Deal research facility to generate data that will be used in future outreach presentations, field tours, and to expand capabilities of the TAWC online tools.

Sara Trojan carried out the first phase of a grazing trial with steers on a new type of forage sorghum called a brachytic type (Alfa Seeds AF7401). It contains a drawf gene in combination with the brown midrib trait, both of which contribute to improving forage quality over standard grain sorghum and forage sorghum cultivars. This brachytic type is expected to have lower water needs than corn or tall-growing forage sorghums. After summer grazing, the steers entered a feedlot feeding phase receiving either corn or sorghum silage and a finishing diet, compared with calves that did not graze, and compared for animal production in relation to water use.

Chuck West and Philip Brown carried out a steer grazing trial comparing pastures containing only grass versus pastures containing grass and alfalfa, a high quality legume forage. Also tested was the innovation of managing alfalfa as a limit-grazing protein bank. This is part of doctoral student, Lisa Baxter's, research effort. Results will inform producers of ways to utilize alfalfa in the forage system in ways that require much lower irrigation compared with traditional hay crop alfalfa. Another forage looked at was teff, a type of annual lovegrass which establishes quickly from seed, provides medium to high quality grazing, and regrows well after light, sporadic rains.

Two new doctoral projects were initiated on WW-B.Dahl old world bluestem. Krishna Bhandari monitored insects on cattle (flies), on the forage, and in soil. The object was to determine whether the drought-tolerant grass WW-B.Dahl Old World bluestem can deter harmful insects in the pastures and on cattle. Preliminary data show that cattle grazing WW-B.Dahl harbored significantly fewer face flies than cattle grazing alfalfa-grass mixtures. Yedan (Victoria) Xiong finished her Master's thesis on the use of digital image analysis to quantify vegetative ground cover of WW-B.Dahl and study ground cover relationship to light interception and forage growth. She began her doctoral research in 2014 to enhance the ALMANAC plant growth model to predict forage growth as a function of water supply, canopy cover, and grazing intensity. Results will be used to add WW-B.Dahl as a crop option in the TAWC online decision aid tools.

Several proposals were submitted for funding to enhance the efforts of TAWC, of which three were funded (listed below) and five not funded (not shown). Among the proposals not funded was a \$5 million multi-state project with Kansas State, New Mexico State, Texas A&M, and West Texas A&M Universities to combine efforts to improve irrigation efficiency, model the decline of groundwater, and investigate social and economic barriers to adoption of water conservation measures in crop production. Improvements will be made in the proposal and will be resubmitted in 2015.

Grants Funded:

1. USDA-SARE. C. West. Long term agroecosystems research and adoption in the Texas Southern High Plains. \$100,000.

2. USDA-ARS-Ogallala Aquifer Program. C. West. Modeling forage cover and growth of WW-B Dahl under limited water supply. \$20,000.

3. Advanta US, Inc. S. Trojan, and C. West. Enhancing the viability of forage sorghum for beef cattle production in the southern Great Plains. \$149,952.

TASK 9: EQUIPMENT, SITE INSTRUMENTATION AND DATA COLLECTION FOR WATER MONITORING

Annual Report ending February 28, 2015 Principal Investigator(s): Jason Coleman and Keith Whitworth (HPWCD #1)

9.1 Equipment Procurement & Installation

- Rebuilt tipping bucket rain gauges to support a data logger and a digital display.
- Purchased, assembled and installed 25 digital display boxes.
- Purchased and installed 7 additional tipping bucket rain gauges.
- Purchased and installed 12 additional INW water level transducers.
- Installed additional manual "PVC" rain gauges.

9.2 Data Collection and Processing

- Rainfall data were collected monthly as a backup to the rainfall data collected by the tipping bucket data logger.
- 2014 rainfall totals were mapped.
- Compiled the 2014 daily rainfall for 11 sites.
- All water level transducers were downloaded, graphed and published on the HPWD website.
- All equipment was monitored regularly and maintenance preformed if needed.

Water Use Efficiency Summary: Philip Brown, Texas Alliance for Water Conservation

Total Irrigation and Water Use Efficiency (WUE)

Table 11 lists the information related to the 2014 irrigation and total crop water efficiency. Data presented include site, field, crop, special harvest status, irrigation type and acres for each location within the project area. Season rainfall is based on individual sites and represents an estimated 50% effective rainfall in inches received during the growing season (planting to harvest). 50% was chosen over the previously used 70% to correct for previous over-estimation of effective rainfall. Rainfall events in the High Plains tend to be high intensity, resulting in low effectiveness rainfall for crop use. This effective rainfall factor is based on the FAO method (<u>http://www.fao.org/docrep/S2022E/s2022e08.htm</u>). Total irrigation (inches) is the total amount of irrigation applied for each site's crop. Soil moisture contribution to WUE (inches) is the estimated plant available soil moisture provided from pre-plant irrigation and/or rainfall and is the calculated difference based on a beginning and end-of-season soil moisture measurement. Beginning in 2014, neutron probe readings were discontinued by the HPWD. Instead, gravimetric soil moisture measurements were made using a hand soil probe to a maximum depth of 3 feet in 1 foot increments. Inability to punch a depth resulted in an assumed 0% soil moisture content below that depth. Gravimetric soil water content was converted to volumetric based on the site-specific soil texture, bulk density, wilting point and maximum available water capacity values from NRCS SSURGO from the USDA Soil Conservation Service (<u>http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2_05_3627</u>).

This method allowed calculations of initial and ending soil moisture for each site in the project previously not available. **Total crop water supplied** is a sum total of 50% effective rainfall, total irrigation and soil moisture contribution (when available in any given year). **ET crop water demand** is the average crop water demand (inches) required for an individual crop at 100% potential ET based on crop-specific water coefficients and/or a standardized season ET value based on research experience and history with crops lacking these coefficients. Use of a standardized ET value for all crops enabled calculation of the ET crop water demand (potential ET) for all sites and crops within the project. Percentage **crop water demand provided by rainfall (50% effective), irrigation,** and **soil moisture** (when available) are the percentage of crop water demand supplied by each of these factors. **Total crop water demand provided by total irrigation (%)** includes only the difference between total irrigation and the crop water demand. **Total crop water demand provided by total crop water (%)** includes soil moisture (when available), irrigation and 50% effective rainfall.

Total <u>irrigation</u> potentially conserved in acre-feet is the total amount of <u>irrigation</u> <u>water</u> estimated to have been conserved at **100% season crop ET water demand**.

Total <u>crop water demand</u> potentially conserved in acre-feet is the total amount of <u>total</u> <u>crop water</u> estimated to have been conserved at **100% season crop ET water demand**.

Average irrigation alone supplied from 0 for a dryland site to 107% of the crop ET water demand. Total crop water, which includes irrigation, rainfall and soil moisture, provided from 55 to 194% of the season crop ET water demand. Subsurface drip (SDI), while assumed to be the most efficient irrigation system currently available, supplied on average 108% of total crop water demand. The LEPA system provided 99%, followed by LESA at 92%, MESA at 79% and FUR at 122%. Irrigation at greater than 100% crop water demand indicates excessive water application. For the FUR irrigation system this is to be expected, but not for the SDI system. Many producers manage irrigation systems based on their experience with older, less-efficient pivot irrigation systems; however, SDI systems require a different management style since this water is applied sub-surface to reduce surface evaporation, and is therefore difficult to see. Newer irrigation systems, while designed for greater efficiency, have often resulted in excessive water being applied rather than conserving water because of lack of careful monitoring of soil and crop water status. This indicates a need for increased user awareness and education on the operation and management of advanced irrigation systems such as SDI. Greater use of the TAWC online irrigation scheduling tool correct this problem.

Year	Site	Field	Crop	Status	Irrigation type	Acres	Season rainfall (50% effective-inches)	Total irrigation (inches)	Soil moisture contribution to WUE (inches)	Total crop water supplied (inches)	ET crop water demand (inches)	Crop water demand provided by rainfall (%)	Crop water demand provided by irrigation (%)	Crop water demand provided by soil moisture (%)	Crop water demand provided by total crop water (%)	Total irrigation potentially conserved (acre-feet)	Total Crop Water potentially conserved (acre-feet)
2014	4	5	Alfalfa		LEPA	16.0	6.5	24.5	8.5	39.5	40.0	16%	61%	21%	99%	20.7	0.7
2014	4	8	Forage Sorghum		LEPA	50.5	6.9	14.5	-1.3	20.1	27.0	25%	54%	-5%	74%	52.6	29.2
2014	4	9	Grain sorghum	failed cotton	LESA	29.6	5.0	12.0	1.7	18.7	24.0	21%	50%	7%	78%	29.6	13.2
2014	4	10	Wheat	grazed	LEPA	26.8	3.6	16.8	1.5	21.9	11.7	31%	144%	13%	187%	-11.4	-22.8
2014	4	10	Forage Sorghum	grazed	LEPA	26.8	5.0	8.0	1.5	14.5	17.6	28%	46%	9%	82%	21.3	6.9
2014	5	4	Sunflower		LESA	119.4	8.8	10.0	-0.9	17.9	22.0	40%	45%	-4%	81%	119.4	41.3
2014	5	5	Millet		LESA	122.9	5.6	14.0	-2.1	17.5	20.0	28%	70%	-11%	88%	61.5	25.6
2014	5	6	Cotton		LESA	241.8	9.1	13.0	-2.1	20.0	20.0	45%	65%	-11%	100%	141.1	1.0
2014	6	9	Corn		LESA	60.6	8.7	16.0	-2.3	22.4	32.0	27%	50%	-7%	70%	80.8	48.5
2014	6	10	Cotton		LESA	62.1	11.5	11.0	3.8	26.3	20.0	58%	55%	19%	132%	46.6	-32.6
2014	7	1	Sideoats		LESA	130	7.5	15.5	-5.8	17.2	15.0	50%	103%	-39%	115%	-5.4	-23.8
2014	7	1	Sideoats		LESA	130	7.5	na	-5.8	na	15.0	na	na	-39%	na	na	na
2014	8	1-4	Sideoats		SDI	61.8	7.5	16.0	5.2	28.7	15.0	50%	107%	35%	191%	-5.2	-70.6
2014	8	1-4	Sideoats		SDI	61.8	7.5	na	5.2	na	15.0	na	na	35%	na	na	na
2014	9	1	Grass	grazed	MESA	100.8	11.8	0.0	0.0	11.8	9.8	121%	0%	0%	121%	81.9	-17.2
2014	9	3	Grain Sorghum		MESA	77.0	11.8	9.5	-6.8	14.5	24.0	49%	40%	-28%	60%	93.0	61.0
2014	9	4	Cotton		MESA	59.9	12.2	8.0	-4.2	16.0	20.0	61%	40%	-21%	80%	59.9	20.0
2014	10	6	Grass	grazed	LESA	57.7	12.0	7.0	0.0	19.0	9.8	123%	72%	0%	194%	13.2	-44.3
2014	10	7	Corn		LESA	59.2	9.7	16.5	-3.7	22.5	32.0	30%	52%	-12%	70%	76.4	47.1
2014	10	8	Cotton		LESA	59.2	12.3	10.0	1.6	23.9	20.0	62%	50%	8%	120%	49.3	-19.2
2014	11	6	Grain Sorghum		FUR	15.0	12.0	13.0	3.9	28.9	24.0	50%	54%	16%	120%	13.8	-6.1
2014	11	7	Cotton		FUR	30.0	12.3	6.0	6.4	24.7	20.0	62%	30%	32%	124%	35.0	-11.8
2014	11	8	Cotton		SDI	47.3	12.3	13.5	6.7	32.5	20.0	62%	68%	34%	163%	25.6	-49.3
2014	14	4	Cotton		MESA	124.1	9.1	9.0	1.8	19.9	20.0	46%	45%	9%	100%	113.8	1.0

Table 11. Total water use efficiency (WUE) summary by various cropping and livestock systems across the TAWC sites (2014).

2014	15	8	Cotton		SDI	56.7	8.4	15.0	1.8	25.2	20.0	42%	75%	9%	126%	23.6	-24.6
2014	15	9	Cotton		SDI	44.4	8.4	15.5	3.4	27.3	20.0	42%	78%	17%	137%	16.7	-27.0
2014	17	4	Dahl	fallow	MESA	111.8	7.1	0.0	0.0	7.1	9.8	72%	0%	0%	72%	90.8	25.2
2014	17	5	Sunflower		MESA	54.5	7.3	8.0	-1.8	13.5	22.0	33%	36%	-8%	61%	63.6	38.6
2014	17	6	Corn		MESA	54.4	5.4	14.0	-1.8	17.6	32.0	17%	44%	-6%	55%	81.6	65.3
2014	19	11	Cotton		LEPA	120.3	10.2	8.5	0.0	18.7	20.0	51%	43%	0%	93%	115.3	13.5
2014	20	3	Corn		LEPA	233.3	8.0	14.2	4.1	26.3	32.0	25%	44%	13%	82%	346.1	110.8
2014	21	1	Wheat		LEPA	61.4	5.7	10.5	2.9	19.1	18.0	31%	58%	16%	106%	38.4	-5.4
2014	21	1	Forage Sorghum	hay	LEPA	61.4	6.6	5.0	2.9	14.5	27.0	24%	19%	11%	54%	112.6	64.0
2014	21	2	Cotton		LEPA	60.6	11.8	10.1	6.1	28.0	20.0	59%	51%	31%	140%	50.0	-40.4
2014	22	3	Corn		LEPA	148.7	8.8	21.0	0.5	30.3	32.0	27%	66%	2%	95%	136.3	21.7
2014	24	1	Sunflower		LESA	65.1	7.0	9.5	2.9	19.4	22.0	32%	43%	13%	88%	67.8	14.4
2014	24	2	Corn		LESA	64.6	6.6	16.0	-5.0	17.6	32.0	20%	50%	-16%	55%	86.1	77.8
2014	26	1	Corn		LESA	62.9	7.0	15.0	3.1	25.1	32.0	22%	47%	10%	78%	89.1	36.2
2014	26	2	Sunflower		LESA	62.2	5.6	8.0	-0.9	12.7	22.0	25%	36%	-4%	58%	72.6	48.2
2014	27	2	Corn		SDI	108.4	7.4	12.7	4.1	24.2	32.0	23%	40%	13%	75%	174.3	70.9
2014	28	1	Cotton		SDI	51.4	12.3	8.0	-0.3	20.0	20.0	62%	40%	-2%	100%	51.4	0.0
2014	29	1	Cotton		DL	50.8	12.3	0.0	0.0	12.3	20.0	62%	0%	0%	62%	84.7	32.6
2014	29	2	Cotton		DL	104.3	12.3	0.0	0.0	12.3	20.0	62%	0%	0%	62%	173.8	66.9
2014	29	3	Cotton		DL	66.6	12.3	0.0	0.0	12.3	20.0	62%	0%	0%	62%	111.0	42.7
2014	30	1	Cotton		SDI	21.8	9.1	13.0	-4.6	17.5	20.0	45%	65%	-23%	87%	12.7	4.6
2014	31	1	Grain Sorghum	failed cotton	LEPA	66.8	5.0	16.0	-0.1	20.9	24.0	21%	67%	0%	87%	44.5	17.5
2014	31	2	Forage Sorghum		LEPA	55.1	6.9	17.3	-0.1	24.0	27.0	25%	64%	0%	89%	44.8	13.8
2014	32	1	Grain Sorghum	failed cotton	LEPA	70.0	5.7	14.2	1.3	21.2	24.0	24%	59%	5%	88%	57.2	16.3
2014	33	1	Cotton		LEPA	70.0	8.4	13.9	1.0	23.3	20.0	42%	70%	5%	117%	35.6	-19.3
2014	34	1	Cotton		LESA	242.0	11.5	15.8	2.8	30.1	20.0	58%	79%	14%	151%	84.7	-203.7
2014	34	2	Corn		LESA	242.0	8.8	8.8	5.4	23.0	32.0	28%	28%	17%	72%	467.9	181.5
2014	34	3	Corn		LESA	242.0	8.7	13.3	2.8	24.8	32.0	27%	42%	9%	78%	377.1	145.2
2014	35	1	Corn		SDI	75.0	8.6	15.9	0.9	25.4	32.0	27%	50%	3%	79%	100.6	41.3
2014	35	2	Cotton		SDI	80.5	11.3	14.0	4.5	29.8	20.0	57%	70%	23%	149%	40.3	-65.7
2014	35	3	Grain Sorghum		SDI	74.7	8.3	6.8	4.9	20.0	24.0	34%	28%	20%	83%	107.1	25.2
2014	C50	1	Cotton		LESA	120.6	11.2	8.4	3.0	22.6	20.0	56%	42%	15%	113%	117.1	-25.6
2014	C51	1	Cotton		SDI	45.7	10.5	9.4	1.0	20.9	20.0	53%	47%	5%	105%	40.4	-3.5
2014	C52	1	Cotton		LESA	135.0	8.2	15.5	0.0	23.7	20.0	41%	78%	0%	119%	50.6	-41.6

2014	C53	1	Cotton		SDI	50.0	8.2	8.5	-1.0	15.7	20.0	41%	42%	-5%	78%	48.1	18.1
2014	C54	1	Cotton		SDI	85.0	8.2	8.3	0.0	16.5	20.0	41%	42%	0%	83%	82.9	24.8
2014	C56	1	Corn		LESA	45.0	7.7	14.4	1.0	23.1	32.0	24%	45%	3%	72%	66.0	33.6
2014	C57	1	Corn		LESA	115.0	7.7	11.5	3.5	22.7	32.0	24%	36%	11%	71%	196.1	89.2
2014	C58	1	Triticale		LESA	60.0	3.2	12.6	0.0	15.8	24.0	13%	53%	0%	66%	57.0	41.0
2014	C58	2	Alfalfa		LESA	60.0	8.9	20.7	3.0	32.6	40.0	22%	52%	8%	81%	96.5	37.3
2014	C59	1	Alfalfa		SDI	76.0	8.9	15.1	0.0	24.0	40.0	22%	38%	0%	60%	157.7	101.7
2014	C60	1	Grain sorghum		LESA	59.5	7.6	9.8	0.0	17.4	24.0	31%	41%	0%	72%	70.4	33.0
Year	Site	Field Crop Status		Irrigation type	Acres	Season rainfall (70% effective-inches)	Total irrigation (inches)	Soil moisture contribution to WUE	Total crop water supplied (inches)	ET crop water demand (inches)	Crop water demand provided by rainfall (%)	Crop water demand provided by irrigation (%)	Crop water demand provided by soil moisture (%)	Crop water demand provided by total crop water (%)	Total irrigation potentially conserved (acre-feet)	Total Crop Water potentially conserved (acre-feet)	
			Averag	e across all site		igation ty	pes					41%	50%	4%	95%	85.2	17.1
	Average (MESA)								57%	29%	-8%	79%	83.5	27.7			
	Average (LESA)								38%	53%	0%	92%	104.6	21.8			
	5, ,							31%	60%	9%	99%	76.0	14.8				
							56%	11%	108%	62.6	3.3						
	Average (FUR) Sum total irrigation only potentially conserved across all TAWC sites and irrigation types (acre-feet)								56%	42%	24%	122%	24.4	-8.9			
Sum to	tal irrig	gation	only potentially co	nserved across	all TAW	C sites an	d irriga	tion typ	es (acr	e-feet)							5454
Sum total crop water potentially conserved across all TAWC sites and irrigation types (acre-feet)														1094			

Estimated sum total <u>irrigation potentially conserved</u> across the TAWC project sites totaled 5,454 acre-feet for the 2014 growing season, while sum total <u>crop water demand</u> <u>potentially conserved</u> totaled 1,094 acre-feet. On average across all sites and irrigation systems, irrigation alone provided 50% of the total crop water demand with 41% provided by rainfall and another 4% by soil moisture. This sums to approximately 95% of the crop water demand provided by total crop water. While this does not total 100%, it is unrealistic to believe we have accounted for all water used and/or lost due to evaporation, soil moisture and drainage through the soil profile throughout the whole season.

It has been demonstrated in our area that deficit irrigation at 70% of total crop water demand provides an economically viable crop. Irrigating at this level, in addition to the average 25-50% water contribution from rainfall and pre-plant soil moisture should meet 100% of total crop water demand in most years. This would be the next step in water conservation; however, it is impossible to predict how much and when specific rainfall may occur. Predicting this rainfall and its timing is critical to a successful crop and taking advantage of this additional moisture when received is of extreme importance in achieving additional water savings. This will rely on changing attitudes, improved management techniques, advanced technologies, management tools, and predictive models to achieve further reductions in our irrigated water use.

In 2013, we assumed no water applied had no potential water savings, however this was in error as dryland should be considered the "ultimate" in water savings. In addition, we did not allow a negative soil water value, but again this should have been treated as water not used and been deducted from the total crop water used. We have struggled over the years to determine a "best" method to evaluate water conserved, and various modifications have been employed. 2005-2012 only recorded soil moisture for those sites that had a neutron probe installed, 2013 attempted to compensate by using a median value for sites without neutron probes and 2014 estimates all sites based on gravimetric soil samples collected at planting and again at harvest for all sites. In addition, for past year's report summaries of this data, the potential water conserved was based only on those sites which had specific derived crop water coefficients, primarily corn, cotton and grain sorghum and therefore only represented a small number of project sites. Through the use of standardized crop water demand values we are now able to better estimate water use for all crops and sites across the whole project area. This methodology still utilizes the same basic analysis that has been used since 2005, and though lacking soil moisture data in many instances, is now a more complete data set and represents our best estimate to date of total potential water conserved inclusive of all project sites. While 2013 was an attempt to "clean" this information, it was also once again a transition year in personnel. There have been various attempts to develop better estimates of water conserved since 2005 and a reliable "best" estimate has not yet been attained. However, due to the different personnel and calculation methods used across the years, and a lack of understanding of these methods through previous attempts, an effort is being made in 2014 to re-analyze all information since 2005. All data is now based on the same method of calculation across each year and includes the modifications previously discussed for a more complete and uniform data set and is presented in Table 12.

Table 12. Average season rainfall, total irrigation, crop water demand, crop water demand provided by irrigation/total crop water and total water conserved summary across all crops for the TAWC sites (2005-2014).

Year	Average season rainfall (50% effective-inches)	Average total irrigation (inches)	Average ET crop water demand (inches)	Average crop water demand provided by rainfall (%)	Crop water demand provided by soil moisture (%)	Average crop water demand provided by irrigation (%)	Average crop water demand provided by total crop water (%)	Total irrigation potentially conserved all sites (acre-feet)	Total crop water potentially conserved all sites (acre-feet)
2005	5.4	8.2	22.5	25.4	na	35.9	61.3	5,134	3,183
2006	4.2	13.2	25.2	18	1.9	52.1	72.1	4,526	2,970
2007	8.6	8.9	18.9	50.4	na	46.7	97.1	4,130	514
2008	9.1	11.3	22.1	44.7	-6.9	49.0	87.9	4,139	937
2009	5.4	10.5	23.6	27.0	14.7	44.8	82.2	4,365	2,080
2010	9.6	7.9	21.7	51.2	-14.3	34.7	78.5	4,841	1,711
2011	1.5	19.0	26.7	6.8	17.6	76.6	89.2	3,475	2,483
2012	3.6	13.8	26.1	15.9	8.4	58.7	79.6	5,131	3,382
2013	5.2	14.6	23.5	24.7	8.7	63.8	92.6	4,099	1,586
2014	8.6	11.5	23.2	41.1	4.1	50.0	95.4	5,454	1,094

Both irrigation and total water potentially conserved by year are different from those reported previously for reasons explained above. Table 12 indicates that total irrigation potentially conserved is relatively consistent from year to year when evaluated on irrigation alone ranging from 3,475 to 5,454 acre-feet conserved across all sites. However, when including rainfall in total crop water potentially conserved, there are large variations across years ranging from 514 to 3,382 acre-feet conserved. Generally, in years with high seasonal rainfall, total crop water potentially conserved is lower while that of total irrigation potentially conserved remains relatively constant. This would seem to indicate that some producers irrigate regardless of rainfall, using rainfall as "water insurance." This also indicates that we may not be using the best method for evaluating potential water conserved and this method may need further scrutiny.

Crop Water Use Efficiency - 2014

Table 13 lists the information related to the 2014 crop water use efficiency. Data presented include **site**, **field**, **crop**, special harvest **status**, **irrigation type**, **acres**, **harvest yield** (lbs/acre), **in-season irrigation** (inches) and **in-season total crop water supplied** (inches) which includes in-season irrigation, soil moisture and 50% in-season effective rainfall (planting to harvest) for each specific site, field and crop within the project area.

Crop water use efficiency is presented in terms of **yield per acre-inch of irrigation** water applied and the **yield per acre-inch of total water** applied.

Categorizing the primary mode of irrigation system type for a specific crop in 2014 in terms of average yield per acre-inch of total water for cotton. Total crop water supplied was 18.0 (MESA), 22.8 (SDI), 23.3 (LEPA), 24.4 (LESA) and 24.7 inches (FUR). It is interesting to note that total crop water supplied tracks the yield efficiency in terms of lint/acre-inch of total water with (MESA - 73 lbs lint/acre-inch), (SDI - 64 lbs lint/acre-inch), (LEPA - 54 lbs lint/inch), (LESA - 49 lbs lint/acre-inch) and (FUR) being the least efficient at 22 lbs lint/acre-inch.

Total irrigation applied to the cotton, MESA, SDI, LEPA and LESA, provided 8.5, 11.7, 10.8 and 12.3 inches respectively followed by FUR with 6 inches. This resulted in yields per inch of irrigation of 153 (MESA), 124.7 (SDI), 116 (LEPA), 102 (LESA) and 90 lbs lint/acre-inch (FUR). This seems to indicate that cotton received excess total water, and that optimum for the environmental conditions in 2014 was 18 inches or less total water as we see decreasing yields per acre-inch as total water applied increased. Years with higher seasonal rainfall indicate less benefit to higher efficiency irrigation systems such as LEPA and SDI.

For corn grain in 2014, average inches of total crop water applied was 17.6 (MESA), 22.6 (LESA), 30.3 (LEPA) and 25.4 (SDI). MESA, LEPA and SDI were each represented by only a single site. Water use efficiency expressed as yield per acre-inch of <u>total water applied</u>, were 549 (MESA), 525 (LESA), 511 (LEPA) and 348 lbs grain/acre-inch (SDI).

However, in terms of <u>yield per acre-inch of irrigation</u>, average irrigation was 14.0 (MESA), 14.3 (LESA), 21.0 (LEPA) and 15.9 (SDI) and yields were 851 (LESA), 736 (LEPA), 690 (MESA) and 557 lbs grain/acre-inch of irrigation (SDI). More observations representing each of these systems is needed and there are obviously interactions between years, management, and timing of water and total water that needs to be more thoroughly analyzed for corn.

For all grasses and small grains that were utilized for grazing, an average of only 6.4 inches of total irrigation across all sites was applied in 2014.

Crop Water Use Efficiency - 2005 to 2014

Analysis of any data for a single year shows high variation and dependent on that particular year, the number of sites per irrigation system and the specific crop management implemented. Therefore, categorization of the primary mode of irrigation system type by specific crop averaged long-term from 2005-2014 would seem more prudent and indicates that improved management for specific irrigation systems may be needed.

As for cotton crop use efficiency of total water, furrow (FUR) was the least efficient at 54 lbs lint/acre-inch as expected; however, sub-surface drip irrigation at (SDI) 75 lbs lint/acre-inch and mid-elevation spray application (MESA) 70 lbs lint/acre-inch were

shown to be the most efficient, followed by low-energy precision application (LEPA) at 66 lbs lint/acre-inch and low-elevation spray application (LESA) at 64 lbs lint/acre-inch. In terms of amount of irrigation applied to the cotton, FUR received 13 inches while MESA, LESA, LEPA and SDI received 10, 14, 15 and 16 inches, respectively. This indicates the ability of these more efficient systems to provide a greater amount of total crop water demand but at the expense of water use efficiency for the crop when management leads to overwatering, as indicated previously in the irrigation efficiency discussion for Table 11. Yield per acre-inch of irrigation for cotton was similar to that of total water, with MESA having a slightly higher crop-use efficiency of irrigation over SDI. A more thorough classification of the individual systems and the way they are being managed will be a continued focus in Phase II to ensure proper classification of the irrigation system.

For corn grain, average of irrigation applied by system was 23, 18, 20 and 18 inches for MESA, LESA, LEPA, and SDI, respectively. Crop water use efficiencies for <u>total water</u> <u>applied</u> were 418 (MESA), 461 (LESA), 387 (LEPA) and 407 lbs/acre-inch (SDI). In this case, LESA was the most water use efficient for corn, followed by MESA, SDI and finally LEPA. Crop water use efficiencies for <u>irrigation applied</u> were 697 (LESA), 625 (SDI), 559 (MESA) and 513 lbs/acre-inch (LEPA). Once again, years with higher rainfall indicated less benefit to higher efficiency irrigation systems such as LEPA and SDI. It should be noted that corn has the potential for higher yields at lower water input with newer varieties and improved crop management.

Grain sorghum, which is considered to be a more water use efficient crop of total water yielded 529, 903, 628 and 515 lbs/acre-inch of total water on SDI, MESA, LESA and LEPA with each system receiving 20, 7, 13 and 15 inches, respectively. This clearly indicates excessive water application with the SDI system, and that higher yields can be achieved with lower amounts of irrigation on less-efficient systems with better management. This leads to the question of what can be achieved on the more efficient irrigation systems with improved management.

Sunflower, which is also considered a more water use efficient crop, yielded 115, 212 and 142 lbs/acre-inch of total water on SDI, MESA and LESA irrigation systems with each system applying 8, 10 and 11 inches of total irrigation for SDI, MESA and LESA, respectively.

The perennial warm season grass 'WW-B. Dahl' old world bluestem [*Bothriochloa bladhii* (Retz) S.T. Blake] received 8 inches of total irrigation by MESA and just under 4 inches on a LESA system, with both being utilized for grazing cattle. Perennial warm season grasses have consistently shown less water use as compared to row crops as well as added environmental benefits over conventional row crops (Allen et. al 2012).

The number of observations for each irrigation system type and crop varies and a more detailed analysis of crop water use efficiency needs to be made across all years for irrigation systems, crops and management practices to gain a clearer understanding of efficiency and its related factors. In some cases a system may be classified as LESA but was only used for this mode for germination and then was switched to the LEPA mode. Further

refinement of system classification needs to be made as we move forward. However, the general trend is that the highest yields were obtained with the lower water input.

If this system efficiency pattern holds true, education needs to be focused on irrigation management specific to the irrigation system being used if the irrigation system's potential for reducing water use is to be fully achieved.

Table 13. Crop water use efficiency (WUE) summary by various cropping and livestock
systems across the TAWC sites (2014).

Year	Site	Field	Crop	Status	Irrigation type	Acres	Harvest yield (lbs/acre-inch)	In-season irrigation (inches)	In-season total crop water supplied (inches)	Yield per inch of irrigation (lbs/ac-in)	Yield per inch of total water (lbs/acre-inch)
2014	4	5	Alfalfa		LEPA	16.0	16,200	24.5	39.5	661.2	410.6
2014	4	8	Forage Sorghum		LEPA	50.5	3,742	14.5	20.1	258.1	186.6
2014	4	9	Grain sorghum	failed cotton	LESA	29.6	6,843	12.0	18.7	570.3	366.9
2014	4	10	Wheat	grazed	LEPA	26.8		16.8	21.9	0.0	0.0
2014	4	10	Forage Sorghum	grazed	LEPA	26.8		8.0	14.5	0.0	0.0
2014	5	4	Sunflower		LESA	119.4	2,908	10.0	17.9	290.8	162.9
2014	5	5	Millet		LESA	122.9	3,800	14.0	17.5	271.4	217.1
2014	5	6	Cotton		LESA	241.8	1,280	13.0	20.0	98.5	64.2
2014	6	9	Corn		LESA	60.6	12,040	16.0	22.4	752.5	537.5
2014	6	10	Cotton		LESA	62.1	1,363	11.0	26.3	123.9	51.8
2014	7	1	Sideoats		LESA	130	167	15.5	17.2	10.8	9.7
2014	7	1	Sideoats		LESA	130	2,400	na	na	na	na
2014	8	1-4	Sideoats		SDI	61.8	201	16.0	28.7	12.6	7.0
2014	8	1-4	Sideoats		SDI	61.8	2,800	na	na	na	na
2014	9	1	Grass	grazed	MESA	100.8		0.0	11.8	na	0.0
2014	9	3	Grain Sorghum		MESA	77.0	7,630	9.5	14.5	803.2	526.2
2014	9	4	Cotton		MESA	59.9	1,267	8.0	16.0	158.4	79.2
2014	10	6	Grass	grazed	LESA	57.7		7.0	19.0	0.0	0.0
2014	10	7	Corn		LESA	59.2	11,760	16.5	22.5	712.7	523.8
2014	10	8	Cotton		LESA	59.2	953	10.0	23.9	95.3	39.9
2014 2014	11	6	Grain Sorghum		FUR	15.0	5,544 542	13.0	28.9	426.5	191.8
2014	11	7 8	Cotton		FUR SDI	30.0 47.3		6.0 13.5	24.7 32.5	90.3 94.8	21.9 39.4
2014	11 14		Cotton Cotton		MESA	47.3	1,280 1,320	9.0	32.5 19.9	94.8 146.7	66.3
2014	14	4	Cotton		SDI	56.7	1,320	9.0	25.2	95.7	56.9
2014	15	9	Cotton		SDI	44.4	1,455	15.0	25.2	95.7 97.4	55.3
2014	17	4	Dahl	fallow	MESA	111.8	1,310	0.0	7.1	na	0.0
2014	17	5	Sunflower	Ianow	MESA	54.5	3,150	8.0	13.5	393.8	233.3
2014	17	6	Corn		MESA	54.4	9,660	14.0	17.6	690.0	548.9

2014	19	11	Cotton		LEPA	120.3	1,145	8.5	18.7	134.7	61.4
2014	20	3	Corn		LEPA	233.3	22,000	14.2	26.3	1,549.3	836.5
2014	21	1	Wheat		LEPA	61.4	1,333	10.5	19.1	127.0	70.0
2014	21	1	Forage Sorghum	hay	LEPA	61.4	11,040	5.0	14.5	2,208.0	761.4
2014	21	2	Cotton		LEPA	60.6	1,156	10.1	28.0	114.5	41.3
2014	22	3	Corn		LEPA	148.7	15,456	21.0	30.3	736.0	510.9
2014	24	1	Sunflower		LESA	65.1	2,900	9.5	19.4	305.3	149.9
2014	24	2	Corn		LESA	64.6	12,146	16.0	17.6	759.1	692.1
2014	26	1	Corn		LESA	62.9	12,096	15.0	25.1	806.4	481.9
2014	26	2	Sunflower		LESA	62.2	2,510	8.0	12.7	313.8	197.6
2014	27	2	Corn		SDI	108.4	22,000	12.7	24.2	1,732.3	911.0
2014	28	1	Cotton		SDI	51.4	1,172	8.0	20.0	146.5	58.6
2014	29	1	Cotton		DL	50.8	360	0.0	12.3	na	29.3
2014	29	2	Cotton		DL	104.3	501	0.0	12.3	na	40.7
2014	29	3	Cotton		DL	66.6	235	0.0	12.3	na	19.1
2014	30	1	Cotton		SDI	21.8	1,515	13.0	17.5	116.5	86.8
2014	31	1	Grain Sorghum	failed cotton	LEPA	66.8	7,000	16.0	20.9	437.5	335.7
2014	31	2	Forage Sorghum		LEPA	55.1	5,170	17.3	24.0	299.7	215.4
2014	32	1	Grain Sorghum	failed cotton	LEPA	70.0	8,400	14.2	21.2	591.5	396.2
2014	33	1	Cotton		LEPA	70.0	1,374	13.9	23.3	98.8	59.0
2014	34	1	Cotton		LESA	242.0	1,180	15.8	30.1	74.7	39.2
2014	34	2	Corn		LESA	242.0	11,256	8.8	23.0	1,279.1	489.4
2014	34	3	Corn		LESA	242.0	10,584	13.3	24.8	795.8	426.8
2014	35	1	Corn		SDI	75.0	8,848	15.9	25.4	556.5	348.3
2014	35	2	Cotton		SDI	80.5	1,233	14.0	29.8	88.1	41.4
2014	35	3	Grain Sorghum		SDI	74.7	7,111	6.8	20.0	1,045.7	356.4
2014	C50	1	Cotton		LESA	120.6	1,283	8.4	22.6	153.7	56.9
2014	C51	1	Cotton		SDI	45.7	1,507	9.4	20.9	160.3	72.0
2014	C52	1	Cotton		LESA	135.0	997	15.5	23.7	64.3	42.1
2014	C53	1	Cotton		SDI	50.0	1,368	8.5	15.7	161.9	87.4
2014	C54	1	Cotton		SDI	85.0	1,337	8.3	16.5	161.1	81.0
2014	C56	1	Corn		LESA	45.0	49,340	14.4	23.1	3,426.4	2,140.6
2014	C57	1	Corn		LESA	115.0	37,800	11.5	22.7	3,275.6	1,665.9
2014	C58	1	Triticale		LESA	60.0	3,560	12.6	15.8	282.5	225.2
2014	C58	2	Alfalfa		LESA	60.0	14,200	20.7	32.6	686.0	436.3
2014	C59	1	Alfalfa		SDI	76.0	20,800	15.1	24.0	1,377.5	868.5
2014	C60	1	Grain Sorghum		LESA	59.5	4,898	9.8	17.4	499.8	282.3
Year	Site	Field	Grop	Status	Irrigation type	Acres	Harvest yield (lbs/ac)	In-season irrigation (inches)	In-season total crop water supplied (inches)	Yield per inch of irrigation (lbs/ac-in)	Yield per inch of total water (lbs/acre-inch)

http://www.tawcsolutions.org

TAWC Solutions: Management Tools to aid Producers in conserving Water

Rick Kellison, Jeff Pate, Philip Brown

The **Texas Alliance for Water Conservation** released three web-based tools to aid producers at our February 2011 field day. Producers involved in the TAWC project had indicated the need for tools to aid them in making cropping decisions and managing these crops in season.

The **Irrigation Scheduling Tool** is a field level, crop specific ET tool to aid producers in irrigation management. The producer can customize this tool for beginning soil moisture, effective rainfall, effective irrigation application and percent ET replacement. Users can select from a list of local weather stations that supplies the correct weather information for each field. Once the decision is made on which crop a grower plants, this tool produces an in-season, check-book style water balance output to aid in irrigation applications.

The **TAWC Resource Allocation Analyzer** provide producers with a simple, comprehensive approach to planning and managing various cropping systems. The Resource Allocation Tool is an economic based optimization model that aids producers in making decisions about different cropping systems. Based on available irrigation water, projected cost of production and expected revenue, this model will aid producers in their decisions to plant various crops.

Because of implementation of new water policy by the High Plains Underground Water Conservation District, growers need a method to determine the amount of irrigation that they were allowed to apply to each irrigated acre. The **Contiguous Acre Calculator** allows growers to project specific levels of irrigation water to be applied to various delivery systems. The tool then calculates how much water can be banked for future use. Once the growing season is completed the producer can enter actual water applied and use it for record keeping.

More detail concerning each individual program is provided on our website and in previous annual reports.

Phase 2 - Budget

TWDB # 1413581688		Year 1	
		(10/17/13 - 02/28/14)	
	Task	02/20/14)	
Task Budget	Budget*		Total Expenses
1			
2	\$ 587,837.00	135,179.51	135,179.51
3	\$ 329,484.00	19,180.57	19,180.57
4	\$ 198,160.00	39,467.89	39,467.89
5	\$ 212,600.00	110,849.99	110,849.99
6	\$ 215,229.00	50,867.54	50,867.54
7	\$ 27,048.00	3,000.00	3,000.00
8	\$ 70,064.00	6,671.70	6,671.70
9	\$ 159,578.00	27,058.73	27,058.73
TOTAL	\$ 1,800,000.00	392,275.93	392,275.93
		Year 1	
	Total	(10/17/13 - 02/28/14)	
Expense Budget	Budget*	02/20/14)	Total Expenses
Salary and Wages ¹	\$ 720,155.00	196,610.27	196,610.27
Fringe ² (20% of Salary)	\$ 115,773.00	30,751.67	30,751.67
Travel	\$ 43,750.00	16,152.68	16,152.68
Other Operating Expenses			
(inc. materials & Supplies)	\$ 55,400.00	14,249.11	14,249.11
Capital Equipment	\$ 76,000.00	58,070.86	58,070.86
Subcon	\$ 516,110.00	49,239.30	49,239.30
Technical/Hardware (inc.			
probe rentals)	\$ 120,643.00		
Tuition and Fees	\$ 29,034.00	7,578.05	7,578.05
Other Expenses (Ins. Inc.			
health and vehicle)	\$ 23,135.00	19,623.99	19,623.99
TOTAL	\$ 1,800,000.00	392,275.93	392,275.93

Table 14. Task and expense budget for Phase II - year 1 of thedemonstration project.

Appendix - Archives

Acres and Crops 2005-2013

Table A 1. Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle in 26 producer sites in Hale and Floyd Counties during 2005.

Site	Irrigation type	Cotton	Corn grain	Corn silage	Sorghum grain	Sorghum forage	Pearl millet	Sunflower	Alfalfa	Grass seed	Perennial pasture	Cattle	Wheat	Rye	Triticale	Oats
1	SDI	62.3														
2	SDI	60.9														
3	PIV	61.8			61.5											
4	PIV	109.8							13.3							
5	PIV/DRY								69.6		551.3	620.9				
6	PIV	122.9										122.9	122.9			
7	PIV									130.0						
8	SDI									61.8						
9	PIV	137.0									95.8	232.8		232.8		
10	PIV	44.5									129.1	129.1				
11	FUR	92.5														
12	DRY	151.2				132.7										
13	DRY	201.5											118.0			
14	PIV	124.2														
15	FUR	95.5														
16	PIV	143.1														
17	PIV	108.9		58.3							53.6					
18	PIV	61.5			60.7											
19	PIV	75.3					45.1									
20	PIV			115.8		117.6							117.6			
21	PIV	122.7														
22	PIV	72.7	76.0													
23	PIV	51.5						48.8								
24	PIV	64.7	65.1													
25	DRY	90.9			87.6											
26	PIV	62.9	62.3													
Total	2005 acres	2118.3	203.4	174.1	209.8	250.3	45.1	48.8	82.9	191.8	829.8	1105.7	358.5	232.8	0.0	0.0

PIV = pivot irrigation SDI = subsurface drip irrigation FUR = furrow irrigation DRY = dryland, no irrigation (acres may overlap due to multiple crops per year and grazing).

Site	lrrigation type	Cotton	Corn grain	Corn silage	Sorghum grain	Sorghum forage	Pearl millet	Sunflowers	Alfalfa	Grass seed	Perennial pasture	Cattle	Wheat	Rye	Triticale	Oats
1	SDI	135.2														
2	SDI	60.9														
3	PIV	123.3														
4	PIV	44.4				65.4			13.3				65.4			
5	PIV/DRY								69.6		551.3	620.9				
6	PIV	122.9														
7	PIV									130.0						
8	SDI									61.8						
9	PIV	137.0									95.8	95.8		137.0		
10	PIV					44.5					129.1	129.1				44.5
11	FUR	92.5														
12	DRY	132.7											151.2			
13	DRY	118.0											201.5			
14	PIV	124.2														
15	FUR	67.1			28.4											
16	PIV	143.1														
17	PIV	58.3		108.9							53.6	162.5	108.9			
18	PIV	60.7				61.2										61.2
19	PIV	75.1					45.3									
20	PIV			117.6		115.8									115.8	
21	PIV	61.3	61.4									61.3	61.3			
22	PIV	72.7	76													
23	PIV	51.5	48.8													
24	PIV	65.1		64.7												
26	PIV	62.3	62.9													
27	SDI	46.2														
Total	2006 acres	1854.5	249.1	291.2	28.4	286.9	45.3	0.0	82.9	191.8	829.8	1069.6	588.3	137.0	115.8	105.7

Table A 2. Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle in 26 producer sites in Hale and Floyd Counties during 2006.

PIV = pivot irrigation SDI = subsurface drip irrigation FUR = furrow irrigation DRY = dryland, no irrigation (acres may overlap due to multiple crops per year and grazing).

Site	Irrigation type	Cotton	Corn grain	Corn silage	Sorghum grain	Sorghum forage	Pearlmillet	Sunflowers	Alfalfa	Grass seed	Perennial pasture	Cattle	Wheat	Rye	Triticale	Oats
1	SDI	135.2														
2	SDI	60.9														
3	PIV	61.5				61.8							61.8			
4	PIV	65.4							13.3			109.8	109.8			
5	PIV/DRY										620.9	620.9				
6	PIV	122.9														
7	PIV									130.0						
8	SDI									61.8						
9	PIV				137.0						95.8	95.8		232.8		
10	PIV			44.5							129.1	129.1				
11	FUR	92.5														
12	DRY	151.2			132.7											
13	DRY	201.5											118.0			
14	PIV	124.2														
15	FUR	66.7			28.8											
16	PIV	143.1														
17	PIV	108.9									167.2	167.2	108.9			
18	PIV				61.5								60.7			
19	PIV	75.8					45.6									
20	PIV			117.6		115.8									233.4	
21	PIV		61.3							61.4						
22	PIV	148.7														
23	PIV		105.2													
24	PIV		129.8													
26	PIV		62.3				62.9					62.9				
27	SDI	16.2		46.2												
Total	2007 acres	1574.7	358.6	208.3	360.0	177.6	108.5	0.0	13.3	253.2	1013.0	1185.7	459.2	232.8	233.4	0.0

Table A 3. Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle in 26 producer sites in Hale and Floyd Counties during 2007.

PIV = pivot irrigation SDI = subsurface drip irrigation FUR = furrow irrigation DRY = dryland, no irrigation

Site	Irrigation type	Total acres (no overlap)	Cotton	Corn grain	Sunflowers	Grain sorghum	Grain sorghum for seed	Grain sorghum for silage	Forage sorghum for hay	Pearl millet for seed	Alfalfa	Grass seed	Hay	Perennial pasture	Cattle	Wheat for grain	Wheat for silage	Wheat for grazing	Grazing of crop residue	Barley for seed	Fallow or pens/facilities
2	SDI	60.9			60.9																
3	PIV	123.3	61.8			61.5										61.5					(
4	PIV	123.1				65.4					13.3		13.3	13.3	44.4	44.4		44.4			[
5	PIV/DRY	628.0											81.2	620.9	620.9						5.5
6	PIV	122.9	92.9	30.0																	[
7	PIV	130.0										130.0	130.0	130.0							
8	SDI	61.8										61.8	61.8	61.8							[
9	PIV	237.8	137.0											95.8	95.8						5.0
10	PIV	173.6		44.5									42.7	129.1	129.1	44.5					
11	FUR	92.5	47.3			45.2															
12	DRY	283.9						151.2													132.7
14	PIV	124.2	124.2																		
15	FUR	95.5	67.1													28.4					
17	PIV	220.8		108.9								111.9		111.9	220.8				108.9		
18	PIV	122.2	61.5			60.7											60.7				
19	PIV	120.4	75.0							45.4											
20	PIV	233.4				117.6		115.8					117.6			233.4					
21	PIV	122.7							61.3			61.4	122.7	61.4						61.3	
22	PIV	148.7		148.7																	
23	PIV	105.1	60.5		44.6																í
24	PIV	129.8		129.8																	í
26	PIV	125.2		40.4			22.5			62.3					125.2				125.2		í
27	SDI	108.5	46.2	62.3																	í
28	SDI	51.5		51.5																	í
29	DRY	221.6	117.3												104.3			104.3			í
	Total		000.0			0504			(1.0	1055	40.0			10010	40.40 -	440.0	(0 -		0044	(1.0	440.0

61.3 107.7

1

forage sorghum for hay 2

pearl millet for seed

365.1

4

grass seed

569.3

7

hay

1224.2

8

perennial pasture

1340.5

7

cattle

412.2

5

wheat for grain

60.7

1

wheat for silage

148.7

2

wheat for grazing

234.1

2

grazing of crop residue 61.3

1

barley for seed

143.2

3

fallow or pens/facilities

13.3

1

alfalfa

Table A 4. Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle in 25 producer sites in Hale and Floyd Counties during 2008.

PIV = pivot irrigation SDI = subsurface drip irrigation FUR = furrow irrigation DRY = dryland, no irrigation

616.1

8

corn grain

105.5

2

sunflowers

350.4

5

grain sorghum

22.5

1

grain sorghum for seed 267.0

2

grain sorghum for silage

3967.4

25

total acres (no overlap)

2008

acres

irrigation type

of sites

Site

890.8

11

cotton

N Site	Irrigation type	System acres	Cotton	Corn grain	Corn silage	Sunflowers	Grain sorghum	Grain sorghum for silage	Forage sorghum for hay	Alfalfa	Grass seed	Нау	Perennial pasture	Cattle	Wheat for grain	Wheat for silage	Wheat for grazing	Grazing of crop residue	0at silage	Fallow or pens/facilities
2	SDI	60.9	60.9																	
3	PIV	123.3	61.8				61.5													
4	PIV	123.1	13.3				28.4			16.0			16.0	98.3	65.4			98.3		
5	PIV/DRY	626.4										89.2	620.9	620.9						5.5
6	PIV	122.9	90.8	32.1																
7	PIV	129.9									129.9	129.9	129.9							
8	SDI	61.8									61.8	61.8	61.8							
9	PIV	237.8	137.0										100.8	100.8						
10	PIV	173.6	44.5										129.1	129.1						
11	FUR	92.5	68.1				24.4													
12	DRY	283.9						151.2												132.7
14	PIV	124.2	61.8												62.4					
15	FUR/SDI	102.8	102.8																	
17	PIV	220.8				108.9					53.6		111.9	111.9						
18	PIV	122.2	60.7												61.5					
19	PIV	120.3	60.2												60.1					
20	PIV	233.3	117.6		115.7															
21	PIV	122.6							61.2		61.4	61.4	61.4		61.2					
22	PIV	148.7	148.7																	
23	PIV	101.4						101.4								60.5			40.9	
24	PIV	129.7		64.6		65.1														
26	PIV	125.2		62.3		62.9								62.9			62.9			
27	SDI	108.5	48.8	59.7																
28	SDI	51.5	51.5																	
29	DRY	221.7	116.4												104.3					
30	PIV	21.8				21.8														
	Total 2009 acres	3990.8	1244.9	218.7	115.7	258.7	114.3	252.6	61.2	16.0	306.7	342.3	1231.8	1123.9	414.9	60.5	62.9	98.3	40.9	138.2
#	of sites	26	16	4	1	4	3	2	1	1	4	4	8	6	6	1	1	1	1	2
Site	irrigation type	System acres	cotton	corn grain	Corn silage	sunflowers	grain sorghum	grain sorghum for silage	forage sorghum for hay	alfalfa	grass seed	hay	perennial pasture	cattle	wheat for grain	wheat for silage	wheat for grazing	grazing of crop residue	0at silage	fallow or pens/facilities

Table A 5. Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle in 26 producer sites in Hale and Floyd Counties during 2009.

PIV = pivot irrigation SDI = subsurface drip irrigation FUR = furrow irrigation DRY = dryland, no irrigation

									ır									sidue	
Site	Irrigation type	System acres	Cotton	Corn grain	Corn silage	Sunflowers	Grain sorghum	Grain sorghum for silage	Forage sorghum for hay	Alfalfa	Grass seed	Hay	Perennial forage	Cattle	Wheat for grain	Wheat for silage	Wheat for grazing	Grazing of crop residue	Triticale silage
2	SDI	60.9		60.9	Ŭ	•				7	Ŭ		I	Ŭ	-		-		
3	PIV	123.3	61.8				61.5												
4	PIV	123.0	78.6						28.4	16.0			16.0		28.4				
5	PIV/DRY	628.0											628	628					
6	PIV	122.8	62.2	60.6															
7	PIV	130.0									130.0	130.0	130						
8	SDI	61.8									61.8	61.8	61.8						
9	PIV	237.8	137.0										100.8	100.8					
10	PIV	173.6		87.2									86.4	86.4					
11	FUR	92.5	69.6				22.9												
12	DRY	283.9																	
14	PIV	124.2	62.4												61.8				
15	FUR/SDI	102.8	102.8																
17	PIV	220.8		108.9									111.9	220.8					
18	PIV	122.2	61.5												60.7				
19	PIV	120.4	59.2												61.2				
20	PIV	233.4	115.8		117.6														115.8
21	PIV	122.6	61.2	61.4															
22	PIV	148.7		148.7															
23	PIV	121.1		121.1															121.1
24	PIV	129.7		129.7															
26	PIV	125.2	62.9	62.3										62.3	62.3		62.3		
27	SDI	108.5	59.7		48.8														
28	SDI	51.5	51.5																
29	DRY	221.7	104.3				117.4												
30	SDI	21.8		21.8															
	Total 2010 acres	4012.2	1150.5	862.6	166.4	0.0	201.8	0.0	28.4	16.0	191.8	191.8	1134.9	1098.3	274.4	0.0	62.3	0.0	236.9
#	of sites	26	15	10	2	0	3	0	1	1	2	2	7	5	5	0	1	0	2
Site	irrigation type	System acres	cotton	corn grain	Corn silage	sunflowers	grain sorghum	grain sorghum for silage	forage sorghum for hay	alfalfa	grass seed	hay	perennial forage	cattle	wheat for grain	wheat for silage	wheat for grazing	grazing of crop residue	Triticale silage

Table A 6. Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle in 26 producer sites in Hale and Floyd Counties during 2010.

PIV = pivot irrigation SDI = subsurface drip irrigation FUR = furrow irrigation DRY = dryland, no irrigation

Site	Irrigation type	System acres	Cotton	Corn grain	Corn silage	Fallow	Grain sorghum	Grain sorghum for silage	Forage sorghum for hay	Alfalfa	Grass seed	Hay	Perennial forage	Cattle	Wheat for grain	Wheat for silage	Wheat for grazing	Grazing of crop residue	Triticale silage	Seed millet
2	SDI	60.9	41.3			19.6						[•	
3	PIV	123.3	123.3																	
4	PIV	123.0	79.0						13.3	16.0					28.0					
5	PIV	487.6	347.8			139.8														
6	PIV	122.8	92.9	29.9																
7	PIV	130.0									130.0	130.0	130							
8	SDI	61.8									42.5	42.5	61.8							
9	PIV	237.8	137.0										100.8	100.8						
10	PIV	173.6	131.5										42.1	42.1						
11	FUR	92.5	74.5					18.0												
12	DRY	283.9	283.9																	
14	PIV	124.2	124.2																	
15	SDI	102.8	57.2		45.6															
17	PIV	220.8	108.9										111.9	111.9						
18	PIV	122.2	100.0												61.5					
19	PIV	120.4	120.4																	1
20	PIV	233.4	117.6		115.8							117.6							117.6	
21	PIV	122.6	61.4	61.2																
22	PIV	148.7	148.7																	
23	PIV	121.1			121.1														121.1	
24	PIV	129.7	65.1	64.6																
26	PIV	125.2	62.9	62.3																1
27	SDI	108.5	48.8		59.7															
28	SDI	51.5	51.5																	
29	DRY	221.7	221.7																	1
30	SDI	21.8				21.8														
31	PIV	121.0	55.4																	66.1
32	PIV	70.0		70.0																
33	PIV	70.0		70.0																
	Total 2011 acres	4132.8	2655.0	358.0	342.2	181.2	0.0	18.0	13.3	16.0	172.5	290.1	446.6	254.8	89.5	0.0	0.0	0.0	238.7	66.1
# O	f sites	29	23	6	4	3	0	1	1	1	2	3	5	3	2	0	0	0	2	1
Site	irrigation type	System acres	cotton	corn grain	Corn silage	fallow	grain sorghum	grain sorghum for silano	forage sorghum for hav	alfalfa	grass seed	hay	perennial forage	cattle	wheat for grain	wheat for silage	wheat for grazing	grazing of crop	Triticale silage	seed millet

Table A 7. Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle in 29 producer sites in Hale and Floyd Counties during 2011.

PIV = pivot irrigation SDI = subsurface drip irrigation FUR = furrow irrigation DRY = dryland, no irrigation **Yellow notes abandoned, Tan partially abandoned, Brown fallowed

Site	Irrigation type	System acres	Cotton	Corn grain	Corn silage	Fallow	Grain sorghum	Seed sorghum	Forage sorghum for hay	Alfalfa	Grass seed	Нау	Perennial forage	Cattle	Wheat for grain	Wheat for silage	Wheat for grazing	Sunflowers	Triticale silage	Seed millet
2	SDI	60.0	24	36																
3	PIV	123.3	123.3																	
	PIV	123.0	29.6					50. 5	13.2	16					26.9					
4 5	PIV	484.1	398.3			85.5		5												
6	PIV	122.7	370.3	60.6		62.1														
7	PIV	130.0		00.0		02.1					130	130	130							
8	SDI	61.8									61.8	61.8	61.8							
9	PIV	237.8	137								0110	0110	100.8							
10	PIV	173.6			87.2								86.4							
11	FUR	92.5	92.5				92.5													
12	DRY	283.8	283.8			283.8														
14	PIV	124.1	62.4												61.7					
15	SDI	101.1	101.1				101.1													
17	PIV	220.7	54.5	54.4									111.8	111.8						
18	PIV	122.2																		
19	PIV	120.4	59.2			61.2														
20	PIV	233.3	115.7	117.6															115.7	
21	PIV	122.6	61.2						61.4						61.4					
22	PIV	148.7	148.7																	
24	PIV	129.7	65.1	64.6														(0.0		
26 27	PIV	125.2	62.3 59.6		48.8													62.9		
27	SDI SDI	108.4 51.5	59.6 51.5	51.5	48.8															<u> </u>
20	DRY	221.6	117.3	51.5			104.3						-							
30	SDI	21.8	21.8				104.5													
31	PIV	121.9	66.8										1							55.1
32	PIV	70.0	70	70																
33	PIV	70.0		70																
34	PIV	726.6	364	182		362.6														
	Total 2012 acres	4732.4	2569.7	706.7	136	855.2	297.9	50. 5	74.6	16	191.8	191.8	490.8	111.8	150	0	0	62.9	115.7	55.1
	‡ of sites	29	23	9	2	5	3	1	2	1	2	2	5	1	3	0	0	1	1	1
Site	irrigation type	System acres	cotton	corn grain	Corn silage	fallow	grain sorghum	Seed Sorghum	forage sorghum for hay	alfalfa	grass seed	hay	perennial forage	cattle	wheat for grain	wheat for silage	wheat for grazing	Sunflowers	Triticale silage	seed millet

Table A 8. Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle in 29 producer sites in Hale and Floyd Counties during 2012.

PIV = pivot irrigation SDI = subsurface drip irrigation FUR = furrow irrigation DRY = dryland, no irrigation **Yellow notes abandoned, Tan partially abandoned, Brown fallowed

c Site	lrrigation type	System acres	Cotton	Corn grain	Corn silage	Fallow	Grain sorghum	Seed sorghum	Haygrazer	Alfalfa	Grass seed	Hay	Perennial forage	Cattle grazed	Wheat for grain	Wheat silage	Grazed wheat	Sunflower	Triticale silage	Seed millet
2	SDI	60	31.5	28.4																
3	PIV	123.3	61.5				61.8													
4	PIV	123	50.5						26.8	16		16	16	26.8	26.8					29.6
5	PIV	484.1	119.4											85.8	85.8			122.9		156
6	PIV	122.7	60.6									62.1			62.1					
7	PIV	130									130	130	130							
8	SDI	61.8									61.8	61.8	61.8							
9	PIV	237.8	77				59.9						100.8	100.8						
10	PIV	173.6	42.1		87.2								44.3	44.3						
11	FUR	92.5	92.5																	
12	DRY	283.8	283.8																	
14	PIV	124.1	124.1																	
15	SDI	101.1	101.1																	
17	PIV	220.7		54.5									111.8	111.8				54.4		
18	PIV	122.2				122.2														
19	PIV	120.3	120.3																	
20	PIV	233.3	117.6		115.7														117.6	
21	PIV	122.6		61.4					61.2		-	61.2			61.2					
22	PIV	148.7	148.7	(5.1														() (
24 26	PIV PIV	129.7 125.2		65.1 62.2											62.9			64.6		
26	SDI	125.2	48.8	62.2	59.6										62.9					
					59.6															
28	SDI	51.4	51.4								-									
29	DRY	221.7	221.7																	
30	SDI	21.8		21.8																
31	PIV	121.9	55.1																	66.8
32	PIV	70			70															
33	PIV	70		70																
34	PIV	726.6		241.2														485.4		
35	PIV	209.1	75	60.9			73.2													┥───┤
	Total acres 2013	4941.4	1882.7	665.5	332.5	122.2	194.9	0	88	16	191.8	331.1	464.7	369.5	298.8	0	0	727.3	117.6	252.4
	# of sites	30	19	9	4	1	3	0	2	1	2	5	6	5	5	0	0	4	1	3
Site	irrigation type	System acres	Cotton	Corn grain	Corn silage	Fallow	Grain sorghum	Seed sorghum	Haygrazer	Alfalfa	Grass seed	Hay	Perennial forage	Cattle grazed	Wheat for grain	Wheat silage	Grazed wheat	Sunflower	Triticale silage	Seed millet
V 1		V 1 (V	Failed	Ŭ		<u>₩</u>	0 %	מי ניס	H	7		<u> </u>		0	Alter		~ ~ ~		<u> </u>	

Table A 9. Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle in 30 producer sites in Hale and Floyd Counties during 2013.

PIV = pivot irrigation SDI = subsurface drip irrigation FUR = furrow irrigation DRY = dryland, no irrigation **Red denotes field crop failure, Yellow denotes original purpose altered, brown denotes fallowed

Phase I Economic Summaries of Results from Monitoring Producer Sites in 2005-2013.

Phase I - Economic assumptions of data collection and interpretation

- 1. Although actual depth to water in wells located among the producer sites varies, a pumping depth of 303 feet is assumed for all irrigation points. The actual depth to water influences costs and energy used to extract water but has nothing to do with the actual functions of the system to which this water is delivered. Thus, a uniform pumping depth is assumed.
- 2. All input costs and prices received for commodities sold are uniform and representative of the year and the region. Using an individual's actual costs for inputs would reflect the unique opportunities that an individual could have for purchasing in bulk or being unable to take advantage of such economies and would thus represent differences between individuals rather than the system. Likewise, prices received for commodities sold should represent the regional average to eliminate variation due to an individual's marketing skill.
- 3. Irrigation system costs are unique to the type of irrigation system. Therefore, annual fixed costs were calculated for each type of irrigation system taking into account the average cost of equipment and expected economic life.
- 4. Variable cost of irrigation across all systems was based on a center pivot system using electricity as the energy source. Variable costs are nearly constant across irrigation systems, according to Amosson et al. (2011)⁴, so this assumption has negligible effect on the analysis. The estimated cost per acre-inch includes the cost of energy, repair and maintenance cost, and labor cost. The primary source of variation in variable cost from year to year is due to changes in the unit cost of energy and repair and maintenance costs.
- 5. Mechanical tillage operations for each individual site were accounted for with the cost of each field operation being based on typical custom rates for the region. Using custom rates avoids the variations among sites in the types of equipment owned and operated by individuals.

<u>Phase I - Assumptions of energy costs, prices, fixed and variable costs</u> (Tables A10-A13)

1. Irrigation costs were based on a center pivot system using electricity as the energy source.

⁴ Amosson, L. et al. 2011. Economics of irrigation systems. Texas A&M AgriLife Extension Service. B-6113.

Item	2005	2006	2007	2008	2009	2010	2011	2012	2013
Gallons per minute (gpm)	450	450	450	450	450	450	450	450	450
Pumping lift (feet)	260	250	252	254	256	285	290	300	303
Discharge pressure (psi)	15	15	15	15	15	15	15	15	15
Pump efficiency (%)	60	60	60	60	60	60	60	60	60
Motor efficiency (%)	88	88	88	88	88	88	88	88	88
Electricity cost per kWh	\$0.085	\$0.085	\$0.090	\$0.110	\$0.140	\$0.081	\$0.086	\$0.100	\$0.140
Cost of electricity per ac-inch	\$4.02	\$4.26	\$5.06	\$6.60	\$3.78	\$4.42	\$4.69	\$5.37	\$8.26
Cost of maint. & repairs per									
acre-inch	\$2.05	\$2.07	\$2.13	\$2.45	\$3.37	\$3.49	\$4.15	\$3.83	\$3.87
Cost of labor per acre-inch	\$0.75	\$0.75	\$0.80	\$0.90	\$0.90	\$0.90	\$0.90	\$1.00	\$1.10
Total Cost per acre-nch	\$6.82	\$7.08	\$7.99	\$9.95	\$8.05	\$8.81	\$9.74	\$10.20	\$13.23

Table A 10. Electricity irrigation cost parameters for 2005 through 2013.

2. Commodity prices are reflective of the production year; however, prices were constant across sites.

Table A 11. Commonly p	rices for	1 2005 U	irougn z	.013.					
Commodity	2005	2006	2007	2008	2009	2010	2011	2012	2013
Cotton lint (\$/lb)	\$0.54	\$0.56	\$0.58	\$0.55	\$0.56	\$0.75	\$0.90	\$0.90	\$0.80
Cotton seed (\$/ton)	\$100	\$135	\$155	\$225	\$175	\$150	\$340	\$280	\$260
Grain sorghum – Grain (\$/cwt)	\$3.85	\$6.10	\$5.96	\$7.90	\$6.48	\$9.51	\$9.75	\$13.10	\$8.50
Grain sorghum – Seed (\$/lb)	-	-	-	-	-	-	-	\$0.17	-
Corn – Grain (\$/bu)	\$2.89	\$3.00	\$3.69	\$5.71	\$3.96	\$5.64	\$5.64	\$6.00	\$5.00
Corn – Food (\$/bu)	\$3.48	\$3.55	\$4.20	\$7.02	\$5.00	\$4.88	\$7.50	\$7.50	\$6.80
Barley (\$/cwt)	-	-	-	-	-	-	-	\$14.08	\$14.08
Wheat – grain (\$/bu)	\$2.89	\$4.28	\$4.28	\$7.85	\$5.30	\$3.71	\$5.75	\$6.85	\$6.85
Sorghum silage (\$/ton)	\$20.19	\$18.00	\$18.00	\$25.00	\$24.00	\$24.00	\$24.00	\$24.00	\$24.00
Corn silage (\$/ton)	\$20.12	\$22.50	\$25.00	\$25.00	\$42.90	\$43.50	\$43.50	\$43.50	\$45.00
Wheat silage (\$/ton)	\$18.63	\$22.89	\$22.89	\$29.80	\$26.59	\$26.59	\$26.59	\$26.59	\$26.59
Oat silage (\$/ton) -	\$17.00	\$17.00	-	\$14.58	-	-	-	\$14.58	\$14.58
Millet seed (\$/lb)	\$0.17	\$0.17	\$0.22	\$0.25	-	\$0.25	\$0.25	\$0.25	\$0.38
Sunflower (\$/lb)	\$0.21	\$0.21	\$0.21	\$0.29	\$0.27	-	-	\$0.39	\$0.38
Alfalfa (\$/ton)	\$130	\$150	\$150	\$160	\$160	\$185	\$350	\$350	\$250
Hay (\$/ton)	\$60	\$60	\$60	\$60	\$60	-	-	\$60	\$60
WW-BDahl hay (\$/ton)	\$65	\$65	\$90	\$90	-	\$60	\$200	\$200	\$108
Haygrazer (\$/ton)	-	\$110	\$110	\$70	\$110	\$65	\$65	\$125	\$104
Sideoats seed (\$/lb)	-	-	\$6.52	\$6.52	\$3.90	\$8.00	\$5.70	\$5.70	\$9.00
Sideoats hay (\$/ton)	-	-	\$64	\$64	\$70	\$60	\$220	\$220	\$60
Triticale silage (\$/ton)	-	-	-	-	-	-	-	\$45	\$45
Triticale forage (\$/ton)	-	-	-	-	-	-	-	\$24	\$24

Table A 11. Commodity prices for 2005 through 2013.

3. Fertilizer and chemical costs (herbicides, insecticides, growth regulators, and harvest aids) are reflective of the production year; however, prices were constant across sites for the product and formulation.

4. Other variable and fixed costs are given for 2005 through 2013 in Table A12.

Table A 12. Other variab	ie allu li	xeu cosi	15 101 20		gii 2015.				
VARIABLE COSTS	2005	2006	2007	2008	2009	2010	2011	2012	2013
Boll weevil assessment: (\$/ac)									
Irrigated cotton	\$12.00	\$12.00	\$12.00	\$1.50	\$1.00	\$1.00	\$1.00	\$1.00	\$1.00
Dryland cotton	\$6.00	\$6.00	\$6.00	\$1.50	\$1.00	\$1.00	\$1.00	\$1.00	\$1.00
Crop insurance: (\$/ac)									
Irrigated cotton	\$17.25	\$17.25	\$17.25	\$20.00	\$20.00	\$20.00	\$30.00	\$30.00	\$30.00
Dryland cotton	\$12.25	\$12.25	\$12.25	\$12.25	\$12.25	\$12.25	\$20.00	\$20.00	\$20.00
Irrigated corn	\$15.00	\$15.00	\$15.00	\$15.00	\$15.00	\$15.00	\$15.00	\$15.00	\$15.00
Irrigated corn silage	-	-	-	-	-	-	-	\$11.00	\$11.00
Irrigated Wheat	-	-	-	-	-	-	-	\$5.00	\$5.00
Irrigated sorghum grain	-	-	-	-	-	-	-	\$2.00	\$2.00
Dryland sorghum grain	-	-	-	-	-	-	-	\$2.00	\$2.00
Irrigated sorghum silage	-	-	-	-	-	-	-	\$2.00	\$2.00
Irrigated sunflower	-	-	-	-	-	-	-	\$5.00	\$5.00
Cotton harvest – strip and	\$0.08	\$0.08	\$0.08	\$0.08	\$0.08	\$0.08	\$0.08	\$0.08	\$0.08
module (\$/lint lb)									
Cotton ginning (\$/cwt)	\$1.95	\$1.75	\$1.75	\$1.95	\$1.95	\$1.95	\$1.95	\$1.95	\$2.10
Bags, ties, & classing (\$/bale)	\$17.50	\$19.30	\$17.50	\$18.50	\$18.50	\$18.50	\$18.50	\$18.50	\$18.50
FIXED COSTS	2005	2006	2007	2008	2009	2010	2011	2012	2013
Irrigation system:									
Center Pivot system	\$33.60	\$33.60	\$33.60	\$33.60	\$33.60	\$40.00	\$40.00	\$40.00	\$40.00
Drip system	\$75.00	\$75.00	\$75.00	\$75.00	\$75.00	\$75.00	\$75.00	\$75.00	\$75.00
Flood system	\$25.00	\$25.00	\$25.00	\$25.00	\$25.00	\$25.00	\$25.00	\$25.00	\$25.00
Cash rent:									
Irrigated cotton, grain	\$45.00	\$45.00	\$45.00	\$75.00	\$75.00	\$100.00	\$100.00	\$100.00	\$100.00
sorghum, sun-flowers, grass,									
pearl millet, and sorghum									
silage.									
Irrigated corn silage, corn	\$75.00	\$75.00	\$75.00	\$100.00	\$100.00	\$140.00	\$140.00	\$140.00	\$140.00
grain, and alfalfa.									
Dryland cropland	\$15.00	\$15.00	\$15.00	\$25.00	\$25.00	\$30.00	\$30.00	\$30.00	\$30.00

Table A 12. Other variable and fixed costs for 2005 through 2013.

5. The custom tillage and harvest rates used for 2005 were based on rates reported in Texas A&M AgriLife Extension, <u>2013 Texas Agricultural Custom Rates</u>, May 2013.

						-	-
	Site		Irrigation	System	\$/system	\$/inch	
System	No.	Acres	Type ¹	Inches	Acre	water	
Monoculture systems							
Cotton	1	61	SDI	11.7	84.02	7.19	
Cotton	2	68	SDI	8.9	186.94	21	
Cotton	14	125	CP	6.8	120.9	17.91	
Cotton	16	145	CP	7.6	123.68	16.38	
Cotton	21	123	СР	6.8	122.51	18.15	
Cotton	11	95	Fur	9.2	4.39	0.48	
Cotton	15	98	Fur	4.6	62.65	13.62	
<u>Multi-crop systems</u>							
Cotton/grain sorghum	3	125	СР	8.3	37.79	4.66	
Cotton/grain sorghum	18	120	СР	5.9	16.75	2.84	
Cotton/grain sorghum	25	179	DL	0	67.58	na	
Cotton/forage sorghum	12	250	DL	0	36	na	
Cotton/pearl millet	19	120	СР	9.5	186.97	19.12	
Cotton/corn	22	148	СР	15.3	166.63	10.9	
Cotton/corn	24	129	CP	14.7	149.87	9.96	
Cotton/corn	26	123	CP	10.5	192.44	18.34	
Cotton/sunflower	23	110	СР	5.4	270.62	47.07	
Cotton/alfalfa	4	123	CP	5.5	110.44	19.06	
Cotton/wheat	13	315	DL	0	47.37	na	
Cotton/corn silage/grass	17	223	CP	10.5	188.44	17.91	
Corn/wheat/sorghum silages	20	220	CP	21.5	-48.6	-2.16	
<u>Crop-livestock systems</u>							
Cotton/wheat/stocker cattle	6	123	СР	11.4	162.63	9.04	
Cotton/grass/stocker cattle	9	237	CP	6.5	298.14	46.17	
Cotton/grass/cattle	10	175	CP	8.5	187.72	22.06	
Forage/beef cow-calf	5	630	СР	1.23	125.89	93.34	
Forage/Grass seed	7	61	SDI	9.8	425.32	37.81	
Forage/Grass seed	8	130	CP	11.3	346.9	35.56	

Table A 13. Summary of results from monitoring 26 producer sites in 2005 (Year 1).

System	Site No.	Acres	Irrigation type ¹	System inches	\$/system acre	\$/inch water	Gross margin per inch irrigation
<u>Monoculture systems</u>							
Cotton	1	135	SDI	21	225.9	10.76	15.77
Cotton	2	61	SDI	19	308.71	16.25	22.56
Cotton	27	46	SDI	18	417.99	23.22	29.89
Cotton	3	123	СР	10	105.79	10.58	18.44
Cotton	6	123	СР	13.6	321.79	23.64	29.42
Cotton	14	124	СР	6.2	44.81	7.2	19.84
Cotton	16	143	СР	12.2	71.08	5.81	8.43
Cotton	11	93	Fur	16.9	88.18	5.22	9.37
<u>Multi-crop systems</u>							
Cotton/grain sorghum	15	96	Fur	11.2	161.89	14.51	20.78
Cotton/forage sorghum	12	284	DL	0	-13.72	na	na
Cotton/forage sorghum							
/oats	18	122	СР	12	-32.31	-2.69	3.86
Cotton/pearl millet	19	120	СР	9.8	95.28	9.77	17.83
Cotton/corn	22	149	СР	22	285.98	12.98	16.55
Cotton/corn	24	130	СР	19.4	68.17	3.51	8.34
Cotton/corn	26	123	СР	16	243.32	15.22	21.08
Cotton/corn	23	105	СР	14.8	127.39	8.59	13.9
Cotton/alfalfa/wheat/							
forage sorghum	4	123	СР	26.7	312.33	11.69	14.75
Cotton/wheat	13	320	DL	0	-33.56	na	na
Corn/triticale/sorghum							
silages	20	233	СР	21.9	242.79	10.49	15.17
<u>Crop-livestock systems</u>							
Cotton/stocker cattle	21	123	СР	16.4	94.94	5.79	10.22
Cotton/grass/stocker							
cattle	9	237	СР	10.6	63.29	6.26	13.87
Cotton/corn silage							
/wheat/cattle	17	221	СР	13	242.21	14.89	20.64
Forage/beef cow-calf	5	628	СР	9.6	150.46	15.62	22.31
Forage/beef cow-calf	10	174	СР	16.1	217.71	13.52	18.4
Forage/Grass seed	7	130	СР	7.8	687.36	88.69	98.83
Forage/Grass seed	8	62	SDI	10.1	376.36	48.56	64.05

Table A 14. Summary	y of results from	monitoring 26	producer sites in	2006 (Year 2).

System	Site No.	Acres	Irrigation Type ¹	System inches	\$/system acre	\$/inch water	Gross margin per inch irrigation
<u>Monoculture systems</u>							0
Cotton	1	135	SDI	14.60	162.40	11.12	19.34
Cotton	2	61	SDI	12.94	511.33	39.52	48.79
Cotton	6	123	CP	10.86	605.78	55.78	63.02
Cotton	11	93	Fur	14.67	163.58	11.15	15.92
Cotton	14	124	CP	8.63	217.38	25.19	34.30
Cotton	22	149	СР	11.86	551.33	46.49	53.11
Corn	23	105	СР	10.89	325.69	29.91	37.12
Corn	24	130	CP	15.34	373.92	24.38	31.46
Perennial grass: seed and hay	7	130	СР	13.39	392.59	29.32	35.19
Perennial grass: seed and hay	8	62	SDI	15.67	292.63	18.67	26.33
Multi-crop systems							
Cotton/grain sorghum/wheat	3	123	СР	13.25	190.53	14.38	20.31
Cotton/grain sorghum	12	284	DL	0.00	265.71	Dryland	Dryland
Cotton/wheat	13	320	DL	0.00	105.79	Dryland	Dryland
Cotton/grain sorghum	15	96	Fur	10.50	191.68	18.26	24.92
Grain sorghum/wheat	18	122	CP	5.34	13.91	2.60	13.62
Cotton/pearl millet	19	121	CP	7.57	318.61	42.10	52.49
Corn/sorghum/triticale silages	20	233	CP	24.27	371.14	15.29	19.76
Corn/per. grass: seed and hay	21	123	CP	8.35	231.60	27.75	37.16
Corn silage	27	62	SDI	13.00	194.40	14.95	24.18
<u>Crop-livestock systems</u>							
Wheat: cow-calf,							
grain/cotton/alfalfa hay	4	123	CP	8.18	183.72	22.47	33.30
Perennial grass: cow-calf, hay	5	628	CP	3.56	193.81	54.38	72.45
Per. grass, rye: stocker cattle/grain							
sorghum	9	237	CP	4.19	48.89	11.65	30.00
Perennial grass: cow-calf, hay/corn							
silage	10	174	CP	6.80	27.84	4.09	14.74
Perennial grass: cow-calf, seed,							
hay/cotton/wheat for grazing	17	221	СР	8.31	181.48	21.83	33.06
Pearl millet: seed, grazing/corn	26	123	CP	11.34	378.61	33.39	41.65

Table A 15. Summary of results from monitoring 26 producer sites in 2007 (Year 3).

System	Site No.	Acres	Irrigation Type ¹	System inches	\$/system acre	\$/inch water	Gross margin per inch irrigation
Monoculture Systems							
Sunflowers	2	60.9	SDI	6.89	147.83	21.46	43.23
Perennial grass: seed and hay	7	130.0	CP	9.88	295.43	29.90	40.89
Perennial grass: seed and hay	8	61.8	SDI	6.65	314.74	47.33	69.89
Cotton	14	124.2	СР	8.97	-2.12	-0.24	11.87
Corn	22	148.7	СР	24.75	720.10	29.09	34.49
Corn	24	129.8	CP	24.70	513.54	20.79	26.20
Corn	28	51.5	SDI	8.20	591.15	72.09	93.43
<u>Multi-crop systems</u>							
Cotton/Wheat/Grain sorghum	3	123.3	СР	14.75	53.79	3.65	11.01
Cotton/Corn	6	122.9	СР	17.35	411.02	23.68	29.94
Cotton/Grain sorghum	11	92.5	Fur	10.86	176.14	16.22	25.43
Sorghum silage/fallow wheat	12	283.9	DL	0.00	-17.89	Dryland	Dryland
Cotton/Wheat	15	95.5	Fur/SDI	11.22	132.15	11.78	21.57
Cotton/Wheat silage/Grain sorghum			,				
hay & silage	18	122.2	СР	10.67	186.42	17.47	27.64
Cotton/Seed millet	19	120.4	СР	7.01	121.40	17.33	32.83
Wheat grain/Grain sorghum grain &							
silage/hay	20	233.4	СР	27.61	513.56	18.60	22.54
Barley seed/forage sorghum hay/per.							
grass: seed & hay	21	122.7	CP	10.13	387.20	38.24	48.96
Cotton/Sunflowers	23	105.1	CP	14.93	-50.54	-3.38	4.60
Cotton/Corn grain	27	108.5	SDI	20.69	291.15	14.07	22.01
Cotton/Wheat/fallow	29	221.6	DL	0.00	34.06	Dryland	Dryland
<u>Crop-Livestock systems</u>							
Wheat: cow-calf, grain/cotton/alfalfa							
hay	4	123.1	CP	14.51	154.85	10.68	17.00
Perennial grass: cow-calf, hay	5	628	CP	4.02	107.14	26.65	49.02
Perennial Grass: stocker cattle/Cotton	9	237.8	СР	7.26	11.63	1.60	16.25
Perennial grass: cow-calf, hay/Grass							
seed/Corn	10	173.6	CP	14.67	64.80	4.42	0.00
Perennial grass: cow-calf, seed,			_			_	
hay/cotton/wheat for grazing	17	220.8	СР	15.00	309.34	20.62	28.68
Pearl millet: seed, Grain	0.4	1050	<u>CD</u>	1465	250 (0	10.00	0.7.07
sorghum/Corn: grazing, hay ¹ SDI – Subsurface drin irrigation: CP – o	26	125.2	СР	14.65	279.69	19.09	27.36

Table A 16. Summary of results from monitoring 25 producer sites in 2008 (Year 4).

	Site No.	Acres	Irrigation Type ¹	System inches	\$/system acre	\$/inch water	Gross margin per inch irrigation
<u>Monoculture Systems</u>							
Cotton	2	60.9	SDI	10.50	-52.29	-4.98	9.31
Perennial grass: seed and hay	7	129.9	СР	15.70	597.23	38.04	44.96
Perennial grass: seed and hay	8	61.8	SDI	13.80	365.46	26.48	37.35
Cotton	15	102.8	Fur/SDI	12.96	72.15	5.57	12.39
Cotton	22	148.7	CP	14.73	56.35	3.83	11.20
Cotton	28	51.5	SDI	10.89	187.72	17.24	31.01
Sunflower	30	21.8	SDI	9.25	8.13	0.88	17.10
<u>Multi-crop systems</u>							
Cotton/Grain Sorghum	3	123.3	СР	5.89	158.51	26.91	45.35
Cotton/Corn	6	122.9	СР	10.43	182.14	17.52	28.49
Cotton/Rye	9	237.8	СР	3.17	-11.71	-3.69	30.52
Cotton/Grain Sorghum	11	92.5	Fur	13.24	53.67	4.05	11.60
Sorghum silage/Wheat	12	283.9	DL	0.00	-8.81	Dryland	Dryland
Wheat grain/Cotton	14	124.2	СР	10.57	37.15	3.52	13.79
Wheat grain/Cotton	18	122.2	СР	3.53	44.88	12.71	43.47
Wheat grain/Cotton	19	120.3	СР	5.26	-4.88	-0.93	19.71
Corn silage/Cotton	20	233.3	СР	23.75	552.08	23.25	28.35
Wheat grain/Hay/perennial grass	21	122.6	СР	17.75	79.79	4.50	10.61
Dats/Wheat/Sorghum – all silage	23	105.2	СР	15.67	53.80	3.43	10.36
Corn/Sunflower	24	129.7	СР	13.09	172.53	13.18	22.42
Corn/Cotton	27	108.5	SDI	23.00	218.72	9.51	16.63
Wheat grain/Cotton	29	221.6	DL	0.00	73.79	Dryland	Dryland
Crop-livestock systems							
Wheat/haygrazer; contract grazing,							
grain sorghum/cotton/alfalfa hay	4	123.1	CP	9.03	119.85	13.28	25.67
Perennial grass: cow-calf, hay	5	626.4	CP	6.60	53.76	8.15	21.79
Perennial grass: contract grazing,							
/Cotton	10	173.6	СР	6.04	-83.25	-13.79	4.20
Perennial grass: contract grazing, /sunflower/WW-BDahl for seed							
and grazing	17	220.8	CP	7.09	71.37	10.07	25.39
Corn/Sunflower, contract grazing ¹ SDI – Subsurface drip irrigation; CP –	26	125.2	СР	14.99	316.22	21.09	29.16

Table A 17. Summary of results from monitoring 26 producer sites in 2009 (Year 5).

Table A 18. Summary of results from monitoring 26 producer sites in 2010 (Year 6).

System	Site No.	Acres	Irrigation Type ¹	System inches	\$/system acre	\$/inch water	Gross margin per inch irrigation
<u>Monoculture systems</u>							
Corn	2	60.9	SDI	14.04	107.81	7.68	22.99
Perennial grass: seed and hay	7	130	CP	2.37	460.56	194.33	253.40
Perennial grass: seed and hay	8	61.8	SDI	3.25	498.82	153.48	207.33
Cotton	15	102.8	Fur/SDI	3.98	489.46	122.85	166.77
Corn	22	148.7	CP	16.10	370.88	23.04	34.22
Corn	24	129.7	CP	17.90	271.50	15.17	25.22
Cotton	28	51.5	SDI	6.24	298.35	47.81	75.86
Corn	30	21.8	SDI	11.90	563.63	47.36	65.43
<u>Multi-crop systems</u>							
Cotton/Grain Sorghum/Wheat	3	123.3	CP	9.15	191.55	20.93	38.10
Alfalfa/Cotton/Wheat/Hay	4	123	CP	11.11	365.89	32.92	45.99
Cotton/Corn	6	122.8	CP	9.88	323.38	32.72	48.88
Cotton/Grain Sorghum	11	92.5	Fur	4.41	6,9,10	38.93	67.25
	12	283.9	DL	0.00	0.00	Dryland	Dryland
Wheat grain/Cotton	14	124.2	CP	4.30	73.13	17.02	49.59
Wheat grain/Cotton	18	122.2	CP	1.11	78.24	70.66	197.11
Wheat grain/Cotton	19	120.3	CP	4.31	134.55	31.21	63.69
Corn/Trititcale silage/Cotton	20	233.4	СР	16.69	817.74	49.01	59.80
Cotton/Corn	21	122.6	CP	10.45	246.09	23.54	38.85
Triticale/Corn silage	23	121.1	CP	20.70	-7.64	-0.37	8.33
Corn silage/Cotton	27	108.5	SDI	14.70	565.29	38.46	51.59
Grain sorghum/Cotton	29	221.6	DL	0.00	235.29	Dryland	Dryland
<u>Crop-livestock systems</u>							
Perennial grass: cow-calf, Hay	5	628	CP	5.15	44.47	8.63	31.08
Perennial grass: contract grazing,							
/Cotton	9	237.8	CP	2.19	129.12	58.98	122.93
Perennial grass: contract grazing,							
/Corn	10	173.6	СР	12.00	140.43	25.32	57.36
, Perennial grass: contract grazing,	10	1, 5.0	GI .	12.00	110.15	20.02	57.50
/Corn	17	220.8	СР	8.94	6.82	0.76	18.62
Wheat/Cotton/Corn, contract	17	220.0	01	0.74	0.02	0.70	10.02
grazing	26	125.2	СР	10.73	416.76	38.85	53.75

System	Site No.	Acres	Irrigation Type ¹	System inches	\$/system acre	\$/inch water	Gross margin per inch irrigation
<u>Monoculture systems</u>		-		-	-		
Cotton	2	60.9	SDI	16.61	122.37	7.37	17.90
Cotton	3	123.3	CP/MESA	9.30	-102.89	-11.07	3.99
Perennial grass:							
seed and hay	7	130	CP/LESA	20.50	370.64	18.08	24.91
Perennial grass:							
seed and hay	8	61.8	SDI	20.04	93.50	4.67	13.40
Cotton	12	283.9	DL	0.00	230.29	Dryland	Dryland
Cotton	14	124.2	CP/MESA	17.80	-226.26	-12.71	-4.85
Cotton	19	120.3	CP/LEPA	19.90	141.92	7.13	14.17
Cotton	22	148.7	CP/LEPA	25.20	538.44	21.37	26.92
Cotton	28	51.5	SDI	18.80	319.90	17.02	26.32
Cotton	29	221.6	DL	0.00	194.89	Dryland	Dryland
Fallow	30	21.8	SDI	0.00	-215.00	Fallow	Fallow
Corn	32	70	CP/LEPA	37.00	-866.35	-23.41	-18.55
Corn	33	70	CP/LEPA	12.00	-67.05	-5.59	9.41
<u>Multi-crop systems</u>							
Alfalfa/Cotton/Wheat			00 (I 00 I		- 40.4-	00 T 0	
/Haygrazer	4	123	CP/LEPA	25.32	519.67	20.53	26.26
Cotton/fallow	5	487.6	CP/LESA	3.71	162.53	43.82	81.56
Cotton/Corn	6	122.8	CP/LESA	18.94	179.82	9.49	17.40
Cotton/Grain Sorghum	11	92.5	Fur	27.80	-81.18	-2.92	1.58
Corn/Cotton	15	102.8	SDI	19.31	346.96	17.97	27.95
Wheat grain/Cotton	18	122.2	CP/MESA	0.93	31.02	33.35	183.89
Corn/Triticale							
silage/Cotton	20	233.4	CP/LEPA	52.08	250.23	4.80	8.26
Cotton/Corn	21	122.6	CP/LEPA	17.91	157.78	8.81	17.75
Triticale/Corn silage	23	121.1	CP/LESA	33.85	112.64	3.33	8.65
Corn grain/Cotton	24	129.7	CP/LESA	26.54	537.36	20.25	26.27
Corn/Cotton	26	125.2	CP/LESA	16.57	433.62	26.16	35.81
Corn Silage/Cotton	27	108.5	SDI	38.20	229.80	6.02	11.17
Cotton/Seed millet	31	121	CP/LEPA	27.90	12.26	0.44	5.46
<u>Crop-Livestock</u>	51	121		27.70	12.20	0.11	5.10
<u>systems</u>							
Perennial grass:							
contract grazing,	9	237.8	CP/MESA	8.45	72.39	8.56	25.12
/Cotton							
Perennial grass:	4.2	4=0.5		00.05		40 -0	
contract grazing, /Cotton	10	173.6	CP/LESA	30.02	592.02	19.72	24.38
Perennial grass:							
contract grazing,	17	220.8	CP/MESA	22.00	116.96	5.32	11.68
/Cotton							

Table A 19. Summary of results from monitoring 29 producer sites in 2011 (Year 7).

System	Site No.	Acres	Irrigation Type ¹	System inches	\$/system acre	\$/inch water	Gross margin per inch irrigation
<u>Monoculture systems</u>							
Cotton	3	123.3	CP/MESA	8.40	822.71	97.93	114.60
Cotton/fallow	5	484.1	CP/LESA	10.53	-55.06	-5.23	5.71
Corn grain/fallow	6	122.7	CP/LESA	17.29	-76.28	-4.41	2.52
Perennial grass: seed and hay	7	130	CP/LESA	20.60	696.38	33.80	40.60
Perennial grass: seed and hay	8	61.8	SDI	17.30	712.46	41.18	51.30
Cotton (No data)	12	283.8	DL	0.00	0.00	Dryland	Dryland
Cotton/fallow	19	120.4	CP/LEPA	7.33	177.03	24.16	40.50
Cotton	22	148.7	CP/LEPA	19.50	918.83	47.12	54.30
Cotton	30	21.8	, SDI	13.60	-53.60	-3.94	8.93
Corn grain	33	70	CP/LEPA	18.70	-298.65	-15.97	-6.34
<u>Multi-crop systems</u>			,				
Cotton/Corn grain	2	60	SDI	12.06	545.42	45.23	61.73
Alfalfa/Cotton/Wheat/ Seed sorghum	4	123	CP/LEPA	15.54	320.03	20.59	26.24
Cotton (failed)/Grain sorghum	11	92.5	Fur	12.00	463.87	38.66	49.07
Cotton/Wheat	14	124.1	CP/MESA	6.51	-99.71	-15.31	6.19
Cotton (failed)/Grain sorghum	15	101.1	SDI	27.43	591.80	21.57	27.95
Perennial grass: contract grazing, /Cotton/Corn grain	17	220.7	CP/MESA	17.40	890.46	51.18	59.23
Wheat/Cotton (No data)	18	122.2	CP/MESA	0.00	0.00	0.00	0.00
Corn/Triticale Silage/Cotton	20	233.3	CP/LEPA	29.53	609.85	20.66	26.08
Wheat/Haygrazer/ Cotton	21	122.6	CP/LEPA	19.41	542.88	27.97	35.19
Corn grain/Cotton	24	129.7	CP/LESA	19.94	788.27	39.53	47.55
Sunflowers/Cotton	26	125.1	CP/LESA	14.95	235.53	15.75	25.12
Corn Silage/Cotton	27	108.4	SDI	16.98	953.77	56.17	66.40
Cotton (hail)/Corn grain	28	51.5	SDI	19.6	-138.03	-7.04	1.89
Cotton/Grain sorghum	29	221.6	DL	0.00	9.39	Dryland	Dryland
Cotton/Seed millet	31	121.9	CP/LEPA	20.36	167.05	8.21	15.08
Cotton (hail)/Corn grain	32	70	CP/LEPA	21.50	194.39	9.04	17.41
Cotton (hail)/Corn grain	34	726.6	CP/LESA	10.00	358.39	35.84	51.84
<u>Crop-livestock systems</u>							
Perennial grass:							
contract grazing, /Cotton	9	237.8	CP/MESA	11.46	391.18	34.14	46.35
Perennial grass: contract grazing, /Cotton	10	173.6	CP/LESA	23.02	29.08	1.26	8.22

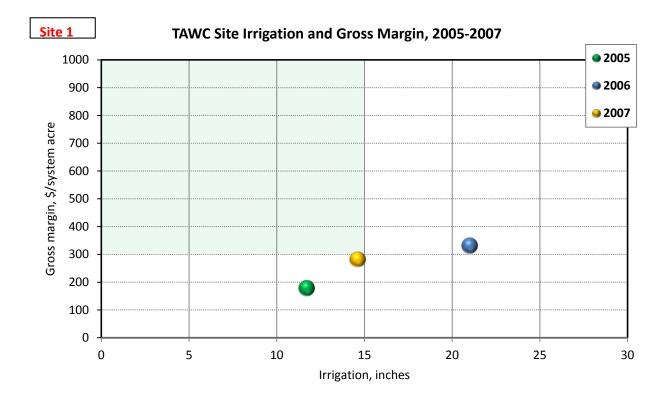
Table A 20. Summary of results from monitoring 29 producer sites in 2012 (Year 8).

System	Site No.	Acres	Irrigation Type ¹	System inches	\$/system acre	\$/inch water	Gross margin per inch irrigation
Monoculture systems							U
Perennial grass: seed/hay	7	130	CP/LESA	10.3	403.68	39.19	52.78
Perennial grass: seed/hay	8	61.8	SDI	14.1	983.54	69.75	82.17
Cotton	11	92.5	FUR	12.0	-18.10	-1.51	8.91
Cotton – No data	12	283.8	DL	0	0.00	Dryland	Dryland
Cotton (2 in 2 out)	14	124.1	CP/LESA	7.5	371.85	49.58	58.92
Cotton	15	101.1	SDI	17.65	858.11	48.62	58.54
Fallowed	18	122.2	CP/MESA	0	0.00	0.00	0.00
Cotton (2 in 2 out)	19	120.3	CP/LEPA	12.0	199.93	16.66	22.49
Cotton	22	148.7	CP/LEPA	24.5	424.35	17.32	23.03
Cotton	28	51.4	SDI	17.5	163.36	9.33	19.33
Cotton (failed, collected ins.)	29	221.6	DL	0	3.79	Dryland	Dryland
Corn	30	21.8	SDI	13	-30.84	-2.37	14.17
Corn	32	70	CP/LEPA	20.6	196.45	9.54	18.27
Corn	33	70	CP/LEPA	26.8	188.99	7.05	13.77
<u>Multi-crop systems</u>			, i				
Cotton/Corn grain	2	59.9	SDI	21.0	262.95	12.54	21.79
Cotton/Grain sorghum	3	123.3	CP/MEPA	16.2	334.56	20.59	29.21
Wheat/Millet/Cotton/Sunflower	5	484.1	CP/LESA	10.3	454.87	44.37	58.03
Wheat/Cotton	6	122.7	CP/LESA	17.0	149.62	8.78	17.00
Dahl/Corn/Sunflower	17	220.7	CP/MESA	12.2	118.60	9.76	21.27
Trit silage/Corn silage/Cotton	20	233.3	CP/LEPA	27.3	704.25	25.78	31.65
Wheat/Haygrazer/Corn	21	122.6	CP/LEPA	19.9	286.14	14.38	21.16
Corn grain/Sunflower	24	129.7	CP/LESA	17.2	392.45	22.78	32.07
Wheat/Corn	26	125.1	CP/LESA	11.9	157.18	13.20	26.62
Corn silage/Cotton	27	108.4	SDI	36.3	673.31	18.55	23.98
Cotton/Seed millet	31	121.9	CP/LEPA	20.0	469.53	23.52	30.53
Corn/Sunflower	34	726.6	CP/LESA	14.1	445.30	31.58	40.94
Grain sorghum/Corn/Cotton	35	229.3	, SDI	20.0	403.82	20.22	27.70
<u>Crop-livestock systems</u>							
Alfalfa/Cotton/Wheat/Seed Sorghum	4	122.9	CP/LEPA	18.3	420.87	23.05	31.01
Perennial grass: contract grazing/cotton	9	237.7	CP/MESA	8.7	277.95	31.89	47.96
Perennial grass: contract grazing/cotton	10	173.6	CP/LESA	18.5	242.86	13.14	21.80

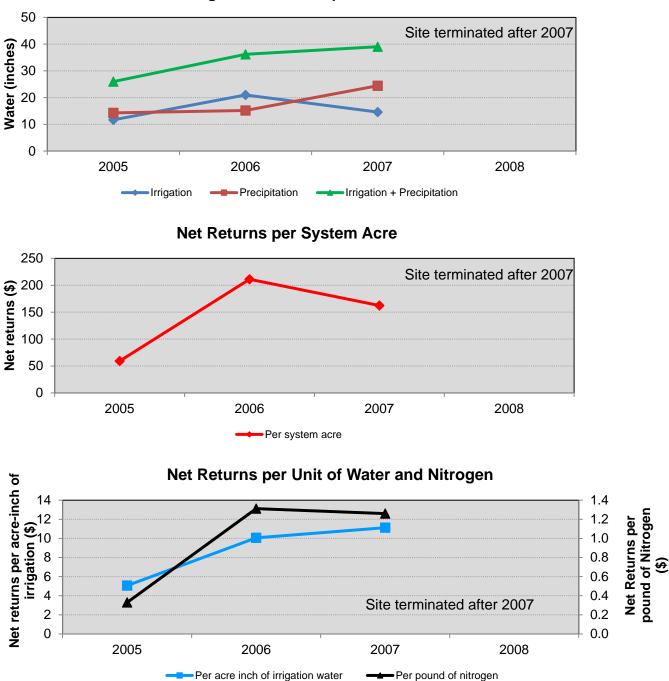
Crop		2005	2006	2007	2008	2009	2010	2011	2012	2013	Crop year average
	Mean yields, per	acre (only in	cludes sites r	producing thes	e crons include	s dryland) {	Vield averag	es across harve	sted fields wi	thin sites}	
	Mean yields, per			foundering thes	e erops, merude.					sitesj	
Cotton											
		1,117				1,223	1,261			1,470	
	Lint, lbs	(22)	1,379 (20)	1,518 (13)	1,265 (11)	(16)	(15)	1,166 (19)	1,299 (16)	(19)	1,300
	Seed, tons	0.80 (22)	0.95 (20)	1.02 (13)	0.86 (11)	0.81 (16)	0.83 (15)	0.77 (19)	0.92 (16)	1.0 (19)	0.9
Corn											
	Grain, lbs	12,729				12,613	12,685			11,982	
	a.)	(3)	8,814 (4)	12,229 (4)	10,829 (8)	(4)	(10)	6,766 (4)	7,475 (7)	(9)	10,680
	Silage, tons	30.9 (2)	28.3 (3)	27.3 (3)	-	38.3 (1)	31 (2)	20.5 (3)	6.3 (4)	32 (5)	26.8
Sorghum											
	Grain, lbs	4,147 (3)	2,987 (1)	6,459 (4)	6,345 (5)	6,907 (3)	4,556 (3)	1,196 (1)	6,358 (2)	8,124 (3)	5,231
	Silage, tons	26.0 (1)	20.4 (2)	25.0 (1)	11.3 (2)	9.975 (2)	-	-	-	-	18.5
	Seed, lbs	-	-	-	3,507 (1)	-	-	-	3,396 (1)	-	3,438
Wheat											
	Grain, lbs	2,034 (1)	-	2,613 (5)	4,182 (5)	2,061 (6)	2,860 (6)	3,060 (1)	2,052 (3)	798 (3)	2,458
	Silage, tons	16.1 (1)	7.0(1)	-	7.5 (1)	3.71 (1)	-	-	-	-	8.6
	Hay, tons	-	-	-	-	2.5 (1)	-	-	-	0.5 (2)	2.5
Oat						- ()					
	Silage, tons	-	4.9 (1)	-	-	12.5 (1)	-	-	-	-	8.7
	Hay, tons	-	1.8 (1)	-	-	-	-	-	-	-	1.8
Barley											
	Grain, lbs	-	-	-	3,133 (1)	-	-	-	-	-	3,133
	Hay, tons	-	-	-	5.5 (1)	-	-	-	-	-	5.5
Triticale											
	Hay, tons	-	-	-	-	-	-	3(1)	-	-	3.0
	Silage, tons	-	21.3 (1)	17.5 (1)	-	-	13 (2)	2.5(2)	12 (1)	-	13.3
Sunflower											
	Seed, lbs	-	-	-	1,916 (2)	2,274 (4)	-	-	1903 (1)	2,635 (4)	2,182
Pearl millet											
for seed	Sood lbs	2.07((1)	2 400 (1)	4 002 (2)	2 007 (2)	-		1 000(1)	2.014.(1)	2 (00 (2)	2.040
Perennial	Seed, lbs	3,876 (1)	2,488 (1)	4,002 (2)	2,097 (2)	-	-	1,800(1)	2,014 (1)	3,600 (3)	2,840
forage											
WW-BDahl											
	Seed, PLS lbs	-	-	-	30 (1)	83.14 (1)	-	-	62.8 (1)	-	58.6
	Hay, tons	-	-	-	2.5 (1)	-	-	-	-	-	2.5
Sideoats											2.5
	Seed, PLS lbs	313 (2)	268 (2)	183.5 (3)	192.9 (3)	362 (3)	212.5 (2)	200.75 (2)	267 (2)	315 (2)	257
	Hay, tons	3.6 (2)	2.1 (2)	1.46 (3)	1.66 (3)	1.83 (3)	1.1 (2)	0.5 (2)	1.9 (2)	1.4 (2)	1.7
	. , ,	(=)		(-)			(-)	(-)	(-)		

Table A 22. Phase I summary of crop production, irrigation, and economic returns within all production sites during 2005-2013.

											Crop year
Crop		2005	2006	2007	2008	2009	2010	2011	2012	2013	average
Other											
	Hay, tons	-	-	-	0.11(1)	4.3 (1)	2.4 (1)	-	-	-	2.3
Alfalfa											
	Hay, tons	8.3 (1)	9.18 (1)	4.90 (1)	12.0 (1)	9.95 (1)	9.0 (1)	10.6 (1)	8.4 (1)	9.5 (1)	9.1
Annual											
forage											
Forage sorghum											
Sorghum	Hay, tons	-	-	-	-	-	-	6.8 (1)	1.9 (2)	1.7 (1)	3.5
	1149, 10113							0.0 (1)	1.7 (2)	1.7 (1)	5.5
Precipitation	n, inches										
(including a	ll sites)	15.0	15.4	27.3	21.7	15.7	28.9	5.3	10.0	13.2	16.9
By <u>System</u>		inches	inches	inches	inches	inches	inches	inches	inches	inches	inches
	-	applied	applied	applied	applied	applied	applied	applied	applied	applied	applied
<u>Total irriga</u>		0.0 (0.0)	110(00)	110(05)	10.0 (00)	11 5 (24)	0.0 (0.0)	20.0 (27)	1(0(0))	1(0)	10.6
(system ave	rage)	9.2 (26)	14.8 (26)	11.0 (25)	13.3 (23)	11.5 (24)	9.2 (24)	20.9 (27)	16.0 (26)	16.3 (29)	13.6 inches
By <u>Crop</u>	Irrigation	inches applied	inches applied	inches applied	inches applied	inches applied	inches applied	inches applied	inches applied	inches applied	applied
Cotton	lint	8.7 (19)	14.3 (19)	11.3 (11)	12.2 (10)	11.5 (15)	7.6 (16)	23.2 (19)	14.8 (16)	18.4 (17)	13.6
Corn	grain	17.4 (3)	21.0 (4)	12.7 (4)	22.3 (8)	20.5 (4)	13.0 (10)	21.2 (4)	22.2 (7)	22.0 (9)	19.1
Corn	silage	18.0 (2)	24.0 (3)	14.3 (3)	-	24.3 (1)	15.5 (3)	36.1 (3)	22.4 (4)	27.9 (4)	22.8
Sorghum	grain	5.3 (3)	4.2(1)	6.6 (4)	12.3 (5)	9.4 (3)	6.1 (2)	27.8 (1)	19.7 (2)	16.9 (3)	12.0
Sorghum	silage	15.0 (1)	9.0 (1)	11.6 (1)	11.5 (1)	15.7 (1)	-	-	-	-	12.6
Wheat	grain	-	-	5.3 (3)	7.7 (4)	6.4 (5)	4.8 (3)	7.9 (2)	4.2 (3)	8.2 (5)	6.4
Wheat	silage	7.5 (1)	16.3 (1)	-	5.5 (1)	15.7 (1)	-	-	-	-	11.3
Oat	silage	-	4.3 (1)	-	-	15.7 (1)	-	-	-	-	10.0
Oat	hay	-	4.9 (1)	-	-	-	-	-	-	-	4.9
Triticale	silage	2.5 (1)	10.0 (1)	12.9 (1)	-	-	6.9 (2)	17.8 (2)	19.6 (1)	5.6 (1)	10.8
Barley	grain	-	-	-	12.8 (1)	-	-	-	-	-	12.8
Small grain	(grazing)	0.0 (1)	0.0 (1)	0.0 (1)	-	-	-	-	-	-	0.0
Small grain	(grains)	-	-	5.3 (3)	8.7 (5)	6.4 (5)	3.8 (4)	7.9 (2)	4.2 (3)	8.2 (5)	6.4
Small grain	(silage)	5.0 (1)	10.2 (3)	12.0 (1)	5.5 (1)	15.7 (1)	6.9 (2)	17.8 (2)	19.6 (1)	5.6 (1)	10.9
Small grain	(hay)	-	4.9 (1)	5.0 (1)	-	-	-	24 (1)	-	-	11.3
Small grain	(all uses)	2.5 (2)	5.9 (6)	6.0 (5)	8.2 (6)	8.0 (6)	3.6 (8)	13.9 (4)	7.2 (4)	7.8 (6)	7.0
Sunflower	seed	6.0 (1)	-	-	9.6 (2)	8.9 (4)	-	-	15.1 (1)	12.3 (4)	10.4
Millet	seed	11.5 (1)	10.2 (1)	8.1 (2)	9.6 (2)	-	9.9(1)	14.4 (1)	22.7 (1)	18.3 (3)	14.9
Dahl	harr			0 (1)	4 ((1)						2.7
	hay	6.5 (2)	-	0(1)	4.6 (1)		-	-	- 8.2 (1)	-	3.7 7.6
	seed	- 0(1)	-	6.1 (2)	9.4 (1)	8.5 (1) 5.9 (2)	-	- 8.9 (2)			7.6
Sideoats	grazing	0(1)	11.4 (2)	5.5 (2)	-	5.9 (2)	2.8 (2)	0.9 (2)	22.7 (1)	5.6 (2)	<u>8.5</u>
Sideoats	seed	10.5 (2)	7.8 (2)	11.9 (2)	8.0 (3)	15.3 (3)	2.8 (2)	13.6 (2)	19.0 (2)	12.2 (2)	11.2
Bermuda	seeu	10.3 (2)	7.0 (2)	11.9 (4)	0.0 [3]	13.3 (3)	2.0 [2]	13.0 (2)	19.0 (2)	12.2 (2)	11.2
Dermuud	grazing	-	-	3.8(1)	6.2 (1)	5.1 (1)	0(1)	17.1 (1)	12.0 (1)	-	7.4
	grazing	-	-	3.8 [1]	0.2 [1]	5.1 (1)	0(1)	1/.1(1)	12.0(1)	-	7.4

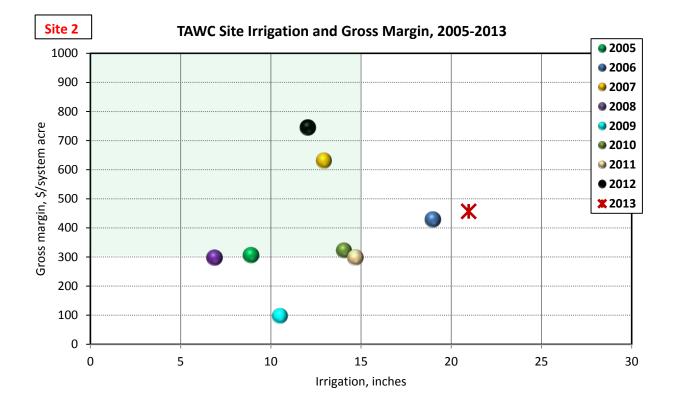

											Crop Year
Crop		2005	2006	2007	2008	2009	2010	2011	2012	2013	Average
D.C.		inches	inches	inches	inches	inches	inches	inches	inches	inches	inches
By <u>Crop</u>	Irrigation	applied	applied	applied	applied	applied	applied	applied	applied	applied	applied
Other Peren	nials/Annuals		100(0)	E 0 (4)	(1 (2)	(= (0)	05(1)	24 5 (2)	12.0 (2)	26(4)	0.6
	hay	-	10.9 (3)	5.0 (1)	6.4 (2)	6.7 (2)	8.5 (1)	21.5 (2)	13.9 (2)	3.6 (1)	9.6
	grazing	1.0 (1)	3.2 (3)	4.4 (4)	7.6 (4)	3.3 (2)	7.6 (5)	16.5 (2)	4.2 (1)	5.7 (2)	5.9
Perennial gr	asses (grouped)										
	seed	10.5 (2)	7.8 (2)	9.0 (5)	8.6 (4)	13.6 (4)	2.8 (2)	13.6 (2)	15.4 (3)	12.2 (2)	10.4
	grazing	1.0 (3)	8.8 (4)	4.9 (4)	5.2 (3)	4.9 (4)	2.3 (4)	12.4 (3)	13.0 (2)	3.7 (3)	6.2
	hay	8.5 (4)	0(2)	0 (4)	1.9 (4)	0 (3)	0 (2)	0 (2)	0 (2)	0 (2)	1.2
	all uses	6.7 (6)	6.6 (6)	5.2 (7)	5.2 (7)	6.5 (7)	1.9 (6)	10.0 (5)	10.6 (5)	5.1 (5)	6.4
Alfalfa											
	all uses	10.3 (1)	34.5 (1)	10.6 (1)	15.6 (1)	18.6 (1)	15.6 (1)	44.1 (1)	28.3 (1)	31.6 (1)	23.2
	Income and Expense, \$/system acre										
Projected ret	turns	\$660.53	\$773.82	\$840.02	\$890.37	\$745.82	\$961.87	\$951.66	\$1,063.98	\$1,171.08	\$895.46
	Costs										
	e costs (all sites)	\$444.88	\$504.91	\$498.48	\$548.53	\$507.69	\$537.14	\$658.68	\$578.28	\$709.95	\$554.28
Total fixed co	()	\$77.57	\$81.81	\$81.77	\$111.98	\$110.65	\$153.55	\$149.98	\$135.53	\$137.19	\$115.56
Total all costs	s (all sites)	\$522.45	\$586.72	\$580.25	\$660.51	\$618.34	\$690.69	\$808.67	\$713.80	\$846.87	\$669.81
	ss Margin										
Per system acre (all sites)		\$215.66	\$268.91	\$341.54	\$341.84	\$238.13	\$424.74	\$313.83	\$469.92	\$454.90	\$341.05
Per acre-inch irrigation water											
(irrigated only)		\$33.51	\$22.53	\$34.01	\$31.17	\$22.95	\$71.50	\$24.76	\$32.72	\$33.45	\$34.07
Net returns over all costs											
Per system acre (all sites)		\$138.09	\$187.10	\$259.77	\$229.86	\$127.48	\$271.19	\$163.85	\$334.39	\$317.98	\$225.52
Per acre-inch of irrigation water		****	*1 = 00	*2 (0 0	*2 0 0 0	* 0.00	* 40 = 4	***	****	*00 T 0	*••••
(irrigated only)		\$21.58	\$15.88	\$24.99	\$20.89	\$9.99	\$43.71	\$10.16	\$22.89	\$23.70	\$21.53
Per pound of nitrogen (all sites)		\$1.62	\$0.81	\$2.34	\$1.48	\$0.87	\$2.40	\$1.92	\$2.51	\$2.78	\$1.86

Terminated Site Data (2005-2013)

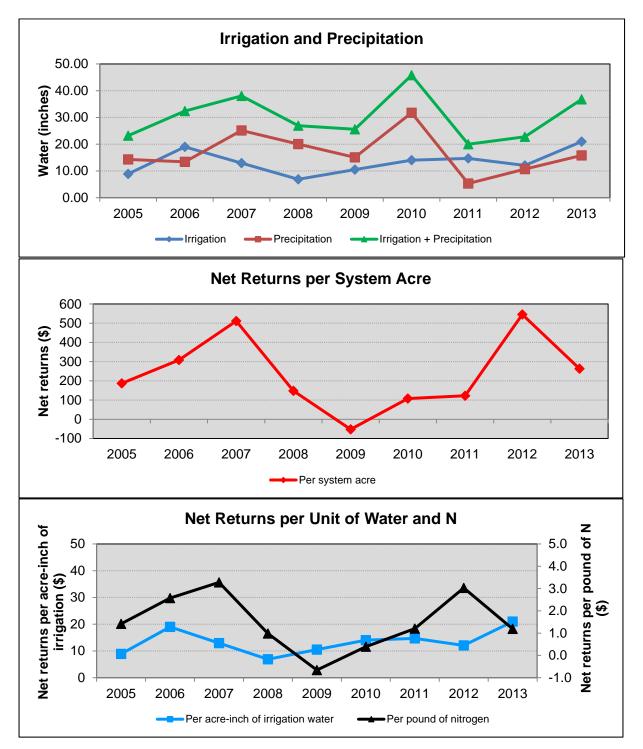


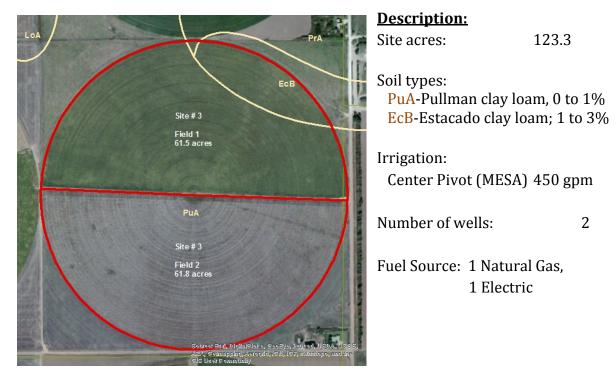
SITE 1 – TERMINATED 2007

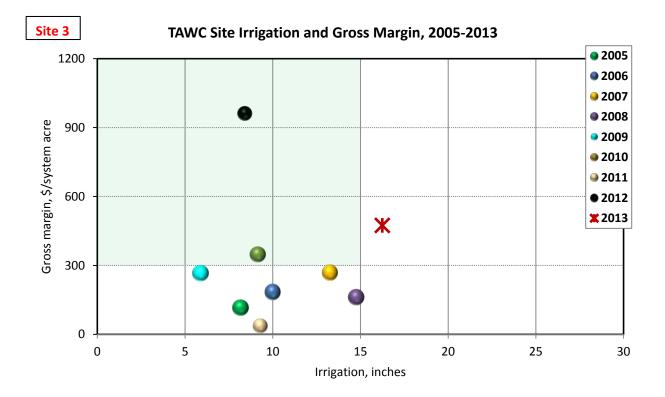
Site acres: 135.2 Soil types: PuA-Pullman clay loam, 0 to 1% Irrigation: Sub-Surface Drip (SDI) 850 gpm Number of wells: 2 Fuel Source: 1 Natural gas, 1 Electric

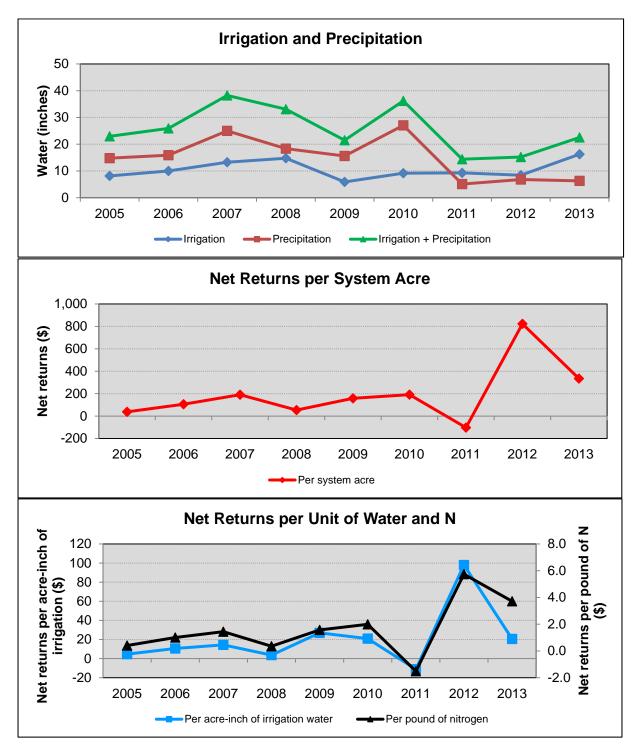


Irrigation and Precipitation

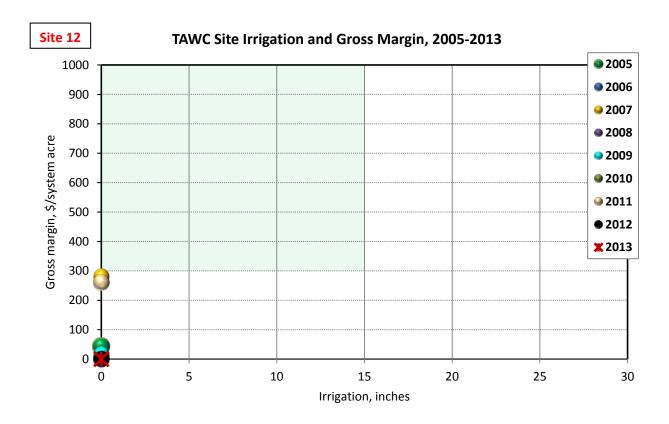

<u>Site 2 – Terminated 2013</u>

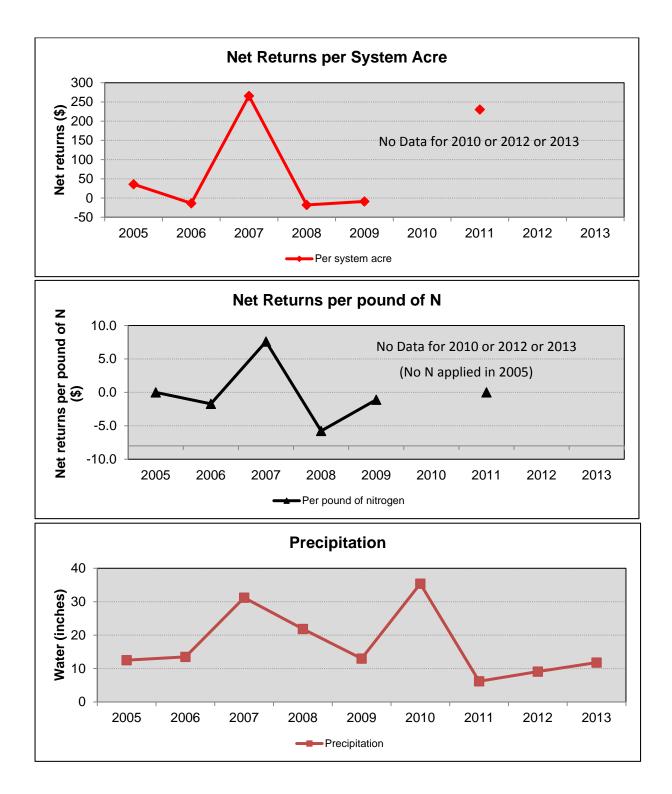

Description:Site acres:60Soil types:PuA-Pullman clay loam, 0 to 1%
OcB-Olton clay loam, 1 to 3%Irrigation:
Sub-Surface Drip (SDI) 3600 gpmNumber of wells:2Fuel Source:Electric





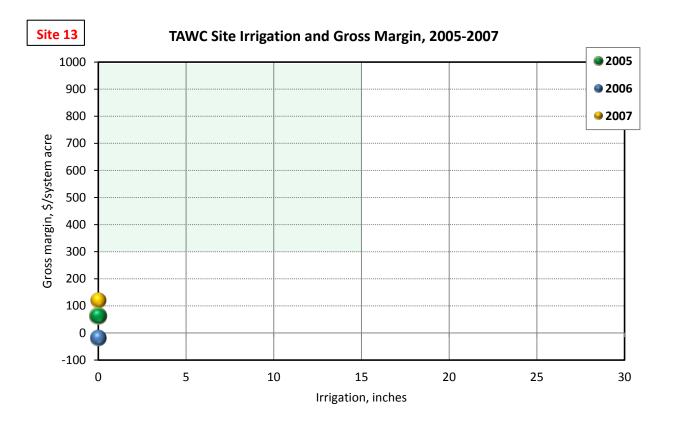
<u>Site 3 – Terminated 2013</u>



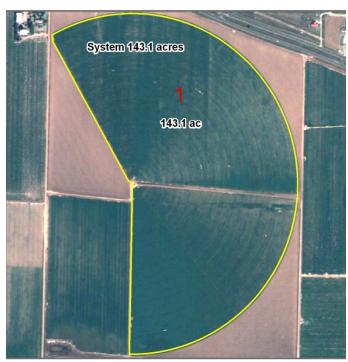


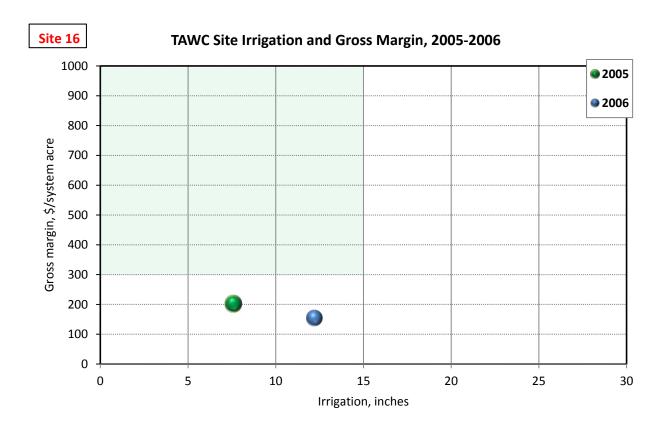
<u>Site 12 – Terminated 2013</u>

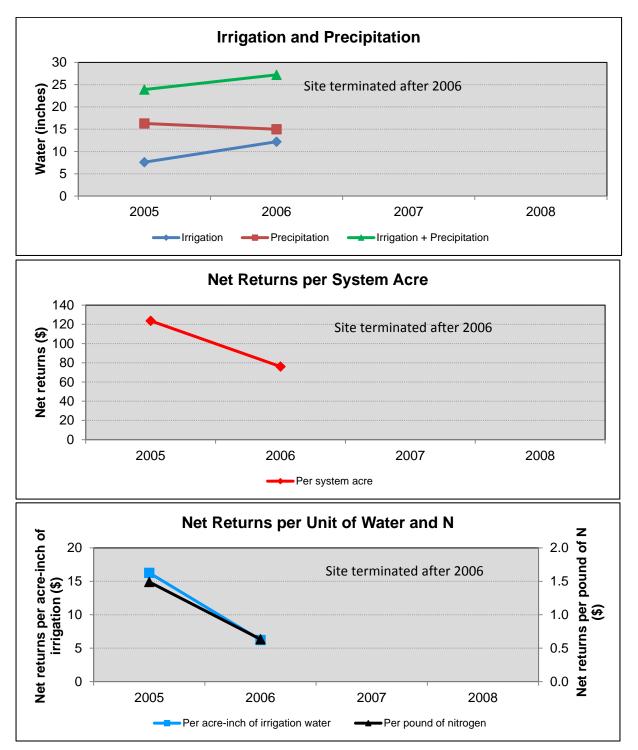
Description: Site acres:	283.8
Soil types: <mark>PuA</mark> -Pullman clay lo	am, 0 to 1%
Irrigation: Dryland (DL)	na gpm
Number of wells:	na
Fuel Source:	na



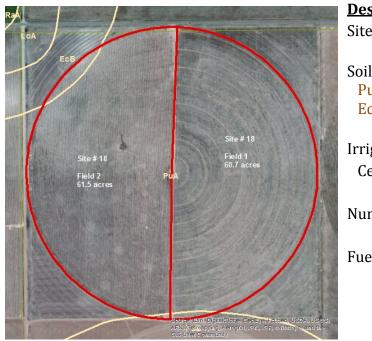

<u>SITE 13 – TERMINATED 2007</u>


Description: Site acres:	319.5			
Soil types: PuA-Pullman clay loan	m, 0 to 1%			
Irrigation: Dryland (DL)	na gpm			
Number of wells:	na			
Fuel Source:	na			

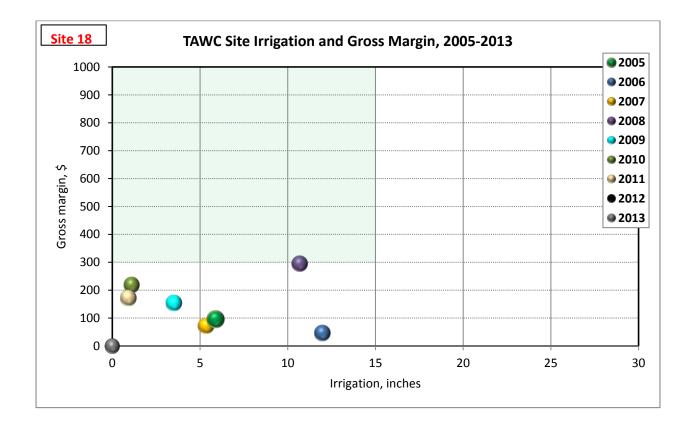



<u>Site 16 – Terminated 2007</u>

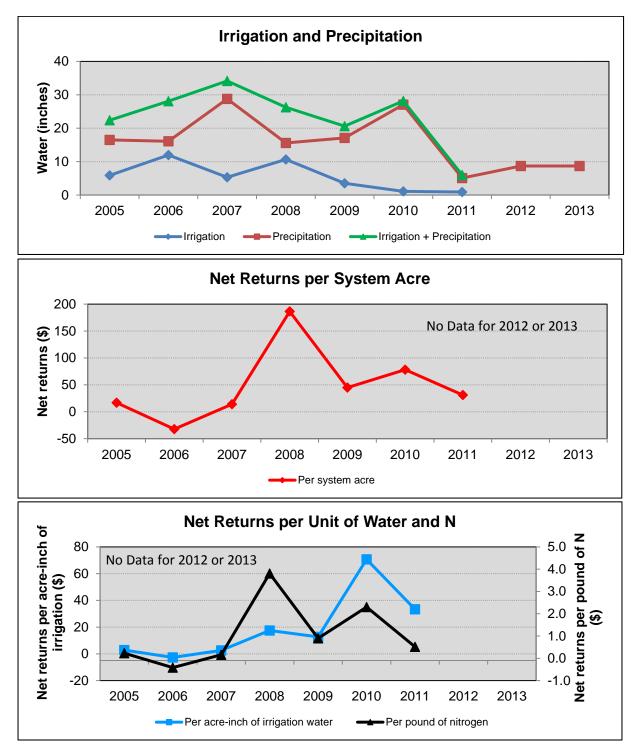
Description:Site acres:14.	3.1
Soil types: PuA-Pullman clay lo	am, 0 to 1%
Irrigation: Center Pivot (LESA)	600 gpm
Number of wells:	3
Fuel Source:	Electric

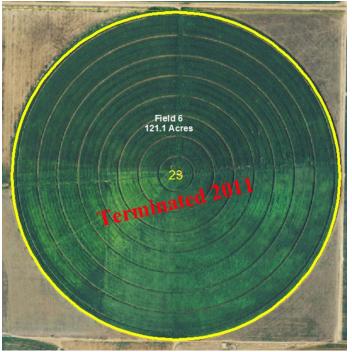


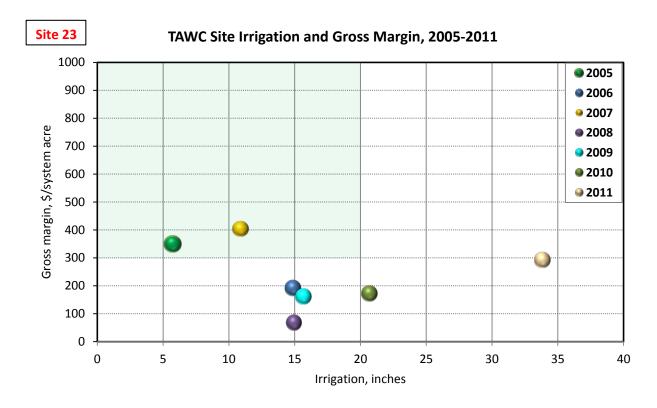
Site 16

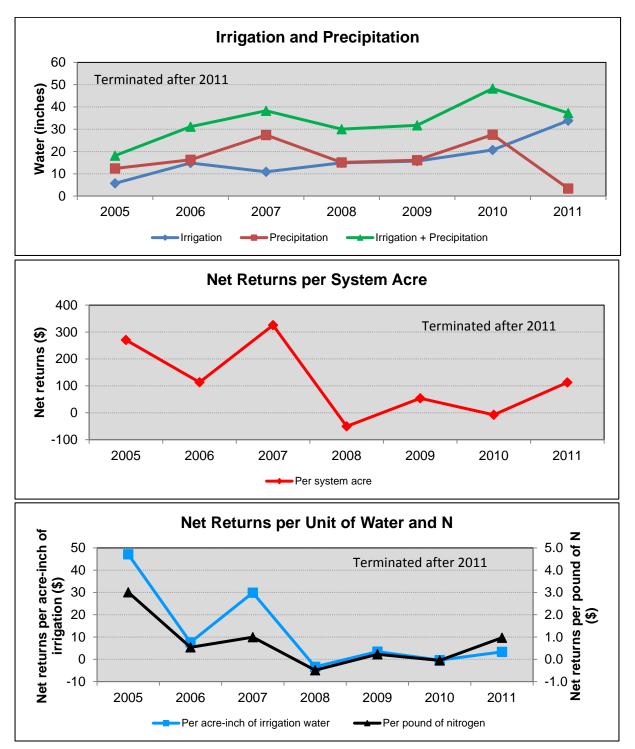


212

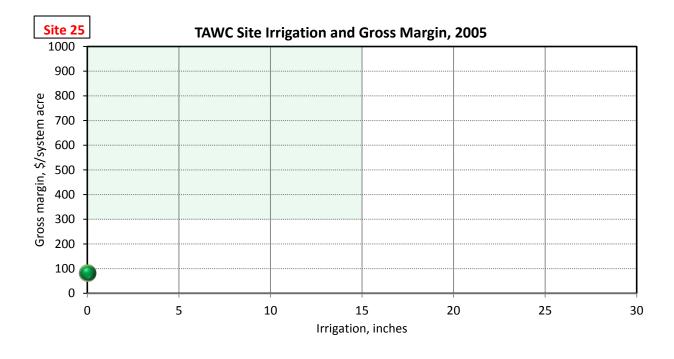

<u>Site 18 – Terminated 2013</u>

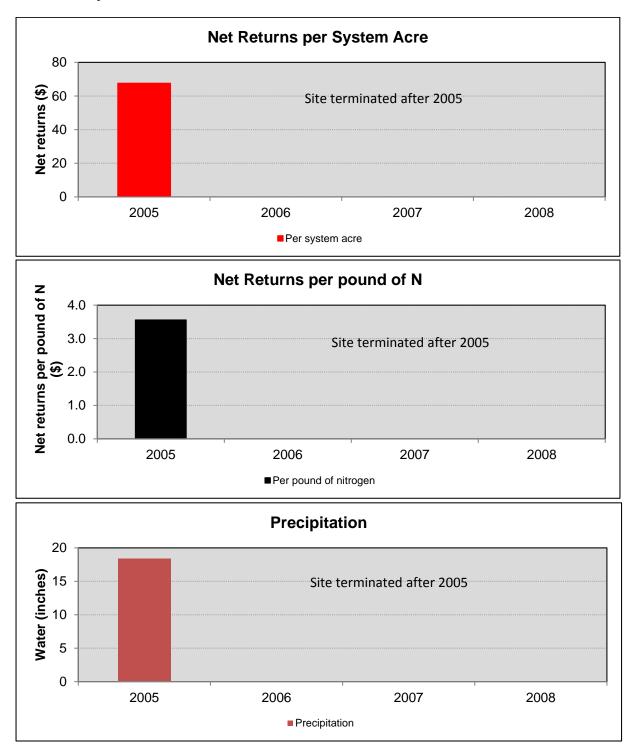

Description:		
Site acres:	122.2	
Soil types: PuA-Pullman cla EcB-Estacado cla		
Irrigation: Center Pivot (LE	PA)	250 gpm
Number of wells:		3
Fuel Source:	Electri	c




<u>Site 23 – Terminated 2011</u>

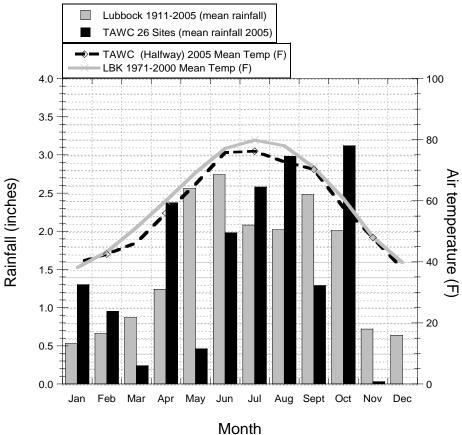
Description:Site acres:122.2Soil types:PuA-Pullman clay loam, 0 to 1%PuB-Estacado clay loam; 1 to 3%Irrigation:Center Pivot (LEPA)250 gpmNumber of wells:3Fuel Source:Electric


Site 23


<u>SITE 25 – TERMINATED 2006</u>

Description: Site acres:	178.5
Soil types: PuA-Pullman clay lo	am, 0 to 1%
Irrigation: Dryland (DL)	na gpm
Number of wells:	na
Fuel Source:	na

Site 25 - Dryland



Weather Data (2005-2013)

<u>2005</u>

The 2005 growing season was close to ideal in terms of temperatures and timing of precipitation. The precipitation and temperatures for this area are presented in Figure A1 along with the long-term means for this region. While hail events occurred in these counties during 2005, none of the specific sites in this project were measurably affected by such adverse weather events. Year 1, 2005, also followed a year of abnormally high precipitation. Thus, the 2005 growing season likely was influenced by residual soil moisture.

Precipitation for 2005, presented in Table A23, is the mean of precipitation recorded at the 26 sites during 2005, beginning in March when the sites were identified and equipped. Precipitation for January and February are amounts recorded at Halfway, TX; the nearest weather station.

Figure A 1. Temperature and precipitation for 2005 in the demonstration area compared with long term averages.

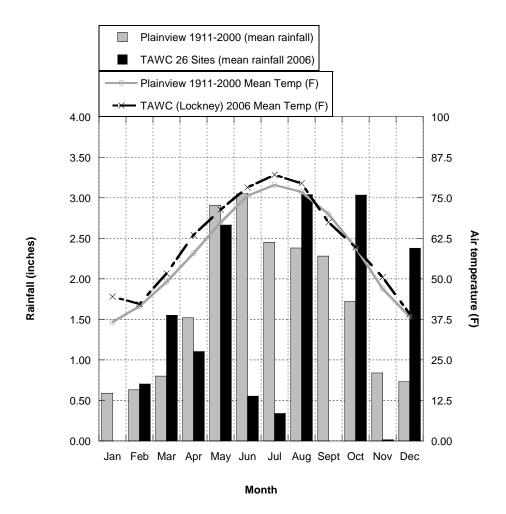

SITE	Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
1	0	0	0.4	1.3	0.2	1.7	2.2	2.4	2	4.1	0	0	14.3
2	0	0	0.4	1.8	0.5	1.4	2.4	3.6	0.8	3.4	0	0	14.3
3	0	0	0.7	2	0.6	1.4	2.5	4	0.4	3.2	0	0	14.8
4	0	0	0.6	8	0.3	1.4	2.2	3.2	0.1	1	0	0	16.8
5	0	0	0.6	2.9	0.4	1.5	3.2	4.2	0.6	1.7	0	0	15.1
6	0	0	0.5	1.5	0.4	3	2.4	1	2	4.2	0	0	15.0
7	0	0	0.5	1.5	0.6	2.6	2.4	1.5	3.3	3	0	0	15.4
8	0	0	0	1.5	0.6	2.6	2.4	1.5	3.3	3	0	0	14.9
9	0	0	0.5	1.5	0.5	2.6	2	1	3	3.3	0	0	14.4
10	0	0	0.4	1	0.2	2	1.8	1	1.6	3.1	0	0	11.1
11	0	0	0	1.2	0.4	3	2	1.7	1.8	4.3	0	0	14.4
12	0	0	0	0.7	0.4	3.2	2	2.2	1.2	2.8	0	0	12.5
13	0	0	0	1.7	0.4	3.4	3	2.6	1.2	4	0	0	16.3
14	0	0	0	1.3	0.5	1.8	3	2.2	2.2	3	0	0	14.0
15	0	0	0.4	1.3	0.5	2	3.6	4	2	5.4	0	0	19.2
16	0	0	0	1.4	0.4	2	3.2	3.4	1.8	4.1	0	0	16.3
17	0	0	0	2	0.5	2.2	3	3.6	1.6	4.6	0	0	17.5
18	0	0	0	4	0.9	1	2.8	4.8	0	3	0	0	16.5
19	0	0	0	3.2	0.5	1	2	4.6	0	2.6	0	0	13.9
20	0	0	0	2.8	0.4	1.6	3.4	4	0.8	2	0.4	0	15.4
21	0	0	0	1.2	0.6	2.5	2	2.5	2	4	0.3	0	15.1
22	0	0	0	5.8	0.3	1.6	2.6	4	0.2	0.6	0	0	15.1
23	0	0	0	3	0.3	1.2	2.9	3.6	0.5	0.9	0	0	12.4
24	0	0	0.8	4.8	0.3	1	2.9	4	0.4	0.8	0	0	15.0
25	0	0	0	2.3	0.9	2	2.4	3.4	0	7.4	0	0	18.4
26	0	0	0	2	0.4	1.7	2.8	3.4	0.7	1.7	0	0	12.7
Average	0	0	0.2	2.4	0.5	2.0	2.6	3.0	1.3	3.1	0	0	15.0

Table A 23. Precipitation by each site in the Demonstration Project in Hale and Floyd Counties during 2005.

<u>2006</u>

The 2006 growing season was one of the hottest and driest seasons on record marked by the longest period of days with no measurable precipitation ever recorded for the Texas High Plains. Most dryland cotton was terminated. Rains came in late August and again in October delaying harvests in some cases. No significant hail damage was received within the demonstration sites.

Precipitation for 2006, presented in Figure A2 and Table A24, is the actual mean of precipitation recorded at the 26 sites during 2006 from January to December. The drought and high temperatures experienced during the 2006 growing season did influence system behavior and results. This emphasizes why it is crucial to continue this type of real-world demonstration and data collection over a number of years and sets of conditions.

Figure A 2. Temperature and precipitation for 2006 in the demonstration area compared with long term averages.

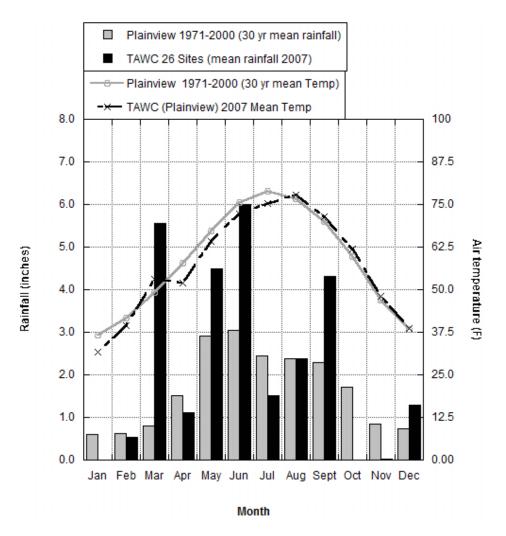

SITE	Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
1	0	0.9	1.7	1.2	2.6	0.5	0.55	2.3	0	2.87	0	2.6	15.22
2	0	0.8	1.9	1.1	1.9	0.2	0	2.6	0	3.05	0	1.8	13.35
3	0	0.6	1.5	0.9	2.6	0.7	0.22	3	0	3.14	0	3.2	15.86
4	0	0.5	1.4	1.1	2.7	0.2	0.4	3.8	0	2.56	0	2.8	15.46
5	0	0.7	1.4	1.8	3.2	0.4	0.57	4	0	2.78	0	2.8	17.65
6	0	0.7	1.5	0.8	3	0.4	0.2	5.4	0	2.6	0	2.7	17.30
7	0	0.5	1.3	0.9	1.92	0.5	0.33	3.8	0	2.75	0	2.1	14.10
8	0	0.5	1.3	0.9	1.92	0.5	0.33	3	0	2.75	0	2.1	13.30
9	0	0.6	1.5	0.8	1.82	0.5	0.12	3.8	0	3.28	0	2.4	14.82
10	0	0.6	1.5	1	3	0.4	0.11	3.1	0	2.8	0.1	2.4	15.01
11	0	0.5	0.7	0.4	2.5	0.4	0.1	3.5	0	3.3	0	1.6	13.00
12	0	0.8	1.4	0.8	2.2	0.9	0.2	1.9	0	3.3	0	2	13.50
13	0	1	1.8	0.8	2.2	1.1	0.1	2.7	0	3.05	0	1.8	14.55
14	0	0.8	1.8	1	2.8	0.3	0	1.6	0	3.8	0	2.6	14.70
15	0	1.4	2.2	1.4	2.8	0.4	0	2	0	4.4	0.1	2.6	17.30
16	0	1	2.2	1.3	2	0.8	0.2	2.6	0	2.69	0	2.2	14.99
17	0	0.8	2	1.3	2	1	0.3	3.3	0	3.38	0.1	3.2	17.38
18	0	0.7	1.2	1.2	1.8	1.1	0.74	2.6	0	3.11	0	3.6	16.05
19	0	0.6	1.3	1.1	1.3	1.4	0.75	1.2	0	3.11	0	2.3	13.06
20	0	0.6	1.4	1.3	3.8	0.4	0.55	4.07	0	2.56	0	2.2	16.88
21	0	0.9	2.6	1.4	2.8	0.4	0.73	2.2	0	3.54	0.1	2.7	17.37
22	0	0.6	1.5	1.3	3.8	0.3	0.22	1.8	0	2.66	0	1.9	14.08
23	0	0.4	0.9	1.1	3.8	0.2	0.55	3.6	0	3.7	0	2	16.25
24	0	0.5	1.6	1.2	4	0.7	0.12	2.8	0	2.64	0	2.3	15.86
26	0	0.7	1.3	1.3	3	0.3	0.86	4.3	0	2.49	0	1.7	15.95
27	0	0.6	1.4	1.3	3.8	0.4	0.55	4.07	0	2.56	0	2.2	16.88
Average	0	0.7	1.6	1.1	2.7	0.6	0.3	3.0	0	3.0	0	2.4	15.40

Table A 24. Precipitation by each site in the Demonstration Project in Hale and Floyd Counties during 2006.

<u>2007</u>

Precipitation during 2007 totaled 27.2 inches (Table A25) and was well above the longterm mean (18.5 inches) for annual precipitation for this region. Furthermore, precipitation was generally well distributed over the growing season with early season rains providing needed moisture for crop establishment and early growth (Figure A3). Many producers took advantage of these rains and reduced irrigation until mid-season when rainfall declined. Growing conditions were excellent and there was little effect of damaging winds or hail at any of the sites. Temperatures were generally cooler than normal during the first half of the growing season but returned to normal levels by August. The lack of precipitation during October and November aided producers in harvesting crops.

Precipitation for 2007, presented in Figure A3 and Table A25, is the actual mean of precipitation recorded at the 26 sites during 2007 from January to December. Growing conditions during 2007 differed greatly from the hot dry weather encountered in 2006.

Figure A 3. Temperature and precipitation for 2007 in the demonstration area compared with long term averages.

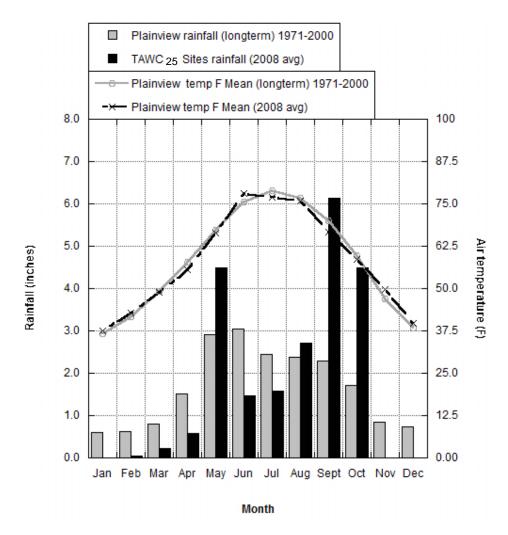

SITE	Jan	Feb	March	April	May	June	July	Aug	Sept	0ct	Nov	Dec	Total
1	0	0.74	5.4	0.8	4.92	4.75	0.71	2.3	3.6	0	0	1.2	24.42
2	0	0.52	3.7	0.8	2.86	6.93	1.32	3	4.8	0	0	1.2	25.13
3	0	0.47	4.8	0.9	2.74	6.88	1.41	2.4	4.4	0	0	1	25.00
4	0	0.29	7.6	0.9	3.53	6.77	4	1.5	5	0	0	1	30.59
5	0	0.72	6	1.1	5.09	7.03	0.79	1.2	4.7	0	0	1.2	27.83
6	0	0.46	6	0.7	5.03	5.43	0.54	2	4.5	0	0	1.4	26.06
7	0	0.9	6.4	1	5.4	4.12	0.74	1.2	3.2	0	0	1.4	24.36
8	0	0.9	6.4	1	5.4	4.12	0.74	1.2	3.2	0	0	1.4	24.36
9	0	0.42	4.8	0.6	5.13	4.05	0.75	1.6	3	0	0	1	21.35
10	0	0.41	4.8	0.6	4.62	6.62	0.81	2.2	4.5	0	0	1.2	25.76
11	0	0.41	4.6	1.5	4.74	6.8	1.2	3.4	5.3	0	0	1	28.95
12	0	0.41	6.7	1.3	5.3	6.6	1.6	3	5.3	0	0	1	31.21
13	0	0.41	5.5	0.6	5	7.1	2	3	4	0	0	1.3	28.91
14	0	0.52	6.2	0.9	5.29	3.79	0.71	2.6	3.8	0	0	1.8	25.61
15	0	0.52	6.75	4	5.29	4.25	0.71	2.5	4	0	0	3	31.02
16	0	0.45	5	1	3.6	5.65	0.85	2.5	4.2	0	0	1	24.25
17	0	0.67	5.3	1	3.85	7.27	1.5	3.2	4.6	0	0	1.2	28.59
18	0	0.52	5.8	1.9	4.54	5.61	2.22	3	4	0	0	1.2	28.79
19	0	0.55	4	1	4.7	7.7	2.8	3.9	4.5	0	0	2	31.15
20	0	0.41	5.6	0.8	4.06	7.24	1.15	3	4.8	0	0	1	28.06
21	0	0.52	7.4	2	5.3	5.28	1.17	3.4	5.4	0	0	1.4	31.87
22	0	0.34	6.2	0.9	3.9	6.88	3.17	1.8	4	0	0	1	28.19
23	0	0.4	4.6	0.7	4.65	7.86	2.19	2	4.5	0	0	0.5	27.40
24	0	0.91	5.4	0.9	3.22	3.47	3.94	1.7	4.2	0	0	1.8	25.54
26	0	0.48	4	0.8	4.76	6.45	1.31	1	3.8	0	0	1.2	23.80
27	0	0.41	5.6	0.8	4.06	7.24	1.15	3	4.8	0	0	1	28.06
Average	0	0.5	5.6	1.1	4.5	6.0	1.5	2.4	4.3	0	0	1.3	27.20

Table A 25. Precipitation by each site in the Demonstration Project in Hale and Floyd Counties during 2007.

<u>2008</u>

Precipitation during 2008, at 21.6 inches, was above average for the year (Table A26). However, the distribution of precipitation was unfavorable for most crops (Figure A4). Beginning the previous autumn, little rain fell until December and then less than an inch of precipitation was received before May of 2008. Four inches was received in May, well above the average for that month. This was followed by below average rain during most of the growing season for crops. In September and October, too late for some crops and interfering with harvest for others, rain was more than twice the normal amounts for this region. Following the October precipitation, no more rain came during the remainder of the year. This drying period helped with harvest of some crops but the region entered the winter with below normal moisture.

Temperatures during 2008 were close to the long-term mean for the region (Figure A4).

Figure A 4. Temperature and precipitation for 2008 in the demonstration area compared with long term averages.

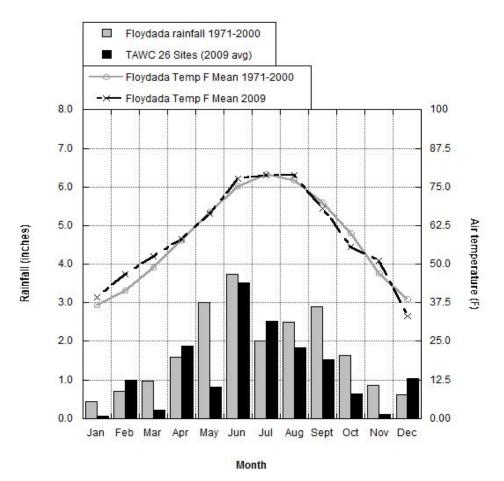
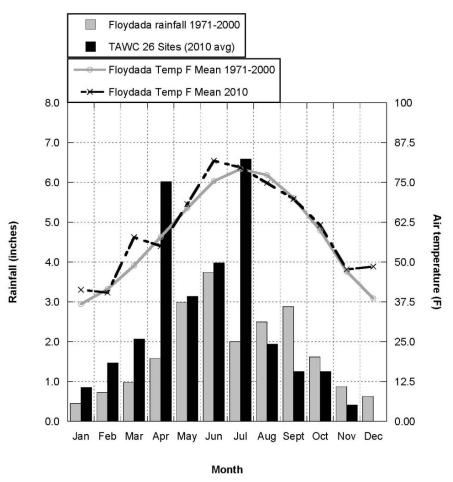

SITE	Jan	Feb	March	April	May	June	July	Aug	Sept	0ct	Nov	Dec	Total
2	0	0	0.2	0.8	4.75	1.7	1	2.1	5.4	4.1	0	0	20.1
3	0	0	0.2	0.5	4.5	1.1	0.95	2	4.7	4.4	0	0	18.4
4	0	0	0.4	0.6	4	2.9	1.1	4.1	3	2.9	0	0	19.0
5	0	0	0	0.2	4	1.5	0.5	4.2	5	3.5	0	0	18.9
6	0	0	0.2	0.5	4.2	1.2	1.9	4	9.4	6	0	0	27.4
7	0	0	0	0.6	5.6	1.2	3.2	1.8	8.6	6.5	0	0	27.5
8	0	0	0	0.6	5.6	1.2	3.2	1.8	8.6	5.4	0	0	26.4
9	0	0	0	0.4	4.1	1	2.4	1.7	5.5	4	0	0	19.1
10	0	0	0	0.4	4.5	0.9	1	2.7	6.9	4.8	0	0	21.2
11	0	0	0.4	0.5	5.3	1.1	1.7	3.2	7.6	4.3	0	0	24.1
12	0	0	0.2	0.6	5	1.5	1.6	2.25	6.5	4.2	0	0	21.9
14	0	0.2	0.4	0.9	5	1.3	1.6	2.5	7.4	6	0	0	25.3
15	0	0.2	0.4	0.9	5	1.5	2.5	2.5	7.4	6	0	0	26.4
17	0	0	0.2	1.1	5	1.8	1.8	2.6	6.4	5.6	0	0	24.5
18	0	0.2	0.4	0.2	3.6	1.3	0.7	2.2	3	4	0	0	15.6
19	0	0.2	0.4	0.8	5	1	1.1	2.1	4.25	4.8	0	0	19.7
20	0	0	0.4	0.5	5	1.9	1.4	4.8	6.8	4.2	0	0	25.0
21	0	0.2	0.4	0.8	5	1.5	4	2.4	6	4.2	0	0	24.5
22	0	0	0.2	1	4.6	3	1.1	2.6	5	3.2	0	0	20.7
23	0	0	0.2	0.2	1.3	1.1	1	2.4	5.5	3.4	0	0	15.1
24	0	0	0.4	0.9	4.2	2.9	1.4	2.1	3.5	3	0	0	18.4
26	0	0	0.2	0.2	3.2	0.5	1.4	2.3	5.3	3.3	0	0	16.4
27	0	0	0.4	0.5	5	1.9	1.4	4.8	6.8	4.2	0	0	25.0
28	0	0	0	0.4	4.5	0.9	1	2.7	6.9	4.8	0	0	21.2
29	0	0	0	0.4	4	1	0.7	1.8	6.4	4.7	0	0	19.0
Average	0	0.04	0.2	0.6	4.5	1.5	1.6	2.7	6.1	4.5	0	0	21.6

Table A 26. Precipitation by each site in the Demonstration Project in Hale and Floyd Counties during 2008.

<u>2009</u>

Precipitation during 2009 totaled 15.2 inches averaged across all sites (Table A27). This was similar to precipitation in 2005 (Table A23). However, in 2005 above-average winter moisture was received followed by precipitation in April that was nearly twice the long-term mean. July, August, and October precipitation were also higher than normal in that year (Figure A5). In 2009, January began with very little precipitation that followed two months of no precipitation in the previous year (Figure A4). Thus, the growing season began with limited soil moisture. March and May saw less than half of normal precipitation. While June and July were near of slightly above normal, August, September, October and November were all below normal. December precipitation was above normal and began a period of higher than normal moisture entering 2010.

Temperatures in February and March were above the long-term mean and peak summer temperatures were prolonged in 2009. However, by September, temperatures fell below normal creating a deficit in heat units needed to produce an optimum cotton crop.

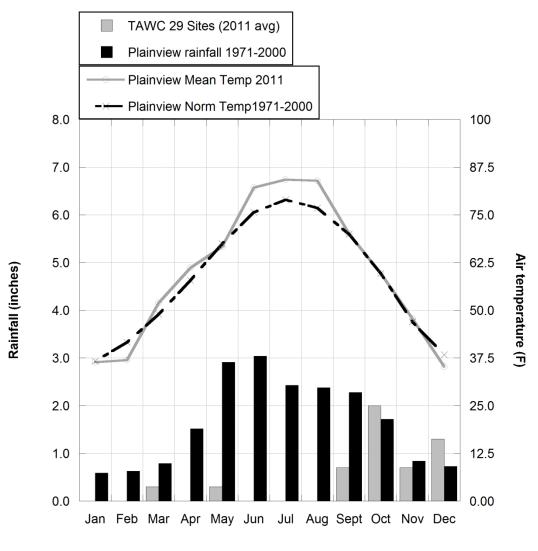

Figure A 5. Temperature and precipitation for 2009 in the demonstration area compared with long term averages.

SITE	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
2	0.08	1.22	0.27	2.30	0.12	3.13	2.23	2.57	0.24	1.18	0.15	1.61	15.10
3	0.10	1.45	0.32	2.74	0.30	4.79	2.33	0.00	0.07	1.41	0.18	1.92	15.60
4	0.09	1.25	0.27	2.37	0.14	4.73	1.90	2.58	2.01	0.80	0.18	0.99	17.30
5	0.07	0.96	0.21	1.82	0.68	4.58	3.92	1.73	1.72	0.68	0.06	0.27	16.70
6	0.05	0.78	0.17	1.47	1.07	2.01	2.86	3.55	0.20	0.02	0.09	0.73	13.00
7	0.05	0.75	0.16	1.42	0.52	2.89	2.24	1.22	1.60	0.60	0.09	1.55	13.10
8	0.05	0.75	0.16	1.42	0.52	2.89	2.24	1.22	1.60	0.60	0.09	1.55	13.10
9	0.04	0.59	0.13	1.12	0.73	2.20	2.48	1.34	1.65	0.59	0.08	0.66	11.60
10	0.04	0.56	0.12	1.05	0.44	2.13	2.64	3.01	2.18	0.41	0.06	0.56	13.20
11	0.04	0.63	0.14	1.18	0.86	2.56	2.21	1.25	1.31	0.61	0.08	0.83	11.70
14	0.12	1.80	0.39	3.41	1.10	0.81	4.21	0.67	0.02	0.00	0.14	1.41	14.10
15	0.09	1.33	0.29	2.52	1.50	0.84	1.25	0.16	2.79	1.30	0.16	1.77	14.00
17	0.04	0.64	0.14	1.21	0.51	2.88	1.90	2.88	3.41	0.55	0.05	0.69	14.90
18	0.08	1.14	0.25	2.16	0.66	6.25	1.50	1.63	2.26	0.35	0.09	0.75	17.10
19	0.07	0.95	0.21	1.80	0.85	5.41	2.31	2.53	1.89	0.00	0.12	0.66	16.80
20	0.06	0.84	0.18	1.59	0.37	3.87	2.43	3.41	2.09	0.37	0.11	0.89	16.20
21	0.06	0.80	0.18	1.52	0.58	2.70	1.43	3.35	1.83	0.51	0.08	0.77	13.80
22	0.11	1.56	0.34	2.95	1.01	3.75	0.98	1.86	2.05	0.96	0.24	1.19	17.00
23	0.09	1.26	0.28	2.38	0.76	4.84	1.29	1.59	1.96	0.75	0.00	0.91	16.10
24	0.08	1.19	0.26	2.25	1.31	6.82	2.38	1.73	0.28	0.66	0.12	0.51	17.60
26	0.08	1.09	0.24	2.06	1.91	4.21	4.61	0.99	0.19	0.63	0.12	1.29	17.40
27	0.06	0.89	0.19	1.68	1.22	3.64	3.14	1.78	1.86	0.86	0.11	1.18	16.60
28	0.05	0.71	0.15	1.33	0.97	2.89	2.49	1.41	1.48	0.69	0.09	0.94	13.20
29	0.13	0.45	0.44	0.94	0.41	2.9	3.26	2.35	2.82	0.75	0.22	1.41	16.08
30	0.08	1.09	0.24	2.06	1.91	4.21	4.61	0.99	0.19	0.63	0.12	1.29	17.40
Average	0.07	0.99	0.23	1.87	0.82	3.52	2.51	1.83	1.51	0.64	0.11	1.05	15.15

Table A 27. Precipitation by each site in the Demonstration Project in Hale and Floyd Counties during 2009.

<u>2010</u>

The project sites and the region received above average rainfall for the 2010 calendar year with an average of 28.9 inches measured across the project, as indicated in Table A28 and illustrated in Figure A6. Much of this rainfall came in the late winter and early spring/summer months, with above average rainfall from January through July, and significant rainfall amounts in the months of April and July. Temperatures for the year were slightly above average during the late fall and early spring months across the TAWC sites, allowing for increased soil temperatures at planting, further stabilizing the germination and early growth stages of the upcoming crops. An average of 6.0 inches fell on the project sites in April and 6.5 inches in July which when combined with the favorable conditions of the previous three months, provided ideal conditions for the 2010 summer growing season. The abnormally high rainfall continued in July and October allowing for summer crops to receive needed moisture during the final stages of production. This record high rainfall allowed some producers to achieve record yields, specifically on cotton and corn, while maintaining or decreasing their irrigation use from previous years of the project.


Figure A 6. Temperature and precipitation for 2010 in the demonstration area compared with long term averages.

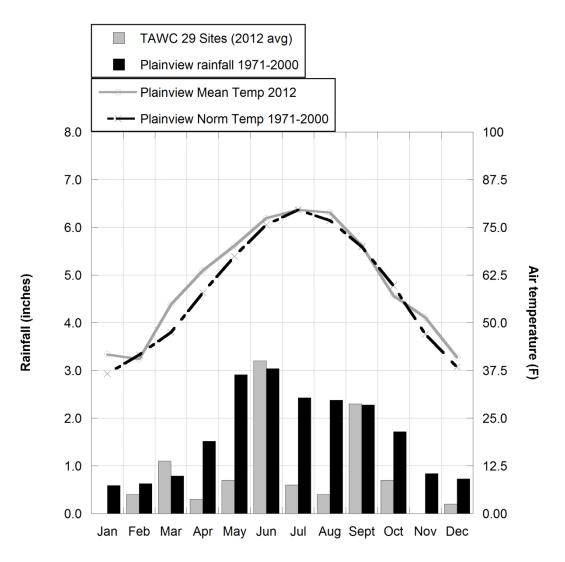
SITE	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
2	1.5	1.1	2.0	6.2	2.0	7.0	7.8	1.2	1.6	1.4	0.0	0.0	31.8
3	0.8	1.4	1.9	5.0	2.2	4.7	5.8	1.4	2.0	1.8	0.2	0.0	27.1
4	0.6	1.3	2.1	5.2	4.6	2.2	10.0	1.4	0.4	2.0	0.6	0.0	30.4
5	0.8	1.4	1.9	5.0	3.2	3.6	8.0	2.3	0.6	0.6	0.4	0.0	27.7
6	0.5	1.4	1.9	5.4	3.4	4.8	5.4	2.4	1.2	0.6	0.4	0.0	27.4
7	0.8	1.5	2.5	6.0	2.8	1.6	5.0	2.3	1.5	0.6	0.3	0.0	24.8
8	0.8	1.5	2.5	6.0	2.8	1.6	5.0	2.3	1.5	0.6	0.3	0.0	24.8
9	0.5	1.5	2.2	7.0	4.6	2.8	4.4	2.2	1.6	0.8	0.4	0.0	28.0
10	0.8	1.6	2.2	7.7	4.2	3.4	4.4	1.8	1.2	1.0	0.4	0.0	28.7
11	0.8	1.6	2.2	9.1	5.4	4.0	4.4	1.7	1.2	0.9	0.4	0.0	31.6
12	0.8	1.5	2.1	7.4	3.8	4.2	7.6	3.4	2.8	1.2	0.6	0.0	35.4
14	0.8	1.5	2.1	7.7	4.0	5.1	6.0	2.2	2.0	1.2	0.4	0.0	33.0
15	0.8	1.5	2.1	6.2	2.0	5.8	5.2	1.7	1.4	1.4	0.4	0.0	28.5
17	0.8	1.6	2.0	5.2	2.8	6.6	7.2	1.2	1.6	1.2	0.4	0.0	30.6
18	0.8	1.3	2.0	7.3	1.6	6.6	4.6	1.6	0.1	1.0	0.2	0.0	27.1
19	0.7	1.3	2.0	7.6	2.2	5.4	6.2	2.4	0.8	2.0	0.4	0.0	30.9
20	0.8	1.4	1.9	6.3	3.2	4.4	9.0	2.3	0.8	1.2	0.6	0.0	31.8
21	0.8	1.5	2.1	6.2	2.7	4.6	7.4	2.2	2.4	1.2	0.6	0.0	31.7
22	1.4	1.8	2.1	4.1	3.4	3.6	8.4	0.8	0.2	2.0	0.6	0.0	28.4
23	1.4	1.4	2.1	5.4	2.6	4.4	7.0	2.1	0.4	0.5	0.4	0.0	27.6
24	1.4	1.8	2.1	3.8	3.6	1.6	7.5	1.5	0.7	2.6	0.6	0.0	27.2
26	0.8	1.4	1.9	5.0	3.2	3.6	8.0	2.3	0.6	0.6	0.4	0.0	27.7
27	0.8	1.4	1.9	5.0	2.2	3.0	7.0	2.3	0.8	1.4	0.6	0.0	26.3
28	0.8	1.6	2.2	7.7	4.2	3.4	4.4	1.8	1.2	1.0	0.4	0.0	28.7
29	0.8	1.5	2.1	6.2	1.8	6.0	7.4	1.7	4.0	1.4	0.4	0.0	33.3
30	0.8	1.4	1.9	5.0	3.2	3.6	8.0	2.3	0.6	0.6	0.4	0.0	27.7
31	1.4	1.8	2.1	3.8	3.6	1.6	7.5	1.5	0.7	2.6	0.6	0.0	27.2
32	0.8	1.5	2.1	6.2	2.7	2.4	6.0	1.7	1.1	1.6	0.3	0.0	26.4
33	0.8	1.5	2.1	6.2	2.7	2.4	6.0	1.7	1.1	1.6	0.3	0.0	26.4
Average	0.9	1.5	2.1	6.0	3.1	3.9	6.6	1.9	1.2	1.3	0.4	0.0	28.9

Table A 28. Precipitation by each site in the Demonstration Project in Hale and FloydCounties during 2010.

<u>2011</u>

The project sites and the region received below average rainfall for the 2011 calendar year with an average of 5.3 inches (Figure A7 and Table A29), compared with a long term average of 18.5 inches. This was the worst drought the Texas High Plains had seen since the 1930's in that virtually no rainfall was received during the normal growing season. Several fields within sites recorded zero crop yields in 2011 because irrigation was insufficient to produce yields high enough to merit the harvest costs.

Month


Figure A 7. Temperature and precipitation for 2011 in the demonstration area compared with long term averages.

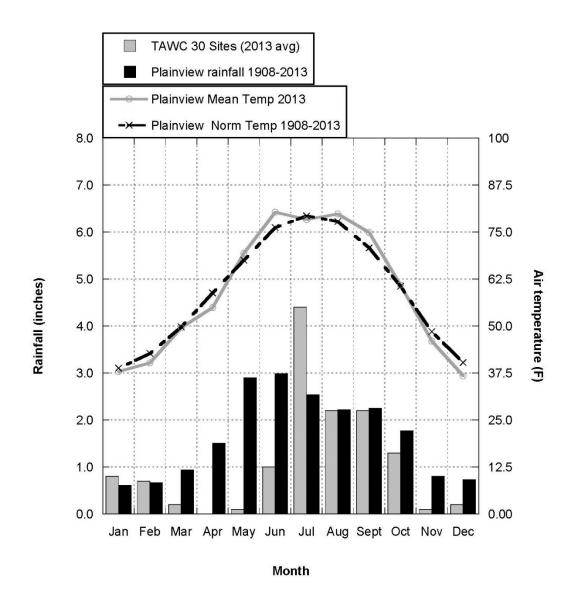
SITE	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
2	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.1	1.0	2.2	0.6	1.3	5.3
3	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.4	2.0	0.8	0.8	0.9	5.1
4	0.0	0.0	0.6	0.0	0.0	0.0	0.0	0.0	0.4	2.4	0.3	0.8	4.5
5	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.6	1.7	0.4	1.1	4.3
6	0.0	0.1	0.6	0.0	0.4	0.0	0.0	0.0	0.6	2.1	1.0	1.1	5.9
7	0.0	0.0	1.0	0.0	0.3	0.0	0.0	0.0	0.6	1.7	0.9	0.8	5.3
8	0.0	0.0	1.0	0.0	0.3	0.0	0.0	0.0	0.6	1.7	0.9	0.8	5.3
9	0.0	0.0	0.4	0.0	0.6	0.0	0.0	0.0	0.7	2.2	1.0	1.2	6.0
10	0.0	0.0	0.4	0.0	0.5	0.0	0.0	0.0	0.6	2.0	1.0	1.5	6.0
11	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.6	1.8	1.0	1.0	4.7
12	0.0	0.1	0.4	0.0	0.3	0.0	0.0	0.2	0.7	2.2	1.2	1.1	6.2
14	0.0	0.1	0.0	0.0	0.3	0.0	0.0	0.0	0.8	2.0	1.0	1.2	5.4
15	0.0	0.1	0.0	0.0	0.4	0.0	0.0	0.0	0.8	2.0	1.0	1.2	5.5
17	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.6	2.0	0.6	0.8	4.2
18	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.6	2.5	0.5	1.4	5.1
19	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.6	2.5	0.5	1.4	5.1
20	0.0	0.0	0.0	0.2	0.2	0.0	0.0	0.2	0.8	1.9	0.6	1.4	5.3
21	0.0	0.0	0.6	0.1	0.4	0.0	0.0	0.0	0.4	1.8	0.9	1.1	5.3
22	0.0	0.0	0.6	0.0	0.0	0.0	0.0	0.0	0.9	2.1	0.3	0.8	4.7
23	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.4	1.4	0.1	1.4	3.4
24	0.0	0.0	0.6	0.0	0.1	0.0	0.0	0.0	0.9	3.0	0.1	2.8	7.5
26	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.6	1.7	0.4	1.1	4.3
27	0.0	0.0	0.0	0.1	0.5	0.0	0.0	0.0	1.0	1.6	0.4	1.2	4.8
28	0.0	0.0	0.4	0.0	0.5	0.0	0.0	0.0	0.6	2.0	1.0	1.5	6.0
29	0.0	0.1	0.0	0.0	1.0	0.0	0.0	0.0	0.4	2.2	0.8	1.4	5.9
30	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.6	1.7	0.4	1.1	4.3
31	0.0	0.0	0.6	0.0	0.1	0.0	0.0	0.0	0.9	3.0	0.1	2.8	7.5
32	0.0	0.1	0.0	0.0	0.4	0.0	0.0	0.0	0.8	2.0	1.0	1.2	5.5
33	0.0	0.1	0.0	0.0	0.4	0.0	0.0	0.0	0.8	2.0	1.0	1.2	5.5
Average	0.0	0.0	0.3	0.0	0.3	0.0	0.0	0.0	0.7	2.0	0.7	1.3	5.3

Table A 29. Precipitation by each site in the Demonstration Project in Hale and FloydCounties during 2011.

<u>2012</u>

The project sites and the region again received below average rainfall for the 2012 calendar year, with an average of 10.0 inches measured across the project (Figure A8 and Table A30). Slightly above average rainfall was received in the months of March, June and September. Mean temperatures ran slightly above normal early in the season, but were close to normal during the growing season.

Month


Figure A 8. Temperature and precipitation for 2012 in the demonstration area compared with long term averages.

SITE	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
2	0.0	0.5	1.0	0.7	1.0	3.3	0.8	0.6	2.0	0.6	0.0	0.2	10.7
3	0.0	0.4	1.2	0.8	0.6	0.7	0.4	0.6	1.4	0.7	0.0	0.0	6.8
4	0.0	0.5	1.2	0.0	1.6	2.9	0.5	0.4	3.3	0.8	0.0	0.2	11.3
5	0.0	0.6	0.8	0.0	0.4	2.9	1.0	0.2	2.8	1.5	0.0	0.0	10.2
6	0.0	0.3	0.0	0.0	0.0	3.7	0.6	0.3	2.0	0.1	0.0	0.4	7.3
7	0.0	0.2	1.0	0.4	0.3	5.2	0.1	0.4	2.2	0.2	0.0	0.2	10.2
8	0.0	0.3	1.0	0.4	0.3	5.2	0.1	0.4	2.2	0.2	0.0	0.2	10.3
9	0.0	0.3	1.0	0.4	0.4	4.9	1.4	0.4	4.2	0.5	0.0	0.2	13.7
10	0.0	0.6	1.4	0.2	0.6	3.4	0.4	0.2	2.2	0.2	0.0	0.3	9.5
11	0.0	0.4	2.0	0.2	0.8	4.2	0.1	0.2	2.6	0.2	0.0	0.2	10.9
12	0.0	0.5	1.9	0.4	0.9	2.5	0.2	0.1	1.9	0.4	0.0	0.3	9.1
14	0.0	0.4	1.8	0.1	0.6	3.3	0.2	0.4	2.2	0.4	0.0	0.3	9.7
15	0.0	0.4	1.8	0.1	0.7	2.9	0.2	0.4	2.2	0.2	0.0	0.4	9.3
17	0.0	0.4	1.0	0.7	1.0	2.7	0.7	0.4	2.4	0.5	0.0	0.2	10.0
18	0.0	0.3	0.5	0.0	0.8	2.6	0.2	0.8	2.4	1.0	0.0	0.1	8.7
19	0.0	0.4	1.0	1.2	1.2	3.3	0.4	1.0	2.8	1.0	0.0	0.2	12.5
20	0.0	0.4	1.2	0.2	0.4	3.4	1.4	1.0	2.4	1.0	0.0	0.4	11.8
21	0.0	0.5	1.5	0.2	0.8	2.9	0.2	0.1	2.1	0.5	0.0	0.1	8.9
22	0.0	0.6	1.0	0.0	1.0	3.4	1.2	0.5	3.1	0.8	0.0	0.1	11.7
24	0.0	0.2	2.0	1.5	0.7	4.0	3.0	0.3	1.8	3.6	0.0	0.1	17.2
26	0.0	0.6	0.8	0.0	0.4	2.9	1.0	0.2	2.8	1.5	0.0	0.0	10.2
27	0.0	0.5	1.0	0.0	0.5	2.7	1.4	0.9	2.2	1.8	0.0	0.1	11.1
28	0.0	0.6	1.4	0.2	0.6	3.4	0.4	0.2	2.2	0.2	0.0	0.3	9.5
29	0.0	0.4	1.3	0.2	1.4	2.8	0.4	1.2	2.0	0.4	0.0	0.3	10.4
30	0.0	0.6	0.8	0.0	0.4	2.9	1.0	0.2	2.8	1.5	0.0	0.0	10.2
31	0.0	0.5	1.2	0.0	1.6	2.9	0.5	0.4	3.3	0.8	0.0	0.2	11.3
32	0.0	0.4	0.0	0.0	0.7	2.9	0.0	0.0	0.0	0.2	0.0	0.4	4.6
33	0.0	0.4	0.0	0.0	0.7	2.9	0.0	0.0	0.0	0.2	0.0	0.4	4.6
34	0.0	0.3	0.0	0.0	0.0	3.2	0.7	0.6	2.4	0.1	0.0	0.2	7.5
Average	0.0	0.4	1.1	0.3	0.7	3.2	0.6	0.4	2.3	0.7	0.0	0.2	10.0

Table A 30. Precipitation by each site in the Demonstration Project in Hale and FloydCounties during 2012.

<u>2013</u>

The project sites and the region again received below average rainfall for the 2013 calendar year with an average of 13.3 inches measured across the project, as indicated in Figure A9 and illustrated in Table A31. Below average rainfall was received in March through June, but nearly double average rainfall was received in July with about normal rain in August and September. Mean temperatures ran slightly above normal through the growing season with the exception of July which was about average for the long term means. As a result of the above average rainfall in July and warmer than normal temperatures, 2013 was a very good cropping year on average for the TAWC sites in the area.

Figure A 9. Temperature and precipitation for 2013 in the demonstration area compared with long term averages.

SITE	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec	Total
2	1.2	0.6	0.2	0.1	0.2	1.2	4.8	2.8	2.9	1.6	0.1	0.2	15.8
3	0.1	0.4	0.1	0.0	0.2	0.0	3.4	0.2	1.5	0.5	0.0	0.0	6.3
4	0.4	0.8	0.4	0.1	0.2	0.4	5.5	1.8	1.5	1.0	0.5	0.2	12.6
5	1.1	1.0	0.2	0.0	0.0	0.1	4.4	1.8	2.8	0.9	0.1	0.1	12.4
6	0.4	0.8	0.0	0.0	0.0	1.0	4.8	2.7	2.8	1.6	0.1	0.2	14.3
7	0.5	0.7	0.0	0.1	0.2	1.0	3.0	1.2	1.8	0.4	0.1	0.1	9.1
8	0.5	0.7	0.0	0.1	0.2	1.0	3.0	1.2	1.8	0.4	0.1	0.1	9.1
9	1.6	0.8	0.2	0.1	0.2	2.4	6.8	3.2	2.4	1.5	0.2	0.5	19.7
10	1.1	1.0	0.2	0.1	0.2	1.2	5.0	4.4	2.2	1.5	0.3	0.4	17.4
11	1.2	0.6	0.2	0.1	0.2	1.6	4.1	2.0	2.2	1.6	0.2	0.2	14.1
12	0.8	0.8	0.1	0.0	0.1	2.0	3.2	0.1	2.8	1.4	0.1	0.4	11.8
14	0.5	0.7	0.1	0.1	0.3	0.4	4.0	2.0	2.6	1.5	0.1	0.3	12.6
15	0.1	0.0	0.1	0.1	0.1	1.1	2.8	2.6	2.6	1.1	0.1	0.2	10.8
17	1.2	0.4	0.1	0.0	0.1	1.0	4.4	2.2	2.6	1.8	0.1	0.2	14.0
18	0.4	0.8	0.1	0.0	0.1	0.6	3.4	0.7	1.9	0.4	0.1	0.3	8.7
19	1.2	0.9	0.2	0.0	0.2	2.5	4.6	1.2	2.7	1.9	0.1	0.3	15.7
20	1.4	0.8	0.3	0.1	0.2	1.2	5.8	4.2	2.2	1.0	0.0	0.0	17.2
21	1.1	0.4	0.1	0.0	0.0	1.6	3.8	3.3	3.2	1.4	0.1	0.2	15.1
22	1.0	1.1	0.4	0.1	0.1	1.1	6.1	0.6	2.0	2.2	0.3	0.1	15.1
24	1.0	0.8	0.3	0.0	0.0	0.9	6.0	1.4	1.2	2.0	0.2	0.0	13.8
26	1.1	1.0	0.2	0.0	0.0	0.1	4.4	1.8	2.8	0.9	0.1	0.1	12.4
27	0.9	0.6	0.2	0.1	0.1	1.0	5.6	2.8	2.2	1.1	0.1	0.1	14.7
28	1.1	1.0	0.2	0.1	0.2	1.2	5.0	4.4	2.2	1.5	0.3	0.4	17.4
29	1.2	1.1	0.2	0.0	0.4	1.6	3.6	2.4	2.5	1.6	0.1	0.3	14.9
30	1.1	1.0	0.2	0.0	0.0	0.1	4.4	1.8	2.8	0.9	0.1	0.1	12.4
31	0.4	0.8	0.4	0.1	0.2	0.4	5.5	1.8	1.5	1.0	0.5	0.2	12.6
32	0.1	0.0	0.1	0.1	0.1	1.1	2.8	2.6	2.6	1.1	0.1	0.2	10.8
33	0.1	0.0	0.1	0.1	0.1	1.1	2.8	2.6	2.6	1.1	0.1	0.2	10.8
34	0.4	0.8	0.0	0.0	0.0	1.0	4.8	2.7	2.8	1.6	0.1	0.2	14.3
35	1.2	1.0	0.1	0.0	0.1	1.8	5.4	2.6	3.2	1.1	0.2	0.4	17.0
Average	0.8	0.7	0.2	0.0	0.1	1.1	4.4	2.2	2.4	1.3	0.1	0.2	13.4

Table A 31. Precipitation by each site in the Demonstration Project in Hale and FloydCounties during 2013.

Supplementary Grants To Project (2005-2013)

Grants directly used or partially used within the TAWC project sites are listed. Other grants and grant requests are considered complementary and outside of the TAWC project, but were obtained or attempted through leveraging of the base platform of the Texas Coalition for Sustainable Integrated Systems and Texas Alliance for Water Conservation (TeCSIS) program, and therefore represents added value to the overall TAWC effort.

<u>2006</u>

Allen, V. G., Song Cui, and P. Brown. 2006. Finding a Forage Legume that can Save Water and Energy and Provide Better Nutrition for Livestock in West Texas. High Plains Underground Water Conservation District No. 1. \$10,000 (funded).

<u>2007</u>

- Trostle, C.L., R. Kellison, L. Redmon, S. Bradbury. 2007. Adaptation, productivity, & water use efficiency of warm-season perennial grasses in the Texas High Plains. Texas Coalition, Grazing Lands Conservation Initiative, a program in which Texas State Natural Resource Conservation Service is a member. \$3,500 (funded).
- Li, Yue and V.G. Allen. 2007. Allelopathic effects of small grain cover crops on cotton plant growth and yields. USDA-SARE. Amount requested, \$10,000 (funded).
- Allen, V.G. and multiple co-authors. Crop-livestock systems for sustainable High Plains Agriculture. 2007. Submitted to the USDA-SARE program, Southeast Region, \$200,000 (funded).

<u>2008</u>

- Doerfert, D. L., Baker, M., and Akers, C. 2008. Developing Tomorrow's Water Conservation Researchers Today. Ogallala Aquifer Program Project. \$28,000 (funded).
- Doerfert, D.L., Meyers, C.. 2008. Encouraging Texas agriscience teachers to infuse water management and conservation-related topics into their local curriculum. Ogallala Aquifer Initiative. \$61,720 (funded).
- Request for federal funding through the Red Book initiatives of CASNR \$3.5 million. Received letters of support from Senator Robert Duncan, mayors of three cities in Hale and Floyd Counties, Glenn Schur, Curtis Griffith, Harry Hamilton, Mickey Black, and the Texas Department of Agriculture.
- Prepared request for \$10 million through the stimulus monies at the request of the CASNR Dean's office.

<u>2009</u>

- Texas High Plains: A Candidate Site for Long-Term Agroecosystems Research. USDA-CSREES 'proof of concept' grant. \$199,937 (funded).
- Building a Sustainable Future for Agriculture. USDA-SARE planning grant, \$15,000 (funded).
- Maas, S., A. Kemanian, & J. Angerer. 2009. Pre-proposal was submitted to Texas AgriLife Research for funding research on irrigation scheduling to be conducted at the TAWC project site.
- Maas, S., N. Rajan, A.C. Correa, & K. Rainwater. 2009. Proposal was submitted to USGS through TWRI to investigate possible water conservation through satellite-based irrigation scheduling.

Doerfert, D. 2009. Proposal was submitted to USDA ARS Ogallala Aquifer Initiative.

<u>2010</u>

- Kucera, J.M., V. Acosta-Martinez, V. Allen. 2010. Integrated Crop and Livestock Systems for Enhanced Soil C Sequestration and Biodiversity in Texas High Plains. Southern SARE grant. \$159,999 (funded with ~15% applied directly to TAWC project sites).
- Calvin Trostle, Rick Kellison, Jackie Smith. 2010. Perennial Grasses for the Texas South Plains: Species Productivity and Irrigation Response, \$10,664 (2 years).

<u>2011</u>

- Johnson, P., D. Doerfert, S. Maas, R. Kellison & J. Weinheimer. 2011. The Texas High Plains Initiative for Strategic and Innovative Irrigation Management and Conservation. USDA-NRCS Conservation Innovation Grant. Joint proposal with North Plains Groundwater Conservation District. \$499,848 (funded).
- Allen, V. 2011. Long-Term Agroecosystems Research and Adoption in the Texas Southern High Plains. Southern SARE grant. \$110,000 (funded).
- Maas, S. 2011. Auditing Irrigation Systems in the Texas High Plains. Texas Water Development Board. \$101,049 (funded).
- Maas, S. and co-authors. 2011. Development of a Farm-Scale Irrigation Management Decision-Support Tool to Facilitate Water Conservation in the Southern High Plains. USDA-NIFA. \$500,000 requested.

Trostle, C. 2011. Dryland reduced Tillage/No Tillage Cropping Sequences for the Texas South Plains. \$4,133 (funded from Texas State Support Committee, Cotton, Inc.,).

<u>2012</u>

- Allen, V. 2012. Long-Term Agroecosystems Research and Adoption in the Texas Southern High Plains. Southern SARE grant. \$110,000 (continued funding).
- Trojan, S. and co-authors. 2012. Adapting to drought and dwindling groundwater supply by integrating cattle grazing into High Plains row-cropping systems. USDA-NRCS Conservation Innovation Grant. \$348,847 requested.
- Trostle, C. 2012. Dryland reduced tillage/no tillage cropping sequences for the Texas South Plains. \$8,500 (funded from Texas Grain Sorghum Association).
- Trostle, C. 2012. Dryland reduced tillage/no tillage cropping sequences for the Texas South Plains. \$35,500 (funded from USDA Ogallala Aquifer Project).
- West, C. 2012. Calibration and validation of ALMANAC model for growth curves of warmseason grasses under limited water supply. USDA-ARS USDA Ogallala Aquifer Project. \$76,395 (funded).

<u>2013</u>

West, C. 2013. Long-term agroecosystems research and adoption in the Texas Southern High Plains. Southern SARE grant. \$100,000 (funded).

Donations to Project (2005-2013)

<u>2005</u>

City Bank, Lubbock, TX. 2003 GMC Yukon XL. Appraised value \$16,500.

<u>2008</u>

July 31, 2008 Field Day sponsors:

Coffey Forage Seeds, Inc.	\$500.00
Agricultural Workers Mutual Auto Insurance Co.	\$250.00
City Bank	\$250.00
Accent Engineering & Logistics, Inc.	\$100.00
Bammert Seed Co.	\$100.00
Floyd County Supply	\$100.00
Plainview Ag Distributors, Inc.	\$100.00
Production-Plus+	\$100.00

<u>2010</u>

February 3, 2010 Field Day sponsors:

Grain Sorghum Producers	\$250.00
D&J Gin, Inc.	\$250.00
Ronnie Aston/Pioneer	\$500.00
Floyd County Supply	\$200.00
Lubbock County	\$250.00
City Bank	\$250.00
High Plains Underground Water Conservation District	\$250.00
August 10, 2010 Field Day sponsors:	
Ted Young/Ronnie Aston	\$250.00
Netafim USA	\$200.00
Smartfield Inc.	\$500.00
Floyd County Soil & Water Conservation District #104	\$150.00
Grain Sorghum Producers	\$500.00

<u>2011</u>

February 24, 2011 Field Day sponsors:

Texas Corn Producers Board	\$500.00
West Texas Guar, Inc.	\$500.00

Texas Grain Sorghum Producers	\$500.00
Happy State Bank	\$500.00
August 4, 2011 Field Day sponsors:	
Texas Corn Producers Board	\$500.00
City Bank	\$500.00
Texas Grain Sorghum Producers	\$500.00
AquaSpy, Inc.	\$250.00
NetaFim USA	\$200.00
Panhandle-Plains Land Bank Association, FLCA	\$ 50.00

<u>2012</u>

August 4, 2012 Field Day sponsors:	
Texas Corn Producers Board	\$500.00
City Bank	\$500.00
Texas Grain Sorghum Producers	\$500.00
AquaSpy, Inc.	\$250.00
NetaFim USA	\$200.00
Panhandle-Plains Land Bank Association, FLCA	\$ 50.00
January 17, 2013 Field Day sponsors:	
Texas Corn Producers Board	\$500.00
Plains Cotton Growers	\$250.00
Grain Sorghum Producers	\$250.00
Ronnie Aston	\$500.00
Ag Tech	\$250.00
Diversified Sub-Surface Irrigation	\$500.00

<u>2013</u>

August 15, 2013 Field Day sponsors:

Texas Corn Producers Board	\$ 500.00
Texas Grain Sorghum Producers	\$ 250.00
Plains Cotton Growers	\$ 250.00
United Sorghum Check-Off Program	\$ 250.00
Dupont-Pioneer	\$ 800.00
AquaSpy	\$ 250.00
Eco-Drip	\$ 250.00
Hurst Farm Supply	\$ 800.00
Bayer Crop Science	\$ 800.00
Total	\$4,150.00

Visitors to the Demonstration Project Sites (2005-2013)

2005 Total Number of Visitors	190
2006 Total Number of Visitors	282
2007 Total Number of Visitors	36
<u>2008</u> Total Number of Visitors	53
2009 Total Number of Visitors	33
2010 Total Number of Visitors	14 +
<u>2011</u>	
Total Number of Visitors	11 +
<u>2012</u>	
Total Number of Visitors	15 +
<u>2013</u>	
Total Number of Visitors	230+

Presentations (2005-2013)

<u>2005</u>

1-Mar	Radio interview (KRFE)	Allen
17-Mar	Radio interview	Kellison
17-May	Radio interview (KFLP)	Kellison
21-Jul	Presentation to Floyd County Ag Comm.	Kellison
17-Aug	Presentation to South Plains Association of Soil & Water Conservation Districts	Kellison
13-Sep	Presentation at Floyd County NRCS FY2006 EQIP meeting	Kellison
28-Sep	Presentation at Floyd County Ag Tour	Kellison/Trostle/Allen
20-0ct	Presentation to Houston Livestock and Rodeo group	Allen/Baker
3-Nov	Cotton Profitability Workshop	Pate/Yates
10-Nov	Presentation to Regional Water Planning Committee	Kellison
16-Nov	Television interview (KCBD)	Kellison
18-Nov	Presentation to CASNR Water Group	Kellison/Doerfert
1-Dec	Radio interview (KRFE)	Kellison
9-Dec	Radio interview (AgriTALK – nationally syndicated)	Kellison
15-Dec	Presentation at Olton Grain Coop Winter Agronomy meeting	Kellison

<u>2006</u>

<u>Date</u>	Presentation	<u>Spokesperson(s)</u>
24-26 Jan	Lubbock Southwest Farm & Ranch Classic	Kellison
6-Feb	Southern Region AAAE Conference: The <i>value of water: Educational programming to maximize profitability and decrease water consumption</i> (poster presentation), Charlotte, NC	M. Norton/Doerfert
7-Feb	Radio Interview	Kellison/Baker
2-Mar	South Plains Irrigation Management Workshop	Trostle/Kellison/Orr
30-Mar	Forage Conference	Kellison/Allen/Trostle
19-Apr	Floydada Rotary Club	Kellison

20-Apr	Western Region AAAE Conference: <i>Conservation outreach communications: A framework for structuring conservation outreach campaigns</i> (poster presentation), Boise, ID	M. Couts/Doerfert
27-Apr	ICASALS Holden Lecture: New Directions in Groundwater Management for the Texas High Plains	Conkwright
18-May	Annual National AAAE Conference: <i>The value of water: Educational programming to maximize profitability and decrease water consumption</i> (poster presentation), Charlotte, NC	M. Norton/Doerfert
18-May	Annual National AAAE Conference: <i>Conservation outreach communications: A framework for structuring conservation outreach campaigns</i> (poster presentation), Charlotte, NC	M. Couts/Doerfert
15-Jun	Field Day @ New Deal Research Farm	Kellison/Allen/Cradduck/Doerfert
21-Jul	Summer Annual Forage Workshop	Trostle
27-Jul	National Organization of Professional Hispanic NRCS Employees annual training meeting, Orlando, FL	Cradduck (on behalf of Kellison)
11-Aug	2006 Hale County Field Day	Kellison
12-Sep	Texas Ag Industries Association Lubbock Regional Meeting	Doerfert (on behalf of Kellison)
11-0ct	TAWC Producer meeting	Kellison/Pate/Klose/Johnson
2-Nov	Texas Ag Industries Association Dumas Regional Meeting	Kellison
10-Nov	34th Annual Banker's Ag Credit Conference	Kellison
14-Nov	Interview w/Alphaeus Media	Kellison
28-Nov	Amarillo Farm & Ranch Show	Doerfert
8-Dec	2006 Olton Grain COOP Annual Agronomy Meeting	Kellison/Trostle
12-Dec	Swisher County Ag Day	Kellison/Yates
12-Dec	2006 Alfalfa and Forages Clinic, Colorado State University	Allen

<u>2007</u>

<u>Date</u>	Presentation	<u>Spokesperson(s)</u>
11-Jan	Management Team meeting (Dr. Jeff Jordan, Advisory Council in attendance)	
23—25 Jan	2007 Southwest Farm & Ranch Classic, Lubbock, TX	Kellison/Doerfert
6-Feb	Cow/Calf Beef Producer Meeting at Floyd County Unity Center	Allen
8-Feb	Management Team meeting	
13-Feb	Grower meeting, Clarendon, TX	Kellison
26-Feb	Silage workshop, Dimmitt, TX	
8-Mar	Management Team meeting	
21-Mar	Silage Workshop, Plainview, TX	Kellison/Trostle

22-Mar	Silage Workshop, Clovis, NM	Kellison/Trostle
80-Mar	Annual Report review meeting w/Comer Tuck, Lubbock, TX	
2-Apr	TAWC Producer meeting, Lockney, TX	
1-Apr	Texas Tech Cotton Economics Institute Research/Extension Symposium	Johnson
2-Apr	Management Team meeting	
21-Apr	State FFA Agricultural Communications Contest, Lubbock, TX (100 high school students)(mock press conf. based on TAWC info)	Johnson
-May	The Lubbock Round Table meeting	Kellison
-May	Area 7 FFA Convention, Texas State University, San Marcos, TX (distributed 200 DVD and info sheets)	Baker
0-May	Management Team meeting	
2-May	RoundTable meeting, Lubbock Club	Allen
5—17-May	21st Biennial Workshop on Aerial Photog., Videography, and High Resolution Digital Imagery for Resource Assessment: <i>Calibrating aerial imagery for estimating crop ground cover</i> , Terre Haute, IN	Rajan
0-May	Rotary Club (about 100 present)	Allen
-Jun	Lubbock Economic Development Association	Baker
4-Jun	Management Team meeting	
8-Jun	Meeting with Senator Robert Duncan	Kellison
0-Jul	Management Team meeting	
4—26-Jul	Universities Council on Water Resources (UCOWR)/National Institutes for Water Resources (NIWR) Annual Conference: <i>Political and civic engagement of agriculture producers who operate in selected Idaho and Texas counties dependent on irrigation</i> , Boise, ID	Doerfert
0-Jul—3-Aug	Texas Vocational Agriculture Teachers' Association Annual Conference, Arlington, TX (distributed 100 DVDs)	Doerfert
-Aug	Management Team meeting	
0-Aug	Texas South Plains Perennial Grass Workshop, Teeter Farm & Muncy Unity Center	Kellison/Trostle
3—15-Aug	International Symposium on Integrated Crop-Livestock Systems conference, Universidade Federal do Parana in Curitiba, Brazil	(Presentation made on behalf of Allen)
3—14-Aug	2007 Water Research Symposium: <i>Comparison of water use among crops in the Texas High Plains estimated using remote sensing,</i> Socorro, NM	Rajan
4—17-Aug	Educational training of new doctoral students, Texas Tech campus, Lubbock, TX (distributed 17 DVDs)	Doerfert
3-Aug	Cattle Feeds and Mixing Program	
2-Sep	West Texas Ag Chem Conference	Kellison
8-Sep	Floyd County Farm Tour	Trostle
0-Sep	Management Team meeting	
-Oct	Plant & Soil Science Departmental Seminar: Overview and Initial Progress of the Texas Alliance for Water Conservation Project	Kellison

8-Oct	Plant & Soil Science Departmental Seminar: <i>Estimating ground cover of field crops using multispectral medium, resolution satellite, and high resolution aerial imagery</i>	Rajan
11-0ct	Management Team meeting	
4—8-Nov	American Society of Agronomy Annual meetings: <i>Using remote sensing and crop models to compare water use of cotton under different irrigation systems</i> (poster presentation), New Orleans, LA	f Rajan
4—8-Nov	American Society of Agronomy Annual meetings: <i>Assessing the crop water use of silage corn and forage sorghum using remote sensing and crop modeling</i> , New Orleans, LA	Rajan
7—9-Nov	National Water Resources Association Annual Conference, Albuquerque, NM	Bruce Rigler (HPUWCD #1)
8-Nov	Management Team meeting (Comer Tuck in attendance)	
12—15-Nov	American Water Resources Association annual meeting: <i>Considering conservation outreach through the framework of behavioral economics: a review of literature</i> (poster presentations), Albuquerque, NM	M. Findley/Doerfert
12—15-Nov	American Water Resources Association annual meeting: Ho <i>w do we value water? A multi-state perspective</i> (poster presentation), Albuquerque, NM	L. Edgar/Doerfert
16-Nov	Water Conservation Advisory Council meeting, Austin, TX	Allen
19-Nov	Plant & Soil Science Departmental Seminar: Finding the legume species for West Texas which can improve forage	
	quality and reduce water consumption	Cui
27—29-Nov	Amarillo Farm Show, Amarillo, TX	Doerfert/Leigh/Kellison
2—4-Dec	Texas Water Summit, San Antonio, TX	Allen
13-Dec	Management Team meeting	

<u>2008</u>

<u>Date</u>	Presentation	<u>Spokesperson(s)</u>
8-11-Jan	Beltwide Cotton Conference Proceedings: <i>Energy Analysis of Cotton Production in the Southern High Plains of Texas</i> , Nashville, TN	Johnson/Weinheimer
10-Jan	Management Team meeting	
1-Feb	Southwest Farm and Ranch Classic, Lubbock	Kellison
14-Feb	Management Team meeting (Weinheimer presentation)	
14-Feb	TAWC Producer Board meeting	Kellison
5-Mar	Floydada Rotary Club	Kellison
13-Mar	Management Team meeting	
25-Mar	National SARE Conference: New American Farm Conference: Systems Research in Action, Kansas City, MO	Allen
27-Mar	Media training for TAWC Producer Board	Doerfert/Kellison
Apr	Agricultural Economics Seminar: Transitions in Agriculture, Texas Tech University	Weinheimer

10-Apr	Management Team meeting	
5-May	Pasture and Forage Land Synthesis Workshop: Integrated forage-livestock systems research, Beltsville, MD	Allen
8-May	Management Team meeting	
9-Jun	Walking tour of New Deal Research farm	Allen/Kellison/Li/Cui/Cradduck
10-12-Jun	Forage Training Seminar: <i>Agriculture and land use changes in the Texas High Plains</i> , Cropland Genetics, Amarillo	Allen
12-Jun	Management Team meeting	
14-Jul	Ralls producers	Kellison
14-Jul	Water and the AgriScience Fair Teacher and Student Workshops	Kellison/Brown/Cradduck
15-Jul	Pioneer Hybrids Research Directors	Kellison
20-23-July	9 th International Conference on Precision Agriculture, Denver, CO	Rajan
31-Jul	TAWC Field Day	all
8-Aug	TAWC Producer Board meeting	
12-Aug	Pioneer Hybrids Field Day	Kellison
9-Sep	Texas Ag Industries Association, Lubbock regional meeting	Allen
11-Sep	Management Team meeting	
16-Sep	Mark Long, TDA President, Ben Dora Dairies, Amherst, TX	Kellison/Trostle/ Cradduck
5-9-0ct	American Society of Agronomy Annual meeting, Houston	Rajan
8-0ct	American Society of Agronomy Annual meeting, Houston	Maas
15-0ct	State Energy Conservation Office (SECO) meeting	
16-0ct	Management Team meeting	
17-0ct	Thesis defense: A Qualitative Investigation of the Factors that Influence Crop Planting and Water Management in West Texas.	Leigh
20-Oct	Farming with Grass conference, Soil and Water Conservation Society, Oklahoma City, OK	Allen
23-0ct	Thesis defense: Farm Level Financial Impacts of Water Policy on the Southern Ogallala Aquifer	Weinheimer
13-Nov	Management Team meeting (Weinheimer presentation)	
17-20-Nov	American Water Resources Association Conference: <i>Farm-based water management research shared through a community of practice model</i> , New Orleans, LA	Leigh
17-20-Nov	American Water Resources Association Conference: <i>The critical role of the community coordinator in facilitating an agriculture water management and conservation community of practice</i> , New Orleans, LA	Wilkinson
17-20-Nov	American Water Resources Association Conference: An exploratory analysis of the ruralpolitan population and their attitudes toward water management and conservation (poster presentation), New Orleans, LA	Newsom
17-20-Nov	American Water Resources Association Conference: <i>Developing tomorrow's water researchers today</i> (poster presentation), New Orleans, LA	C. Williams
19-Nov	TTU GIS Open House	Barbato

Dec	Panhandle Groundwater District: Farm Level Financial Impacts of Water Policy on the Southern Ogallala Aquifer, White Deer, TX	Johnson/Weinheimer
2-4-Dec	Amarillo Farm Show	Doerfert
3-Dec	Dr. Todd Bilby, Ellen Jordan, Nicholas Kenny, Dr. Amosson (discussion of water/crops/cattle), Amarillo	Kellison
6-Dec	Lubbock RoundTable	Kellison
6-7-Dec	Meeting regarding multi-institutional proposal to target a future USDA RFP on water management, Dallas	Doerfert
11-Dec	Management Team meeting	
12-Dec	Olton CO-OP Producer meeting	Kellison
19-Dec	TAWC Producer meeting	Kellison/Schur/ Cradduck/Weinheimer

<u>2009</u>

<u>Date</u>	<u>Presentation</u>	<u>Spokesperson(s)</u>
15-Jan	Management Team meeting	
21-Jan	Caprock Crop Conference	Kellison
27-29 Jan	Southwest Farm & Ranch Classic (TAWC booth), Lubbock	Doerfert/Jones/Wilkinson/ Williams
27-Jan	Southwest Farm & Ranch Classic: Managing Wheat for Grain, Lubbock	Trostle
27-Jan	Southwest Farm & Ranch Classic: 2009 Planting Decisions – Grain Sorghum and Other Alternatives, Lubbock	Trostle
28-Jan	Southwest Farm & Ranch Classic: Profitability Workshop, Lubbock	Yates/Pate
Feb	Floyd County crop meetings, Muncy	Trostle
Feb	Hale County crop meetings, Plainview	Trostle
12-Feb	Management Team meeting	
17-Feb	Crops Profitability workshops, AgriLife Extension and Research Center, Lubbock	Yates/Trostle
5-Mar	Crops Profitability workshops, AgriLife Extension and Research Center, Lubbock	Yates/Trostle
12-Mar	Management Team meeting	
1-Apr	Texas Tech Cotton Economics Institute Research Institutes 9 th Annual Symposium (CERI): <i>Water Policy Impacts on High Plains Cropping Patterns and Representative Farm Performance</i> , Lubbock	Johnson/Weinheimer
9-Apr	Management Team meeting	
15-Apr	Texas Tech Forage Class	Kellison
21-Apr	Presentation to High Plains Underground Water District Board of Directors	Kellison
14-May	Management Team meeting	
27-May	Consortium for Irrigation Research and Education conference, Amarillo	Kellison

11-Jun	Management Team meeting	
22-24-Jun	Joint Meeting of the Western Society of Crop Science and Western Society of Soil Science: <i>Evaluation of the bar</i>	e Raian
22-24-juli	soli line from reflectance measurements on seven dissimilar sons (poster presentation), FL Collins, CO	
26-Jun	Western Agricultural Economics Association: Economics of State Level Water Conservation Goals, Kauai, HI	Weinheimer/Johnson
7-Jul	Universities Council of Water Resources: <i>Water Policy in the Southern High Plains: A Farm Level Analysis,</i> Chicago, IL	Weinheimer/Johnson
9-Jul	Management Team meeting	
27-31-Jul	Texas Agriscience Educator Summer Conference, Lubbock	Doerfert/Jones
6-Aug	Management Team meeting	
17-19-Aug	TAWC NRCS/Congressional tour and presentations, Lubbock, New Deal & Muncy	TAWC participants
27-Aug	Panhandle Association of Soil and Water Conservation Districts	Kellison
10-Sep	Management Team meeting	
8-0ct	Management Team meeting	
9-0ct	Presentation to visiting group from Colombia, TTU campus, Lubbock	Kellison
13-0ct	Briscoe County Field day, Silverton, TX	Kellison
1-5-Nov	Annual Meetings of the American Society of Agronomy, oral presentations: <i>Evapotranspiration of Irrigated and</i> Maas/Rajan Dryland Cotton Fields Determined Using Eddy Covariance and Penman-Monteith Methods, and Relation Between Soil Surface Resistance and Soil Surface Reflectance, poster presentation: Variable Rate Nitrogen Application in Cotton Using Commercially Available Satellite and Aircraft Imagery," Pittsburgh, PA	
10-12-Nov	Cotton Incorporated Precision Agriculture Workshop: Biomass Indices, Austin, TX	Rajan/Maas
12-Nov	Management Team meeting	
Dec	United Farm Industries Board of Directors: Irrigated Agriculture, Lubbock	Johnson/Weinheimer
Dec	Fox 34 TV interview, Ramar Communications, Lubbock	Allen
1-3-Dec	Amarillo Farm Show, Amarillo	Doerfert/Jones/Oates/ Kellison
3-Dec	Management Team meeting	
10-Dec	TAWC Producer Board meeting, Lockney	Kellison/Weinheimer/Maas
14-Dec	Round Table meeting with Todd Staples, Lubbock, TX	Kellison
12-18-Dec	Fall meeting, American Geophysical Union: Vegetation cover mapping at multiple scales using MODIS, Landsat, RapidEye, and Aircraft imageries in the Texas High Plains, San Francisco, CA	Rajan/Maas

<u>2010</u>

<u>Date</u>	Presentation	<u>Spokesperson(s)</u>
4-7-Jan	Beltwide Cotton Conference: Energy and Carbon: Considerations for High Plains Cotton, New	Yates/Weinheimer
	Orleans, LA	
14-Jan	TAWC Management Team meeting	
3-Feb	TAWC Farmer Field Day, Muncy, TX	TAWC participants
6-9-Feb	Southern Agricultural and Applied Economics Association annual meeting: <i>Macroeconomic Impacts on Water Use in Agriculture</i> , Orlando, FL	Weinheimer
9-11-Feb	Southwest Farm & Ranch Classic (TAWC booth), Lubbock	Doerfert/Jones/Frederick
10-Feb	Southwest Farm & Ranch Classic, Lubbock	Kellison/Yates/Trostle/Maas
11-Feb	TAWC Management Team meeting	
9-March	TAWC Producer Board Meeting, Lockney	TAWC participants
11-March	TAWC Management Team meeting	
31-March	Texas Tech Forage Class	Kellison
8-April	TAWC Management Team meeting	
13-April	Matador Land & Cattle Co., Matador, TX	Kellison
13-May	TAWC Management Team meeting	
10-June	TAWC Management Team meeting	
30-June	TAWC Grower Technical Working Group meeting, Lockney	Glodt/Kellison
8-July	TAWC Management Team meeting	
9-July	Southwest Council on Agriculture annual meeting, Lubbock	Doerfert/Sell/Kellison
15-July	Universities Council on Water Resources (UCOWR): <i>Texas Alliance for Water Conservation: An Integrated Approach to Water Conservation</i> , Seattle, WA	Weinheimer
25-27-July	American Agricultural Economics Association annual meeting: <i>Carbon Footprint: A New Farm Management Consideration on the Southern High Plains,</i> Denver, CO	Weinheimer
27-July	Tour for Cotton Incorporated group, TAWC Sites	Kellison/Maas
August	Ag Talk on FOX950 am radio show	Weinheimer
10-Aug	TAWC Field day, Muncy, TX	TAWC participants
12-Aug	TAWC Management Team meeting	
30-Aug	Tour/interviews for SARE film crew, TTU campus, New Deal and TAWC Sites	TAWC participants
9-Sept	TAWC Management Team meeting	
14-Sept	Floyd County Farm Tour, Floydada, TX	Kellison
14-0ct	TAWC Management Team meeting	

27-0ct	Texas Agricultural Lifetime Leadership Class XII	Kellison
31-0ct—3-Nov	Annual Meetings of the American Society of Agronomy: <i>Carbon fluxes from continuous cotton and pasture for grazing in the Texas High Plains,</i> Long Beach, CA	Rajan/Maas
31-0ct—3-Nov	Annual Meetings of the American Society of Agronomy: <i>Closure of surface energy balance for agricultural fields determined from eddy covariance measurements,</i> Long Beach, CA	Maas/Rajan
8-Nov	Fox News interview	Kellison
8-Nov	Fox 950 am radio interview	Doerfert
9-Nov	Texas Ag Industries Association Regional Meeting, Dumas, TX	Kellison
18-Nov	TAWC Management Team meeting	
19-Nov	North Plains Water District meeting, Amarillo, TX	Kellison/Schur
1-3-Dec	Amarillo Farm & Ranch Show (TAWC booth), Amarillo	Doerfert/Zavaleta/Graber
9-Dec	TAWC Management Team meeting	
12-18-Dec	American Geophysical Union fall meeting: <i>Vegetation cover mapping at multiple scales using MODIS, Landsat, RapidEye, and Aircraft imageries in the Texas High Plains,</i> San Francisco, CA	Rajan/Maas

<u>2011</u>

<u>Date</u>	Presentation	<u>Spokesperson(s)</u>
13-Jan	High Plains Irrigation Conference	Kellison
13-Jan	TAWC Management Team meeting	
18-Jan	Fox Talk 950 AM radio interview	Doerfert/Graber/Sullivan
24-Jan	Wilbur-Ellis Company	Kellison
25-Jan	Caprock Crop Conference	Kellison
4-Feb	KJTV-Fox 34 Ag Day news program: <i>TAWC rep discusses optimal irrigation, Field Day preview,</i> Lubbock, TX	Glodt
6-8-Feb	American Society of Agronomy Southern Regional Meeting: <i>Seasonal Ground Cover for Crops in The Texas High Plains</i> , Corpus Christi, TX	Maas/Rajan
7-Feb	KJTV-Fox 34 Ag Day news program: <i>Risk management specialist gives best marketing options for your crop</i> , Lubbock, TX	Yates
8-Feb	KJTV-Fox 34 Ag Day news program: <i>Producer Glenn Schur shares his water conservation tips,</i> Lubbock, TX	Schur
8-10-Feb	Southwest Farm & Ranch Classic (TAWC booth), Lubbock, TX	Doerfert/Graber/Sullivan

9-Feb	Southwest Farm & Ranch Classic: <i>Managing Warm Season Annual Forages on the South Plains,</i> Lubbock, TX	Trostle
9-Feb	KJTV-Fox 34 Ag Day news program: <i>Rep of the HPWD discusses possible water restrictions,</i> Lubbock, TX	Carmon McCain
10-Feb	Hale County Crops meeting, Plainview, TX	Trostle
17-Feb	TAWC Management Team meeting	
23-Feb	Pioneer Hybrids	Kellison
24-Feb	2011 Production Agriculture Planning Workshop, Muncy, TX	TAWC participants
25-Feb	KJTV-Fox 34 Ag Day news program: <i>Producers gain knowledge about water conservation at TAWC Field Day</i> , Lubbock, TX	Doerfert
4-Mar	Texas Tech Forage class	Kellison
10-Mar	TAWC Management Team meeting (Maas presentation)	
30-Mar	West Texas Mesonet (Wes Burgett), TTU Reese Center, Lubbock, TX	Kellison/Brown/Maas/Rajan /Weinheimer
31-Mar—1-Apr	Texas Cotton Ginners Show (TAWC booth), Lubbock, TX	Doerfert/Graber/Sullivan
13-Apr	USDA-ARS/Ogallala Aquifer project (David Brauer), Lubbock, TX	Kellison/TAWC participants
13-Apr	KJTV-Fox 34 Ag Day news program: TAWC introduces solution tools for producers, Lubbock, TX	Weinheimer
14-Apr	TAWC Management Team meeting	
18-Apr	KJTV-Fox 34 Ag Day news program: <i>Cotton overwhelmingly king this year on South Plains,</i> Lubbock, TX	Boyd Jackson
18-Apr	KJTV-Fox 34 Ag Day news program: <i>Specialty, rotation crops not popular this growing season,</i> Lubbock, TX	Trostle
12-May	TAWC Management Team meeting	
17-May	KJTV-Fox 34 Ag Day news program: <i>Tools available to maximize irrigation efficiency</i> , Lubbock, TX	Kellison
18-May	Floydada Rotary Club, Floydada, TX	Kellison
9-Jun	TAWC Management Team meeting	
29-Jun—2-Jul	Joint meetings of the Western Agricultural Economics Association/Canadian Agricultural Economics Society: Evaluating the Implications of Regional Water Management Strategies: A Comparison of County and Farm Level Analysis, Banff, Alberta, Canada	Weinheimer
12-14-Jul	UCOWR/NIWR Conference: <i>Texas Alliance for Water Conservation: An Innovative Approach to</i> <i>Water Conservation: An Overview,</i> Boulder, CO	Kellison
12-14-Jul	UCOWR/NIWR Conference: Sunflowers as an Alternative Irrigated Crop on the Southern High Plains, Boulder, CO	Pate
12-14-Jul	UCOWR/NIWR Conference: <i>Economic Considerations for Water Conservation: The Texas Alliance for Water Conservation,</i> Boulder, CO	Weinheimer
12-14-Jul	UCOWR/NIWR Conference: Determining Crop Water Use in the Texas Alliance for Water Conservation Project, Boulder, CO	Maas

12-14-Jul	UCOWR/NIWR Conference: What We Know About Disseminating Water Management Information to Various Stakeholders, Boulder, CO	Doerfert
12-14-Jul	UCOWR/NIWR Conference: Assessment of Improved Pasture Alternatives on Texas Alliance for Water Conservation, Boulder, CO	Kellison
12-14-Jul	UCOWR/NIWR Conference: <i>Integrating forages and grazing animals to reduce agricultural water use</i> , Boulder, CO	Brown
21-Jul	TAWC Management Team meeting	
4-Aug	KXDJ-FM news radio interview	Weinheimer
4-Aug	TAWC Field Day, Muncy, TX	TAWC participants
11-Aug	TAWC Management Team meeting	
1-Sep	KJTV-Fox 34 Ag Day news program: <i>High Plains producers struggling to conserve water in drought</i> , Lubbock, TX	Boyd Jackson
5-Sep	KJTV-Fox 34 Ag Day news program: <i>New ideas, concepts emerging from surviving historic drought,</i> Lubbock, TX	Kellison
8-Sep	TAWC Management Team meeting (Brown presentation)	
29-Sep	Texas & Southwestern Cattle Raiser Association Fall meeting, Lubbock, TX	Kellison
13-0ct	TAWC Management Team meeting (Maas presentation)	
16-19-0ct	Annual Meetings of the American Society of Agronomy: <i>Satellite-based irrigation scheduling</i> , San Antonio, TX	Maas/Rajan
16-19-0ct	Annual Meetings of the American Society of Agronomy: <i>Comparison of carbon, water and energy fluxes between grassland and agricultural ecosystems</i> , San Antonio, TX	Maas/Rajan
16-19-0ct	Annual Meetings of the Soil Science Society of America: <i>CO2 and N2O Fluxes in Integrated Crop Livestock Systems</i> (poster presentation), San Antonio, TX	Lisa Fultz/Marko Davinic/Jennifer Moore-Kucera
16-19-0ct	Annual Meetings of the Soil Science Society of America: <i>Dynamics of Soil Aggregation and Carbon in Long-Term Integrated Crop-Livestock Agroeceosystems in the Southern High Plains</i> (poster presentation), San Antonio, TX	Lisa Fultz/Marko Davinic/Jennifer Moore-Kucera
16-19-0ct	Annual Meetings of the Soil Science Society of America: <i>Long-Term Integrated Crop-Livestock Agroecosystems and the Effect on Soil Carbon</i> (poster presentation), San Antonio, TX.	Lisa Fultz/Marko Davinic/Jennifer Moore-Kucera
16-19-0ct	Annual Meetings of the Soil Science Society of America: <i>Soil Microbial Dynamics in Alternative Cropping Systems to Monoculture Cotton in the Southern High Plains</i> , San Antonio, TX.	Marko Davinic/Lisa Fultz/Jennifer Moore-Kucera
16-19-0ct	Annual Meetings of the Soil Science Society of America: <i>Soil Fungal Community and Functional Diversity Assessments of Agroecosystems in the Southern High Plains</i> , San Antonio, TX.	Marko Davinic/Lisa Fultz/Jennifer Moore-Kucera
16-19-0ct	Annual Meetings of the Soil Science Society of America: <i>Aggregate Stratification Assessment of</i> Soil Bacterial Communities and Organic Matter Composition: Coupling Pyrosequencing and Mid- Infrared Spectroscopy Techniques, San Antonio, TX.	Marko Davinic/Lisa Fultz/Jennifer Moore-Kucera
6-10-Nov	47 th Annual American Water Resources Association: <i>The Use of Communication Channels</i> <i>Including Social Media Technology by Agricultural Producers and Stakeholders in the State of</i> <i>Texas</i> , Albuquerque, NM	Doerfert/Graber

6-10-Nov	47 th Annual American Water Resources Association: <i>What We Know About Disseminating Water</i> <i>Management Information to Various Stakeholders</i> , Albuquerque, NM	Doerfert, et al.
6-10-Nov	47 th Annual American Water Resources Association: <i>The Water Management and Conservation</i> <i>Instructional Needs of Texas Agriculture Science Teachers</i> , Albuquerque, NM	Doerfert/Sullivan
6-10-Nov	47 th Annual American Water Resources Association: <i>The Attitudes and Opinions of Agricultural</i> <i>Producers Toward Sustainable Agriculture on the High Plains of Texas</i> , Albuquerque, NM	Doerfert, et al.
6-10-Nov	47 th Annual American Water Resources Association: <i>The Issues That Matter Most to Agricultural Stakeholders: A Framework for Future Research</i> (poster presentation), Albuquerque, NM	Sullivan/Doerfert, et al.
10-Nov	TAWC Management Team meeting	
18-Nov	39 th Annual Bankers Agricultural Credit Conference, Lubbock, TX	Kellison
22-Nov	KJTV 950 AM AgTalk radio interview	Trostle
29-Nov—1-Dec	Amarillo Farm Show (TAWC booth), Amarillo, TX	Doerfert/Graber/Sullivan/Kellison /Borgstedt
7-Dec	Plainview Lions Club, Plainview, TX	Kellison
8-Dec	TAWC Management Team meeting	
13-Dec	Channel Bio Water Summit (TAWC booth), Amarillo, TX	Borgstedt/Sullivan/Graber

<u>2012</u>

<u>Date</u>	Presentation	<u>Spokesperson(s)</u>
6-Mar	Lubbock Kiwanis Club	Kellison
7-Mar	Monthly Management Team Meeting	Kellison
23-Mar	New Mexico Ag Bankers Conference	Kellison, Klose
3-Apr	AgriLife Extension Meeting	Kellison
12-Apr	Monthly Management Team Meeting	Kellison
10-May	Monthly Management Team Meeting	Kellison
10-May	Carillion Center	Kellison
11-May	Tours-Comer Tuck with the Texas Water Development Board	Kellison
14-May	Tours-Farm Journal Media	Kellison
17-May	Tours-Secretary of State Group	Kellison
14-June	Monthly Management Team Meeting	Kellison
19-June	Lloyd Author Farm	Kellison

20-June	Blake Davis Farm	Kellison
21-June	Glenn Schur Farm	Kellison
10-July	Tours-Justin Weinheimer	Kellison
12-July	Texas Agricultural Coop Council	Kellison
12-July	Texas Independent Ginners Conference	Kellison
18-July	Monthly Management Team Meeting	Kellison
16-Aug	Monthly Management Team Meeting	Kellison
5-Sep	Leadership Sorghum Class 1	Kellison
20-Sep	Monthly Management Team Meeting	Kellison
18-0ct	Monthly Management Team Meeting	Kellison
24-0ct	Texas Agriculture Lifetime Leadership	Kellison
30-Oct	Special Management Team Meeting	Kellison
8-Nov	Monthly Management Team Meeting	Kellison
27-28-Nov	Amarillo Farm & Ranch Show	Borgstedt/Doerfert/Kellison
13-Dec	Monthly Management Team Meeting	Kellison
16-18-Nov	48th Annual American Water Resources Association conference	Doerfert/Kellison/P. Johnson/Maas
20-Nov	Special Management Team Meeting	Kellison
3-Jan	KFLP Radio	Kellison
7-9-Jan	Beltwide Cotton Conference	Doerfert
15-Jan	Fox 950 AM	Doerfert
4-Feb	Texas Seed Trade Association	Kellison
14-Feb	Monthly Management Team meeting	Kellison
21-Mar	Monthly Management Team meeting	Kellison
29-30-Mar	Texas Gin Association Convention	Borgstedt/Doerfert
11-Apr	Monthly Management Team meeting	Kellison

<u>2013</u>

<u>Date</u>	Presentation	<u>Spokesperson(s)</u>
7-10-Jan. 2013	-10-Jan. 2013 Field evaluation of a remote sensing based irrigation scheduling tool Beltwide Cotton Conference San Antonio, TX	
13-Mar.	John Deere Crop Sense capacitance probe use by TAWC – Lubbock, TX	Pate
2 Apr.	Southern Pasture Forage Crop Improvement Conference, Overton, TX	West, Brown
26-Apr.	Data plans for the initiative for strategic and innovative irrigation management and conservation. presented at the Water Management and Conservation: Database Workshop – Lubbock, TX	
8-May	TAWC Update and Highlights – For D-2 County Agents – Lubbock, TX	Pate
5-Jun.	Radio Interview – Field Walk Update – KFLP	Pate
3-Jul.	Radio Interview – Field Walk Update – KFLP	Pate
19-Jul.	Texas Southwestern Cattle Raisers Association, Lubbock, TX	Kellison
22-Jul.	TAWC and Its Purpose – 4-H Ag. Ambassadors – Lubbock, TX	Pate
9-Aug.	Radio Interview – Field Walk Update – KFLP	Pate
13-Aug.	High Plains Water District board of directors – Lubbock, TX	Kellison
19-Sept.	International Grasslands Conference – Sydney, Australia	Kellison, Brown
25-Sept.	Sept. TAWC update and highlights – Monsanto headquarters – St. Louis, Mo.	
26- Sept.	Wayland Baptist University class – Lockney, TX	Kellison
2-0ct.	Congressman Frank Lucas – Lubbock, TX	West, Kellison
7-0ct.	TAIA Annual Meeting	Kellison
9-0ct.	Congressman Mike Conway	West, Kellison
10-0ct.	TAWC Field Walk – Lockney, TX	Kellison
2 Nov.	Am. Soc. Agronomy, Tampa, FL. Modeling Old World bluestem grass	West, Xiong
14-15-Dec.	Dec. Remote sensing based water management from the watershed to the field level. CIMMYT and the Gates Foundation- Mexico City	
14-15-Dec.	Remote sensing based soil moisture detection. Abstracts, Workshop "Beyond Diagnostics: Insights and Recommendations from Remote Sensing." CIMMYT and the Gates Foundation- Mexico City	Shafian, Maas
7-Jan. 2014	Sorghum U – Levelland, TX	Kellison

7 Jan. 2014	Fieldprint Calculator: A measurement of agricultural sustainability in the Texas High Plains Beltwide Cotton Conference, New Orleans	Stokes, Johnson, Robertson, Underwood
7-Jan. 2014	Poster- LEPA vs. LESA Irrigation – Beltwide Cotton Conference – New Orleans, La.	Pate, Yates
16-Jan. 2014	TWDB Director Bech Bruun & staff – Lubbock, TX	Kellison
28-Jan. 2014	Randall County Producers	Kellison
12-Feb. 2014	Texas Panhandle-High Plains Water Symposium	Kellison
13 Feb. 2014	Nebraska Independent Crop Consultants Assoc. annual meeting. Talk on TAWC	West
24-Feb. 2014	TWDB Directors-Lubbock, TX	Kellison

- Rajan, N., and S. J. Maas. 2007. Comparison of water use among crops in the Texas High Plains estimated using remote sensing. Abstracts, 2007 Water Research Symposium, Socorro, NM.
- Rajan, N., and S. J. Maas. 2007. Calibrating aerial imagery for estimating crop ground cover. In R. R. Jensen, P. W. Mausel, and P. J. Hardin (ed.) Proc., 21st Biennial Workshop on Aerial Photog., Videography, and High Resolution Digital Imagery for Resource Assessment, Terre Haute, IN. 15-17 May. 2007. ASPRS, Bethesda, MD.
- Allen, V.G., D. Philipp, W. Cradduck, P. Brown, and R. Kellison. 2007. Water dynamics in integrated crop-livestock systems. Proc. Simpósio Internacional em Integração Lavoura-Pecuâria. 13, 14, and 15 August, 2007. Curitiba, Parana, Brazil.
- Acosta-Martínez, V., G. Burow, T.M. Zobeck, and V. Allen. 2007. Soil microbial diversity, structure and functioning under alternative systems compared to continuous cotton. Annual meeting of the American Society of Agronomy, New Orleans, LA. Nov. 4-8, 2007.
- Deycard, Victoria N., Wayne Hudnall, Vivien G. Allen. 2007. Soil sustainability as measured by carbon sequestration using carbon isotopes from crop-livestock management systems in a semi-arid environment. Annual meeting of the American Society of Agronomy, New Orleans, LA. Nov. 4-8, 2007.
- Doerfert, D., V. Allen, W. Cradduck, and R. Kellison. 2007. Forage sorghum production in the Southern Plains Region. Texas Alliance for Water Conservation, Summary of Research. Vol. 1, No. 1. Texas Tech Univ., Lubbock, TX.
- Leigh, K., D. Doerfert. 2008. Farm-based water management research shared through a community of practice model. 44th Annual American Water Resources Association (AWRA) Conference, New Orleans, LA.
- Rajan, N., and S. J. Maas. 2008. Acclimation of crops to soil water availability. Abstracts, Annual Meetings, Amer. Soc. Agronomy. 5-9 October, Houston, TX. (CD-ROM)
- Maas, S. J., and N. Rajan. 2008. Estimating plant transpiration and soil evaporation using remote sensing. Abstracts, Annual Meetings, Amer. Soc. Agronomy. 5-9 October, Houston, TX. (CD-ROM)

- Rajan, N., and S. J. Maas. 2008. Comparison of PVI and NDVI for estimating crop ground cover for precision agriculture applications. In Proc., 9th International Conference on Precision agriculture. 20-23 July, Denver, CO. (CD-ROM)
- Robertson, G. P., V. G. Allen, G. Boody, E. R. Boose, N. G. Creamer, L. E. Drinkwater, J. R. Gosz,
 L. Lynch, J. L. Havlin, L. E. Jackson, S. T.A. Pickett, L. Pitelka, A. Randall, A. S. Reed, T.
 R. Seastedt, R. B. Waide, and D. H. Wall. 2008. Long-Term Agricultural Research: A
 Research, Education, and Extension Imperative. BioScience 58(7):604-645.
- Johnson, J., P. Johnson, E. Segarra and D. Willis. 2009. Water conservation policy alternatives for the Ogallala Aquifer in Texas. *Water Policy*. 11: (2009) 537-552.
- Weinheimer, J., and P. Johnson. 2009. Energy and Carbon. Considerations for High Plains cotton. 2010 Beltwide Cotton Conference. January 2010, New Orleans, LA.
- Yates, J., J. Pate, J. Weinheimer, R. Dudensing, and J. Johnson. 2010. Regional economic impact of irrigated versus dryland agriculture in the Texas High Plains. Beltwide Cotton Conference. January, New Orleans, LA.
- Weinheimer, J., N. Rajan, P. Johnson, and S.J. Maas. 2010. Carbon footprint: A new farm management consideration in the Southern High Plains. Selected paper, Agricultural & Applied Economics Association Annual Meeting. July 25-27, Denver, CO.
- Weinheimer, J. 2010. Texas Alliance for Water Conservation: An integrated approach to water conservation. Universities Council on Water Resources. July, Seattle, WA.
- Doerfert, D.L., L. Graber, D. Meyers, and E. Irlbeck. 2012. Traditional and social media channels used by Texas agricultural producers. Proceedings of the 2012 American Association for Agricultural Education (AAAE) Research Conference, Ashville, NC.
- Doerfert, D., R. Kellison, P. Johnson, S. Maas, and J. Weinheimer. 2012. Crop production water management tools for West Texas farmers. Paper to be presented at the 2012 American Water Resources Association (AWRA) Annual Conference, November, Jacksonville, FL.
- Maas, S. 2012. Combining remote sensing and crop modeling: It's like baking a cake. Abstracts, Annual Meetings of the American Society of Agronomy, October, Cincinnati, OH. (abstract) CD-ROM.
- Rajan, N., and S. J. Maas. 2012. Inter-annual variation in carbon dioxide and water fluxes from a grazed pasture in the semi-arid Texas High Plains. Abstracts, Annual Meetings, Amer. Soc. Agronomy. October, Cincinnati, OH. (abstract) CD-ROM.

- Rajan, N., M. Roy, S. J. Maas and F.M. Padilla. 2012. Soil background effects on reflectancebased estimates of leaf area index of cotton. Abstracts, Annual Meetings, Amer. Soc. Agronomy. October, Cincinnati, OH. (abstract) CD-ROM.
- Maas, S., and N. Rajan. 2012. Spectral Crop Coefficient Approach: Its Development and Validation. Proceedings, 2012 UCOWR/NIWR Annual Conference, 17-19 July 2012, Santa Fe, NM. (abstract)
- Rajan, N., and S. Maas. 2012. Comparison of the Spectral Crop Coefficient and Standard Crop Coefficient Approaches. Proceedings, 2012 UCOWR/NIWR Annual Conference, 17-19 July 2012, Santa Fe, NM. (abstract).
- Doerfert, D., R. Kellison, R., S. Maas, P. Johnson, and J. Weinheimer. 2012. Crop production water management tools for west texas farmers. 48th annual American Water Resources Association (AWRA) conference in Jacksonville, FL, November 2012.
- Doerfert, D. 2012. The Texas Alliance for Water Conservation: An integrated water resources management model for agriculture. 48th annual American Water Resources Association (AWRA) conference in Jacksonville, FL, November, 2012
- Doerfert, D., and Rutherford, T. Use of multi-user virtual environments (MUVEs) for training purposes. 48th annual American Water Resources Association (AWRA) conference in Jacksonville, FL, November, 2012
- Graber, L., D. Doerfert, C.A. Meyers, and E.G. Irlbeck. 2012. Traditional and social media channels used by Texas agricultural producers. Proceedings of the American Association of Agricultural Education (AAAE) Western Region Conference, Bellingham, WA.
- Maas, S., and N. Rajan. Remote sensing based water management from the watershed to the field level. Workshop "Beyond Diagnostics: Insights and Recommendations from Remote Sensing." CIMMYT, Gates Foundation, 14-15 Dec 2013, Mexico City.
- Shafian, S., and S. Maas. Remote sensing based soil moisture detection. Abstracts, Workshop "Beyond Diagnostics: Insights and Recommendations from Remote Sensing." CIMMYT, Gates Foundation, 14-15 December 2013, Mexico City. (Invited)
- West, C.P., C.P. Brown, and V.G. Allen. 2013. Integrated crop/forage/livestock systems for the Texas High Plains. 67th Southern Pasture and Forage Crop Improvement Conference. 22-24 Apr., 2013, Tyler, Texas.
- Mitchell, D., P. Johnson, V. Allen, and C. Zilverberg. 2013. Integrating cotton and beef production in the Texas Southern High Plains: A simulation approach. Abstract for Southern Agric. Econ. Assoc., February 2-5, 2013, Orlando, FL.

- Mitchell, D., and P. Johnson. 2013. Economic impacts of the 2011 drought on the Southern High Plains. Abstract for Am. Agric. Econ. Assoc., August 4-6, 2013, Washington, DC.
- Stokes, K., P. Johnson, B. Robertson, and B. Underwood. 2014. FieldPrint Calculator: A measurement of agricultural sustainability in the Texas High Plains. 2014 Beltwide Cotton Conferences Proceedings, pg. 406-412. January 4-7, 2014, New Orleans, LA.

Related Refereed Journal Articles (2005-2013)

- Acosta-Martinez, V., T.M. Zobeck, and V. Allen. 2004. Soil microbial, chemical and physical properties in continuous cotton and integrated crop-livestock systems. Soil Science Society of America Journal 68:1875-1884.
- Allen, V.G., C.P. Brown, R. Kellison, E. Segarra, T. Wheeler, P.A. Dotray, J.C. Conkwright, C.J. Green, and V. Acosta-Martinez. 2005. Integrating cotton and beef production to reduce water withdrawal from the Ogallala Aquifer. Agronomy Journal 97:556-567.
- Philipp, D., V.G. Allen, R.B. Mitchell, C.P. Brown, and D.B. Wester. 2005. Forage nutritive value and morphology of three old world bluestems under a range of irrigation levels. Crop Science 45:2258-2268.
- Philipp, D., C.P. Brown, V.G. Allen, and D.B. Wester. 2006. Influence of irrigation on mineral concentrations in three old world bluestem species. Crop Science. 46:2033-2040.
- Allen, V.G., M.T. Baker, E. Segarra and C.P. Brown. 2007. Integrated crop-livestock systems in irrigated, semiarid and arid environments. Agronomy Journal 99:346-360 (Invited paper).
- Philipp, D., V.G. Allen, R.J. Lascano, C.P. Brown, and D.B. Wester. 2007. Production and water use efficiency of three old world bluestems. Crop Science. 47:787-794.
- Marsalis, M.A., V.G. Allen, C.P. Brown, and C.J. Green. 2007. Yield and nutritive value of forage bermudagrasses grown using subsurface drip irrigation in the Southern High Plains. Crop Science 47:1246-1254.
- Allen, V.G., C.P. Brown, E. Segarra, C.J. Green, T.A. Wheeler, V. Acosta-Martinez, and T.M. Zobeck. 2008. In search of sustainable agricultural systems for the Llano Estacado of the U.S. Southern High Plains. Agriculture Ecosystems and Environment 124:3-12. (Invited paper)

- Acosta-Martinez, V., S. Dowd, Y. Sun, V. Allen. 2008. Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biology and Biochemistry, doi:10.1016/j.soilbio.2008.07.022.
- Dudensing, J., J. Johnson, P., and C. Villalobos. 2008. Grazing alternatives in the face of declining groundwater: A case from the Southern High Plains of Texas. Texas Journal of Agriculture and Natural Resources 21:60-72.
- Wheeler-Cook, E., E. Segarra, P. Johnson, J. Johnson and D. Willis. 2008. Water conservation policy evaluation: The case of the southern Ogallala Aquifer. Texas Journal of Agriculture and Natural Resources 21:89-102.
- Maas, S. J., and N. Rajan. 2008. Estimating ground cover of field crops using mediumresolution multispectral satellite imagery. Agronomy Journal 100:320-327.
- Rajan, N., and S.J. Maas. 2009. Mapping crop ground cover using airborne multispectral digital imagery. Precision Agriculture 10(4). http://www.springerlink.com/content/1385-2256
- Allen, V.G., T. Sell, R. L. Kellison, P.N. Johnson, and P. Brown. 2009. Grassland environments: Factors driving change. In: Alan J. Franzluebbers (ed.) Farming with Grass: Achieving Sustainable Mixed Agricultural Landscapes. Soil Water Conservation Society e-book. <u>http://www.swcs.org/en/publications/farming_with_grass/</u>.
- Acosta-Martinez, V., G. Burow, T.M. Zobeck, and V. Allen. 2010. Soil microbial communities and function in alternative systems to continuous cotton. Soil Science Society of America Journal 74:1181-1192.
- Acosta-Martinez, V., S.E. Dowd, Y. Sun, D. Wester, and V. Allen. 2010. Pyrosequencing analysis for characterization of soil bacterial populations as affected by an integrated livestock-cotton production system. Applied Soil Ecology 45:13-25.
- Maas, S., and N. Rajan. 2010. Normalizing and converting image DC data using scatter plot matching. Remote Sensing 2:1644-1661.
- Maas, S., N. Rajan, and J. Kathilankal. 2010. Estimating crop water use of irrigated and dryland cotton in the Southern High Plains. Agronomy Journal 102:1641-1651.
- Acosta-Martinez, V., et al. 2010. Long-term soil microbial community and enzyme activity responses to an integrated cropping-livestock system in a semi-arid region. Agriculture, Ecosystems and Environment 137:231-240.
- Davinic, M., L. M. Fultz V. Acosta-Martinez, F. J. Calderón, S. B. Cox, S. E. Dowd, V. G. Allen, J. C. Zak, and J. Moore-Kucera. 2011. Pyrosequencing and mid-infrared spectroscopy

reveal distinct aggregate stratification of soil bacterial communities and organic matter composition. Soil Biology and Biochemistry 46:63-72.

- Zilverberg, C.J., P. Johnson, J. Weinheimer, and V.G. Allen. 2011. Energy and carbon costs of selected cow-calf systems. Rangeland Ecology and Management 64:573-584.
- Allen, V.G., C. Batello, E.J. Berretta, J. Hodgson, M. Kothmann, X. Li, J. McIvor, J. Milne, C. Morris, A. Peeters and M. Sanderson. 2011. An international terminology for grazing lands and grazing animals. Grass and Forage Science 66:2-28.
- Allen, V.G., C.P. Brown, R. Kellison, P. Green, C.J. P. Zilverberg, J. Johnson, J. Weinheimer, T. Wheeler, E. Segarra, V. Acosta-Martinez, T.M. Zobeck, and J.C. Conkwright. 2012. Integrating cotton and beef production in the Texas Southern High Plains. I. Water use and measures of productivity. Agronomy Journal 104:1625-1642.
- Zilverberg, C.J., V.G. Allen, C.P. Brown, P. Green, P. Johnson, and J. Weinheimer. 2012. Integrating cotton and beef production in the Texas Southern High Plains. II. Fossil fuel use. Agronomy Journal 104:1643-1651.
- Song, C., V.G. Allen, P.C. Brown, and D.B. Wester. 2013. Growth and nutritive value of three old world bluestems and three legumes in the semiarid Texas High Plains. Crop Science 53:329-340.
- Guo, W.S., and K. F. Bronson. 2012. Relationship between cotton yield and soil electrical conductivity, topography, and Landsat imagery. Precision Agriculture 13:678-692.
- Nair, S., S. Maas, C. Wang, and S. Mauget. 2012. Optimal field partitioning for center-pivotirrigated cotton in the Texas High Plains. Agronomy Journal 105: 124-133.
- Johnson, P., J. Zilverberg, V.G. Allen, J. Weinheimer, C.P. Brown, R. Kellison, and E. Segarra. 2013. Integrating cotton and beef production in the Texas Southern High Plains: III. An economic evaluation. Agronomy Journal. 105:929-937.
- Davinic M., J. Moore-Kucera, V. Acosta-Martinez, J. Zak, and V. Allen. 2013. Soil fungal groups' distribution and saprophytic functionality as affected by grazing and vegetation components of integrated cropping-livestock agroecosystems. Applied Soil Ecology 66:61-70.
- Weinheimer, J., P. Johnson, D. Mitchell, J. Johnson, and R. Kellison. 2013. Texas High Plains imitative for strategic and innovative irrigation management and conservation. Journal of Contemporary Water Research & Education. 151:43-49.
- Rajan, N., S. Maas and C. Song. 2013. Extreme drought effects on carbon dynamics of a semiarid pasture. Agronomy Journal 105:1749-1760.

- Li, Yue, F. Hou, J. Chen, C.P. Brown, and V.G. Allen. 2013. Steers grazing a rye cover crop influence growth of rye and no-till cotton. Agronomy Journal 105:1571-1580.
- Li, Yue, V.G. Allen, J. Chen, F. Hou, C.P. Brown, and P. Green. 2013. Allelopathic influence of a wheat or rye cover crop on growth and yield of no-till cotton. Agron. J. 105:1581.
- Fultz, L.M., J. Moore-Kucera, T.M. Zobek, V. Acosta-Martínez, and V.G. Allen. 2013. Aggregate carbon pools after 13-years of integrated crop-livestock management in semi-arid soils. Soil Science Society of America Journal 77:1659-1666.

Popular Press (2005-2013)

Wolfshohl, Karl. 2005. Can they save the Ogallala (and the farmer?). *Vistas* 13(2):17-19.

- Blackburn, Elliott. 2006. Farmer-Initiated Water-Saving Programs Offer Fresh Approach. *Lubbock Avalanche-Journal.*
- PBS video: *State of Tomorrow*, Episode 101. Alphaeus Media, Austin, Texas. Filmed Fall 2006; originally aired Spring 2007. http://www.stateoftomorrow.com/episodes/episode01.htm

Foster, Jerod. 2007. Learning to Conserve. Archways Vol. 2(1), p. 6-9.

- Tietz, Neil. 2008. Trouble in Texas. *Hay & Forage Grower*. January 2008, p. 6-8.
- Blackburn, Elliott. 2008. Aquifer's drop no cause for alarm just caution. *Lubbock Avalanche-Journal.*
- Martin, Norman. 2008. Texas Tech research farm field day focuses on forages. CASNR NewsCenter. <u>http://www.depts.ttu.edu/agriculturalsciences/news</u>
- Martin, Norman. 2008. Perennial forages look promising on the plains. CASNR NewsCenter. http://www.depts.ttu.edu/agriculturalsciences/news
- Martin, Norman. 2008. CASNR Distinguished Alumni honored at Merket Center. CASNR NewsCenter. <u>http://www.depts.ttu.edu/agriculturalsciences/news</u>
- Staff. 2008. Texas Alliance for Water Conservation Announces 2008 Field Day. *The Farmer-Stockman*. April 25, 2008.
- Martin, Norman. 2008. Water conservation field day set for July 31 in Muncy. CASNR NewsCenter. <u>http://www.depts.ttu.edu/agriculturalsciences/news</u>

- Chandler, Cory. 2008. Good prices lead some growers to swap cotton for grain. CASNR NewsCenter. <u>http://www.depts.ttu.edu/agriculturalsciences/news</u>
- Chandler, Cory. 2008. Hungry cows may extend life of Ogallala: Texas Tech Study. CASNR NewsCenter. <u>http://www.depts.ttu.edu/agriculturalsciences/news</u>
- Texas Tech Today/Communications and Marketing video: Saving the Ogallala. August 1, 2008. <u>http://today.ttu.edu/2008/08/saving-the-ogallala-video</u>
- Texas Tech Graduate School: Highlighting our graduate students . . .Katie Leigh, Agricultural Communications. <u>http://www.depts.ttu.edu/gradschool/profiles/Highlighttext10_08.php</u>
- Doerfert, David. 2008. Farmer-Driven Water Demonstration Project Showing Results. September 22, 2008 Press Release.
- Cleveland, Sean. 2009. New recruiting coordinator joins Plant and Soil Science staff. CASNR NewsCenter. <u>http://www.depts.ttu.edu/agriculturalsciences/news</u>
- Blackburn, Jennifer. 2009. Working to Become Water Wise. *National Sorghum Producers Sorghum Grower*, Summer 2009.
- Martin, Norman. 2009. Texas Tech Awarded Grant for New Carbon Cycling Focus. Texas Tech Today. <u>http://today.ttu.edu/2009/10/usda-grant-for-carbon-cycling</u>
- Martin, Norman. 2009. Texas Tech Awarded USDA Grant for New Carbon Cycling Focus. CASNR NewsCenter. <u>http://www.depts.ttu.edu/agriculturalsciences/news</u>
- Allen, Vivien Gore. 2009. Travel Course: Ecology and Grazing Lands Systems. *The Forage Leader*, p. 5.
- High Plains Underground Water Conservation District No. 1. 14 January 2010. Texas Alliance for Water Conservation Finalizes Program for 2010 Pioneers in Agriculture Field Day & Workshop. <u>http://www.hpwd.com/news</u>.
- Martin, Norman. 2010. CASNR's Hudson highlights Feb. 3 water conservation field day. CASNR NewsCenter. <u>http://www.depts.ttu.edu/agriculturalsciences/news</u>
- Smith, Ron. 11 March 2010. Farm Press discusses benefits of SmartCrop, other water conservation practices. *Farm Press*: posted online by Taber Black at http://www.smartfield.com/2010/03.
- Smith, Ron. 12 April 2010. Ag carbon benefit may be indirect. *Southwest Farm Press*. http://www.southwestfarmpress.com/energy/ag-carbon-benefit-indirect-0412.

Yates, Samantha. 2010. Competing for Profit. ACC Newsletter, Issue XV – May 2010, p. 1-5.

- McCain, Carmon. June 2010. Irrigation Water use can be managed with technology. *The Cross Section*, Volume 56 No. 6.
- McCain, Carmon. June 2010. Texas Alliance for Water Conservation announces August 10 field day. *The Cross Section*, Volume 56 No. 6.
- Dizon, Alyssa. 19 June 2010. Ground View. *Lubbock Avalanche-Journal*, pages A-1, A-9 and A-11.
- YouTube video: uploaded by MyPlainview on 11 August 2010. Texas Alliance for Water Conservation Field Day 2.wmv. <u>http://www.youtube.com/watch?v=KDpMK2syVgQ</u>
- Porter, Richard. 11 August 2010. Sen. Duncan keynote speaker for Texas Alliance for Water Conservation. *Plainview Daily Herald*. <u>http://www.myplainview.com/news</u>
- *Lubbock Avalanche-Journal* editorial/opinion. 27 August 2010. Conservation vital element of long-term water supply.
- Elkins, Hardy. 2010. Sustainability on the High Plains. *The Agriculturist*, Fall 2010, p. 46-47.
- Miller, Jessica. 22 November 2010. New technology helps producers monitor water use via phones. Fox 34 News, Ag Day Lubbock. <u>http://www.myfoxlubbock.com/content/agdaylubbock/story/water-conservation-Aqua-Spy-cell-phones-Lockney/ZPwy-3pu3kWp11Ftx3LdZg.cspx</u>
- Southwest Farm Press. 22 February 2011. Water growing concern for Texas producers. http://southwestfarmpress.com/management/water-growing-concern-texasproducers
- Black, Emily, KCBD NewsChannel 11. 2 March 2011. New website helps farmers battle drought. <u>http://www.kcbd.com/story/15136451/new-website-helps-farmersbattle-drought</u>
- Martin, Norman. 15 March 2011. Wise Water Use; New irrigation, economic management tools launched. <u>http://www.depts.ttu.edu/agriculturalsciences/news/?p=866</u>
- *Lubbock Avalanche-Journal* Lubbock Online local news. 17 March 2011. TAWC project offers irrigation management tools for farmers. <u>http://lubbockonline.com/localnews/2011-03-17/tawc-project-offers-irrigation-management-tools-farmers</u>

- Porter, Richard, *Plainview Herald*. 20 March 2011. Researcher: Area farmers should manage for maximum profit. <u>http://www.myplainview.com/news/article_631b5c12-5243-11e0-8e54-001cc4c03286.html#user-comment-area</u>
- Miller, Jessica, Fox KJTV-34 News Ag Day Lubbock. 18 April 2011. Cotton overwhelmingly king this year on South Plains. <u>http://www.myfoxlubbock.com/news/local/story/Cotton-South-Plains-Ag-Day-Lubbock/VYH8A0qlG0eX4Dru1M5Kdw.cspx</u>
- Tietz, Neil, *Hay & Forage Grower, Volume 26, No. 5.* 2 May 2011. Water Worries: Declining Aquifers Threaten Agriculture. <u>http://hayandforage.com/hay/alfalfa/declining-aquifers-threaten-agriculture-0501</u>
- Martin, Norman. 12 July 2011. Researchers fight brutal drought with new web-based tools for farmers. CASNR NewsCenter. <u>http://today.ttu.edu/2011/07/texas-tech-</u><u>researchers-fight-brutal-drought-with-web-based-tools-for-farmers</u>
- Miller, Jessica, Fox KJTV-34 News Ag Day Lubbock. 20 July 2011. Texas Tech researchers develop drought-management tools. <u>http://www.myfoxlubbock.com/content/agdaylubbock/story/Drought-Texas-</u> <u>Tech/mrHBvZQHzUyWfXH_hMrSdw.cspx</u>
- Miller, Jessica, Fox KJTV-34 News Ag Day Lubbock. 22 July 2011. TAWC to host water conservation field day. <u>http://www.myfoxlubbock.com/content/agdaylubbock/story/TAWC-field-day-Muncy-Texas/kZP8t98sDkeNzGNs25GBkg.cspx</u>
- Black, Emily, KCBD NewsChannel 11. 25 July 2011. Texas Tech researchers provide a new tool in farming. <u>http://www.kcbd.com/story/15135807/texas-tech-researchers-provide-a-new-tool-in-farming</u>
- Miller, Jessica, Fox KJTV-34 News Ag Day Lubbock. 27 July 2011. One form of irrigation proving effective in severe drought. <u>http://www.myfoxlubbock.com/news/local/story/Irrigation/6UjBzEFuPUyXk8TUv</u> <u>4FZRw.cspx</u>
- Graham, Fiona. 5 August 2011. Digital cloud lets farmer know when to water. BBC News: <u>http://www.bbc.co.uk/news/business-14392244</u>.
- Smith, Ron. 8 August 2011. New regs, technology will prolong irrigation. *Southwest Farm Press*. <u>http://southwestfarmpress.com/irrigation/new-regs-technology-will-prolong-irrigation</u>

- Southwest Farm Press. 12 August 2011. Irrigation management critical during drought. <u>http://southwestfarmpress.com/irrigation/irrigation-management-critical-during-drought</u>
- Welch, Kirk. 25 August 2011. Strategic Steps: CASNR part of massive \$500k plains conservation project. <u>http://www.depts.ttu.edu/agriculturalsciences/news</u>
- Littlefield, Dee Ann. 25 August 2011. NRCS announces recipients of conservation innovation grants in Texas. *Southwest Farm Press:* <u>http://southwestfarmpress.com/government/nrcs-announces-recipientsconservation-innovation-grants-texas</u>
- Ledbetter, Kay. 29 August 2011. AgriLife Research: Soil moisture-monitoring tools will pay off. <u>http://www.sunbeltagnet.com/story/15350979/agrilife-research-soil-</u> <u>moisture-monitoring-tools-will-pay-off</u>
- McCain, Carmon. August 2011. Area water conservation demonstration projects receive NRCS grant. *The Cross Section*, Volume 57 No. 8.
- McCain, Carmon. August 2011. August 5 TAWC Pioneers in Agriculture Workshop and Field Day. *The Cross Section*, Volume 57– No. 8.
- Smith, Ron. 1 September 2011. New regs, technology will prolong irrigation. *Southwest Farm Press*, Volume 38 No. 16.
- Ag Day Lubbock. By Jessica Miller, Fox 34 News, 1 September 2011. High Plains producers struggling to conserve water in drought. <u>http://www.myfoxlubbock.com/news/local/story/Groundwater-water-</u> <u>conservation/3pY1hnvXoEenSc7X1Ymaag.cspx</u>
- Ag Day Lubbock. By Jessica Miller, Fox 34 News, 5 September 2011. New ideas, concepts emerging from surviving historic drought. <u>http://www.myfoxlubbock.com/news/local/story/Texas-</u> <u>drought/yXVogCdJxkKR_gGuZBuI3g.cspx</u>
- Smith, Ron. 15 September 2011. Record breaking drought exposes irrigation system shortfalls. *Southwest Farm Press*, Volume 38, Number 18.
- Fletcher, Kelsey. 23 September 2011. China agriculture prof joins ongoing Texas Tech water management project. CASNR NewsCenter. <u>http://www.depts.ttu.edu/agriculturalsciences/news</u>
- Fletcher, Kelsey. 13 October 2011. Texas Tech gets water conservation funding boost from NRCS. CASNR NewsCenter. <u>http://today.ttu.edu/2011/10/texas-tech-gets-500000-water-conservation-funding-boost-from-nrcs</u>

- Borgstedt, Samantha. 02 April 2012. Lubbock AgriLife Extension to host Conference on Tuesday. Lubbock Avalanche-Journal. http://lubbockonline.com/agriculture/2012-04-02/lubbock-agrilife-extension-host-
- Gomez, Ellysa. 03 April 2012. Ag conference addresses water impact. The district receive multiple phone calls concerning the district's rules. Lubbock Avalanche-Journal. http://lubbockonline.com/agriculture/2012-04-03/ag-conference-addresses-water-impact#.U_yImY1tp1M
- Borgstedt, Samantha. 18 June 2012. Extension service holds meeting on irrigation in Lorenzo on Tuesday. Lubbock Avalanche-Journal. http://lubbockonline.com/filedonline/2012-06-18/extension-service-holds-meeting-irrigation-lorenzotuesday#.U_yJYo1tp1M
- Borgstedt, Samantha. 31 July 2012. TAWC to hold field day in Plainview. Pete Laney will be the keynote speaker. Lubbock Avalanche-Journal. http://lubbockonline.com/localnews/2012-07-31/tawc-hold-field-day-plainview#.U_yL301tp1N
- Yates, Jay. 26 March 2012. Lubbock County Ag Issues Conference April 3, 2012. South Plains Cotton Update. http://agrilife.org/southplainscotton/2012/03/26/lubbockcounty-ag-issues-conference-april-3-2012/
- Borgstedt, Samantha. 28 March 2012. Lubbock County Agriculture Issues Conference, April 3. Texas Farm Bureau Daily News. http://www.texasfarmbureau.org/newsmanager/templates/DailyNews.aspx?articl eid=12058&zoneid=1
- Trojan, S., and C. West. 2012. Conserving water while maintaining economic viability by grazing introduced perennial grasses. Rangeland Issues 1(3):1-6.
- Ag Day Lubbock. By Rebecca Rivers, Fox 34 News, 29 October 2013. Floyd County cotton harvest underway. <u>http://www.myfoxlubbock.com/content/agdaylubbock/story/cotton-harvest-</u><u>water-management/U-3ISR-Dh0yVFD0wdQYDuA.cspx</u>
- Ehmke, Tanner. 2 October 2013. Conserving water on the Texas High Plains: Integrating Crops, Livestock, and New Technology. *Crop & Soils*, Volume 46, Number 5, p. 6-13. <u>https://www.agronomy.org/publications/cns/articles/46/5/6</u>
- Martin, Norman. 17 August 2013. Texas Alliance for Water Conservation holds Pioneers in Agriculture Field Day. CASNR NewsCenter. <u>http://www.depts.ttu.edu/agriculturalsciences/news/?p=2855</u>
- Borgstedt, Samantha. 25 July 2013. StepUp: Texas Alliance for Water Conservation holds field walk series. CASNR NewsCenter. <u>http://www.depts.ttu.edu/agriculturalsciences/news/?p=2706</u>

- Musico, Josie. 20 June 2013. Something to Moo about: Conference describes new trends in cattle industry. Texas and Southwest Cattle Raisers Association Lubbock Avalanche-Journal. <u>http://lubbockonline.com/local-news/2013-07-20/something-moo-about-conference-describes-new-trends-cattle-industry#.U YGQOog91M</u>
- Ag Day Lubbock. By Rebecca Rivers, Fox 34 News, 25 June 2014. Water management playing a vital role in production. <u>http://www.myfoxlubbock.com/content/agdaylubbock/story/water-management-</u> conservation-tawc/kTSCIH9Tpk6vPT-EWBTbHw.cspx
- Martin, Norman. 5 December 2013. TAWC recognized with major American Water Resources Association award. CASNR NewsCenter. <u>http://www.depts.ttu.edu/agriculturalsciences/news/?p=2429</u>

Theses and Dissertations (2005-2013)

- Dudensing, J. D'Wayne. 2005. An economic analysis of cattle weight gain response to nitrogen fertilization and irrigation on WW-B. Dahl Bluestem. M.S. Thesis, Texas Tech University, Lubbock.
- Duch-Carvallo, Teresa. 2005. WW-B. Dahl old world bluestem in sustainable systems for the Texas High Plains. Ph.D. Dissertation, Texas Tech University, Lubbock.
- Martin, Rebekka. 2005. Economic evaluation of an integrated cropping system with cotton. M.S. Thesis, Texas Tech University, Lubbock.
- Miller, Pamela. 2006. West Texas High School Agriscience Teachers' Knowledge, Confidence, and Attitudes towards Teaching Water Quantity-Related Topics. M.S.Thesis, Texas Tech University, Lubbock.
- Carr, Jessica Odette. 2007. An Examination of Rural Small Acreage Homeowners in Three West Texas Counties. M.S. Thesis, Texas Tech University, Lubbock.
- Pauley, Patrick Stephen. 2007. Political and civic engagement of agriculture producers who operate in selected Idaho and Texas counties dependent on irrigation. Ph.D. Dissertation, Texas Tech University, Lubbock.
- Rajan, Nithya. 2007. Estimation of crop water use for different cropping systems in the Texas High Plains using remote sensing. Ph.D. Dissertation, Texas Tech University, Lubbock.

- Weinheimer, Justin. 2008. Farm Level Financial Impacts of Water Policy on the Southern Ogallala Aquifer. Ph.D. Dissertation. Texas Tech University, Lubbock.
- Leigh, Katie. 2008. A Qualitative Investigation of the Factors that Influence Crop Planting and Water Management in West Texas. M.S. Thesis, Texas Tech University, Lubbock.
- Wilkinson, Jarrott. 2009. The Relationship of Trust and Personality Factors of a Knowledge Source on the Information-Seeking Behaviors of Agriculture Professionals. M.S. Thesis, Texas Tech University, Lubbock.
- Williams, Claire. 2009. The Effectiveness of Using a Workshop to Change Agriscience Teacher Behaviors Toward Agricultural Water Management Instruction. M.S. Thesis, Texas Tech University, Lubbock.
- Jones, Heather. 2010. The Influence of a Professional Development Workshop on Teachers' Intentions to Include Water Management Content into Their Local Agriscience Curriculum. M.S. Thesis, Texas Tech University, Lubbock.
- Li, Yue. 2011. Allelopathy in an integrated rye-cotton-beef cattle system. Ph.D. Dissertation. Texas Tech University, Lubbock.
- Cui, Song. 2011. Finding forage legumes adapted to West Texas for reduction of water and energy use and improvement of nutritive value for livestock. Ph.D. Dissertation. Texas Tech University, Lubbock.
- Graber, Lindsay. 2011. Traditional and Social Media Use by Texas Agricultural Producers. M.S. Thesis. Texas Tech University, Lubbock.
- Sullivan, Nichole. 2012. Determining the Water Management Instructional Needs of Texas Agriscience Teachers. M.S. Thesis, Texas Tech University, Lubbock.
- Hill, Nellie L. 2013. Social network analysis of Texas Alliance for Water Conservation producers. M.S. Thesis, Texas Tech University, Lubbock, TX.

Phase I - Budget

,T	Vear 1	Vear 2	Vear 3	Ve	ear 4	Vear 5	Vear 6	Vear 7	Vear 8	Final Year	1
·										03/01/13 -	+"
,l	1/31/06)	2/28/07)	2/29/08)			2/28/10)	2/28/11	2/29/12			<u> </u>
	revised	revised	1	1		, I	. I	1			"
Budget*	L	اا	<u> </u>	I]	<u> </u>	I	<u> </u>		Total Expenses
4,537	4,537	0	0		0	0	0	0	*	Ŷ	-)= -
2,561,960	216,966	335,319	317,317	290	9,727	249,163	299,550	296,282	249,082		
675,402	21,112	33,833	80,984		,	56,239	28,122	46,033	145,566		
610,565	52,409	40,940					43,569	117,206	118,858		
376,568	42,428	40,534	47,506			51,158	27,835	29,231	45,096		
568,773	54,531	75,387	71,106			39,595	60,473	52,444	56,865		
306,020	37,014	22,801	30,516			11,497	14,302	34,398	87,024		
334,692	44,629	43,089	41,243	4	3,927	42,084	42,984	37,157	38,169		
623,288	145,078	39,011	35,656	87	2,844	52,423	65,785	32,971	76,416	110,886	
162,970	0	0	0	I	0	0	86,736	55,871	0	-	,
6,224,775	618,702	630,914	670,657	666	6,374	566,283	669,355	701,594	817,075	914,885	6,224,775
,	Year 1	Year 2	Year 3			Year 5	Year 6	Year 7	Year 8		· [· · ·
Total	(09/22/04 -	(02/01/06 -	(3/01/07 -			(03/01/09 -	03/01/10 -	03/01/11 -	03/01/12 -	03/01/12 -	· · · · · ·
	01/31/06)	02/28/07)	2/29/08)	L 2/	/28/09)	2/28/10]	2/28/11	2/29/12	2/28/13	4/30/14	Total Expenses
2,524,172	230,611	304,371	302,411	30	1.933	259,929	293,198	307,459	300,033	288,676	
						37,180	43,410				
186,600											
199,922	8,127	16,393	21,679			13,277	9,828	21,803			
158,482	14,508	25,392	14,650			16,579	12,329	19,127	17,148		
			448	1	707			(146)	0	,	
105,455	14,277	16,100	12,205	15		8,614	4,802	8,265	21,058		
1,758,667	212,718	103,031	161,540			131,627	115,587	131,779	335,505		
61,364	9,740	3,879	16,225	1	430	7,990	11,857	10,550	0		
270,192	25,339	41,374	35,497	2	3,062	14,448	18,300	45,344	17,002	22,315	
,1	1	1 1	1 ,	1		,	,t	1			ſ
2,000	0	397	235	1	187	194	114	130	222	0	1,479
57,450	0	0	0	1	0	0	0	39,225	0		
375,493	38,160	45,694	44,202	35	8,302	36,270	40,644	51,079	40,403	44,972	
,1	1	1	1 ,	1	<u> </u>	,	,1	1		1	1
6,224,775	618,702	630,914	670,657	66/	6,374	566,283	669,355	701,594	817,075	914,885	6,224,775
	4,537 2,561,960 675,402 610,565 376,568 568,773 306,020 334,692 623,288 162,970 6,224,775 Total Budget* 2,524,172 370,655 186,600 199,922 158,482 154,323 105,455 1,758,667 61,364 270,192 2,000 57,450 375,493	Task revised Budget*	(9/22/04- 1/31/06) (2/01/06- 2/28/07) Task revised revised Budget* - - 4,537 4,537 0 2,561,960 216,966 335,319 675,402 21,112 33,833 610,565 52,409 40,940 376,568 42,428 40,534 568,773 54,531 75,387 306,020 37,014 22,801 334,692 44,629 43,089 623,288 145,078 39,011 162,970 0 0 6,224,775 618,702 630,914 2,524,172 230,611 304,371 370,655 28,509 34,361 186,600 13,634 26,529 199,922 8,127 16,393 158,482 14,508 25,392 154,323 23,080 13,393 105,455 14,277 16,100 1,758,667 212,718 103,031 61,364	(9/22/04- 1/31/06) (2/01/06- 2/28/07) (3/01/07- 2/29/08) Task revised revised Budget*	(9/22/04- 1/31/06) (2/01/06- 2/28/07) (3/01/07- 2/29/08) (3/ 2 Task revised revised (3/01/07- 2/29/08) ((9/22/04- 1/31/06) (2/01/06- 2/28/07) (3/01/07- 2/29/08) (3/01/08- 2/28/07) Task revised revised revised (2/2)/08 (3/01/08- 2/28/07) 4,537 4,537 0 0 0 0 2,561,960 216,966 335,319 317,317 299,727 675,402 21,112 33,833 80,984 61,455 610,565 52,409 40,940 46,329 53,602 376,568 42,428 40,534 47,506 38,721 568,773 54,531 75,387 71,106 60,257 306,020 37,014 22,801 30,516 25,841 334,692 44,629 43,089 41,243 43,927 623,288 145,078 39,011 35,656 82,844 162,970 0 0 0 0 618,702 630,914 670,657 666,374 Year Year Year Year Year 162,970 0 0<	(9/22/04- 1/31/06) (2/01/06- 2/28/07) (3/01/07- 2/29/08) (3/01/08- 2/28/09) (03/01/08- 2/28/09) (03/01/08- 2/28/01) (03/01/08- 3/555) (03/01/08- 3/555) (03/01/08- 3/555) (03/01/08- 3/555) (03/01/08- 3/555) (03/01/08- 3/556) (03/01/08- 3/28/09) (03/01/08- 2/28/09) (03/	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(9/22/04- 1/31/06) (201/06- 2/28/07) (301/07- 2/28/09) (301/07- 2/28/09) (301/07- 2/28/09) (301/07- 2/28/09) (301/07- 2/28/09) (301/07- 2/28/09) (301/07- 2/28/09) (301/07- 2/28/09) (300/17- 2/28/09) (300/17- 2/28/07) (300/17- 2/28/07)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

 Table A 32. Phase I final task and expense budget for Years 1-9 of the demonstration project.

Phase I - Cost Sharing

Table A 33. Phase I final cost sharing figures for TTU, Texas A&M AgriLife, and HPUWCD for years 1-9 of the demonstration project.

Cost Sharing Balance Summary (estimated)

Budget	Total Cost Share Budgeted	Actual Funds Contributed	Balance
TTU		958,073.61	
TAMU		417,512.95	
HPUWCD		200,053.70	
TOTAL	1,300,000.00	1,575,640.26	(-275,640.26)

Expense Categories Salary & Wages Overhead	Total Expense Budget	<i>Actual Funds</i> <i>Contributed</i> 350,471.81 607,601.80	Balance
SubCon - TAMU \$25,000/yr - HPUWCD		417,512.95 200,053.70	
TOTAL	1,300,000.00	1,575,640.26	(-275,640.26)